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Abstract

We propose a root n consistent estimator for β0 when the qth conditional quantile

of Y given X=x and Z=z takes the semi linear form g(x)+z′β0 where g(.) is an un-

known real valued function,β0 a finite dimensional parameter and (X,Z)a couple of

explanatory variables.Importantly, our estimator attains,under homoscedasticity,the

semi parametric efficiency bound.This estimation is conducted in two steps. First,

a Robinson’s like demeaning of the original model is employed which provides a new

quantile regression whose nuisance terms are estimated via a non parametric proce-

dure.In the second stage, the quantile regression is conducted by smoothing the check

function.We show that the previous estimator belongs to a class of estimators we

propose to name ”two stage smooth semi parametric quantile”

JEL-codes: C22, C51. Key words: M-Smoothing,Quantile Regression,Adaptive Esti-

mation,Semi Parametric model.
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1 Introduction

Quantile regression serves many important purposes in Econometrics. First, even under

the Gauss Markov assumptions the LAD (least absolute deviation) estimator minimizing

the `1 norm of the errors is well acknowledged as a non linear estimator asymptotically

more efficient than the OLS ( Koenker and Basset 1978) when the error distribution

departs from Normality. Also, conducting a quantile regression permits researchers to

obtain a more comprehensive picture of the stochastic relationship between the dependant

and the explanatory variables by learning about the ”marginal effects” of the covariates

on the various quantiles such as in the field of Labor Economics(Buchinsky 1994).Finally,

a valid conditional quantile restriction on the unobservable term of a structural equation

permits to identify the parameters of interest due to the equivariance property of the

conditionals quantile operator to monotonic transformations, which has proved valuable

in the context of censored data (Chen and Khan 2001)and binary choice choice modeling

when positing a parametric family for the latent error distribution is untenable1.(Manski

1985,Horowitz 1992)

Similarly to a conditional mean regression, the risk of specification for the conditional

quantile is present. Thus, non-parametric point wise estimators for estimating a condi-

tional quantile function have been proposed, which essentially extend the kit of kernel

based procedures for local mean regression (Watson 1964) to the realm of quantile re-

gression(Fan et Al 1994). The local quantile regression (Chaudhuri 1994) is probably

the most popular as the asymptotic using the Local Bahadur Representation has been

well developed while other approaches seek to improve small sample performance such

as spline smoothing (Koeneker 1994), double Kernel smoothing (Yu and Jones 1998)

or tackle endogeneity (Horowitz and Lee 2007, Cherozhukov Gagliardini Scaillet 2007).

1The maximum score estimator permits identification of the parameters up to a positive scale, see

Horowitz 1992 for identifying restrictions.
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Even when asymptotically Gaussien distributed,the above mentioned estimators are not

root n consistent with the speed of convergence in probability deteriorating exponentially

as the number of explanatory variables increases (often called the ”curse of dimension-

ality” in the non parametric jargon). As a reaction to this latter issue, models emerged

imposing some form on the multivariate quantile function such as the Additive Quantile

Model (Horowitz and Lee 2004) in which case a root n consistent point wise estimator

can be constructed via sieves estimation provided the conditional quantile is infinitely

smooth.

An interesting sub model is the semi-parametric model for quantile regression, which

offers a compromise between efficiency and specification.Lee 2003 is a seminal paper for

semi-parametric quantile. First the Average Quantile Estimator(AQR) for the linear

part ,under homoscedasticity 2,is root n consistent while simultaneously efficient (Newey

1990). Also, under Heteroscedasticity another ”one step” efficient estimator reaching the

efficiency bound is proposed.To the best of my knowledge those two estimators are the

sole procedures to reach efficiency in the context of a semi parametric quantile regression.

Yet, it is puzzling to notice that the nature of the efficient estimator under homoscedas-

ticity,average derivative based(Chaudhuri,Doksum and Samarov 1997), marketably dif-

fers from the efficient one under heteroscedasticity, score approximation based(Stone

1975,Bickel 1982).As Econometricians we are familiar with dealing with a class of es-

timators for parametric models containing (in the sense of efficiency) a simpler class

of estimators such as G.M.M. and Two Stage Least Squares to cite probably the most

recognized.This inclusive property is not only theoretically interesting but also it brings

guidelines as to what estimator to use in finite sample based upon our testing over the
2Throughout this paper we will employ the same terminology as Lee 2003 for the sake of consistency

keeping in mind that the term homoscedastic error in this context is a substitute for f(0|X,Z) = fε(0)

a.s. where f(0|X,Z) is the density of the error ε conditional on (X,Z) while fε denotes the marginal

density of the error. .
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statistical relationship between the unobservable term and the explanatory variables.This

last point is all the more relevant in the context of a semi parametric quantile regression

because of the complex manner in which the stochastic relationships affect the efficiency

bound (see section 6).

In this paper we wish to define a general class of estimators for estimating efficiently

the linear part, thus offering a unifying approach to efficient estimation in the context

of a semi parametric quantile regression. We introduce this class of estimators we name

”two stage smooth semi parametric quantile”(2SSSPQ)and show that in any stochastic

contingency there exists an efficient estimator belonging to this class.The rest of the

paper is organized in two parts. In section 2, we rapidly remind the reader about the

semi parametric efficiency bound.In section 3-7, we are to focus on the homoscedastic

case where the consistency and asymptotic efficiency of a two stage smooth estimator is

derived.In section 8,we show that this previous estimator belongs to the 2SSSPQ family

whose efficient property for heteroscedastic models are derived generalizing the approach

from section 3-7.In section 9, a Monte Carlo experiment illustrates the finite sample

properties of a 2SSSPQ.

2 The Semi Parametric Efficiency Bound

In this section we define the efficiency bound for the slope coefficient of a general semi-

linear model satisfying for some given ψ(.):

E[ψ(Y − Z ′β0 − g(X))|X,Z] = 0 almost surely (a.s.)

where (Y,Z,X) is a R ⊗ RK ⊗ Rd valued random variable such that (K, d) ∈ N∗2 and

(β0, g(.)) ∈ RK ⊗L2(Rd, µ) is an unknown parameter where µ will indicate the Lebesgue

measure in the appropriate Euclidean space.Notice that this model is the semilinear

conditional mean case(Robinson 1988)when ψ(.) is the identity function while ψ(.) =

1.<0 − q for some q ∈ (0, 1) yields the semilinear conditional quantile model(Lee 2003).
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We will note π0(.|x, z)2 the Lebesgue density of Y conditional on X = x and Z = z and

Π = {π(.|x, z) ∈ L2(R, µ), π(.|x, z)2 > 0 and
∫
π(.|x, z)2dµ = 1}.The interest is to find

the minimum variance achievable by regular3estimators of β0.The concept of an efficiency

bound was introduced in Stein 1956 and its the computation for Econometrics models has

been typically conducted via the projection method(Bickel 1983,Newey 1990) ,which was

successfully employed in Lee 2003 to obtain the efficient bound for a semi parametric

conditional quantile model. The next definition is largely adapted from Severini and

Tripathi 2001 which provides an alternative to the projection formula in order to obtain

the efficient bound. We believe that this approach is more closely linked to the maximum

likelihood origin of this concept while additionally often more rapid at retrieving the

bound of semi linear models as extensively illustrated in Severini and Tripathi 2001.

Definition

Let suppose that π0(.|x, z) belongs to Π.

Let {πt}t∈[0,b] ⊆ Π be an arbitrary curve passing through π0 at t = 0 for some b > 0 and

which is also compatible with the true semi linear conditional model.

Let T(Π, π0) = {π̇ ∈ L2(R, µ)a.e.,
∫
π̇π0dµ = 0a.e.} where π̇ = ∂πt

∂t |t=0.

Let I = 4E[
∫
π̇2dµ] be the Maximum Likelihood information for a one parameter problem

and < ., . >z the Fisher inner product on T(Π, π0) inducing the norm ||π̇||z = I1/2.

For any c ∈ RK let Ac : Π→ R such that Ac(πt) = c′βt.Suppose that there exists a linear

functional ∇Ac : (T(Π, π0), < ., . >F )→ R such that:

(i)limt→0+|Ac(πt)−Ac(π0)
t −∇Ac(π̇)|=0

(ii)For any {vn}n∈N ⊆ T(Π, π0)such that limn||vn||z = 0 implies limn|∇Ac(vn)| = 0.

3See Newey 1990 and Hajek’s Theorem (1970)for the definition of a regular estimator. This class of

estimators rules out super efficient estimators that may for a family of parametric densities ”beat” the

Cramer bound.
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Then ||∇Ac||2 = c′Ω0c for some K by K matrix Ω0, which is called the semi parametric

efficiency bound for regular estimators of β0.

Comments:

The efficiency bound is the supremum of the Cramer bound for β0 over all possible para-

metric conditional densities that agree with the true density for some one dimensional

parameter.Sometimes,this bound is called the Cramer bound of the ”least favorable”

model (Stein 1956)because it corresponds to the least efficient Maximum likelihood es-

timator of β0.As indicated in the definition,the existence of such bound needs assump-

tions.The notion of a curve is the generalization of the Taylor’s representation in Hilbert

spaces,which relates to the regularity conditions on the parametric density adopted for

ML estimation. In our context {πt}t∈[0,b] ⊆ Π is a curve passing through π0 means that

for all t ∈ [0, b] we have for almost all (x, z) ∈ Rd ⊗ RK :

πt = π0 + tπ̇ + rt for some rt ∈ L2(R, µ)such limt→0+

∫
| rt

t |
2dµ = 0.

The curve is said compatible with the true semi linear conditional model when :

∫
ψ(y − z′βt − gt(x))π2

t dµ = 0 a.e.

so that the functional Ac : Π → R exits, which is needed for deriving the variance of

the maximum ML of β0 under a parametric submodel of density. Once, those later con-

ditions hold,the most important requirement is the existence of the pathwise derivative

at the true density i.e.π0, which is ensured by (i) and (ii).The intuition behind (i) is

that small changes in the parameter of the conditional density around the true value

do not abruptly alter the value of the K dimensional parameter of interest. Notice that

without(ii)the efficiency bound does not exists so the continuity of the linear functional

∇Ac relates to the existence of regular estimators (Chamberlain 1986),which is an iden-

tification problem.In the semi linear conditional quantile case,(i) and (ii) are satisfied

under mild requirement on the density of the error term and the inability to predict Z
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from some measurable functions of X.Finally, T(Π, π0) is the linear closure of the ”Cone

Tangent” (Severini and Tripathi 2001),which is our domain of reference for only Cramer

bounds of parametric densities satisfying the maximum likelihood score condition are

relevant i.e E[∂logπ
2
t

∂t |t=0] = 0.

We are to succinctly sketch how the efficiency bound is constructed summarizing Severini

and Tripathi 2001.In the definition we normalize the true parameter to be 0 for any para-

metric family of densities for it does not change the problem. So,let πt be a curve passing

through π0 when t = t0.Since that curve is locally compatible with the semilinear model

the functional F such that Fπt = βt is well defined. Consequently β̂ML ,the maximum

likelihood estimator of β0, is given by Fπt̂ML
where t̂ML = ArgmaxÊ[logπ(y|x, z, t)2] be-

cause of the invariance principle of the ML and the assumption of pathwise differtiability

of F at π̇ = ∂π
∂t |t=t0 . Hence, there exits a linear functional ∇F (π̇) such that:

Fπt̂ML
− Fπt0 = (t̂ML − t0)∇F (π̇) + op(n−1/2)

and consequently:

asymvar
√
n(β̂ML − β0) = Ω(π̇)

where Ω(π̇) = ∇F (π̇)∇F (π̇)′

||π̇||2z
is just one Cramer bound.Consequentely,any regular estima-

tor βR will satisfy for all c in RK :

asymvar
√
nc′(β̂R − β0) ≥ c′Ω(π̇)c

Since there are possibly an infinity of one parameter problems permitting to recoverer the

true conditional density π2
0 ,the supremum of c′Ω(π̇)c over T(Π, π0) provides a lower bound

for regular estimators.4.Subsequentely,the conclusion of the definition arises because:

4Notice that when any one dimensional parametric model of density returns the same bound, the

search is over. This is the adaptive case which occurs when |∇F | is constant on the unit ball of T(Π, π0).
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c′Ω(π̇)c = ( |c
′∇F (π̇)|
||π̇||z )2

where c′∇F (π̇) is what we called ∇Ac(π̇) which is under the previous assumptions (i) and

(ii) well defined as a bounded linear functional on the Hilbert space(T(Π, π0)), < ., . >F )

yielding the efficiency bound as the squared norm of the linear functional.5

3 Motivation for a Robinson’s Like Estimator For Semi

parametric Quantile Regression under homoscedas-

ticity

In this section we introduce the semi linear quantile regression model and rapidly de-

scribed the computational steps required from the AQR estimator in order to reach the

semi parametric efficiency bound under Homoscedasticity.

The semi parametric quantile regression model posits:

Y = g(X) + Z ′β0 + ε (I)

P[ε < 0|X,Z]=q a.s. for some given q ∈ (0, 1).

where Y is an observable variable,(X,Z) a couple of observable explanatory variables such

that (DimX,DimZ) = (d,K) with min(d,K) ≥ 1 ,g(.) is an unknown function ,β0 a

parameter of interest while ε is the error term.There are essentially two ways to interpret

this model. First, the researchers may be primarily interested in estimating the qth con-

ditional quantile function of Y |X,Z positing P[Y < g(X) + Z ′β0|X,Z]=q(a.s.)in which

case P[ε < 0|X,Z]=q a.s. is merely tautological. A good illustration is the conditional

value at risk(R.Engle and S.Manganelli 2005).The second more common interpretation is
5By the Riesz representation theorem there exists a unique π∗ ∈ T(Π, π0) such that ||∇Ac||2 = ||π∗||2z

so that δ = 2(
∫
π2
∗dµ)1/2 corresponds to the ”efficient influence function”(Newey 1990).
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that Y is a response variable explained according to some Economic theory where ε con-

tains unobservable terms (and/or variables omitted from the underlying theory)and g(.)

is left unspecified motivated by the researcher suspicion on the high non-linearity of the

relationship between Y and X.This later choice serves two purposes simultaneously.First,

it reduces the risk of inconsistent estimation6on the parametric part caused by badly

specified g(.), which has been beneficial to testing the relative income hypothesis in

Health Economics(A.Jones and J.Wildman 2008).Additionally, relaxing the assumption

on g(.) permits to learn more about the relationship between Y and X such as in the field

of social learning where the nature of the peer effect can be better uncovered(G.Bobonis

and F. Finan 2005).In this instance,P[ε < 0|X,Z]=q a.s. is a judiciously chosen assump-

tion on the unobservable component to identify (g(.), β0) among many others constant

conditional location restrictions of the form E[Ψ(ε−α)|X,Z] = 0 a.s. for some constant

α and function Ψ(.) satisfying Ψ(.)(.) ≥ 0(Powell 1994).

