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Abstract: 
 
Portfolio optimisation for a Fund of Hedge Funds (“FoHF”) has to address the 
asymmetric, non-Gaussian nature of the underlying returns distributions. Furthermore, 
the objective functions and constraints are not necessarily convex or even smooth. 
Therefore traditional portfolio optimisation methods such as mean-variance 
optimisation are not appropriate for such problems and global search optimisation 
algorithms could serve better to address such problems. Also, in implementing such an 
approach the goal is to incorporate information as to the future expected outcomes to 
determine the optimised portfolio rather than optimise a portfolio on historic 
performance. 
 
In this paper, we consider the suitability of global search optimisation algorithms 
applied to FoHF portfolios, and using one of these algorithms to construct an optimal 
portfolio of investable hedge fund indices given forecast views of the future and our 
confidence in such views.  
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Section 1: Introduction 
 
The motivation for this paper was to develop a more robust approach to constructing 
portfolios of hedge fund investments that takes account of the issues that confront 
portfolio managers: 
 

1. The non-Gaussian, asymmetric nature of hedge fund returns; 
2. The tendency of optimisation algorithms to find corner solutions; 
3. The speed in computation and efficiency in finding the solution; and 
4. The desire to incorporate forecast views into the problem specification.  

 
We describe here how each of these issues was addressed and illustrate with reference 
to the optimising of a portfolio of investable hedge fund indices. This paper synthesises 
a review of the applicability of global search optimisation algorithms for financial 
portfolio optimisation with the development of a Monte Carlo simulation approach to 
forecasting hedge fund returns and implementing the methodology into an integrated 
forecasting and optimisation application. 
 
In Section 2, we summarise the review of global search optimisation algorithms and 
their applicability to the FoHF portfolio optimisation problem. In Section 3, we 
describe the Monte Carlo simulation technique adopted using resampled historical 
returns data of hedge fund managers and also how we incorporated forecast views and 
confidence levels, expressed as probability outcomes, into our returns distribution data. 
In Section 4, we report the results of applying the methodology to a FoHF portfolio 
optimisation problem and in Section 5, we draw our conclusions from the study. 
 
 
Section 2: Review of global search optimisation algorithms 
 
The FoHF portfolio optimisation problem is an example of the typical minimisation 
problem in finance 
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Where f is non-convex and maybe non-smooth, called the objective function. The g, …, 
h are constraint functions, with g0, …, h0 as minimum thresholds. The variable x 
usually denotes the weights assigned to each asset and the constraints will usually 
include the buying and shorting limits on each asset. 
 
It is well known that many of the objective functions and constraints specified in 
financial minimisation problems are not differentiable. Traditional asset management 
has relied on the Markowitz specification as a mean-variance optimisation problem 
which is soluble by classical optimisation methods. However, in FoHF portfolio 
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optimisation the distribution of hedge fund returns are non-Gaussian and the typical 
objective functions and constraints are not limited to simple mean, variance and higher 
order moments of the distribution. We have previously [MOTT] discussed the use of 
performance and risk statistics such as maximum drawdown, downside deviation, 
co-drawdown, and omega as potential objective functions and constraint functions 
which are not obviously differentiable.  
 
With the ready availability of powerful computing abilities and less demand on 
smoothness, it is possible to look for global optimisation algorithms which do not 
require regularity of the objective (constraint) functions to solve the financial 
minimisation problem.  
 
In our review of the literature [MOTT], we found that there are three main ideas of 
global optimisation; Direct, Genetic Algorithm, and Simulated Annealing. In addition, 
there are a number of other methods which are derived from one or more of the ideas 
listed above.  
 
A key characteristic of fund of fund portfolio optimisation, in common with other 
portfolio optimisation problems, is that the dimensionality of the problem space is 
large. Typically, a portfolio of hedge funds will have between 20 and 40 assets with 
some commingled funds having significantly more assets. This means that the search 
algorithm cannot conduct an exhaustive test of the whole space efficiently. For 
example, if we have a portfolio of 40 assets we have a 40-dimensional space, and an 
initial grid of 100 points on each axis produces 1040 initial test points to evaluate the 
region where the global minimum might be found. This would require considerable 
computing power and would not be readily feasible. 
 
