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Abstract

This document is a supplement of the paper �Dynamic Spatial Competition Between Multi-
Store Firms� by Aguirregabiria and Vicentini (2007). It describes in detail the library of pro-
grams and procedures, in GAUSS language, that is used in that paper. The program computes
an equilibrium of a dynamic game of store location and spatial competition by multi-store
�rms. The equilibrium of the game is a space-time stochastic process for the network of stores
of each �rm as well as for prices, markups, pro�ts and consumer welfare at every location in the
geographic market. We illustrate the use of the program with an example.
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1 Overview

This manual describes a library of programs and procedures that implement an algorithm to com-

pute a Markov Perfect Equilibrium (MPE) of the dynamic game presented in the paper �Dynamic

Spatial Competition Between Multi-Store Firms� by Aguirregabiria and Vicentini (2007). The

programs are written in GAUSS language. The list of programs (.prg) and procedures (.src) is:

Program / Procedure Description

spatial_main.prg Main program

spatial_bertrand.src Compute Nash-Bertrand equilibrium of pricing game

spatial_mpe.src Computes MPE of dynamic game

spatial_pack.src Packs primitives of the model into a GAUSS structure

sigma_algebra.src Creates a matrix with all states of the game

spatial_grid.src Discretizes the space of consumer locations.

pdf_bn.src Computes a bivariate Normal density

spatial_ld.src Computes array of local demands

iv.src Integrates local demands over space

dist_p.src Computes distances between consumers and stores

spatial_dp.src Solves Bellman equation

spatial_ccvalue.src Calculates choice-speci�c expected next period values

spatial_tranp.src Calculates matrix of transition probabilities

The user should create a GAUSS library name spatial, where all procedures should be put into

and called from. There is one main program, spatial_main.prg, where all the primitives of the game

are speci�ed and most procedures are called from. Once the primitives are speci�ed, there are two

major procedures that are called from this program. One is to compute the Nash-Bertrand equilib-

rium and variable pro�ts for each possible value of state variables (spatial_bertrand.src), and the
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other to compute the MPE of the dynamic game of entry-exit and location choice (spatial_mpe.src).

There are eight other auxiliary procedures that are called upon throughout the algorithm. The

algorithm that we provide is intended to serve as a basic framework, and therefore we normalize

some parameters that appear in the paper in order to simplify the understanding and exposition

of the program. Including these parameters back in the program should be straightforward. More

speci�cally, we impose restrictions on the following parameters:

Normalization Description

�n = 1 Firms are allowed to have at most one store per location each

FCi = 0 Fixed costs are normalized to zero

2 Main Program (spatial_main.prg)

The main program where all the primitives are speci�ed and the two major procedures are called

from is spatial_main.prg. This program is divided into �ve sections.

SECTION 1 (Speci�cation of Primitives):

Subsection 1.1: Speci�cation of parameters for the boundaries of the Market C. The user

speci�es its x- and y-axis boundaries and in how many cells should the market be divided into (for

integration):

Paper Program Dimension Description

x-axis of C xaxis 1� 2 Left boundary (xaxis[1,1]) and Right
Boundary (xaxis[1,2]) of the x-axis for C.

y-axis of C yaxis 2� 1 Upper boundary (yaxis[1,1]) and Lower
Boundary (yaxis[2,1]) of the y-axis for C.

grid for C ncell 1� 2 Number of grid Cells at x-axis (ncell[1,1])
and at y-axis (ncell[1,2]) of the market C.

For instance, if the user speci�es the boundaries as xaxis = (0; 1) and yaxis = (1; 0)0, such that C

is the unit square, and chooses ncell = (8; 6), then:
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C =

(0; 1) (1; 1)

(0; 0) (1; 0)

Subsection 1.2: Speci�cation of the number of feasible business locations (i.e. the submarkets)

and their geographic coordinates:

Paper Program Dimension Description

L Lnum scalar Number of feasible locations.

z zmat L� 2
Geographic coordinates of feasible business
locations. The 1st row is the (x; y) coordinates
for location 1, the 2nd row is for location 2, etc.