In a seminal 2003 paper S.Lee showed that the ”Average Quantile Derivative” (AQR)

estimator can, under iid sampling, estimate β0 consistently and efficiently. We are thus

to remind the reader briefly about the AQR estimator.For a positive integer k we note

Ak={u ∈ Nd :
∑
ui ≤ k} and Nk its cardinality.Also,for any v ∈ Rd and u ∈ Ak we

use the condensed notation vu for
∏d
i=1 v

ui
i .Let assume that g(.) is m times continu-

ously differentiable with its mth derivative also hölder continuous of exponent γ ∈ (0, 1]

where s = m + γ meets s > 3d/2.Given an iid sequence of observations {Yi, Xi, Zi}ni=1

, the efficient AQR estimator is obtained in two steps.In the first stage, this consists of

minimizing in c ∈ RNk and β:

∑
i∈Ij,n

ρq(Yi − Pn(c,Xi, Xj)− Z ′iβ) for j = 1, . . . , n

wherePn(c, t,Xj) =
∑
u∈Ak

cuδ
−u
n (t−Xj)u is a modified version of the Taylor’s expansion

of g(.)at some order k around Xj , Ij,n = {i 6= j : |Xi−Xj | < δn}, δn = O(n−α) for some
6We employ the term reduce because the estimator is still inconsistent if the error term is endogenous.
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α ∈ (1/2s, 1/3d) and ρq(t) = (2q − 1)t+ |t| is the ”check function” (Koenker and Basset

1978).This first stage provides a n-sequence {β̂j}nj=1, all of which converging in proba-

bility to β0 at a non parametric rate(Chaudhuri 1991).Hence, the second stage consists

of combining this sequence using a judicious weighting system to reach efficiency.Under

some mild conditions,βα,the efficient AQR under homoscedasticity is given by:7

βα ≡ [ 1
n

∑n
j=1 Ω̂(Xj)]−1( 1

n

∑n
j=1 Ω̂(Xj)β̂j)

where Ω̂(x) is a non parametric estimator of V ar(Z|X = x).

As showed in Lee 2003, βα has desirable statistical properties in that
√
n(βα − β0) 

N (0,H) where H is the efficiency bound, for regular estimators of β0 under the condition

that the model is homoscedastic.

In the next section, we offer a root n consistent estimator circumventing the AQR first

stage while retaining efficiency.The main conditions we introduce deal with the stochastic

relationship between X and the error term and the nature of the random variable X. To

be more precise, we impose (i) E[ε|X]=E[ε] a.s. and (ii)X contains either discrete or

continuous bounded variables.Even though assuming statistical independence between X

and the error term would suffice for (i) it is generally too strong a condition with economic

data.Hence, (i) requiring at least that ε and X be uncorrelated,relaxes the stringency on

the degree of stochastic proximity.Finally, it is important to bear in mind that unlike the

discrete case ,the bounded support imposes by (ii)does facilitate the derivation of our

results but is not necessary when X is a continuously distributed random vector.8

7We removed the X measurable trimming function used in the computation of the AQR,which filters

the sequence of estimators making up the AQR depending on their non parametric part origin,so strictly

speaking the efficiency bound is only ”almost” attained because it aims at offering satisfactory finite

sample properties.However,as explained in Lee 2003 this has no practical implication asymptotically.
8The intermediate case where X contains a mixture of discrete and continuous variables is possible.The

structure of the proofs being almost identical apart for the more tedious notations we decided not to

cover it.
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4 The Estimation Strategy

Under (i) we can use the operator E[.|X] (Robinson 1988) on both sides of (I) which

yields a new equation and subtracting this latter from (I) results in:

T = w′θ0 + ε (II)

where θ′0 = (−E[ε], β′0),T = Y − E[Y |X] and w′ = [1, (Z − E[Z|X])′].

We notice that part of the efficient score (Lee 2003)for a semi parametric quantile model

emerges in (II),which suggests estimating efficiently θ0 by minimizing
∑n
i=1 ρq(T̂i− ŵi′θ)

where the hat stands for non parametric estimates of the nuisance functions. The main

issue to overcome pertains to the inevitable first stage estimation of {Ti, wi}ni=1, which

are known up to X measurable nuisance functions we note τ .Let τ̂ be some non para-

metric estimator such that plim d(τ̂ , τ)=0 for a pseudo metric d defined on some infi-

nite dimensional functional space9containing our functions of interest(Andrews 94)10.In

general, showing that the asymptotic will be preserved using preliminary nonparamet-

ric estimates demands assumptions.Robinson 1988 succeeded in the context of a semi

parametric model for conditional mean, assuming a particular smoothness for g(.) and

statistical independence between the error term and (X,Z). Subsequently, Andrews 1994

offered a general sufficient condition with the concept of Stochastic Equicontinuity, which

holds under some regularity conditions 11.

Yet, the score for a quantile regression is not differentiable.This prevents using Stochastic

Equicontinuity as an argument relying on the standard asymptotic theory with the Taylor

representation of the score.One solution is provided in the seminal work of Chen et Al
9The term ”pseudo” refers to the fact that d(f1, f2) = 0⇔ f1 = f2 almost everywhere. For instance,d

may be induced from a norm N(f) = (
∫

X |f |
rdµ)1/r where r is a positive integer and (X,B, µ) some

measure space because d(f1, f2) = N(f1 − f2) satisfies this condition.
10When the support of X is countably finite,the functional space is finite dimensional. However, our

results extend to the case where X is continuous so we adopt a general treatment of the problem.
11See Andrews 94,Handbook of Econometrics,Volume4.
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2003 which,under some regularity conditions, would permit us to derive the asymptotic of

the unsmooth feasible estimator relying on the empirical process since this later is path

wise differentiable.Even though this last approach could be employed,we rely instead

on the smoothing of the objective function because we believe this approach allows for

simpler proofs for our specific problem using classic non parametric results for Kernel

density estimation.Additionnaly, our approach does not impose to find a pseudo metric

satisfying d(τ̂ , τ) = op(n−1/4)(see Chen et Al 2003,Theorem 2-2.4) which is in general

demanding where the dimension of X exceeds the smoothness order of the nuisance

functions.

In this paper, we propose to estimate β0 by smoothing the Check function( Amemiya 82,

Horowitz 98) minimizing instead:

∑n
i=1 ρn(T̂i − ŵi′θ) (III)

where {ρn}n∈N is a sequence of twice differentiable real valued functions,converging uni-

formly to ρq.Those functions are build from integrating kernel functions as to approximate

the absolute value function.The uniform rate of convergence to the check function i.e.sup

|ρn − ρq| will be given by the underlying bandwidth h of the Kernel employed.

The root n consistency and efficiency(under homoscedasticity) of the estimator of β0

based upon (III), which we note β(τ̂), is derived using the following argument.First,using

an appropriate smoothing scheme(Horowitz 1998)for the check function will establish

that
√
n(β(τ) − β0) N (0,H) where β(τ) corresponds to the estimator of (III) when

the nuisance parameter is known. Then
√
n(β(τ)− β(τ̂)) = op(1) will follow principally

by letting h vanish as n approaches infinity at a sufficient slow rate, which is decided by

the rate of convergence on the nuisance parameters.In other words, our feasible estima-

tor from (III)is root n consistent while simultaneously efficiency in the class of regular

estimators of β0.The logic behind our admissible bandwidth spectrum is intuitive if one
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thinks of h as inversely related to the smoothness of the score derived from (III): we

need the smoothness of the score to deteriorate slowly enough as to let the estimation

mistakes on the nuisance terms have no impact asymptotically.

As explained above, the choice of the bandwidth for smoothing the check function is

critical: we must choose h = O(1/np) for some p ∈ (1/2r, c) where r corresponds to

the(uniform)order of smoothness of the density of the error conditional on the explanatory

variables and 0 < c < 1 depends on the nature of X.When X contains discrete random

variables c = 1/4 while a model where X is continuously distributed imposes c = m/4(m+

d) with m > 1 indicating the minimum order of smoothness between the density of X

and the nuisance functions.

It is important to stress that the uniform rate of convergence on the nuisance terms

plays a pivotal role in deciding the smoothness required on the conditional density for

our estimation to be successful. When X comprises discrete random variables,the uniform

rate of convergence in probability on the nuisance terms is parametric i.e.
√
n imposing

r > 2 for the density.In the instance where X contains continuous random variables,the

(optimal)uniform rate on the nuisance functions is nm/2m+2d dictating r > 2(m+ d)/m.

We thus observe two important distinctive features when X contains continuous regres-

sors. First, the existence of a trade-off between the smoothness assumption of the nui-

sance functions and the error density. Secondly,the presence of a ”linear curse of dimen-

sionality in the smoothness” in that the minimal degree of smoothness on the density

of the error is increasing in the number of explanatory variables entering g(.)12. In this

paper we opted for m = 2 for we wish to be conservative on the class of nuisance func-

tions and we believe the cost in terms of r to be very reasonable owing to the small

dimensionality of X frequently encountered in semi parametric applications.
12Interestingly, this dimensionality problem attenuates as m becomes large so that the choice for h

becomes identical to the discrete case when the density of X and the nuisance functions are infinitely

smooth.
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Before providing the Model and its full conditions we need to introduce some notations

used throughout the paper:

(1)For r > 0 and z ∈ R we note B(z, r) = {x ∈ R||x− z| < r}

(2) 1A(x) = 1 , if x ∈ A ,where A is some real Borel set.

(3) (Ω, σ, P ) refers to a probability space where Ω is the space of states of nature,σ is

the sigma field of measurable events and P indicates the probability measure.

(4) B= space of real valued Borel measurable functions

(5) For any real valued random variable X and positive integer k we note:

 LkX = {f(X), f ∈ B,
∫

Ω
|f(X)|kdP < ∞},  L∞X the space of X measurable random vari-

ables bounded almost surely and Ê(f(X)) the plug in estimator of E(f(X)).

(6) For f:Rd −→ R we note f (j)(X) its jth derivative at X whenever ∂|j|f(X)

∂x
u1
1 ...∂x

ud
d

exists for

all u ∈ Nd such that
∑
ui = j.

(7) we note ||X|| the Euclidean Norm of a vectorX = (x1, ..., xd) and |X|∞=Maxi=1...d|xi|

where d ∈ N.

(8) we note |||M ||| =
√
trM ′M where M is a finite dimensional real valued Matrix and

M’ its transpose.

(9) we note Xn  X for Xn converging in distribution to X.

(10) For a joint couple of real valued random variables (A,B) we use fb(a) as the Lebesgue

density of A conditional on B = b.

(11) we use ||L|| for the norm of a linear operator L whenever the context precludes

confusion with the Euclidean norm.

(12)for(d,m) ∈ N∗2we note:

Φd,m={f : Rd −→ R ,f ∈ B; ||f ||sup < ∞(i)
∫
f(X)dX = 1(ii)

∫
Xuf(X)dX = 0 for

[u] = 1, ...,m− 1(iii)
∫
|Xuf(X)|dX <∞ for [u] = 0,m}.
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with the standard notations Xu=
∏d
i=1 x

ui
i for u ∈ Nd and [u] =

∑
ui.

(13) For m ∈ N and X ⊂ Rd open convex, we note Cm(X )={f : X−→ R,f (j) exists and

is continuous for j = 0, ...,m uniformly over X }.

(14)we use ||f ||∞,X∗ for the essential supremum of f : Rn −→ R on X∗ ⊂ Rn where

n ∈ N∗.

For any even integer r greater than 4 we note:

Kr={K : R−→ R, K(t) = Q(t)1[−1,1](t) where Q is a symmetric polynomial of degree

r satisfying (i)Q has (r-2)/2 distinct roots in (0,1)(ii)Q(1) = 0;Q(0) > 0 Q(1)(1) =

Q(1)(−1) = 0(iii)
∫
K(t)dt = 1 and

∫
tjK(t)dt = 0 for j = 1, ..., r − 1 }.

Fr={ϕ : R−→ R,ϕ(u) =
∫∞
u

∫∞
x
K(t)dtdx, K ∈ Kr}.

Finally, for α > 0 and s > 1 we note Hs,α = {f : R −→ R(i)f is r times continously

differentiable where r−1 < s ≤ r (ii)
∫
|f (r)(t)|dt <∞}(iii)supy∈B(x,%)

|f(y)−Tr−1(y−x)|
|y−x|s ≤

ψ(x) for all x and some % > 0 where Tr−1(y − x) is the Polynomial in the Taylor’s

expansion at order r-1 of f(y) around x (iv)
∫
fα(x)dx <∞ and

∫
ψα(x)dx <∞ }.
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5 The Model

Y = g(X) + Z ′β0 + ε

Assumption 1:

P[ε < 0|X,Z]=q a.s.

Assumption 2:

(a) E|ε|2 <∞ and (b) E[ε|X]=E[ε] a.s.

Assumption 3:

The support of Z, noted Z, is a compact subset of RK where K ≥ 1.

Assumption 4 :

θ′0 = (−E[ε], β′0) is an interior point of Θ, which is a compact subset of RK+1.

Assumption 5:

The support of X, noted X , is a countable subset of Rd where d ≥ 1 satisfying (i)

infXP [X = x] > 0(ii)
∑
x∈X P [X = x] = 1(iii) inft∈X\x|t− x| > 0 uniformly over X .

Assumption 6:

g is a Borel measurable real valued function satisfying supx∈X |g(x)| <∞

Assumption 7:

For almost all (x,z) ∈ X ×Z there exists r(x, z) > 0 such that fx,z(e) > 0 on B(0,r(x,z))

where fx,z(.) is the density of ε conditional on X=x and Z=z.

Assumption 8:

E[ww′] is positive definite where w′ = [1, (Z − E[Z|X])′].
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Assumption 9:

fx,z(.) is in Hr,1 almost everywhere on X × Z.

Assumption 10:

The probability distribution measure of ε is absolutely continuous with respect to the

Lebesgue measure.

Comments:

The assumptions follow mostly the literature for linear quantile regression(Koenker and

Basset 1978, Amemiya 1982) because our transformed model is in effect linear.We will

subsequently elaborate on the assumptions to highlight their relevance in obtaining the re-

sults.Nevetheless,it is worth discussing assumptions 2a,4, 5,6 and 9 at this point.Assumption

2a is stronger than usually required where the existence of the first moment of the er-

ror suffices. This extra condition originates from the presence of nuisance terms whose

root n convergence holds provided the central limit theorem applies.Assumption 4 is in-

troduced for simplicity but our results remain valid when Θ is simply assumed totally

bounded(Andrews 1992),which permits models where strict inequality constraints are

imposed on the parameters.Assumption 5,directly taken from Bierens 87,is the defini-

tion of a well behaved discrete random variable with (iii) excluding degenerated cases.