Each of the methods we considered in our review requires an initial search set. The 
choice of the initial search set is important as the quality of the set impacts the 
workload required to find the global minimum. The actual approach to moving from 
the initial set to finding better and better solutions differs across the methods and our 
search also revealed some approaches that combine the methods to produce a hybrid 
algorithm. 
 
In [MOTT] we evaluated seven algorithms across the methods to identify which 
method and specific algorithm was best suited to our FoHF portfolio optimisation 
problem. The algorithms considered are described here: 
 

1. PGSL: Probabilistic Global Search Lausanne 
PGSL is a hybrid algorithm, proposed by Benny Raphael [RS], drawing on the 
Simulated Annealing method that adapts its search grid to concentrate on regions 
in the search space that are favourable and to intensify the density of sampling in 
these attractive regions. 
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The search space is sampled using a probability distribution function for each axis 
of the multi-dimensional search space. At the outset of the search process, the 
probability distribution function is a uniform distribution with intervals of constant 
width. During the process, a probability distribution function is updated by 
increasing probability and decreasing the width of intervals of the regions with 
good functional values. A focusing algorithm is used to progressively narrow the 
search space by changing the minimum and maximum of each dimension of the 
search space.   
 
2. MCS: Multi-level Co-ordinate Search 
MCS belongs to the family of branch and bound methods and it seeks to solve 
bound constrained optimisation problems by combining global search (by 
partitioning the search space into smaller boxes) and local search (by partitioning 
sub-boxes based on desired functional values). In this way, the search is focused in 
favour of sub-boxes where low functional values are expected. The balance 
between global and local parts of the search is obtained using a multi-level 
approach. The sub-boxes are assigned a level, which is a measure of how many 
times a sub-box has processed. The global search part of the optimisation process 
starts with the sub-boxes that have low level values. At each level, the box with 
lowest functional value determines the local search process. The optimisation 
method is described in the paper by Huyer and Neumaier [HN].  
 
Some of the finance papers that have examined MCS include [EG] and [KB]. In 
[EG] Value-at-Risk of a portfolio is calculated using marginal distributions of the 
risk factors and MCS is employed to search for the best-possible lower bound on 
the joint distribution of marginal distributions of the risk factors. [KB] uses MCS 
to optimise for Omega ratio, a non-smooth performance measure, of a portfolio.  
 
3. MATLAB Direct: 
The Direct Search algorithm, available in MATLAB’s Genetic Algorithm and 
Direct Search Toolbox, uses a pattern search methodology for solving bound linear 
or non-linear optimisation problems [M1]. The algorithms used are Generalised 
Pattern Search (GPS) and Mesh Adaptive Search (MADS) algorithm.  
 
The pattern search algorithm generates a set of search directions or search points 
to approach an optimal point. Around each search point, an area, called a mesh, is 
formed by adding the current point to a scalar multiple of a set of vectors called a 
pattern. If a point in the mesh is found that improves the objective function at the 
current point, the new point becomes the current point for the next step and so on. 
The GPS method uses fixed direction vectors and MADS uses random vectors to 
define a mesh.   

 
4. MATLAB Simulated Annealing:  
The Simulated Annealing method uses probabilistic search algorithm models that 
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model the physical process of heating a material and then slowly lowering the 
temperature to decrease defects, thus minimising the system energy [M1]. By 
analogy with this physical process, each step in the Simulated Annealing algorithm 
replaces the current point by another point that is chosen depending on the 
difference between the functional values at the two points and the temperature 
variable, which is systematically decreased during the process. 
 
5. MATLAB Genetic Algorithm: 
The MATLAB’s Genetic Algorithm is based on the principles of natural selection 
and uses the idea of mutation to produce new points in the search for an optimised 
solution [M1]. At each step, the Genetic Algorithm selects individuals at random 
from the current population to be parents and uses them to produce the children for 
the next generation. In this way, the population evolves toward an optimal 
solution. 
 
6. TOMLAB LGO: 
Tomlab’s Global Optimiser, TOMLAB/LGO, combines global and local search 
methodologies [T1]. The global search is implemented using the branch and bound 
method and adaptive random search. The local search is implemented using a 
generalised reduced gradient algorithm.  
 
7. NAG Global Optimiser: 
NAG’s Global Optimiser, E05JBF, is based on MCS, as described above. E05JBF 
is described in [N1] and [KB]. 