Subsection 1.3: Speci�cation of the Utility function primitives f� ; �; outsg:

Paper Program Dimension Description

� tau scalar Transportation cost parameter

� miu scalar
Dispersion parameter of
consumers�unobserved heterogeneity

outside
alternative

outs scalar Utility from choosing outside alternative

Subsection 1.4: Speci�cation of the aggregate population distribution and evolution (i.e. �t).

We de�ne �t to be a bivariate normal distribution, and that it evolves according to an exogenous

Markov process speci�ed by the nump�nump transition matrix tr_phi, where nump is the number
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of possible di¤erent values for �t.

Paper Program Dimension Description

�t phi nump� 6

Parametrization of all possible �t distributions.
1st row parametrizes the 1st possible realization of �t,
2nd row parametrizes the 2nd possibility, and so on.
The �rst 2 columns of each row give the coordinates
of the population mean for that realization;
The 3rd and 4th columns give the variance of
the population along the x- and y-axis, respectively;
The 5th column gives the variance-covariance of the
population along C, and the last column gives
the size of the population for that realization of �t.

Transition
Matrix
for �t

tr_phi nump� nump 1st-order Transition Matrix for the
possible realizations of �t.

Subsection 1.5: Speci�cation of the primitives of �rms
�
I; �; !i; ci; �

EC ; �EV
	
:

Paper Program Dimension Description

I Inum scalar Number of �rms that are potentially operative.

� beta scalar Discount Factor of Firms.

!i omeg I � 1

Vector with quality level of each �rm;
First row is quality level of �rst �rm, !1,
second row is for the second �rm, !2,
and so on. (common across stores/locations).

ci c I � 1
Vector with marginal cost of each �rm;
First row is marginal cost of �rst �rm, c1,
and so on. (common across stores/locations).

�EC ec I � L
Matrix with Entry Costs of each Firm at each Location;
First row is Entry Costs of �rm 1,

�
�EC11 ; �

EC
12 ; :::; �

EC
1L

	
,

second row is for �rm 2,
�
�EC21 ; �

EC
22 ; :::; �

EC
2L

	
, and so on.

�EV ev I � L
Matrix with Exit Values of each Firm at each Location;
First row is Exit Values of �rm 1,

�
�EV11 ; �

EV
12 ; :::; �

EV
1L

	
,

second row is for �rm 2,
�
�EV21 ; �

EV
22 ; :::; �

EV
2L

	
, and so on.

SECTION 2 (Packing all Primitives Together): This section takes all the parameters that

were speci�ed in Section 1 and �packs�them into a GAUSS structure called theta. It does so by
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calling the procedure spatial_pack.src. The user does not need to specify any parameters in this

section, just call the procedure. So:

theta = � =
�
xaxis; yaxis; ncell; L; z; � ; �; outs; phi; tr_phi; I; beta; omeg; c; �EC ; �EV

	
The structure theta will then be passed on to procedures, where the parameters are then �unpacked�

as needed.

SECTION 3 (Creating the State Space): This section calls the procedure sigma_algebra.src

to create the nums�(1 + IL) matrix state. This matrix lists the entire state space of the economy.

The �rst column lists the index of which of the possible nump realizations of �t the state is at.

The 2nd through the (1 + IL)th columns list which spatial market structure nt the state is at. Note

that the size of the state space is nums = nump � 2IL. The user does not need to specify any

parameters in this section, just call the procedure.

Example: Let nump = 2, I = 2, and L = 3. (2 possible values for �t, 2 �rms, and 3 feasible

business locations). Then:

state =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

Firm 1 Firm 2
�t Location 1 Loc. 2 Loc. 3 Loc. 1 Loc. 2 Loc. 3

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 1 0 0 0
1 0 1 1 0 0 0
1 1 1 1 0 0 0
1 0 0 0 1 0 0
1 1 0 0 1 0 0
...

...
...

...
...

...
...

1 1 1 1 1 1 1
2 0 0 0 0 0 0
2 1 0 0 0 0 0
...

...
...

...
...

...
...

2 1 1 1 1 1 1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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and nums = 128. �

SECTION 4 (Computing the Price Equilibrium(a)): This section calls the procedure spa-

tial_bertrand.src to compute the price equilibrium(a) at each possible realization of the state space.