Assumption 6 is technical but permits along with assumption 2a the convergence of

our nuisance terms at the parametric rate(i.e
√
n).Finally, assumption 9 is a stronger

requirement on the conditional density than proposed in the semi parametric quantile

literature(Lee 2003,Chen and Kahn 2001).This type of smoothness requirement on the

density is common in the literature of semi parametric estimation based upon prior nui-

sance terms(Robinson 1988, Florens et al 2006).That is, just like a classic non parametric

density estimation,using a Kernel of order r > 2 demands the density of interest to be r

times differentiable. Yet, in this paper we also assume the rth derivative of the conditional
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density is locally Lipschitz.13.This last modification plays a major role in eliminating the

asymptotic bias on the limiting distribution of the smooth quantile estimator.In the re-

minding part of the paper we will remove the q subscript for the check function being

well understood that the quantile of interest has been chosen i.e. ρ(.) = (2q − 1)(.) + |.|

6 Results

Proposition 1 (identification)

Under assumptions 1 through 8

θ0 is the global minimum of E[ρ(T − w′θ)]on Θ where T = Y − E[Y |X]

Comments:

Assumptions 8 and 7 are the most crucial for our parameter of interest to be identi-

fied.Assumption 8 requires that Z cannot be perfectly predicted via its minimum MSE

predictor on  L2
X . Thus, this last condition discards models where Z contains a constant

or X measurable functions(power of X for instance)14.This last condition appeared iden-

tically in Robinson 1988. Finally, assumption 7 is a classic condition for quantile regres-

sion, relevant for unlike mean regression one does not have a globally convex population

moment function which prevents the first order condition to suffice.In an Econometrics

Model,this condition may be interpreted in terms of the purity of the unobservable com-

ponent, which must have some strictly positive probability of getting arbitrary small

in absolute term.Using this assumption permits to guarantee that the qth quantile of

the error conditional on X = x and Z = z is unique which, combined to assumption
13This type of condition is useful for dealing with the integrated bias of a kernel density estimator for

a random variable whose support is not compact and can be loosely interpreted as a stability condition

on the L1 norm of the rth derivative to small perturbation
14This is not an issue in our model since assumption 3 and 5 together exclude this case.
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8, translates into θ0 being the sole local minimum of our population moment and con-

sequently the global minimum. It is worth mentioning that the empirical counterpart

of E[ρ(T − w′θ)]is not the minimization of interest but the consistency of our smooth

estimator(feasible or not) originates from proposition 1.

Proposition 2

let {Ti, w′i}i=1...n be an iid sequence from a joint couple {T,w′} defined on (Ω, σ, P ).For

any q ∈ (0, 1) let ρn be a real valued function such that ρn(u) = 2(qu + ϕn(u)) where

ϕn(u) = hϕ(u/h) for some ϕ ∈ Fr and some h = O(1/np) with p ∈ (1/2r, 1/4).Then

under assumption 1 through 10 the followings hold:

(i) θ∗ ≡ ArgminΘ

∑n
i=1 ρn(Ti − w′iθ) is consistent for θ0.

(ii)
√
n(θ∗ − θ0)  N (0, q(1− q)E(fx,z(0)ww′)−1E(ww′)E(fx,z(0)ww′)−1).

Comments:

Consequentially, under homoscedasticity this smooth estimator reaches the efficiency

bound for the linear part, which is q(1−q)
f(0)2 E[V (Z|X)]−1(Lee 2003).The idea of smoothing

M-estimators is not new (Huber 1964)but in the context of a linear quantile regression this

consists of mimicking the empirical counterpart for the gradient and Hessian of the pop-

ulation function i.e. E[ρ(T −w′θ)],which permits a more rapid derivation of the smooth

estimator’s asymptotic because it avoids having to work from a Taylor’s representation

of the empirical process (Koenker and Basset 1978).It is important to stress than even

though our bandwidth constraint precludes the root n equivalency between this smooth

quantile estimator and the minimizer of
∑n
i=1 ρ(Ti − w′iθ), both estimators’asymptotic

are identical.

The smoothing technique employed in the context of the 2SLAD(Two Stage Least

Absolute Deviation)(Amemiya 1982)is simple and analytically tractable since build from
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the logistic kernel which is of order 2. Unfortunately, in the context of estimation with

nuisance functions one needs a kernel of higher order r > 2 capable of handling bandwidth

h such that hr=o(1/
√
n) to obtain a smooth estimator asymptotically Gaussien and

simultaneously h−4 = o(n) for the nuisance terms to have no impact. Thus, we rely

on a variant of Horowitz’s uniform kernel approach(Horowitz 1998) as employed in the

context of Bootstrapping. The integration of such kernels of order r is easy to compute

and yield polynomials of degree r + 2 on a compact support which after tuning with

a bandwidth approximate the ”check function”. A good example when r = 4 (i.e.

for constructing a function in F4) would be the Epanechnikov Kernel given by K(t) =

15/32(7t4−10t2 +3)1(|t|≤1) resulting in ϕ(u) = 15/32(7/30u6−5/6u4 +3/2u2−16/15u+

1/6)1(|u|≤1) − u1(u<−1).

Our next step will be to use a modified version of our smooth estimator using non

parametric estimates for M(X) = E[Y |X] and ϑ(X)=E[Z|X],which we propose to esti-

mate(pointwise) using the following estimators:

M̂(x) =
∑n
i=1 ki(x)Yi and ϑ̂(x)=

∑n
i=1 ki(x)Zi

where ki(x) = φ((Xi − x)/ζ)/
∑n
j=1 φ((Xj − x)/ζ) with φ a symmetric Kernel while

ζ is a sequence of bandwidth. We will briefly remind the reader about the conditions

upon φ leading to our unusual uniform rate of convergence for M̂ and ϑ̂ by stating the

conditions directly taken from Bierens 87.

Proposition 3(Bierens 1987)

let {Yi, Xi, Zi}i=1...n be an iid sequence from (Y,X,Z),a triplet defined on (Ω, σ, P )

where X meets assumption 5. Let φ :Rd −→ R be a real valued function satisfying

(i) φ is symmetric

(ii) φ(0) = 1

(iii) lim sup
√
n|φ(t)1|t|>1/ζ | = 0 for ζ = O(n−α) where α > 0.
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For all x ∈ X let define M̂(x) =
∑n
i=1 ki(x)Yi and ϑ̂(x)=

∑n
i=1 ki(x)Zi where

ki(x) = φ((Xi − x)/ζ)/
∑n
j=1 φ((Xj − x)/ζ).

Then supx∈X {
√
n(M̂ −M)}=Op(1) andsupx∈X {

√
n||ϑ̂− ϑ||}=Op(1).

Comments:

This results originates from the fact that the kernel based estimators converges in

probability to the empirical counterpart of the conditional mean which is root n consistent

at any point of the conditioning. The condition φ(0) = 1,not typically met by Kernel

functions, is at core origin of this convergence success. The intuition is that realizations

of X happening to ”hit” the very point of the chosen conditioning x ∈ X must ensure

φ((X − x)/ζ)=1 for mimicking the empirical estimator in question. Finally, lim sup

√
n|φ(t)1|t|>1/ζ | = 0 for ζ=o(1) is met by Kernels belonging to the exponential family.In

practice,φ (.) can be constructed in a simple manner as shown in Bierens 1987 as a linear

combination of two normal Kernels:

φ = α1φ1 +α2φ2

where φj(x)=σ−dj (2π)−d/2e−x
′x/2σ2

j for j = 1, 2

αj = (σ−di − (2π)d/2) σd
j σ

d
i

σd
j−σd

i

for j 6= i

while {σj}j=1,2 are arbitrary chosen strictly positive real numbers.

Proposition 4

Under assumption 1 through 10

θ̃∗ ≡ ArgminΘ

∑n
i=1 ρn(T̂i − ŵi′θ) is consistent for θ0

Assumption 11

For any δ > 0 there exists ξ > 0 and N0 such that supn≥N0P [supΘn(ξ)|υn(∆)| > δ] < δ

where υn(∆) =
∑

1√
n
wi

h K(εi/h)∆i and Θn(t) = {{∆}i=1..n : |∆|∞ ≤ t} for any t > 0.
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Comments:

This assumption ensures υn(∆̂) = op(1),which we found to be sufficient to show that

the feasible estimator is asymptotically equivalent. The structure of the condition is

inspired from the notion of stochastic equicontinuity (SEC)(Andrews 94).The viability

of this assumption may be judged by observing that under our previous assumptions

|υn(∆̂)| ≤
√
n|∆̂|∞ and is thus bounded in probability15.

Proposition 5

Under assumption 1 through 11

plim|
√
n(θ̃∗ − θ0)−

√
n(θ∗ − θ0)| = 0

Comments:

Proposition 5 establishes therefore that our feasible estimator reaches the efficiency

bound under homoscedasticity.There are two practical concerns. First, the estimator will

be computed minimizing the non linear function
∑n
i=1 ρn(T̂i − ŵi′θ) using an iterated

procedure(i.e.Newton’s and its variants)or a direct search method such as simulated

annealing(Kirkpatrick et Al 1983).Secondly, to conduct inferences the covariance matrix

needs consistent estimators of H0 = E[fx,z(0)ww′] and M0 = E[ww′] which are given

respectively by Ĥ0 = 1
nh

∑
ŵiŵ

′
iK( T̂i−ŵ′iθ̃∗

h ) and M̂0 = 1
n

∑
ŵiŵ

′
i.

16Finally a point wise

estimator of g is given by ĝ = M̂ + û− ϑ̂′β̂0 where û is the estimator of the intercept in

θ̃∗ while β̂0 its reminding sub vector. Then
√
n(ĝ− g) = Op(1) follows immediately from

propositions 3 and 5.Next we are to provide the conditions for our results to hold in the

case where X contains continuously distributed random variables.

15This is no longer true when X has a compact support.

16See Lemma 3 for proof of Ĥ0 and M̂0 consistency.
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Corollary

Let the previous assumptions of our model hold except assumptions 2a,5,9. Also, let

the followings hold:

(a)Xis a X valued random variable where X ⊂ Rd open convex bounded.

(b)X∗ ⊂ X compact non empty such that {x ∈ X∗|V ar(Z|X = x)positive definite}

has a strictly positive Lebesgue measure.

(c)The distribution function of X is absolutely continuous with respect to the Lebesgue

measure and the density of X,noted π,is strictly positive on X .

(d)π,g, and ϑ belong to C2(X ).

(e)E|ε|2+a <∞ for some a > 0.

(f)There exists constants C1, C2 and C3 such that:

|||E(ZZ ′|X = x1)− E(ZZ ′|X = x2)||| ≤ C1||x1 − x2|| for all (x1, x2) ∈ X × X .

|E(ε2|X = x1)− E(ε2|X = x2)| ≤ C2||x1 − x2|| for all (x1, x2) ∈ X × X .

||E(Zε|X = x1)− E(Zε|X = x2)|| ≤ C3||x1 − x2||for all (x1, x2) ∈ X × X .

(g)fx,z belongs to Hr,1 for almost all (x, z) ∈ X × Z with r > 2 + d.

The nuisance functions are estimated pointwise with:

M̂(x)=
∑n
i=1 ki(x)Yi and ϑ̂(x)=

∑n
i=1 ki(x)Zi

where ki(x) = φ((Xi − x)/ζ)/
∑n
j=1 φ((Xj − x)/ζ)

(h)φ ∈ Φd,2 and ζ = O(n−1/4+2d).

(i)
∫
|
∫
eit
′Xφ(X)dX|dt <∞ where i =

√
−1.

(j)ρn from proposition 2 is such that h = O(1/np) with p ∈ (1/2r, 1/4 + 2d).
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(k)For any ε > 0 and η > 0 there exists δ > 0 such that limP ∗[supB(τ0,δ)

√
n||∇S∗(τ, θ0)−

∇S∗(τ0, θ0)|| > η] < ε where ∇S∗(τ0, θ0) = 1
n

∑n
i=1

∂
θ ρn(Ti − w′iθ) |θ=θ0 is the true em-

pirical gradient while ∇S∗(τ, θ0) is that using some other nuisance functions τ ∈ F

with F = {(f, g) : ||f ||∞,X∗ + ||g||∞,X∗ < ∞},B(τ0, δ) = {τ ∈ F|kF (τ, τ0) < δ} and

kF (τ1, τ2) = ||f1−f2||∞,X∗+||g1−g2||∞,X∗ for any (τ1, τ2) = {(f1, g1), (f2, g2)} ∈ F⊗F .

Then θ̃∗ ≡ ArgminΘ

∑n
i=1 λ(Xi)ρn(T̂i − ŵi′θ),where λ(X) = 1X∈X∗, satisfies the

followings:

(I) θ̃∗ is consistent for θ0.

(II)
√
n(θ̃∗ − θ0)  N (0, q(1− q)E(λfx,z(0)ww′)−1E(λww′)E(λfx,z(0)ww′)−1).

Comments:

Hence,the semi parametric efficiency bound will be attained under homoscedastic-

ity apart for the presence of the trimming function.This ”almost” efficiency is also a

characteristics of the efficient AQR when the unobservable term is homoscedastic.It is

interesting to notice that while the AQR trimming function has a practical origin(Lee

2003, page7),our trimming criteria is introduced for theoretical reason which are to be

explained shortly. In practice one can render the trimming effect inconsequential in large

samples by gauging the support of X.Assumption(a)is standard for continuously dis-

tributed random variables entering nuisance functions, ensuring a support of ”minimal

smoothness”(Andrews 1994).The extra condition we impose is that the support is also

bounded,which simplifies many of the proofs but needs not to hold.Assumption (b)ensures

that E[λww′] is positive definite which plays the same role as assumption 8 in the context

of our trimmed estimator.This condition is weaker than V (Z|X = x) positive definite

a.e. because it allows Z to be perfectly predicted by X on some strict subsets of X∗,which

may be relevant in applications when (Z,X) share a perfect relationship around some
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level of X 17.Assumptionc(c),(d) and (e) ensures the classic conditions to obtain a uni-

form rate of convergence in probability on the nuisance functions over compact subsets

of X .Notice that Assumption (d) is conservative on the nuisance functions which comes

at a cost in terms of the smoothness required on the conditional density in (g) where

r > 2 + d is assumed.However,we feel this later condition on the density of the error

to be mild as the dimension of the variable entering the non parametric part is small in

most economic applications.It is interesting compare the smoothness tradeoff between the

AQR and our suggested estimation procedure.Unlike the AQR,it is not the smoothness

of g(.) that must grow with the dimension of X but that of the conditional density of the

error term.The bandwidth in (h) for the Kernel employed to estimate the nuisance func-

tions is the optimal one under the smoothness conditions previously enumerated using

Kernels of bounded variations(Silverman 1978,Bierens 1987).Assumption (i),required to

obtain a uniform rate of convergence in probability on our nuisance functions,demands

a Kernel whose Fourier transform is absolutely integrable,which will hold for instance

when φ(x)=(2π)−d/2|Σ|−1/2e−
1
2x
′Σ−1x for some positive definite matrix Σ.Finally,the

trimming componentλ is introduced because the uniform rate of convergence on con-

ditional mean functions is guaranteed only on compact subsets.This filtering of obser-

vations has thus been widely used in estimation based upon nuisance functions(Andews

1994,Robinson 1988).Even though trimming imposes a sacrifice in large sample in terms

of the efficiency of our estimator,it offers more robust finite sample properties by discard-

ing observations close to the cluster points of the support of X.Finally, assumption(k)

imposes stochastic equicontinuity (Andrews 94) on the smooth score because assump-

tion(d)is not strong enough to ensure the analogue of the discrete case to show directly

√
n{∇S∗(τ̂ , θ0)−∇S∗(τ0, θ0)} = op(1). The Caratheodory measure P ∗ is introduced in

17For instance,in a simple wage equation using X = age and Z = schooling will have the variable

age in a low range as a perfect predictor of schooling as compulsory enrollment prevent any variation to

occur for Z.More generally, this type of lack of variation arises with Economic data when some ranges

of the variables X are constrained by law to a unique choice for Z.
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order to handle instances where supB(τ0,δ)

√
n||∇S∗(τ, θ0)−∇S∗(τ0, θ0)||is not a σ mea-

surable sequence of maps18.Because of our choice for the pseudo metric,this condition

can be interpretation as follows: for any τ ∈ F the measure(outer)of the discrepancy

i.e.
√
n||∇S∗(τ, θ0)−∇S∗(τ0, θ0)|| exceeding an arbitrary level can be rendered arbitrary

small provided that the worst absolute difference over X∗ between τ and τ0 is kept under

control.Even though (k) is a demanding assumption,it is important to keep in mind that

this condition is not necessary to achieve
√
n{∇S∗(τ̂ , θ0)−∇S∗(τ0, θ0)} = op(1).