 
The above algorithms were evaluated on the three constrained optimisation problems 
described in paragraph 1.1 of Appendix I. The constraints consisted of both linear 
constraints on the allocation weights to the assets and constraints on the level of 
functions that characterise the portfolio’s performance or risk. The algorithms were 
measured regarding time to run, percentage of corners in the optimal solution, and the 
deviation from the average optimal solution. A simple scoring rule combining these 
three factors as a weighted sum was constructed and is also described in Appendix I.  
 
The results of the evaluation are shown in Appendix I. It is clear that there was 
considerable variation in relative performance between the algorithms across the 
different tests. Two algorithms, MATLAB Annealing and MATLAB Genetics, were 
found to be unstable giving rise to different results when repeated runs of the same 
problem and environment were performed. They also produced widely different results, 
from very good to very bad, across the tests and were rejected from consideration 
easily. The other five algorithms all produced acceptable results with MATLAB Direct 
scoring best across the constrained optimisation examples. PGSL, the adaptive 
Simulated Annealing algorithm performs reasonably in most tests and has been used by 
IAM for the past four years. Therefore, we chose to compare MATLAB Direct with 
PGSL in our portfolio optimisation implementation. 
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Section 3: Implementing the Global Search Optimisation Algorithm 
 
Traditional optimisation of portfolios has focused on determining the optimal portfolio 
given the history of asset returns and assuming that the distribution of returns is 
Gaussian and stationary over time. Our experience is that these assumptions do not 
hold and that any optimisation should use the best forecast we can make of the horizon 
for which the portfolio is being optimised. When investing in hedge funds, liquidity 
terms are quite onerous with lock ups and redemption terms from monthly to annual 
frequencies, and notice periods ranging from a few days to six months. This means that 
the investment horizon tends to be six to twelve months ahead to reflect the minimum 
time any investment will be in a portfolio. 
 
The forecast performance of the assets within the portfolio is produced using Monte 
Carlo simulation and re-sampling. The objective is to produce a random sample of 
likely outcomes period by period for the forecast horizon based on the empirical 
distributions observed for the assets modified by our views as to the likely 
performance of the individual assets. This is clearly a non-trivial exercise, further 
complicated by our wish to maintain the relationship between the asset distributions 
and any embedded serial correlation within the individual asset distribution. 
 
The approach implemented has three components: 
 

1. Constructing a joint distribution of the asset returns from which to sample; 
2. Simulating the returns of the assets over the forecast horizon; and 
3. Calculating the relevant objective function and constraints for the optimisation. 

 
Constructing the Joint Distribution of Asset Returns 
We used bootstrapping in a Monte-Carlo simulation framework to produce the 
distribution of future portfolio returns. Bootstrapping is a means of using the available 
data by resampling with replacement. This generates a richer sample than would 
otherwise be available. To preserve the relationship between the assets we treat the set 
of returns for the assets in a time period as an observation of the joint distribution of 
the asset returns. An enhancement to this sampling scheme to capture any serial 
correlation is to block sample a group contiguously, say three periods together. Block 
sampling of three periods at a time offers around 10 million distinct samples of blocks 
of three time periods.  
 
As we used bootstrapping to sample from the distribution and we wished to preserve 
the characteristics of the joint distribution, we needed to define a time range over 
which we have returns for all of the assets in the portfolio. Hedge funds report returns 
generally on a monthly basis, which means that we needed to go back a reasonable 
period of time to obtain a sufficiently large number of observations to enable the 
bootstrap sampling to be effective. For hedge funds this is complicated because many 
of the funds have not been in existence for very long, with the median life of a hedge 
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fund being approximately three years. Although the longer the range that can be used 
for the joint distribution the greater the number of points available for sampling, the 
lack of stationarity within the distribution leads us to select a compromise period, 
typically five years, as the desired range. Where a hedge fund does not have a complete 
five year history, we employed a backfill methodology to provide the missing data. 
 