The user does not need to specify any parameters in this section, just call the procedure. The pro-

cedure will call other auxiliary procedures throughout the computation of equilibrium prices. The

default initial prices are set equal to marginal costs for each �rm (p0 = c), although this speci�-

cation can be easily changed inside the procedure. Besides computing the nums � IL matrix of

equilibrium prices p at each store, the procedure returns other features of the equilibrium, such as

the nums� IL matrices of aggregate demands (Ad) and variable pro�ts (vp) at each active store,

the nums � 1 vectors of consumer surplus (cs) and total transportation costs (tc) at each state,

and the nums � IL � IL array of elasticities of demand with respect to price across active stores

(Edp). More details on spatial_bertrand.src are given below.

SECTION 5 (Computing the MPE in Location): This section calls the procedure spa-

tial_mpe.src to compute the Markov Perfect Equilibrium (MPE) in the location game. The user

does not need to specify any parameters in this section, just call the procedure. The procedure will

call other auxiliary procedures throughout the computation of the MPE. The procedure returns the

I�nums�IL array of equilibrium conditional choice probabilities (Palpha = P �) with the decision

rule in probability space, the nums� nums matrix of equilibrium transition matrix (tr_state) for

the state, and the nums � 1 vector of probabilistic steady-state of the industry (psteady). More

details on spatial_mpe.src are given below.

3 Price Equilibrium Procedure (spatial_bertrand.src)

This procedure has the following format:

fp; ad; vp; cs; tc; edpg = spatial_bertrand(theta; state)

Therefore its inputs are the structure of primitives theta and the state space state, and the outputs

are equilibrium prices, aggregate demands, variable pro�ts, total consumer surplus, total trans-
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portation costs, and elasticities of demand with respect to price across active stores. Although

the user does not need to specify any parameter inside the procedure, the parameters used at the

procedure are related to the paper as follows:

Paper Program Dimension Description

p0 p0 nums� IL Matrix of initial prices for �xed-point

�(z;nt;pt) Ld array Array of Local Demands at a state

s(nt;pt) Ad nums� IL Matrix of Aggregate Demands at a state

�i
0`0
i` m_up L� L Used at �(p) to compute price mark-up

p� p nums� IL Matrix of equilibrium prices

Ri (n; �) vp nums� IL Matrix of equilibrium Variable Pro�ts

CS(nt;pt; �t) cs nums� 1 Vector of Consumer Surplus at each state

TC(nt;pt; �t) tc nums� 1 Vector of Transport Costs at each state

Elasticity
of Demand

Edp nums� IL� IL Array of Elast. of Subst. among stores

After �unpacking�the necessary parameters, the procedure is divided into 3 sections.

SECTION 1 (Nodes and Weights Used at Integration over C): This section calls the

procedure spatial_grid.src which returns the node points and the weights from the speci�cation

of market C to be used at integration. More speci�cally, it returns the 1 � ncell[1; 1] vector of

the x-coordinates for the node points (xnod), the ncell[1; 2] � 1 vector of the y-coordinates for

the node points (ynod), and the ncell[1; 2]� ncell[1; 1] matrix of weights for each node point from

crossing xnod with ynod. In the process this procedure also calls another procedure, pdf_bn.src,

which computes the bivariate normal density at the speci�ed node points (which are in turn used

to compute the weights).

SECTION 2 (Computation of p�): Given an initial nums� IL matrix of prices for the state

space (p0), this section computes the price equilibrium using a Gauss-Seidel method. The default

value for initial prices is marginal costs (p0 = c). The user may change this initial condition, as well
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as the convergence criterion (convc). This section calls two auxiliary procedures: (i) spatial_Ld.src

for computing an array of local demands (�(z;nt;pt)) given a market structure and price vector;

and (ii) iv.src for integrating over the Market C. Finally, the procedure spatial_Ld.src calls a third

procedure, dist_p.src, used to compute linear distances between a store and each representative

consumer across the market C.

SECTION 3 (Computation of Equilibrium Features): Given the equilibrium price vector

p�, this section computes the nums� IL matrices of aggregate demands (Ad) and variable pro�ts

(vp) for each active store, the nums�1 vectors of total consumer surplus (cs) and total transporta-

tion costs (tc) at each state, and the nums� IL� IL array of elasticities of demand with respect

to price across active stores (Edp) at each state.