The testing of hypothesis on the slope coefficient will be conducted in practice plug-

ging consistent estimators of H0 = E(λfx,z(0)ww′) and M0 = E(λww′) which are

given by Ĥ0 = 1
nh

∑
λiŵiŵ

′
iK( T̂i−ŵ′iθ̃∗

h ) and M̂0 = 1
n

∑
λiŵiŵ

′
i.Similarly to the dis-

crete case, g(.) will be estimated pointwise as explained on page 22 but with a slower

convergence rate imposed by that achieved on the nuisance functions i.e. n
1

2+d (ĝ −

g) = Op(1).Furthermore, in applications the testing of a null hypothesis of the form

Ho : R∇g(x) = r where ∇g(x) is the gradient of g evaluated at some x ∈ X ,R is

a d by d matric of rank L and r ∈ R may be an object of interest.Under mild reg-

ularity conditions provided in Pagan and Ullah 1999 one can use the fact that that√
nγd+2(∇ĝ(x)−∇g(x)) ≡

√
nγd+2(∇Ê[y−z′β0 | X = x]−∇E[y−z′β0 | X = x])+op(1)

to derive under the Null:

√
nγd+2R∇ĝ(x)− r  N (0, RΞ(x)R′)

for some Ξ(x) which can estimated consistently non parametrically by nγd+2Ξ̂(x),

thus providing a practical testing from (R∇ĝ(x)−r)′(RΞ̂(x)R′)−1(R∇ĝ(x)−r) χ2(L).

18P ∗ ”measures” a non measurable event A by using measurable coverings of A i.e.P ∗(A) =

inf{
∑
P (Ai)|A ⊆ ∪Ai, {Ai} ⊆ σ}.In our context,P ∗ is useful to show that E ⊆ B with E measur-

able and B non measurable still allows for P (E) ≤ P ∗(B) because P ∗ coincides with P on σ while P ∗

is monotonic by construction.See Hopf’s extension Theorem.
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7 Bandwidth selection

We have not addressed so far the selection of the bandwidth for smoothing the check

function.Our Monte Carlo experiments suggest that the size of the t-test is highly sensi-

tive to the choice of the bandwidth.Even though selection procedures for mean squared

error loss have been developed for some M-estimators based upon a smoothing of the

density(Horowitz and Hall 1990)the body of research is scant when nuisance functions

are present and limited for testing purposes(Gao and Gijbels 2008). Thus, we are to

offer a simple rule of thumb based upon the fact that under our assumptions Ĥ0 =

HS∗(θ0, τ)+op(1) where HS∗(θ0, τ) = 1
nh

∑
λiwiw

′
iK(Ti−w′iθ0

h ) has an asymptotic mean

squared error(componentwise) easy to establish.The following proposition offers an ex-

pression for this optimal bandwidth.

proposition 5 bis

Let L be the K+1 by K+1 matrix such that Lij =E|HS∗(θ0, τ)ij−E(λfx,z(0)ww′)ij |2

for (i, j) ∈ {1, ...,K + 1}×2. Then under the assumptions of the corollary:

ζ
1

2r+1
0 n−

1
2r+1 = Argminh|||L|||2 as n approaches infinity

where:

ζ0 = b(1−2r)+
√

(QB)

4ar

a = trace(M2
1 ); b = trace(M1M2); c = trace(M2

2 )

M1 = (µr

r! )2E[λww′f (r)
x,z(0)]22

M2 =
∫
K2(t)dtE[λw22w

′
22fx,z(0)]

µr =
∫
trK(t)dt

f
(r)
x,z(0) indicating the rth derivative of the density of ε conditional on x, z evaluated

at 0 and A22 = {a2
ij} for any matrix A = {aij}.
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Comments:

Our optimal rate is similar to that minimizing the mean squared integrated error of

a Kernel density estimator. However, under assumption (j) of the corollary this optimal

bandwidth is not attainable.Yet,this suggests using h∗ = ζ
1

2r+1
0 n−p for some p meeting

assumption (j). In practice, M1 and M2 need some consistent estimators for the functions

fx,z(0) and f (r)
x,z(0) which requires using the feasible version with our residuals to retrieve

f̂x,z(0)and f̂
(r)
x,z(0) as explained in section 6.Hence, a natural way to proceed in order to

estimate the proposed optimal bandwidth consists of using:

Ê[λww′f (r)
x,z(0)]22 = [ 1

n

∑
λiŵiŵ

′
if̂

(r)
xi,zi(0)]22

and

Ê[λw22w
′
22fx,z(0)] = 1

n

∑
λiŵ22,iŵ

′
22,if̂xi,zi

(0).

It is yet not clear whether this will provides consistent estimators(under the assump-

tions of the corollary)for h* when nuisance functions are present because the theory

of asymptotic interchangeability between consistent residuals and error terms applies for

root-n consistent residuals(Hall and Horowitz 1990) which does not hold under the contin-

uous model exposed in the coralary.Thus, one may have to impose assumptions similar to

those of section 6 (assumption H4).Finally, it is important to stress that this optimal cri-

teria is merely suggestive because our approximation on the Hessian holds in probability

only 19 and the asymptotic optimal choice may not be relevant in finite sample.However,

we believe that this rule of thumb offers a starting point in applications for choosing a

range of values for the bandwidth,which is useful should one adopts bootstrapping driven

bandwidth selection(Horowitz 1998)or plug in methods(Hall,Sheater,Jones,Marron 1991).

19Ĥ0−HS∗(θ0, τ) = op(1) is not sufficient to conclude that the asymptotic mean squared error of Ĥ0

will be equal to that of HS∗(θ0, τ) because the moments need not to converge unless strong uniform

integrability assumptions are imposed i.e.supnE|||Ĥ0 − HS∗(θ0, τ)|||s for some s > 2,see Chung page

100-101.
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8 Generalization and discussion

Our paper has introduced an approach to semi parametric quantile regression for estimat-

ing efficiently β0, which is generalizable to various stochastic relationships of the triplet

(ε,X,Z). In this section the continuous case is treated. For the sake of clarity, it will

be convenient to introduce the operator A from L1(Ω) to L∞X (Ω) satisfying Ar = E[r|X]

and T from L∞X,Z(Ω) to L∞X (Ω) satisfying Tψ =E[ψ|X](Carrasco,Florens,Renault 2007)

where L∞X,Z(Ω)={Ψ(X,Z),Ψ R valued Borel: ||Ψ(X,Z)||∞ <∞ } and L∞X (Ω)={Λ(X),Λ

:R valued Borel:||Λ||∞ < ∞ }.Given Y = g(X) + Z ′β0 + ε as the model and using the

linearity of A one can show (Newey and Powell 1990)that:

β0 =ArgminβE[fρ(V − w′β)] (IV)

with

V = Y − A(f2Y )
A(f2) + A(f2ε)

A(f2)

w = Z − A(f2Z)
A(f2) =Z − Γ

where Γ = A(f2Z)
A(f2) and f indicates fx,z(0) 20.

The demeaning employed in our previous section is therefore transposable to the

general case for(IV).Given an iid sequence of observations, one can easily derive that

β̂0 = ArgminβÊ[fρ(V − w′β)] (where Ê denotes the empirical counterpart of (IV))

satisfies:

√
n(β̂0 − β0)  N (0,VB) (V)

where VB = q(1−q)E[f2ww′]−1 is the semi parametric efficiency bound(Lee 2003).This

suggests that the parametric part can always be estimated efficiently via a smooth linear

quantile regression adjusting for the presence of nuisance terms.
20Our previous model is a special case under what we called homoscedasticity which furnished

A(f2Y ) = A(Y ) and A(f2) = f2 while assumption 2.b yielded
A(f2ε)
A(f2)

as a constant.
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Henceforth, we define β̃∗ = ArgminβÊ[f̂ρn(V̂ − ŵ′β)],the smoothed version of β̂0,

as the Adaptive Semi Parametric Quantile Estimator (ASPQ) where τ =(f, g,Γ, β0) is

the nuisance parameter, which must be estimated from a first stage. The consistency of

β̃∗ can be derived from that of θ̃∗ established in section 5 imposing uniform consistency

conditions on τ̂ =(f̂ , ĝ, Γ̂, β̂). In practice, both ĝ and β̂ can be conveniently estimated

from the AQR first stage.Also,Γ may be estimated by:

Γ̂(X) = T̂ (f̂2Z)

T̂ (f̂2)
'

∑
κ(

Xi−X

cn
)f̂Xi,Zi

(0)2Zi∑
κ(

Xi−X

cn
)f̂Xi,Zi

(0)2
(V )

for some strictly positive κ ∈ Φd,2 and cn = o(1/n) a sequence of bandwidth.

using

f̂X,Z(0) = hd+K
2,n h

−(d+K+1)
1,n

∑
κexz(

ei
h1,n

,
Xi−X

h1,n
,

Zi−Z

h1,n
)∑

κxz(
Xi−X

h2,n
,

Zi−Z

h2,n
)

(V I)

where {ei}i=1...n are the consistent residuals retrieved from (ĝ, β̂), (κexz, κxz) ∈

Φd+K+1,2 ⊗ Φd+K,2 while ({h1,n}, {h2,n}) are two sequences of bandwidth meeting the

same condition as cn21.

However,the analogy with the Homoscedastic case in terms of the efficiency requires

more caution. This arises because the estimator of T (Ψ), where Ψ are the relevant

projected elements in Γ, relies on T̂ (Ψ̂)=
∫

Ψ̂f̂x(z)dz where f̂x(z) is the non parametric

estimator of fx(z) while Ψ̂ that of Ψ retrieved from consistent residuals i.e. Y − ĝ−Z ′β̂.

Thus,even though ||T̂ (Ψ)− T (Ψ)||∞ may converges in probability at an acceptable rate

,the same may no longer apply to ||T̂ (Ψ̂) − T (Ψ)||∞. We are to give next some generic

conditions to ensure consistency and efficiency in this more general setting.

21These suggested feasible versions of non parametric estimators for the nuisance function are the

same as proposed in Lee 2003 to compute the efficient one step estimator under Heteroscedasticity.It is

a very natural way to proceed when no parametrization of f and Γ is assumed
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Assumption H1:

(i)Assumptions 1,3,6,7,10 and (a),(c)of the Corollary hold.

(ii)β0 is an interior point of B ⊂ RK compact.

Assumption H2:

(i)X∗ ⊂ X compact non empty such that {x ∈ X∗|E[f2(Z−Γ)(Z−Γ)′|X = x]positive

definite} has a strictly positive Lebesgue measure.

(ii)E|ε| <∞

Assumption H3:

There exists (ĝ, β̂) satisfying:

(i)||ĝ − g||∞ = Op(n−γ) for some γ > 0

(ii)β̂ − β0 = Op(n−1/2).

Assumption H4:

There exists a > 0 and b > 0 such that:

(i) supX×Z |f̂ − f | = Op( 1
na )

(ii)||T̂ − T || = Op( 1
nb )

Assumption H5:

fx,z(.) belongs to Hr,1 for almost all (x, z) ∈ X × Z

with r > 1
m where m = min{a, b, γ}.

Assumption H6:

For any ε > 0 and η > 0 there exists δ > 0 such that limP ∗[supB(τ0,δ)

√
n||∇S∗(τ, β0)−

∇S∗(τ0, β0)|| > η] < ε where ∇S∗(τ0, β0) = ∂
∂β Ê[fρn(Y − g − Γ′β0 − (Z − Γ)′β] |β=β0

and ∇S∗(τ, β0) = ∂
∂β Ê[f̄ρn(Y − ḡ − Γ̄′β̄ − (Z − Γ̄)′β] |β=β0 for any τ = (f̄ , ḡ, Γ̄, β̄) ∈ F

where F = {(f, g, t, b) : f ∈ L∞X∗⊗Z , g ∈ L∞X∗, t ∈ ⊗Kk=1L
∞
X∗, b ∈ RK},B(τ0, δ) = {τ ∈

F|kF (τ, τ0) < δ} and kF (τ1, τ2) = ||f1−f2||∞,X∗⊗Z + ||g1−g2||∞,X∗+supX∗||t1− t2||+

||b1 − b2|| for any (τ1, τ2) = {(f1, g1, t1, b1), (f2, g2, t2, b2)} ∈ F ⊗ F .
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Assumption H7:

ρn from proposition 2 is such that h = O(1/np) with p ∈ (1/2r,m/2).

Assumption H8:

{Yi, Xi, Zi}i=1...n is an i.i.d. sequence from (Y,X,Z).

Proposition 6

Under assumption H1 through H8

β̃∗ ≡ ArgminB

∑n
i=1 λif̂iρn(Yi−ĝi−Γ̂′iβ̂−(Zi−Γ̂i)′β) ,with λi = 1Xi∈X∗, is consistent

for β0 and
√
n(β̃∗ − β0)  N (0,VBλ) where VBλ = q(1− q)E[λf2(Z − Γ)(Z − Γ)′]−1.

Comments:

Identically to the homoscedastic case, the efficiency bound is almost reached be-

cause of the trimming term, which can be eliminated if the support of X is assumed

to be compact. However, in small sample,it is preferable to retain this filtering of ob-

servations as explained on page 25. Assumptions H1 and H2 permit identification of

β0. Assumptions H3 requires to find some prior estimator of g(.) converging uniformly

over X and a root-n estimator of β0. This will be satisfied under the conditions of

the AQR which are provided in Lee 2003 in which case γ = 1/3. Alternatively,there

may be other estimators meeting H3 for a semi parametric model if the error term

satisfies other scale location invariance restrictions (Robinson 1988,Powel 1994) or spe-

cific Heteroscedasticity(section 4).Assumptions H4, whose sufficient conditions are pro-

vided in Bierens 1983 and Horowitz Hall 1990,delivers consistency by ensuring a uniform

rate of convergence in probability on the nuisance functions τ̂ =(f̂ , ĝ, Γ̂, β̂).Conditions

H4(ii)refers to||T̂ − T || = sup||ψ||6=0
||T̂ψ−Tψ||
||ψ|| whose rate of convergence depends on the

”general quality” of the Kernel employed in dealing with the estimation of the projection

of (X,Z) measurable elements22.