There are a number of approaches to backfilling asset return time series such as 
selecting a proxy asset to fill the series; using a strategy index with a random noise 
component; constructing a factor model of the asset returns from the available history 
and using the factor return history and model to backfill; or to randomly select an asset 
from a set of candidate assets that could have been chosen for the portfolio for the 
periods that the actual asset did not exist. We adopted this last method, selecting an 
asset from a set of available candidates within a peer group for the missing asset. 
Where the range for which returns are missing was long, we repeated the exercise of 
selecting an asset at random from the available candidates within the peer group, say, 
every six periods. Our reasoning for applying this approach is that we assume as 
portfolio managers, given the strategy allocation of the portfolio, that we would have 
chosen an asset from the candidate peer group available at that time to complete the 
portfolio. Using this process we constructed a complete set of returns for each of the 
assets going back, say, five years. The quality of the backfill depends on how narrowly 
defined the candidate peer group is defined. At International Asset Management 
Limited (IAM), we have defined our internal set of strategy peer groups that reflect 
best our own interpretation of the strategies in which we invest. This is because hedge 
fund classifications adopted by most of the index providers tend to be broad, and can 
include funds that would not feature in IAM’s classifications. 
 
Simulating returns over the forecast horizon 
We simulated the returns of the assets using a block bootstrap of the empirical joint 
distributions, which are modified by probabilistically shifting the expected return of 
the sample according to our assessment of the likely return outcomes for the assets. 
First we describe the process of incorporating forecast views by expectation shifting 
and then we describe the block bootstrapping method. 
 
The desire to include forecast views, expressed as expected annual returns, and 
confidence, expressed as probabilities, within a portfolio optimisation problem has 
been addressed in a number of ways. Black and Litterman developed an approach 
where the modeller expressed a view as to the expected mean of a returns series and 
attached a confidence to each view. This approach is Bayesian and allows the 
traditional Mean-Variance approach to be adapted to allow for more stable and 
intuitive allocations which do not favour corner solutions. However, we have chosen 
an empirical approach, of mixing probabilistically mean shifted versions of the 
empirical distribution, to include views that allows a range of outcomes to be specified 
with a confidence associated with the views. 
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Figure 1 shows how applying a probabilistic shift to the mean of a distribution not only 
repositions the distribution but changes the higher order moments as the spread, skew 
and kurtosis all change. 
 

Figure 1: Probabilistic Shifting of Expected Mean 

In Figure 2 the forecast views for a number of strategies are set out with associated 
confidence. The optimistic, pessimistic and most likely views are the best assessment 
of the potential expected return of the mean fund within the strategy. The confidence 
level represents the likelihood of that view prevailing. We note the sum of the three 
confidence levels is one. We use these likelihoods to determine for each asset, 
according to its strategy, which shift should be applied to the distribution for that 
simulation. This is implemented by simply sampling from the uniform distribution and 
dividing the distribution into three segments according to the confidence levels 
associated with the three views. Recognising that each asset does not track its strategy 
with certainty we calculate the beta for the asset with respect to the strategy and adjust 
the return by the randomly chosen shift (“k”) multiplied by the asset beta calculated. 
So the return in any period (“t”) for an asset (“a”) which follows strategy (“s”) for 
simulation trial (“n”) is: 
 
 m_ra,t,n = raw_r a,t,n + β x shifts,k 
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Figure 2: Forecast views and confidence by hedge fund strategy 
 

Strategy Optimistic 
View 

Confidence 
/ 

Probability 

Pessimistic 
View 

Confidence 
/ 

Probability 

Most 
Likely 
View 

Confidence 
/ 

Probability 
Convertible Bond Arbitrage 17.5% 25% 7.5% 25% 12.5% 50% 
Credit 17.5% 25% 7.5% 25% 12.5% 50% 
Event Driven 10.0% 25% 0.0% 25% 5.0% 50% 
Fixed Income Relative Value 15.0% 25% 10.0% 25% 12.5% 50% 

 
 
Calculating the objective function and constraint functions 
In implementing the bootstrapped Monte Carlo simulation we simulate 500 trials or 
scenarios for the assets in the portfolio. This produces a distribution of returns of each 
asset and the distributions of any statistics we may wish to compute. Our objective and 
constraint functions are statistics based on the distribution of portfolio returns. With a 
set of asset allocation weights, the distribution of portfolio returns and statistics 
distributions may be calculated. It is worth discussing how we use this information 
within the optimisation algorithm. To do this we shall use as an example maximising 
expected return subject to a maximum level of maximum drawdown. 
 