4 MPE Procedure (spatial_mpe.src)

This procedure has the following format:

fPalpha; ccvalue; tr_state; psteadyg = spatial_mpe(theta; state; vp)

Therefore its inputs are the structure of primitives theta, the state space state, and the equilibrium

variable pro�ts vp. The outputs are the I � nums � IL array of equilibrium conditional choice

probabilities
�
Palpha = P�

��
as the decision rule in probability space, the nums�nums matrix of

equilibrium transition matrix (tr_state) for the state, and the probabilistic nums� 1 equilibrium

vector for the steady-state of the industry (psteady). Although the user does not need to specify
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any parameter inside the procedure, the parameters used therein are related to the paper as follows:

Paper Program Dimension Description

�i (ait;nt; �t; :) cp I � nums� (1 + 2L) Array with observable portion of the
Contemporaneous Choice Pro�t

A A L� (1 + 2L) Choice set for �rms

R R scalar Number of simulations

T T scalar Number of time periods for simulation

�rt phie nump� (1 + T )�R R simulated processes of length T for �t

"rit eps I �R� T � (1 + 2L) R simulated processes of length T for "it

v�
�

v I � nums� (1 + 2L) Equilibrium Value functions

P�
�

Palpha I � nums� (1 + 2L) Equil. decision rule in probability space

Transition
for state

tr_state nums� nums Equilibrium transition matrix for state

Probabilistic
steady-state

psteady nums� 1 Probabilistic steady-state for the industry

After �unpacking�the necessary parameters, the procedure is divided into 8 sections.

SECTION 1 (Some Constants): This section speci�es the constants kcons (to prohibit infea-

sible entry or exit choices), nump (# of possible values of �t), and nums (size of state space).

SECTION 2 (Contemporaneous Pro�t Function): This section speci�es the common-

knowledge part of the contemporaneous pro�t function, �i (ait;nt; �t; :). It creates an I � nums�

(1 + 2L) array called cp (�Contemporaneous Pro�t�). The �rst �face� of the array gives the

�i (ait;nt; �t; :) payo¤ for player 1, the second �face�for the second player, etc. The �rst column of

the �rst �face�is the pro�t for �rm 1 if she chooses to do nothing (a1t = 0) at each state. The next

L columns of the �rst �face� is the pro�t for �rm 1 if she chooses to enter a new store at either

location 1, 2, ..., or L (a1t = `+). The �nal L columns of the �rst �face�is the pro�t for �rm 1 if

she chooses to exit an existing store at either location 1, 2, ..., or L (a1t = `�). The second �face�

of the array are the payo¤s for �rm 2 under the same order, and so on for the remainder �rms.

9



SECTION 3 (Computation of MPE): This section contains the Gauss-Seidel iterative method

that computes the equilibrium choice probabilities. At each Gauss-Seidel iteration two procedures

are called: spatial_dp.src that solves the dynamic programming problem of a single �rm; and spa-

tial_bestp.src that obtains the best response probabilities of a single �rm based on the solution of

its dynamic decision problem.

SECTION 4 (Compute tr_st and psteady): This section computes the nums�nums matrix

of equilibrium transition matrix (tr_s) of the state variables and, based in this transition, the

steady-state probability distribution of the state variables.

5 Example (spatial_example.e)

The program spatial_example.e provides an example.
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Appendix: Gauss code