22see proposition 6 proof H(ii)for the almost sure existence of ||T̂ − T ||.
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Assumption H5 is the familiar smoothness condition on the density of the error term

imposed by the uniform of convergence rate in probability achieved on the nuisance

functions.Assumption H6 is the stochastic equicontinuity condition, which suffices to

ensures the root-n equivalence of the empirical gradients. As in (j) of the Corollary, this

seemingly strong assumption it not necessary to obtain this equivalence.

remarks:

(1)It is interesting to compare the one step efficient estimator βOS proposed in Lee

2003 with the ASPQ.The ASPQ minimizing S(β) = 1
n

∑n
i=1 f̂iρn(Yi − ĝi − Γ̂′iβ̂ − (Zi −

Γ̂i)′β) has the asymptotic representation:

β̃∗ = β0 −HS∗(β̈, τ̂)−1∇S∗(β0, τ̂) for some β̈ , wpa.1.

∇S∗(β0, τ̂) = ∂S
∂β |β=β0

HS∗(β̈, τ̂) = ∂2S
∂ββ′ |β=β̈ .

Conversely the one step efficient estimator suggested in Lee 2003 is computed by:

βOS = bn − {∂∇Sn(β,τ̂)
∂β′ |β=bn

}−1∇Sn(bn, τ̂), wpa.1.

−∇Sn(β, τ̂) ∝ 1
n

∑n
i=1 f̂iŵi [q −Dn(Yi − ĝi − Z ′iβ)]

where bn is some available estimator such that
√
n(bn − β0) = Op(1) and Dn(.)is a

smooth function whose derivative is a Kernel.Thus,even though the empirical gradient∇Sn

and ∇S∗ differ,both estimators are based upon the same principle of approximating the

function d(.) = 1.<0 with the integral of a Kernel function. That is, both rely on some

differentiable Mn(β, τ̂) satisfying :

plim∂Mn(β,τ̂)
∂β′ |β=βn

= q(1− q)VB−1for any consistent βn.
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and

−
√
nMn(β0, τ̂) N (0, [q(1− q)]2VB−1).

which yields βeff , the solver of Mn(β, τ̂) = 0 as efficient23.

Hence, unlike the ASPQ,the nature of the one step estimator is approximative because

it estimates in finite sample the true representation of its corresponding βeff with the

aid of some root-n consistent estimator.Alternatively, the distinctive nature of the one

step may be understood from the perspective of numerical optimization where βeff is

approximated by the Newton’a algorithm using only one iteration and some consistent

estimator as the starting value while the ASPQ uses as many iterations as necessary

furnishing βeff .

(2)Both estimator can be interpreted as GMM estimators minimizingMn(β, τ̂)′Mn(β, τ̂)

but the A.S.P.Q. has also(smooth)quantile regression interpreting as the regression f̂(Y −

ĝ − Γ̂′β̂) on f̂(Z − Γ̂).

(3) In applications,a more expedition way to compute the ASPQ is to notice that

β̃∗ = β̂ + δ̂ where δ̂ = ArgminBΣf̂iρn(ei − ŵ′iδ) where {ei}i=1...n are the residuals from

a first stage.Hence,δ̂ can be interpreted as the efficiency adder.

Identically to the one step estimator,the ASPQ is adaptive in the sense that the semi-

parametric efficient bound is always reached.However, there are stochastic relationships

for (X,Z, ε) (which can be tested using the AQR first stage residuals)simplifying efficient

estimation.To clarify this point let F be the space of all joint density for(X,Z, ε) meeting

the assumptions of our model (2.b excluded) and let H be what we shall name the set

of conditions, which is a subset of R7.We define the ”condition mapping” C as follows:

23For the sake of simplicity the trimming term is removed for both estimators.
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C:F → H

F 7→ (||f−f(0)||L1 , ||f−f(0|X)||L1 , ||f−f(0|Z)||L1 , ||µ(X)−µ||L1 , ||µ(Z)−µ||L1 , ||µ(X,Z)−

µ||L1 , ||π(X,Z)− χ(X)ζ(Z)||L1)

where µ(J)=E[ε|J ] for some random variable J, µ=E[ε], χ is the marginal density of

X and ζ that of Z.Furthermore,we note {f(h),V(h),W(h)}the random vector from (IV)

when the condition h ∈ H holds and {f̂(h), V̂ (h), ŵ(h)}its corresponding nonparametric

estimator.For instance, if h contains ||f − f(0|X)||L1 = 0 and ||µ(X)− µ||L1 > 0 we get

f(h) = f(0|X),V (h) = Y − E[Y |X] + E[ε|X] andw(h) = Z − E[Z|X].

Given F0 as the true joint distribution of (X,Z, ε), C(F0) is true set of conditions

which we naturally note h0 with its associated efficient bound B(h0).It follows that

β̂(h0) = ArgminβÊ[f̂(h0)ρn{V̂ (h0)− ŵ(h0)′β}] satisfies
√
n(β̂(h0)−β0) N (0, B(h0)).

For instance using our previous example about h0 a simpler estimator than the ASPQ is

the minimizer of Ê[f̂x(0)ρn{Y −Ê[Y |X]+Ê[ε|X]−(Z−Ê[Z|X])′β}]which resembles the

estimator covered in section 4-5 apart from the fact that the assumption 2.b no longer

holds and that the density weighting approach is employed to reach efficiency (otherwise

the estimator would be solely C.A.N.).We define {β̂(h)|h ∈ H} as a class of estimators

we name ”two stage smooth semiparametric quantile” given a semi parametric model

where β̂(h) is efficient for h = h0.
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9 Monte Carlo Simulation

In this section we examine the finite sample properties of the suggested estimator de-

scribed in section 6 for the median case(i.e.q=1/2).This estimation strategy is used to

estimate the parameter β = 1 and the function g(x) = x+ 4√
2π
e−2x2

(pointwise)when the

data generating process obeys:

Y = g(X) + βZ + U

where (X,Z) is a standard bivariate Normal couple of correlation coefficient 0.5.This

design was examined in Lee 2003 where g(.) is a bell curve around the origin with the

45 degree line as asymptote.Even though the support of (X,Z) violates assumption

3 and (a) of the corollary the results are not affected The disturbance has the form

U=σε where ε ,independent of (X,Z),is either drawn from a standard normal distri-

bution or from a Student distribution with 4 degrees of freedom (normalized to have

a unit variance).We used σ = 1 for the homoscedastic case while σ = eν(X+Z) for the

heteroscedastic model with ν chosen as to normalize the variance of U.We thus exam-

ine four designs,the Normal homoscedastic(NHO),the Normal heteroscedastic(NHE), the

Student homoscedastic(SHO)and the Student heteroscedastic(SHE).It is rapid to verify

that our designs meet assumptions (c) (d) (e) and (f) of the corollary. A simulation of

the estimator for a sample size of n = 50, 200 and 800 consists of 1000 replications.The

simulations are conducted in Gauss.

The smoothing of the check functions follows proposition 2 and the corollary. We used

ρn(u) = u+2hϕ(u/h) where ϕ is (as described on page 15)derived from the Epanechnikov

Kernel of order r = 4, which meets assumption(g)of the corollary owing to the fact

that(under the type of distributions adopted for ε)the smoothness of the density of U |X,Z

is infinite a.s. A sequence of bandwidth h = O(1/np) with 1/8 < p < 1/6 satisfies

assumption (j). Our preliminary simulations showed that the value of p is immaterial in

affecting the results so we decided to use p = 1/7.Hence, our simulations are performed
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employing h = cn−1/7with c ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4}.This last range of values for the

bandwidth constant is chosen as to contain c∗, the optimal values from the perspective of

proposition 5 bis which permits to judge whether,at least locally,the optimal choice put

forth in this paper is desirable for inferential purposes. In the model with a normal error

we found c∗ = 3.086 for the homoscedastic case and c∗ = 2.50 under heteroscedasticity

while the model with a Student error yielded c∗ = 2.62 under homoscedasticity and

c∗ = 2.17 for the heteroscedastic case. The estimation of the nuisance functions follows

(h) of the Corollary where the order 2 kernel φ(t) = 1√
2π
e−

1
2 t

2
is employed along with

the bandwidth sequence ζ = n−1/6.

Finally, the estimator is computed minimizing by quadratic hill climbing( Goldfeld,

Quandt and Trotter 1966) S(θ) =
∑n
i=1 λ(Xi)ρn(T̂i− ŵi′θ) where λ(X) = 1|X|<2 is used

for the trimming criteria which satisfies assumptions (b) because of the joint normality

of (X,Z).Given a n-sample, a search for the global minimum consists of selecting out

of 10 iterative searches, the local minimum minimizing S 24as there is no guaranty in

finite sample that the local minimum is unique because the class of Kernel required for

smoothing the check function is negative on some intervals.For instance,in our simulation

the Kernel of order 4 utilized is strictly negative on (−1,−
√

3/7) ∪ (
√

3/7, 1).

A useful check on whether a local minimum is the global minimum consists of obtain-

ing a lower bound B for S on the complement of P={ θ : S:strictly convex}(Demindenko

2000).Let Jn = {i ∈ {1, .., n} : λi = 1} and ŴJn
the #Jn by K + 1 matrix of regres-

sors excluding observations not in Jn. Let further suppose that the sample at hand is

such that ŴJnhas full rank.Since ∂2

∂2θS ∝
∑
Jn
ŵiŵ

′
iKn(T̂i− ŵ′iθ) where Kn(t) = 1

hK( th )

we have P = {θ : Kn(T̂i − ŵ′iθ) > 0 ∀i ∈ Jn} = {θ : T̂i − ŵ′iθ ∈ K−1
n (0,∞)∀i ∈ Jn}

where K−1
n (0,∞) = ∪

r
2−1

k=1Ok,n and {Ok,n} ⊆ [0, 1] are open disjoints intervals which

can be found analytically from the roots of the Kernel on (0, 1).Hence,θ ∈ P{ implies

24The different starting values are drawn from a joint N (θ0, 25Id) distribution where Id refers the

identity matrix.
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T̂j − ŵ′jθ ∈ K−1
n (0,∞){ for some j ∈ Jn so that a simple lower bound for S on P{ is

given by B = (#Jn−1)minρn+minK−1
n (0,∞){ρn.It follows that a sufficient condition for

a local minimum θiter to be the smooth quantile estimator is S(θiter) < B.Even though

this check suffices it is not a necessary condition and having too low a bound may not

be informative.

For a given sample size ,a table contains four measures enabling to assess, the quality

of the estimator θ̂ of θ0’=(0, 1).The bias column refers to absolute value of the bias

i.e.|E(β̂) − β0| where β̂ is the slope coefficient estimator in θ̂. The RMSE columns

refer to the root mean squared error for the slope estimator i.e.(E|β̂−β0|2)1/2.The third

column measures the accuracy of the estimator of g(.) (retrieved as explained on page

22) by the expected value of the empirical RMSE achieved on the nonparametric part

i.e. E[(
∫
|ĝ − g|2dF̂X)1/2].Finally, the last column provides the size of the t-test for β0

using the asymptotic critical values for a 5 percent type I error.For a sample size of

n ≤ 5000 observations, we found it takes approximately n/100 seconds to compute the

estimator, which of course may vary with the iterative procedure adopted, the number

of explanatory variables and the software employed. The global search methods such as

SAN are likely to increase this computational time.

Overall,the qualitative behavior of the estimator agrees with the asymptotic theory

developed in this paper.First,the RMSE for the slope parameter decreases at the
√
n

rate while the expected empirical RMSE on the non parametric function declines ap-

proximately at the n1/3 rate.This last discrepancy may arise due to our biased plug

in estimator of E[(
∫
|ĝ − g|2dFx)1/2].Also,the disparities of the sizes across bandwidth

constants shrinks as the sample size increases which agrees with the convergence in dis-

tribution of our t-statistics uniformly in c.Another interesting results from our Monte

Carlo experiment pertains to the the absolute value of the bias which is (on average

across bandwidth constants)3 percent(2.7 percent)of the parameter value under the Nor-
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mal model(respectively the Student model) for a sample size of 50 observations and

declines consistently across bandwidth as the sample size increases.As shown on tables

3-6-9-12,when n=800 observations the absolute bias is less than 0.5 percent for all designs.

Even though our theoretical section did not establish finite sample unbiasedness, we

believe this finding to be encouraging as far as the ability of our estimation procedure to

be on average correct at estimating the truth.

The figures 1 through 12 depict ,for a given sample size,the non parametric func-

tion(solid line) along with E[ĝ](dashed line)both of which evaluated at a fixed design

for x = {−2,−1.9, ..., 5.9, 6}. Those graphics illustrate an important fact about the es-

timator of the non parametric function obtained as explained on page 22. The bias i.e.

E[ĝ]− g declines as the sample size augments but the improvement is not uniform over

the design with the right tail values of x above 2 being still inaccurately estimated on

average even with a sample of 800 observations.This is a known finite sample problem for

a Kernel regression estimator whose bias is inversely related to the density of the condi-

tioning variable.Hence,in our designs low mass point of X ∼ N (0, 1) will provide more

pronounced biased estimator for our nuisance functions.It is worth pointing out that a

local Kernel regression(Ruppert and Wand 1994)for estimating our nuisance functions

would not have this bias issue. Consequently,once the finite dimensional parameter is

estimated one may consider in applications using the approach described on page 22 with

a local Kernel estimator for making point wise predictions.

Notice that for given sample size,the loss measures are relatively steady across band-

width but our tables indicate that the size of the test is sensitive to the bandwidth

constant adopted. As illustrated on table 3 and table 6,the optimal bandwidth selection

criteria proposed in this paper does perform well under the normal model in that the

type I error for a sample size of 800 observations is 5 percent for c somewhere between

c = 2.5 and c = 3 under homoscedasticity and 5 percent for c = 3 under heteroscedas-
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ticity. However,the Student model does not seem to bolster our bandwidth criteria .As

illustrated on tables 9 and 12, the size returned with the calculated c* is below 5 percent

for a sample size of 800 observations and this regardless of the scedasticity. This result

hints that the Student designs require a larger sample size in order for the asymptotic

critical values to achieve accurate probability coverage.This last difference between the

Normal and Student model is not surprising as our covariance matrix is estimated with

a Kernel density estimator which estimates the density of the error evaluated at 0. This

last procedure is known to be inaccurate (i.e. have a large variance) when the mass of

the distribution is more spread out around the origin.