As we have chosen to optimise expected return, our objective function is simply the 
median of the distribution of portfolio returns. If we set our objective to ensure 
performance is at an acceptable level in most circumstances we might choose the 
bottom five percentile of return as the objective function so as to maximise the least 
likely (defined as fifth percentile) return. This reflects the flexibility we have with 
using a simulated distribution as the data input into the optimisation process. 
 
In PGSL, as with almost all of the global search optimisation algorithms, both the 
linear and non-linear constraints are defined as penalty functions added to the objective 
function and hence are soft constraints rather than hard constraints that must be 
satisfied. The weight attached to each penalty function determines how acceptable a 
constraint violation is. In our example, we define the penalty function as the average of 
the maximum drawdown for the lowest five percentile of the maximum drawdown 
distribution less the constraint boundary assuming the conditional average exceeds the 
constraint level multiplied by an importance factor: 
 
Max_dd_penalty =  

- Max(Constraint_dd – average(Max_ddn | Lower 5%ile),0)  
/ No. of Trials * Importance 
 

This measure is analogous to an expected tail loss or Conditional VaR (CVar) in that it 
is an estimate of the conditional expectation of the maximum drawdown for the lower 
tail of the distribution of drawdowns. 
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Section 4: Results of Optimising a FoHF Portfolio 
 
The approach to optimising a FoHF portfolio has been implemented in MATLAB and 
applied to a portfolio of eight RBC Hedge 250 hedge fund strategy indices. The 
monthly returns for indices from July 2005 are available from the RBC website. As the 
simulation requires five years of monthly returns the series were backfilled from the 
IAM’s pre-determined group of candidate assets within the relevant investment 
strategy peer group, using random selection as previously described. The results of the 
backfilling are shown in Appendix II. 
The portfolio was optimised with an objective function to maximise median returns 
subject to constraints on the maximum and minimum allocations to each asset, a 
constraint on the maximum and minimum allocation to Long/Short Equity strategies 
and a maximum allowable maximum drawdown of 5% over the forecast horizon. 
 
Thus the optimisation problem is as set out in Figure 3: 
 

Figure 3: FoHF Portfolio Optimisation Problem 
 

Objective:  
Maximise median portfolio return  
Subject to:  
Maximum drawdown over forecast period Less than 5% 

• Total allocations for full investment 100% 
• Cash 10% 

Within the following constraints:  
• RBC Hedge 250 Equity Market Neutral between 10% to 16% 
• RBC Hedge 250 Equity Long/Short Directional between14% to 20% 
• All Long/Short Equity between 24% to 36% 
• RBC Hedge 250 Fixed Income Arbitrage between 7% to 13% 
• RBC Hedge 250 Macro between 10% to 20% 
• RBC Hedge 250 Managed Futures between 10% to 20%, 
• RBC Hedge 250 Credit between 5% to 15% 
• RBC Hedge 250 Mergers & Special Situations between 0% to 10% 
• RBC Hedge 250 Multi-Strategy between 0% to 10% 

 
First we noted that the total allocations satisfying the equality constraint of all capital is 
deployed with both PGSL and MATLAB Direct, and that all the asset allocation 
constraints are satisfied including the constraint on all Long/Short Equity strategies by 
MATLAB Direct, but not by PGSL. Secondly we noted that with PGSL only one other 
allocation is near its lower or upper bounds whereas with MATLAB Direct five 
allocations are at or near either the lower or upper bounds. Thirdly we compared the 
results to a portfolio where the allocation of capital to the different assets was chosen 
to be the midpoint between the lower and upper bounds placed on each asset (the naïve 
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allocation). We noted that both optimisers improved median returns (7.8% and 8.0% vs. 
7.40%) and that MATLAB Direct reduced the breach of the maximum drawdown 
constraint (1.71% vs. 2.70%) whereas the PGSL optimisation failed to improve on this 
condition (3.22% vs. 2.70%). The overall performance of the three portfolios is shown 
in Figures 4, 5, 6 and 7. Figure 5 shows the median and lower five percentile of the 
return distribution for both the two optimised portfolios. The returns and maximum 
drawdown distributions for the three portfolios are shown in Appendix III. In Figure 6, 
we compare the distributions of maximum drawdowns for the two optimised portfolios 
and the naïve portfolio. The graph shows that the MATLAB Direct portfolio had the 
better maximum drawdown distribution both in terms of worst case and general 
performance. Figure 7 shows the performance of the portfolios over the backtest period 
used in generating the data set. Again the MATLAB Direct optimised portfolio 
performs the best of the three portfolios. Finally we noted that PGSL optimisation 
terminated on maximum iterations and this might explain why it failed to meet all the 
allocation criteria.  
 