Overall, our Monte Carlo simulations hint that conducting inferences using the esti-

mated std errors may entail some risk in finite sample because the asymptotic critical val-

ues provide acceptable coverage for only specific bandwidth constants.The rule of thumb

from proposition 5 bis is simple and did perform well for only some designs. Hence one

may seek out alternative ways to conduct inferences. The results from Horowitz smooth

LAD estimator suggests that Bootstrapping offers asymptotic improvement for Student

and Chi square testing (for any q ∈ (0, 1))if one is willing to impose r > 7+4d
2 in assump-

tion (g)and use a Kernel 3 times differentiable instead.However,we did not attempt to

bootstrapped our estimator.
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Table 1: NHO model,n=50

c Bias RMSE slope E[RMSE g] size

1 0.031588 0.219078 0.432867 0.109

1.5 0.030976 0.209337 0.427383 0.100

2 0.031235 0.210668 0.429861 0.064

2.5 0.029199 0.201296 0.423307 0.054

3 0.031609 0.202413 0.427055 0.036

3.5 0.027463 0.193801 0.419970 0.028

4 0.031441 0.195683 0.425117 0.020

Table 2: NHO model, n = 200

c bias RMSE slope E[RMSE g] size

1 0.010642 0.106908 0.292745 0.069

1.5 0.008336 0.099368 0.292425 0.049

2 0.011327 0.103047 0.291585 0.052

2.5 0.009526 0.094850 0.291626 0.030

3 0.011819 0.099157 0.290635 0.037

3.5 0.009837 0.091550 0.290847 0.021

4 0.009840 0.090383 0.290499 0.020

Table 3: NHO model, n = 800

c bias RMSE slope E[RMSE g] size

1 0.002668 0.053722 0.196283 0.061

1.5 0.003066 0.053146 0.196242 0.060

2 0.003293 0.052351 0.196122 0.057

2.5 0.003367 0.051460 0.195925 0.053

3 0.003397 0.050567 0.195731 0.046

3.5 0.003451 0.049722 0.195562 0.042

4 0.003519 0.048945 0.195426 0.036
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Table 4: NHE model, n=50

c bias RMSE slope E[RMSE g] size

1 0.033639 0.221999 0.448427 0.115

1.5 0.032424 0.214278 0.444255 0.083

2 0.033415 0.214371 0.445112 0.065

2.5 0.030145 0.206940 0.440343 0.057

3 0.029100 0.203535 0.438455 0.040

3.5 0.028271 0.200438 0.433846 0.028

4 0.027782 0.197920 0.435556 0.019

Table 5: NHE model, n =200

c bias RMSE slope E[RMSE g] size

1 0.010165 0.101104 0.304240 0.061

1.5 0.009967 0.098960 0.303665 0.046

2 0.009878 0.096847 0.303063 0.038

2.5 0.009842 0.095193 0.302493 0.032

3 0.009711 0.093821 0.301963 0.028

3.5 0.009508 0.092805 0.301470 0.023

4 0.009254 0.092026 0.301014 0.023

Table 6: NHE model, n = 800

c bias RMSE slope E[RMSE g] size

1 0.003604 0.052892 0.204410 0.066

1.5 0.003938 0.052172 0.204320 0.058

2 0.004052 0.051369 0.204170 0.056

2.5 0.003945 0.050612 0.203943 0.055

3 0.003738 0.049844 0.203687 0.050

3.5 0.003504 0.049082 0.203425 0.043

4 0.003278 0.048401 0.203180 0.033
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Table 7: SHO model, n=50

c bias RMSE slope E[RMSE g] size

1 0.028374 0.176221 0.413889 0.079

1.5 0.028270 0.172627 0.412082 0.056

2 0.028389 0.168166 0.410688 0.034

2.5 0.028311 0.164013 0.409599 0.024

3 0.028148 0.161091 0.408962 0.015

3.5 0.028264 0.159465 0.408710 0.011

4 0.028446 0.158797 0.408657 0.008

Table 8: SHO model, n =200

c bias RMSE slope E[RMSE g] size

1 0.016048 0.0819181 0.287667 0.054

1.5 0.015215 0.0797703 0.287026 0.035

2 0.014580 0.0777787 0.286451 0.028

2.5 0.014253 0.0760414 0.285995 0.023

3 0.014047 0.0745962 0.285672 0.019

3.5 0.013940 0.0734891 0.285460 0.013

4 0.013912 0.0727618 0.285340 0.009

Table 9: SHO model, n =800

c bias RMSE slope E[RMSE g] size

1 0.005048 0.038464 0.195491 0.044

1.5 0.005033 0.037771 0.195373 0.036

2 0.005119 0.037194 0.195275 0.034

2.5 0.005421 0.036643 0.195246 0.026

3 0.005714 0.036220 0.195231 0.022

3.5 0.005870 0.035856 0.195199 0.020

4 0.005932 0.035582 0.195162 0.017
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Table 10: SHE model, n=50

c bias RMSE slope E[RMSE g] size

1 0.027514 0.181987 0.426903 0.076

1.5 0.027752 0.178062 0.425157 0.056

2 0.027918 0.172998 0.423682 0.034

2.5 0.027709 0.168774 0.421838 0.022

3 0.027701 0.166064 0.421838 0.016

3.5 0.027716 0.164363 0.421401 0.014

4 0.027715 0.163341 0.421179 0.009

Table 11: SHE model, n =200

c bias RMSE slope E[RMSE g] size

1 0.017671 0.082785 0.298325 0.068

1.5 0.016614 0.080515 0.297658 0.044

2 0.015691 0.078640 0.297032 0.033

2.5 0.014870 0.076668 0.296444 0.026

3 0.014214 0.075626 0.295943 0.020

3.5 0.013743 0.074636 0.295548 0.012

4 0.013457 0.074070 0.295274 0.009

Table 12: SHE model, n =800

c bias RMSE slope E[RMSE g] size

1 0.005695 0.038509 0.203125 0.044

1.5 0.005750 0.037736 0.203012 0.034

2 0.005647 0.037150 0.202857 0.030

2.5 0.005482 0.036766 0.202677 0.024

3 0.005372 0.036473 0.202517 0.020

3.5 0.005326 0.036266 0.202383 0.017

4 0.005279 0.036139 0.202267 0.016
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Figure 1: NHO,n=50

Figure 2: NHO,n=200

Figure 3: NHO,n=800
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Figure 4: NHE,n=50

Figure 5: NHE,n=200

Figure 6: NHE,n=800
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Figure 7: SHO,n=50

Figure 8: SHO,n=200

Figure 9: SHO,n=800
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Figure 10: SHE,n=50

Figure 11: SHE,n=200

Figure 12: SHE,n=800

48



10 Conclusion

In this paper we have presented a root n consistent estimator for the slope parameter in

a semi parametric quantile model which offers,under homoscedasticity,an efficient alter-

native to the AQR estimator.Our simulations show that this two stage smooth procedure

behaves well in finite sample in terms of the bias and MSE but that a large sample size

is needed for inferential purposes. Also, we discussed the generalization of this approach

to any measurability of f(0|X,Z) in order to reach the efficiency bound and the corre-

sponding class of 2SSPQ estimators offering a systematic way to estimate the linear part

efficiently via smooth quantile regression.We foresee four topics for future research related

to the simple estimator suggested in section 3-7.First,the optimal bandwidth selection

for testing purposes..Secondly,the testing of the homoscedastic assumption extending the

slope invariance principle(Koenker and Basset 1982)for a smooth quantile estimator or

using a direct non parametric approach from consistent residuals(Ullah 1996). Thirdly,

the testing of assumptions 2b with the aid of another less efficient estimator ”under

the null” (non weighted AQR for instance)is an important question to explore as our

estimator is no longer consistent should this condition be violated.Finally, the possi-

ble extension of this estimator when a subset of (Z,X) is endogenous as the conditional

quantile may not the prime object of interest for policy making purposes. In that case we

speculate that which one of the three existing approaches ,instrument variables (Honore

and Hu 2004),”fitted value” (Amemiya 1982)and ”Control function”(Lee 2004)is suitable

will depend on which of X and Z is endogenous.
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11 Appendix

In this section we provide the proofs to our propositions.

Proposition 1:

This is inspired from Amemiya(1982) approach in the context of a Median regression.

Existence of E[ρ(T − w′θ)] uniformly over Θ

Writing ε(θ) = T − w′θ for an arbitrary θ ∈ Θ and ε as the true error we obtain:

ρ(ε(θ)) = 2(ε− w′∆)(q − 1ε<w′∆) where ∆ = θ − θ0

It follows that |ρ(ε(θ)| ≤ 2max(q, 1−q)(|ε|+ ||w||.||∆||).Using the compactness of Θ , w ∈ L∞ (from

3 and 5 together) along with assumption (2a) ensures that E|ρ(ε(θ)| exists uniformly over Θ. We will

subsequently note S(θ)= E[ρ(T − w′θ)] for any θ ∈ Θ.

θ0 as the global minimum of S

Because |ε(θ)| − ε(θ) = 2ε(θ)− where ε(θ)− is the negative part of ε(θ) we derive:

S(θ) = 2{qE[ε]− qE[w′∆]− E[ε1ε<w′∆] + E[w′∆1ε<w′∆]}

where ∆ is defined as before.Using iterated expectation and noting Fx,z(.) the distribution function

of ε conditional on X = x and Z = z furnishes the arranged expression:

S(θ) = 2{E[(w′∆)(Fx,z(w′∆)− q)]− E[V (w′∆)]}+ C

Where C is a constant and V (w′∆)) =
∫

1e<w′∆efx,z(e)de. By assumption 2a, the function G(t) =∫ t
−∞ efx,z(e)de will be differentiable almost everywhere with G′(t) = tfx,z(t). Thus, the Leibniz’ rule

provides the following expression for the gradient of S(.):

∇S(θ)= 2E[w{Fx,z(w′∆)− q}].

Clearly by assumption (1) θ0 meets the first order condition for extremum. Furthermore, the Hessian

of S is given by HS(θ) = 2E[ww′fx,z(w′∆)]. Using fx,z(0) > 0 a.s. by assumption (7)(take the

infinimum of all r(x, z) we note r to construct a ball of center 0 and radius r where fx,z(.) > 0 a.s.) and

assumption (8) we conclude that HS(θ0)is definite positive and θ0 is consequently a local minimum of

S.Finally, let’s show that it is indeed the global minimum.For all ∆ of Euclidian norm strictly positive
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we note Z(∆) = w′∆[Fx,z(w′∆) − q]. We have P [|w′∆| > 0] > 0 (from assumption 8) and fx,z(.) > 0

on B(0, r). It follows that E[Z(∆)] > 0 for all ∆ such that ||∆|| > 0 . This implies (by the Cauchy-

Schwartz’s inequality ) that ||∇S(∆)|| > 0 holds whenever ||∆|| > 0. In other words, θ0 is the unique

local minimum for S.

Proposition 2:

for all θ ∈ Θ let S∗(θ) = n−1
∑n
i=1 ρn(Ti − w′iθ)and Ŝ(θ) = n−1

∑n
i=1 ρ(Ti − w′iθ).

(i)θ∗ is consistent for θ0

By the triangular inequality we get:

||S∗ − S||supΘ ≤ ||S∗ − Ŝ||supΘ + ||Ŝ − S||supΘ

By the uniform weak law of large numbers (UWLLN) we have ||Ŝ − S||supΘ = op(1) while lemma

1 yields ||S∗ − Ŝ||supΘ = O(h).Consequently, plim||S∗ − S||supΘ = 0 ,which ensures θ∗ weak consis-

tency.Actually, one can show that θ∗ is strongly consistent(Lemma 6).

(ii)asymptotic normality

Step1: S∗ twice differentiability permits the following score representation:

∇S∗(θ∗) =∇S∗(θ0) + HS∗(θ̄)(θ∗ − θ0)

for some θ̄ in the line segment joining θ∗ and θ0.

Let’s proof the claim that plim HS∗(θ̄) = HS(θ0) = 2E[ww′fx,z(0)].For that purpose we are to

show first that plimHS∗(θ) = HS(θ) uniformly over Θ.Apart from some minor differences ,the proof

follows the non parametric literature for showing that the Kernel density estimator converges almost

surely, examining the limiting behavior of the discrepancy between the average of random variables and

the average of their means(Pagan and Ullah page 35-36).

we have |HS∗(θ) −HS(θ)| ≤ |HS∗(θ) − EHS∗(θ)| + |EHS∗(θ) −HS(θ)| ( |.|for a matrix is to be

understood componentwise)

where

HS∗(θ)− EHS∗(θ) = n−1
∑
Zi,n(θ)− µi,n(θ)

Zi,n(θ) = h−12wiw
′
iK(

εi−w′i∆

h
)

µi,n(θ) = EZi,n(θ).
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Owing to the fact that wiw
′
i is bounded componentwise and that K(.) is a bounded function we

obtain:

|Zi,n(θ)− µi,n(θ)| = O(1/h)

and

V Zi,n(θ) ≤ EZi,n(θ)Zi,n(θ)′ ≤
A

h
supx,z‖fx,z‖supR

∫
K2

where A is a constant due to w′w ∈ L∞ and supx,z‖fx,z‖supR is the supremum over the compact

set X × Z of the sup of the conditional density of the error.Because of our assumption this is also a

constant.It follows that V Zi, n(θ) = O(1/h).The Bennett’s inequality hence yields that for an arbitrary

δ > 0 we have P [|HS∗(θ) − EHS∗(θ)| > δ] = O(e−l(δ)nh) where l(.) > 0 on R++.Consequently

HS∗(θ)− EHS∗(θ) −→ 0 a.s. follows by simply invoking the Borel-Cantelli lemma.

Finally, notice that:

EHS∗(θ)−HS(θ) = E[ww′Ex,z( 1
h
K( ε−w

′∆
h

)− fx,z(w′∆))] = E[ww′bn(w′∆)]

where|bn(w′∆)| ≤ hr

r!
‖f (r)
x,z‖supR

∫
|trK(t)|dt =O(hr) because of assumption 9, the compactness of

X×Z and our Kernel choice. Clearly, we also have EHS∗(θ)−HS(θ) = O(hr) and subsequently HS∗(θ)

−→ HS(θ) a.s. uniformly over Θ. Henceforth plim HS∗(θ̄) = HS(θ0) follows from lemma 4 of Amemiya

1973 using θ̄ weak consistency along with fx,zcontinuity a.s.(i.e. assumption 9).

Step 2: from step 1 we have:

n1/2(θ∗ − θ0) ≡ HS∗(θ̄)−1{−n1/2∇S∗(θ0)} wpa.1

where HS∗(θ) = 2
nh

∑n
i=1 wiw

′
iK(

εi−w′i∆

h
)

and

−n1/2∇S∗(θ0) = 1√
n

∑n
i=1 2wi[q − d(εi/h)].

Noting gi,n = 2wi[q − d(εi/h)] for i = 1...n we have:

−n1/2∇S∗(θ0) = U1,n + U2,n

where U1,n = n−1/2
∑
gi,n − Egi,n and U2,n = n−1/2

∑
Egi,n.
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Given the iid sequence {wi, εi}i=1...n we easily get:

∑
E| gi,n−Egi,n√

n
|2+δ = n−δ/2E|gi,n − Egi,n|2+δ for any δ > 0.

Furthermore, w’w ∈ L∞ and d(.) being a bounded function further give:

E|gi,n − Egi,n|2+δ = O(1)

establishing
∑
E| gi,n−Egi,n√

n
|2+δ = O(n−δ/2) and subsequently lim

∑
E| gi,n−Egi,n√

n
|2+δ = 0 for

some δ > 0.Consequently, we can apply the Liapounov’s Central Limit Theorem to our double array

{gi,n − Egi,n}i=1...n which yields:

U1,n  N (0, limE(gi,n − Egi,n)(gi,n − Egi,n)′)

Next, we must show that lim E(gi,n − Egi,n)(gi,n − Egi,n)′ = 4E[q(1− q)wiw′i].From Lemma1 we

know that lim q − d(t/h) = q − 1t<0 a.e. which combined to assumption 10 ensures plim wiw
′
i[q −

d(εi/h)] = wiw
′
i[q − 1εi<0]. Furthermore E|wiw′i| < ∞ so can invoke The Dominated Convergence

Theorem to conclude that:

lim E[4wiw
′
i{q − d(εi/h)}2] = 4E[q(1− q)wiw′i].

Using a similar reasoning yields :

limE[2wi{q − d(εi/h)}]E[2w′i{q − d(εi/h)}] = 0.

Hence,U1,n  N (0, 4E[q(1 − q)wiw
′
i]) is established.Finally,U2,n = O(hr

√
n) = o(1) by lemma2

which yields:

−n1/2{∇S∗(θ0)}  N (0, 4q(1− q)E[wiw
′
i])

and proposition 3 directly follows from step 1 and step 2.

Proposition 3:

See Bierens (1987) page 115-116-117.
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Proposition 4:

let T̂i = Yi − M̂(Xi) and ŵi = Zi − ϑ̂(Xi) for i = 1...n.Also,let S̃(θ) = n−1
∑n
i=1 ρ(T̂i − ŵi′θ) be

the counterpart to Ŝ(θ) when nuisance parameters are estimated and S̃∗(θ) = n−1
∑n
i=1 ρn(T̂i − ŵi′θ).

It suffices to show that plim||Ŝ − S̃||supΘ = 0.Using Basic inequalities we obtain:

|Ŝ(θ)− S̃(θ)| ≤ 1
n

∑
|2q − 1||Ui(θ)− Ûi(θ)|+ |Ui(θ)− Ûi(θ)|

where Ui(θ) = Ti − w′iθ and Ûi(θ) = T̂i − ŵi
′θ. simplifying further using our uniform rate of

convergence on the non parametric terms easily yields:

||Ŝ − S̃||supΘ ≤ O{|M̂ −M |supx∈X + ||ϑ̂− ϑ||supx∈X } = op(1)

and plim||Ŝ − S̃||supΘ = 0 is proven.This suffices for proposition 4 because by the triangular in-

equalities we have:

||S̃∗ − S||supΘ ≤ ||S̃∗ − S̃||supΘ + ||S̃ − Ŝ||supΘ + ||Ŝ − S||supΘ

with plim ||Ŝ − S||supΘ = 0 by the UWLLN while plim ||S̃∗ − S̃||supΘ = 0 by lemma1. As a

result plim ||S̃∗−S||supΘ = 0 which shows that θ̃∗ is consistent.Similarly to proposition 1 one can show

that θ̃∗ is strongly consistent because both |M̂ −M |supx∈X and ||ϑ̂− ϑ||supx∈X convergence are almost

sure(Bierens 1987).

Proposition 5:

we need to introduce some notations to ease the length of the proof.

Let e′−1 = [0, IK ] the K by K+1 matrix (where IK is the identity matrix of dimension K) and

e′1 = (1, 0, ..., 0)of dimension K+1.Letτ = {Ti, wi}ni=1 and τ̂ = {T̂i, ŵi}ni=1.Also,for k = 1, 2 we note

Dkthe kth derivative operator of a multivariate function defined on RK+1 where k = 1 corresponds

to the gradient noted ∇ while k = 2 returns the Hessian noted H. Also, DkS∗(η, τ) refers to the kth

derivatives of S∗ with respect to θ evaluated at the finite dimensional parameter η and using τ . Similarly

we write DkS∗(η, τ̂)as the kth derivatives of S∗ with respect to θ evaluated at the finite dimensional

parameter η but using τ̂ .For i = 1...n we further employ the condensed notations ∆ϑi = ϑ(Xi)− ϑ̂(Xi)

and ∆Mi = M(Xi)− M̂(Xi). Finally we use dn(t) = q − d(t/h) and Kn(t) = 1
h
K(t/h) as sequences of

real valued functions.
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Using a Taylor’s expansion for the score around θ0 taking the nuisance parameters as a con-

stant(Andrews 94)yields:

∇S∗(θ̃∗, τ̂) = ∇S∗(θ0, τ̂) +HS∗(θ̈, τ̂)(θ̃∗ − θ0)

for some θ̈ somewhere in the line segment joining θ̃∗ and θ0. By Lemma3 plim HS∗(θ̈, τ̂)−HS∗(θ̈, τ) = 0

and consequently ( by the same token as step1 of proposition 3 proof ) plim HS∗(θ̈, τ̂) = HS(θ0). Thus,

we have:

n1/2(θ̃∗ − θ0) = HS∗(θ̈, τ̂)−1{−n1/2∇S∗(θ0, τ̂)} wpa.1

where −n1/2∇S∗(θ0, τ̂) = 1√
n

∑
2ω̂i[q−d(ε̂i/h)] = 1√

n

∑
2(wi+ ŵi−wi)dn(ε̂i).Using ε̂i = εi+ ∆i

where ∆i = ∆Mi + β′0∆ϑi for i = 1...n and dn(.) twice differentiability furnishes:

−n1/2∇S∗(θ0, τ̂) = 1√
n

∑
2(wi + ŵi − wi)[dn(εi) +Kn(εi)∆i +K

(1)
n (ξi)∆

2
i ]

for some {ξi}ni=1 ∈ ⊗ni=1(εi, εi + ∆i).Hence,distributing breaks down the analysis of the limiting distri-

bution in 4 blocks:

−n1/2∇S∗(θ0, τ̂) = −n1/2∇S∗(θ0, τ) +R1,n +R2,n + En

where

R1,n = 1√
n

∑
2wiKn(εi)∆i ;

R2,n = 1√
n

∑
2wiK

(1)
n (ξi)∆

2
i ;

e′1En = 0;e′−1En = R3,n +R4,n +R5,n;

R3,n = 1√
n

∑
2∆ϑidn(εi);

R4,n = 1√
n

∑
2Kn(εi)∆ϑi∆i;

R5,n = 1√
n

∑
2K

(1)
n (ξi)∆

2
i∆ϑi

By lemma 4 and 5 we know that R1,n +R2,n + En = op(1) which yields:

√
n(θ̃∗ − θ0) = HS∗(θ̈, τ̂)−1{−

√
n∇S∗(θ0, τ)}+HS∗(θ̈, τ̂)−1op(1).

exploiting plim HS∗(θ̈, τ̂) = HS(θ0) directly provides plim|
√
n(θ̃∗ − θ0)−

√
n(θ∗ − θ0)| = 0.
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Corollary

The proofs of proposition 1, 2 are identical apart from the trimming function and the uniform rate

of convergence in probability achieved for the nuisance functions.Under assumptions (b),(c), and (d) we

can easily show that E[|Y −M |2+a|X = x]π(x) ,E[|Y − ϑ|2+a|X = x]π(x) are bounded functions and

that both v1(x) = V (Y |X = x) and v2(x) = V (Z|X = x) belong to C(X ).Hence, M2π,ϑ2π, v1π and

v2π are bounded continuous functions. It follows from Bierens 1987 that supx∈X∗|M̂ −M |=Op(1/an)

and supx∈X∗||ϑ̂ − ϑ||=Op(1/an) where an = n
1

2+d so that a similar reasoning as in proposition 4 is

straightforward to show that the estimator is weakly consistent. Lastly,the analogue of proposition 5

can be conducted using an instead of root n, noticing that under (j) lim anh2=∞ permits to show that

plim HS∗(θ̈, τ̂) = HS(θ0) using the same approach as in Lemma 3.

Thus,showing Zn =
√
n||∇S∗(τ̂ , θ0)−∇S∗(τ0, θ0)|| = op(1) would suffice to conclude plim|

√
n(θ̃∗−

θ0)−
√
n(θ∗− θ0)| = 0. But this last condition on Zn holds under assumption(k)because, as in Andrews

1994, one can use the fact that for any η > 0 we have:

P [Zn > η]= P [Zn > η ∩ {kF (τ̂ , τ0) < η ∩ τ̂ ∈ F}] + P [Zn > η ∩ {kF (τ̂ , τ0) ≥ δ ∪ τ̂ /∈ F}]

≤ P ∗[supB(τ0,δ)
√
n||∇S∗(τ, θ0)−∇S∗(τ0, θ0)|| > η] + P [kF (τ̂ , τ0) ≥ δ] + P [τ̂ /∈ F ]

Noticing kF (τ̂ , 0) ≤ kF (τ̂ , τ0) + kF (τ0, 0) and kF (τ̂ , τ0) = op(1)yields:

lim P[kF (τ̂ , 0) < A for some A > kF (τ0, 0)]=1 so that lim P[τ̂ ∈ F ]=1 holds.

Finally using ε = η in assumption(k) along with kF (τ̂ , τ0) = op(1) and lim P [τ̂ ∈ F ] = 1 directly

provides limP [Zn > η] < η, completing the proof.

proposition 5 bis

Using proposition 2 step 1 and the same approach as in Pagan and Ullah 1999(page 29) yields

(componentwise):

Bias[HS∗(θ0, τ)] = µr
r!
hrE[λww′f

(r)
x,z(0)] +O(hr)ιK+1ι

′
K+1

and

V ar[HS∗(θ0, τ)] = 1
nh

∫
K2(t)dtE[λw22w′22fx,z(0)] +O( 1

nh
)ιK+1ι

′
K+1

where ιK+1 is the K+1 by 1 vector where all entries are equal to 1. It follows that L ,the asymptotic

mean squared error of HS∗(θ0, τ) is given by:
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L = h2rM1 + (nh)−1M2

where M1 and M2 are as defined in proposition 5 bis. Hence we obtain :

|||L|||2 = h4r|||M1|||2 + (nh)−2|||M2|||2 + 2h2r

nh
< M1,M2 >

with < M1,M2 >= tr(M1M2). Since r > 3 and both a and b are positive the first order condition

suffices to minimize our loss and is given by :

∂|||L|||2
∂h

= 0 if and only if L(h2r+1) = 0

where L is a degree 2 polynomial such that L(X) = 2arn2X2 + bn(2r− 1)X − c where a,b and c are

as defined in proposition 5 bis. Hence, the optimal bandwidth is X
1

2r+1
∗ where X∗ =

b(1−2r)+
√

(QB)

n

is the positive root of L(.) which is elementary to derive.Simplifying immediately yields the optimal

bandwidth.

Proposition 6

we note V = Y−g−Γ′β0,w = Z−Γand||TΨ|| = supk=1..K ||TΨk||∞whenever Ψ′ = (Ψ1(X,Z), ...,ΨK(X,Z)).

Finally f refers to fx,z(0) and the sequences of functions Kn(t) = 1
h
K(t/h) and dn(t) = d(t/h) are

used.

The consistency of β∗ = ArgminB
∑n
i=1 λifiρn(Yi − gi − Γ′iβ0 − (Zi − Γi)

′β) can be established

as in proposition 2(i). First,β0 = ArgminBS(β) derives from proposition 1 using instead S(β) =

E[λfρ(V − w′β)],∇S(β) = 2E[λwf(Fx,z(w′∆) − q)] and HS(β) = 2E[λfww′fx,z(w′∆)] where ∆ =

β − β0 yielding β0 as the sole local minimum because E[λExf2ww′] is positive definite by H2(i) and

P [f |w′∆| > 0] = P [|w′∆| > 0]. Using proposition 2(i) we have supB|Ê[λfρn(V − w′β)] − S(β)| =

op(1) establishing the consistency of β∗.The asymptotic normality of β∗ follows from proposition 2(ii)

using instead HS∗(β) = 2
n

∑
λifiwiw

′
iKn(w′i∆) whose almost sure convergence to 2E[λfww′fx,z(w′∆)]

(uniformly over B)is direct from proposition 2(ii)step1 and −
√
n∇S∗(β0) = 2√

n
Σλifiwi[q − dn(εi)] 

N (0, 4q(1 − q)E[λf2ww′]) can be established using the same approach as in 2(ii)step2 by a double

application of the Dominated Convergence Theorem and the fact that we choose h = O(n−p) for some

p > 1/2r.Hence,
√
n(β∗ − β0) N (0,VBλ) follows.

The proof of β̃∗ consistency needs further effort than proposition 4.we have:

||Ŝ− S̃||supB ≤ ||f̂ ||∞{||ĝ− g||∞+ ||β0||.supX∗||Γ̂−Γ||+ ||β̂−β0||supX∗||Γ̂−Γ||+ ||β0||supX∗||Γ̂−

Γ||+ supB||β||supX∗||Γ̂− Γ||}+ supB
1
n

∑
ρ(Vi − w′iβ)||f̂ − f ||∞.(*)
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where S̃(β) = n−1
∑n
i=1 λif̂iρ(V̂i − ŵi′β) is the counterpart to Ŝ(β) when the nuisance functions

are estimated.To show plim||Ŝ − S̃||supB = 0 we invoke the fact that ||T || ≤ 1 and assumptions H4(ii)

25which imply that for any (Ψ1,Ψ2) ∈  L∞X,Z(Ω)2 we have:

||TΨ1 − T̂Ψ2||∞ ≤ ||Ψ1 −Ψ2||∞ + ||T̂ − T ||.||Ψ2||∞.

Applying this last inequality yields:

supX∗||Γ̂− Γ|| ≤ O||f̂ − f ||∞ +Op(1)||T̂ − T ||(**)

Using (**) and rearranging (*) provides:

||Ŝ − S̃||supB ≤ Op(1)||f̂ − f ||∞ +Op(1)||ĝ − g||∞ +Op(1)||T̂ − T ||+ op(1)

Hence,||Ŝ − S̃||supB = Op(n−min(a,b,γ)) establishing plim||Ŝ − S̃||supB = 0 and the consistency

of β̃∗,the minimizer of S̃∗,follows using the analogue of proposition 4 with the aid of two triangular

inequalities showing that ||S̃∗−S||supB is dominated by three random variables,all of which op(1).Finally,

the asymptotic efficiency of β̃∗ is derived using n1/2(β̃∗−β0) = HS∗(β̈, τ̂)−1{−n1/2∇S∗(β0, τ̂)} wpa.1.

for some β̈ and lemma 3’s approach, which yields :

supB|||HS∗(β, τ̂)−HS∗(β, τ)||| = Op(h−2n−min(a,b,γ)) = op(1)

due to assumptions H3 ,H4 and H7 and subsequently plimHS∗(β̈, τ̂) = HS(β0)for plimβ̈ = β0.It

then follows by assumptions H6 that
√
n(β̃∗ − β0) N (0,VBλ).