Figure 4: Optimal Allocations and Results 
 

Asset 
Lower
Bound

Upper
Bound

Naïve  PGSL Direct

Cash 10% 10% 10.0% 10.0% 10.0%
RBC Hedge 250 Equity Market Neutral 10% 16% 13.0% 15.0% 16.0%
RBC Hedge 250 Equity Long/Short 14% 20% 17.0% 16.1% 20.0%
RBC Hedge 250 Fixed Income Arbitrage 7% 13% 10.0% 12.5% 13.0%
RBC Hedge 250 Macro 10% 20% 15.0% 12.7% 13.9%
RBC Hedge 250 Managed Futures 10% 20% 15.0% 12.7% 15.4%
RBC Hedge 250 Credit 5% 15% 10.0% 16.7%* 11.5%
RBC Hedge 250 Mergers & Special Situations 0% 10% 5.0% 0.6% 0.0% 
RBC Hedge 250 Multi-Strategy 0% 10% 5.0% 5.8% 0.1% 
    
Median Return 7.40% 7.80% 7.96%
Excess Tail Maximum Drawdown  2.70% 3.22% 1.71%

* In breach of upper allocation constraint 
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Figure 5: MATLAB Direct, PGSL and Naïve Portfolios Returns 
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Figure 6: MATLAB Direct, PGSL and Naïve Max Drawdown Distributions 
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Figure 7: MATLAB Direct, PGSL and Naïve Backtested Returns 
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Section 5: Conclusion 
 
The review of Global Search Optimisation algorithms showed that there is a range of 
methods available, but their relative performance is variable. The specifics of the 
problem and initial conditions can impact the results significantly. In applying 
MATLAB Direct and PGSL to the FoHF portfolio optimisation problem, we observed 
that we improved on the naïve solution in both cases, but each method presented 
solution characteristics that might be less desirable. PGSL was unable to find a 
solution that met its threshold stopping criterion whilst MATLAB Direct found a 
solution with many corner points. Further research studies are required to evaluate the 
stability of the optimiser outputs and sensitivity analysis of salient optimisation 
parameters. 
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Appendix I: Tests of Algorithms with Objective Function and Constraints 
 
1.1 Specifications of Problems with Objective and Constraint Functions 
 

1) Constrained Optimisation-1: Maximising compounded annualised return 
subject to  

x1+ …+ xn =1 
Annualised Volatility ≤ 5% 

Max Drawdown ≤ 7% 
Co-drawdown (to MSCI index) ≤ 60% 

Allocation between 0 and 15% of portfolio 
 

2) Constrained Optimisation-2: Minimise annualised volatility 
subject to 

x1+ …+ xn =1 
Compounded Annualised Returns ≥ 10% and 

Max Drawdown ≤ 7% 
Co-drawdown (to MSCI index) ≤ 60% 

Allocation between 0 and 15% of portfolio 
 

3) Constrained Optimisation-3: Maximise Omega ratio 
subject to 

x1+ …+ xn =1 
Compounded Annualised Returns ≥ 10% 

Max Drawdown ≤ 7% 
Annualised Volatility ≤ 5% 

Co-drawdown (to MSCI World index) ≤ 60% 
Allocation between 0 and 15% of portfolio 

 
1.2 Aggregate Scoring Function: 
 
For a fixed number of assets, scoring measure, r , is calculated as: 

r= 2.0*7.0*
eSpentAverageTim

SpentActualTimeeSpentAverageTim
AverageMin

ActualMinAverageMin −
+

−  

-0.1*
assetofNr total

15%or  0either  is allocationoutput   the timesofNr  

 
The higher the value, the better the algorithm is. 
 
The first term in the formula above is about the minimum we achieved: 
AverageMin = average of all minimums found by all algorithms 
ActualMin = the minimum found by the algorithm investigated 
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The second term considers the time taken to find a solution: 
AverageTimeSpent = average time spent by all algorithms 
ActualTimeSpent = time spent by the algorithm investigated 
 
The last term takes care of the undesirable corner solutions (i.e. optimised allocations 
at either of min or max asset allocation bounds). 
Each algorithm was numerically tested for 10 assets, 20 assets, 30 assets and 40 asset 

cases ( 10r , 20r , 30r  and 40r ) and a weighted score is obtained as: 

r = 0.1 * 10r  + 0.2 * 20r  + 0.3 * 30r  + 0.4 * 40r . 