25Notice that ||T̂ − T ||exists a.s. because the trimming restrict the operator to have as range only X∗

supported functions i.e. Tresϕ = Tϕ1X∗ and ||T̂Ψ− TΨ||∞,X∗ ≤ supX∗supZ |f̂x(z)− fx(z)|`(Z)||Ψ||∞

where `(Z) is the Lebesgue measure(in RK)of Zand κ in (V ) is strictly positive so the supremum in

question exists.
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Lemmas

Lemma 1:

let ρn(u) = 2(qu + ϕn(u)) where ϕn(u) = hϕ(u/h) for some ϕ ∈ Fr and some h = o(1). Then (i)

|ρn − ρ|supR = O(h) and (ii) lim d(u/h) = 1u<0 a.e.

proof: without loss of generality we are to show the case where r=4. The only difference deals with

the number of roots of the polynomials Q on (-1,1). So let K = Q1[−1,1] where Q of degree 4, symmetric

with one root in (0,1) we note ζ. Thus, Q will be decreasing on (0, ζ) and increasing on (ζ, 1).

let d(x) =
∫
K(t)1t>xdt. By construction d is equal to 0 on [1,∞) and 1 on (−∞,−1] while the

monotonicity on (-1,1) is given by the Fundamental Theorems of Calculus (FTC) as d′ = −Q. Using the

previous properties of Q yields that d is increasing on (−1,−ζ)∪(ζ, 1) while decreasing on (−ζ, ζ).Notice

that d(0) = 1/2.

Let ϕ(u) =
∫
d(x)1x>udx. By construction ϕ is 0 on [1,∞) while the monotonicity on (−∞, 1) is

derived from the FTC as ϕ′ = −d. It follows that ϕ will be increasing on (µ, 1) for some µ > 0 and

decreasing on (−∞, µ). In other words,ϕ behaves almost like the negative part function which is the

idea behind the approximation of the ”Check function”.

Finally, let ϕn(u) = hϕ(u/h) and H(u) = −u1u<0.

We are to show that ϕn converges uniformly to H.Let u ≥ 0. Because u/h ≥ 0 will always hold

and ϕ is bounded on [0,∞) we have |ϕn(u)| ≤ h|ϕ|SupR+ and thus |ϕn − H| = O(h) uniformly when

u ≥ 0.Let u < 0. Examining ϕn − H when u < 0 (using the properties of d) yields |ϕn − H| ≤

max{(ϕn(0); |ϕn(λh)−H(λh)|} = O(h) for λ somewhere in (-1,0) meeting d(λ) = 1.

Consequently, supu∈R|ϕn(u)−H(u)| = O(h) and the Lemma follows directly.

(ii) lim d(u/h) = 1u<0 a.e.

for u > 0 we have lim u/h =∞ yielding lim d(u/h) = 0. For u < 0 we get lim u/h = −∞ and hence

lim d(u/h) = 1. The almost everywhere convergence arises due to d(0) = 1/2.
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Lemma 2:

Under the assumptions of the model we have Ex,zd(ε/h)− q = O(hr) a.s. for sufficiently large n.

proof:let f̂(e) = 1
nh

∑
K( εi−e

h
) be the non parametric estimator of f(e) where f is the density of

the error term. Using our iid assumptions for {εi}ni=1 we get:

Ex,zd(ε/h)− q = Ex,zn−1
∑
d(εi/h)− q = Ex,z

∫
(f̂(e)− fx,z(e))1e<0de

where we used P[ε < 0|X,Z]=q a.s. along with the properties of d(.).

Let us note bn(e, x, z) = Ex,z f̂(e)− fx,z(e). Notice that:

Ex,z f̂(e) =
∫
h−1K( ε−e

h
)fx,z(ε)dε =

∫
K(t)fx,z(e+ th)dt.

But by assumptions 9 we find:

fx,z(e+ th) = fx,z(e) + Px,z(e− th) +Rx,z(e, e+ th).

where Px,z(e−th) is the Taylor’s approximation of fx,z(e+th) around e at order r-1 and Rx,z(e, e+th)

its reminder. Hence, our Kernel of order r results in:

bn(e, x, z) =
∫
Rx,z(e, e+ th)K(t)dt

Finally, using the compact support of our Kernel ensures that for almost all (x,z) there exists a

strictly positive constant cx,z and natural number n(x, z) such that:

|bn(e, x, z)| ≤
∫
|Rx,z(e, e+ th)||K(t)|1|th|<cx,z

dt for n > n(x, z)

and consequently :

|bn(e, x, z)| ≤ hrψx,z(e)
∫
|trK(t)|dt holds almost everywhere on X ×Z for n large enough and some

integrable function ψx,z(.) due to assumption 9. It follows that
∫
|bn|de = O(hr) a.s. for large n and

this establishes Lemma 2.

Lemma 3:

Under assumptions 1-10 supΘ|||HS∗(θ, τ̂)−HS∗(θ, τ)||| = op(1)

proof:let Kn(t) = h−1K(t/h).Also for for i = 1...n the followings will improve the clarity of the

proof: Ai = 2wiw
′
i ; Âi = 2ŵiŵ

′
i ;Ui(θ) = Ti − w′iθ;Ûi(θ) = T̂i − ŵ′iθ.
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we have HS∗(θ, τ̂)−HS∗(θ, τ) = 1
n

∑
AiKn(Ui(θ))− 1

n

∑
ÂiKn(Ûi(θ)). The triangular inequality

further provides :

supΘ|||HS∗(θ, τ̂)−HS∗(θ, τ)|||

≤ supΘ||| 1n
∑
AiKn(Ui(θ))− 1

n

∑
ÂiKn(Ui(θ))|||+supΘ||| 1n

∑
ÂiKn(Ui(θ))− 1

n

∑
ÂiKn(Ûi(θ))|||

Hence, supΘ|||HS∗(θ, τ̂)−HS∗(θ, τ)||| ≤ H1,n +H2,n

where H1,n = 1
n

∑
|||Ai − Âi|||sup|Kn| ≤ O(1/h)|||Ai − Âi|||supi=1..n ≤ O(1/h)Op(1/

√
n).

and

H2,n ≤ 1
n

∑
|||Âi|||sup|K

(1)
n |supΘ|Ui(θ)− Ûi(θ)|

≤ O(h−2) 1
n

∑
|||Âi|||{supx∈X |M̂ −M)| + Bsupx∈X ||ϑ̂ − ϑ||} where B is simply a constant due to

the compactness of Θ.

Consequently, H2,n ≤ Op( 1
h2n1/2 ) 1

n

∑
|||Âi||| ≤ Op( 1

h2n1/2 ).

Because h = O(1/np) for some p < 1/4 we conclude that plim H1,n + H2,n = 0 which establishes

Lemma 3.

Lemma 4:

R1,n +R2,n + En = op(1)

proof:

1. R1,n = op(1) by Lemma 5

2. R2,n = op(1)

We show e′−1R2,n = op(1) since the proof of e′1R2,n = op(1) is similar.let an be the vector of

dimension n where the ith entry is K
(1)
n (ξi)∆

2
i . Since ||R2,n||2 = 1

n
a′n(Z − ϑ)(Z − ϑ)′an (where

Z − ϑ is the n by K Matrix of residuals from the projection of Z on X) we obtain :

||R2,n||2 ≤ λmax[ 1
n

(Z − ϑ)(Z − ϑ)′]||an||2

where λmax(A) indicates the largest eigenvalues of a symmetric Matrix A.

Furthermore, ||an||2 ≤
∑ 1

h4 ∆4
i = 1

nh4Op(1) and 1
n

(Z−ϑ)′(Z−ϑ) −→M a.s. ( by Kolgomorov’s

strong law of large numbers) where M is definite positive by assumption 8. Thus, λmax[ 1
n

(Z −

ϑ)(Z − ϑ)′] = Op(1) and subsequently ||R2,n||2 ≤ 1
nh4Op(1) so that ||R2,n||2 = op(1) will hold

due to our choice for h.
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3. R3,n = op(1)

||R3,n||2 = 1
n
d′∆ϑ∆ϑ′dwhere d is a n by 1 vector whose ith entry is dn(εi) while ∆ϑ is n by K

matrix whose kth columns records the first stage ”mistakes” on the conditional mean of Zk on X.

Because ∆ϑ is measurable in {Xi, Zi}i=1...n we have:

EXi,Zi
||R3,n||2 = 1

n
tr{∆ϑ∆ϑ′EXi,Zi

dd′}.

Additionally, the iid property of our errors combined to Lemma 2 gives EXi,Zi
dd′ = O(1)In +

O(h2)C where In is the identity matrix of dimension n while C is the n by n matrix whose diagonal

is 0 and 1 elsewhere. Finally, using supx∈X {
√
n(M̂ −M)} = Op(1) and supx∈X {

√
n||ϑ̂− ϑ||} =

Op(1) yield:

∆ϑ∆ϑ′ = Op( 1
n

)Ξ

where Ξ is the n by n matrix where all entries are equal to 1. Hence, EXi,Zi
||R3,n||2 =

1
n
tr{Op( 1

n
)Ξ[O(1)In +O(h2)C]}.

Noticing ΞC = (n−1)Ξ and keeping the largest order supplies EXi,Zi
||R3,n||2 = 1

n
tr{Op( 1

n
)Ξ} =

Op( 1
n

) and this achieves our objective by Dominated Convergence because EXi,Zi
||R3,n||2 =

O(1).

4. R4,n = op(1)

||R4,n|| ≤ n1/2supx∈X ||ϑ̂− ϑ||supx∈X |∆x| 1n
∑
|Kn(εi)|.

Simplifying provides:

||R4,n|| ≤ supx∈X |∆x|Op(1) = op(1)

5. R5,n = op(1)

||R5,n|| ≤ 1√
n

∑
sup|K(1)

n |supx∈X |∆x|2supx∈X ||ϑ̂− ϑ||

≤ O(h−2)Op(1/n)

hence, ||R5,n|| = Op( 1
nh2 ) = op(1).
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Lemma 5: Under Assumption 11 we have plim 1√
n

∑
wiKn(εi)∆̂i = 0

proof: let δ > 0 be arbitrary. By assumption 11 there exists ε > 0 such that P [supΘn(ε)|υn(∆)| >

δ] < δ for n sufficiently large. Using basic probabilities inequalities we must also have:

P [|υn(∆̂)| > δ] = P [|υn(∆̂)| > δ ∩ |∆̂|∞ ≤ ε] + P [|υn(∆̂)| > δ ∩ |∆̂|∞ > ε]

≤ P [|υn(∆̂)| > δ ∩ |∆̂|∞ ≤ ε] + P [|∆̂|∞ > ε]

≤ P [supΘn(ε)|υn(∆)| > δ] + P [|∆̂|∞ > ε]

Using supx∈X {
√
n(M̂ −M)} = Op(1) ,supx∈X {

√
n||ϑ̂ − ϑ||} = Op(1) and |∆̂|∞ = op(1) implies

therefore the existence of a sample size n∗ such that supn≥n∗ P [|υn(∆̂)| > δ] < δ Q.E.D.

Notice that we have not used the outer probability because for each sample size n the map sup|Θn(ε)|υn(∆)|

is measurable due to our maximizing of a continuous function over Θn(ε) compact(Jenrich 1969,Lemma

2.1).

Lemma 6:

Under the assumptions of proposition 1

θ∗ converges almost surely to θ0

proof:Nothing original is presented here. We provide a proof restating in the context of our model

known results for M estimators where the centered empirical moment is Liptschiz in the parameter(Mc

Fadden 1991, Mc Fadden Newey 1994,Andrews 1992)and the space of parameters compact.It is un-

derstood that that the classic measurability conditions are met for ||Ŝ − S||supΘ (Jenrich 1969,lemma

2.1.).

θ0 being the global minimum of S on Θ implies that for an arbitrary ε > 0 there exits δ > 0 such

that inf{θ:||θ−θ0||>ε}S(θ) − S(θ0) ≥ δ and consequently P [||θ∗ − θ0|| > ε] ≤ P [|S(θ∗) − S(θ0)| ≥ δ].

Additionally, one can show with two triangular inequalities that |S(θ∗)−S(θ0)| ≤ 2||S∗−S||supΘ due to

the fact that S∗(θ∗)− S∗(θ0) ≤ 0 .Hence,||S∗ − S||supΘ convergence almost surely to 0 would establish

the lemma. Since ||S∗− Ŝ||supΘ = O(h) we need only to show to show P [ω ∈ Ω : limn||Ŝ−S||supΘ(ω) =

0] = 1.

Under the assumptions of proposition 1,one can use supΘ||∇S(θ)|| < ∞ and the basic inequality

||a| − |b|| ≤ |a − b| for any a, b real numbers to establish that for any (θ1, θ2) ∈ R2(K+1) we have

|Qn(θ1) − Qn(θ2)| < C||θ1 − θ2|| for some positive constant C, where Qn(θ) = Ŝ(θ) − S(θ) is the

67



centered empirical moment.Let ε > 0 arbitrary.Using the fact that Θ is compact26 permits to invoke the

Heine Borel Theorem to affirm the existence of a finite open covering of Θ. That is,Θ ⊆
⋃
k B(θk, ε/2C)

for some {θk}k=1..K where B(θk, ε/2C) = {θ : ||θ − θk|| < ε/2C}.Since for any θ ∈
⋃
k B(θk, ε/2C)

implies θ ∈ B(θk, ε/2C) for some θk, we further obtain:

|Qn(θ)| ≤ |Qn(θ)−Qn(θk)|+ |Qn(θk)| < ε/2 + |Qn(θk)|

Hence, we have :

sup⋃B(θk,ε/2C)|Qn(θ)| < ε/2 + supk=1..K |Qn(θk)|.

But, the iid sampling assumptions and E|ρ(ε(θ)| < ∞ uniformly over Θ provides |Qn(θk)| −→ 0

almost surely by Kolmogorov strong law of large numbers. Hence, for any k ∈ {1...K} there is a null

set Ak such that limQn(θk)(ω) = 0 for all ω ∈ Ω\Ak. It follows that for all ω ∈ Ω\ ∪ Ak there exists a

sample size nk(ω) such that n ≥ nk(ω) implies |Qn(θk)(ω)| < ε/2 so that n ≥ N(ω) = maxk=1...Knk(ω)

exists to ensure sup⋃B(θk,ε/2C)|Qn(θ)(ω)| < ε.

Since ε was arbitrary chosen we get Ω\ ∪ Ak ⊆ {ω ∈ Ω : lim||Ŝ − S||supΘ(ω) = 0}which combined

to P [ω ∈ Ω\ ∪Ak] = 1 yields P [ω ∈ Ω : lim||Ŝ − S||supΘ(ω) = 0] = 1 Q.E.D.

26A totaly Bounded parameter space suffices to invoke the finite covering property,which is why the

closeness of Θ imposed in assumption 4 can be relaxed(Andrews 1992).
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