This final r, depends on algorithm and constrained optimisation setup, is used to 
quantitatively evaluate the algorithms. 
The weighted scores of the seven algorithms for the three constrained optimisation 
setups are given below: 
 

Figure 1: Weighted Score for Constrained Optimisation-1 
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Figure 2: Weighted Score for Constrained Optimisation-2 
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Figure 3: Weighted Score for Constrained Optimisation-3 
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Appendix II: RBC Hedge 250 Strategy Indices Backfilled to June 2005 
 Equity Market 

Neutral
 Fixed Income 

Arbitrage
 Equity 

Long/Short
 Macro Managed 

Futures
 Credit Mergers & 

Special 
Situations

 Multi-Strategy

Apr-04 0.01% 2.01% 0.32% -4.43% 0.18% 1.80% -0.20% 0.18%

May-04 -0.90% -1.15% -1.13% -0.59% 7.10% -0.64% -0.06% -0.36%

Jun-04 0.70% -0.10% 3.31% 4.40% -1.42% 0.43% -0.08% 0.00%

Jul-04 -1.00% -1.91% -1.73% 1.71% 1.33% 1.45% -0.29% 0.37%

Aug-04 0.26% 0.06% 0.62% -5.36% 4.10% 0.85% 0.51% 1.30%

Sep-04 0.30% 1.07% 2.40% -4.15% 6.74% 1.04% -0.27% 0.48%

Oct-04 8.12% 0.45% 1.82% 0.40% 5.65% -0.04% 1.30% 0.67%

Nov-04 0.69% 6.03% 2.24% -2.38% 5.22% -0.04% 3.92% 0.79%

Dec-04 2.72% 0.51% 3.16% -0.59% 0.75% 1.11% 1.40% 0.26%

Jan-05 -0.22% 0.00% -0.88% 1.12% -1.01% 0.50% -0.46% 0.07%

Feb-05 4.43% 2.07% 2.91% 0.99% 3.47% -2.41% 1.37% 2.38%

Mar-05 1.47% -0.72% 4.21% -0.03% 3.29% 0.62% 1.13% -5.05%

Apr-05 1.60% -0.42% 1.60% -0.37% 2.82% -0.34% -5.38% -0.93%

May-05 -0.70% -0.04% -1.41% -8.10% 2.82% 0.99% -4.27% -0.58%

Jun-05 1.04% 1.52% 0.46% -6.20% 6.95% -0.34% 3.43% 1.70% 
Jul-05 0.30% 1.03% 2.53% 1.34% 0.73% 1.89% 2.09% 1.61%

Aug-05 0.53% 0.31% 1.43% 0.66% -0.82% 0.88% 0.96% 0.86%

Sep-05 1.40% 0.23% 1.97% 3.13% 1.82% 1.26% 1.02% 1.43%

Oct-05 -0.77% 0.74% -2.47% -0.78% 0.78% -0.25% -2.96% -0.64%

Nov-05 -0.67% -0.10% 2.24% 1.76% 4.09% 0.48% 1.80% 0.94%

Dec-05 1.41% 0.50% 2.59% 1.23% -0.47% 1.15% 1.72% 2.03%

Jan-06 -0.17% 0.64% 3.74% 2.86% 2.02% 2.62% 3.15% 2.86%

Feb-06 -0.01% 0.43% 0.45% 0.12% -0.84% 1.04% 0.75% 0.75%

Mar-06 1.62% 0.49% 2.47% 0.14% 2.73% 1.34% 1.69% 2.27%

Apr-06 1.13% 1.19% 1.78% 1.91% 3.53% 1.47% 1.48% 1.72%

May-06 -0.57% 0.64% -2.21% -2.70% -0.60% -0.11% -1.26% -0.50%

Jun-06 -0.85% 0.32% -0.85% -0.30% -0.54% -1.05% 0.34% 0.38%

Jul-06 0.80% 0.66% 0.12% -0.87% -2.00% 0.37% -0.18% 0.15%

Aug-06 -0.03% -0.11% 1.41% -1.17% 0.78% 0.89% 0.78% 1.22%

Sep-06 -0.04% 0.31% 0.13% -0.97% -0.44% 0.41% 0.23% 0.50%

Oct-06 0.42% 0.68% 2.33% 0.59% 1.73% 1.61% 1.71% 1.39%

Nov-06 0.67% -0.18% 2.16% 0.71% 2.65% 1.63% 1.86% 1.64%

Dec-06 0.53% 0.84% 1.44% 1.06% 2.16% 1.52% 1.89% 1.66%

Jan-07 1.00% -0.06% 1.05% 0.23% 1.63% 1.29% 2.52% 1.85%

Feb-07 1.63% 0.80% 0.67% 0.34% -1.69% 1.00% 1.86% 1.62%

Mar-07 0.62% 0.29% 1.56% 0.08% -1.15% 0.42% 2.11% 1.02%

Apr-07 1.05% 0.91% 1.19% 0.45% -1.04% 0.78% 1.50% 1.21%

May-07 1.04% 0.05% 1.79% 1.79% 2.69% 1.35% 2.73% 1.78%

Jun-07 0.84% -0.32% 0.86% 1.48% 2.52% 0.30% -0.93% 0.54%

Jul-07 0.23% 0.71% 0.22% -0.26% -2.39% -0.71% 0.19% -0.30%

Aug-07 -0.78% 0.78% -1.07% -4.43% -3.07% -1.31% -2.24% -1.44%

Sep-07 0.43% 1.70% 2.25% 2.69% 4.38% 1.35% 1.04% 1.28%

Oct-07 0.67% 0.43% 3.02% 2.78% 4.15% 1.74% 3.10% 2.31%

Nov-07 -0.13% -0.88% -1.23% -1.25% 0.28% -1.35% -3.07% -1.71%

Dec-07 -0.14% 0.65% 0.74% 1.17% 0.46% 0.22% -0.37% 0.26%

Jan-08 -3.06% 0.15% -3.43% 2.73% 3.09% -1.41% -3.96% -1.52%

Feb-08 0.99% -0.65% 2.29% 1.98% 4.81% 0.31% 2.92% 0.57%

Mar-08 -0.88% -1.69% -1.73% -3.48% 0.99% -2.09% -5.58% -2.33%

Apr-08 0.79% 0.02% 1.71% 1.26% -1.23% 0.50% 1.97% 0.98%

May-08 1.67% 0.18% 2.40% 1.15% 1.58% 1.06% 2.10% 1.87%

Jun-08 1.95% -0.56% -0.62% 0.65% 1.80% -0.58% -2.34% -1.63%

Jul-08 -2.25% 1.68% -2.75% -1.12% -1.87% -2.03% -3.14% -2.51%

Aug-08 -1.40% 0.69% -1.29% -4.77% -1.84% -4.60% -0.60% -0.42%

Sep-08 -2.29% -7.64% -6.37% -4.65% 1.05% -8.12% -8.37% -14.73%

Oct-08 0.81% -14.40% -4.86% -0.67% 3.29% -12.12% -5.93% -10.01%

Nov-08 -0.43% -2.87% -1.25% -0.26% 3.12% -5.26% -2.30% -4.63%

Dec-08 0.24% -1.02% -0.13% 1.31% 1.73% -4.02% -0.32% -0.87%

Jan-09 2.69% 1.90% 0.71% 1.16% 1.97% -0.59% 1.69% 2.76%

Feb-09 -0.52% -0.29% -1.09% -1.42% -0.13% -1.37% -0.83% -0.57%

Mar-09 0.27% 1.26% 0.71% 1.48% -2.24% -0.15% 0.57% 0.44%  
Backfilled values are designated by highlighted data xx.x% 
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Appendix III: Comparison of Naïve and Optimised Portfolios 
 
Naïve Portfolio 
 

Naïve Portfolio: Annualised Returns
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Naïve Portfolio: Maximum Drawdown
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Optimised Portfolio: PGSL 

Optimised Portfolio: Annual Returns
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Optimised Portfolio: Maximum Drawdown
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Optimised Portfolio: MATLAB Direct 
 

Optimised Portfolio: Annualised Returns
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Optimised Portfolio: Maximum Drawdown
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