A.1. Program spatial_main.prg

/*
** spatial_main.prg
**
** This is the MAIN program of the paper by Aguirregabiria & Vicentini (2006):
** "Dynamic Spatial Competition Between Multi-Store Firms."
** The user �rst speci�es all the parameters of the City-Economy.
** The algorithm then computes the Bertrand equilibrium prices and
** current pro�ts for spatially di¤erentiated products (�stores�).
** It then computes the entry/exit/location Markov Perfect Equilibrium (MPE)
** of a Store Location dynamic game by �rms in a 2-dimensional
** market with continuously distributed consumers and logit preferences.
**
**
** by Victor Aguirregabiria and Gustavo Vicentini
** University of Toronto and Analysis-Group, respectively
**
** First version: August 2004
** This revision: May 2007
**
** The researcher speci�es �ve types of Primitives:
**
** - parameters of Market �C�
** - parameters of Feasible Business Locations
** - parameters of individual Consumers
** - parameters of the aggregate Population process
** - parameters of individual Firms
**
** These parameters are then Packed into the parameter vector
** structure called �theta�, which is then passed on to
** the respective procedures.
**
** The program works backwards: starts from the consumer preference maximization, then
** constructs �rms�current equilibrium variable pro�t functions by computing equilibrium
** prices, and then computes the MPE for store location choice of �rms.
**
** The procedure �spatial_bertrand.src�is called to compute the static price equilibrium
** for all possible state spaces. Given these static payo¤s, the procedure
** �spatial_mpe.src�is called to compute the MPE for the dynamic entry/exit/location game.
** Other Auxiliary procedures are also called throughout the algorithm.
**
** Remark 1 : please see the �spatial_bertrand.src�and �spatial_mpe.src�procedures
** for details on consumer preferences, pro�t functions, set-up of state space, etc.
**
** Remark 2 : This main library where all the procedures should be placed is �spatial.lib�
**
** Remark 3 : For further details on this algorithm, see the Manual:
** "Software for the Computation of Markov-Perfect Equilibria in
** a Dynamic Game of Store Location by Multi-Store Firms,"
** by Victor Aguirregabiria and Gustavo Vicentini, available at the Authors�websites.
**
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*/
new; closeall;
library pgraph spatial ;
struct PVobj { matrix m; array a; matrix fpo¤; };
struct PV { scalar np; matrix type; struct PVobj obj;
matrix table; string array names; };
wdir = "c:nnMYPAPERSnnSPATIALnnPROGAUnnspatprog";
bu¤ = changedir(wdir) ;
�leout = "spatial_output.out" ;
output �le = ^�leout reset ;
format /mb1 /ros 12,4 ;
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 1. Input Parameters of the Model @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 1.1. Market �C�@
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~@
xaxis = 0~1 ; // Left and Right boundaries of x-axis of Market �C�, respectively
yaxis = 1j0 ; // Upper and Lower boundaries of y-axis of Market �C�, respectively
ncell = 40~40 ; // # of grid cells at x-axis and y-axis of Market �C�, respectively
// (used at integration)
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 1.2. Feasible Business Locations @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
Lnum = 2 ; // number of Feasible Business Locations (= �L�)
zmat = ( .2 ~.5 ) j
( .8 ~.5 ) ; // x and y Coordinates (�z�) of all Business Locations, stacked
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 1.3. Individual Consumer Parameters @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
tau = 1 ; // Coe¢ cient on consumer Transporation Costs
miu = .25 ; // Dispersion Parameter of Consumer heterogeneity
outs = 0 ; // Utility of purchasing from Outside alternative
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 1.4. Aggregate Population Distribution (�Phi�), @
@ and its transition matrix (�tr_p�) @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
// We assume that �Phi�is a Bivariate Normal Distribution
// Each row speci�es parameters for one possible �Phi�:
// Columns 1 and 2: (x,y) coordinates of population mean
// Columns 3 and 4: Variance of popu. along x-axis and y-axis, respectively
// Column 5: Covariance of population along x- and y-axis
// Column 6: Size of Population.
phi = ( 0.5 ~0.5 ~0.9 ~0.9 ~0 ~4 )j
( 0.5 ~0.5 ~1.8 ~1.8 ~0 ~5 )j
( 0.5 ~0.5 ~2.0 ~2.0 ~0 ~6 ) ;
tr_p = ( 0.60 ~0.30 ~0.10) j
( 0.20 ~0.60 ~0.20) j
( 0.10 ~0.30 ~0.60) ;
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 1.5 Parameters of Firms @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~@
Inum = 2 ; // Number of Potential Firms (= �I�)
beta = 1/(1+.05) ; // intertemporal discount factor of �rms (= �Beta�)
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omeg = 1j1 ; // �rms�observable qualities (= �omega�), common across locations
c = 1j1 ; // �rms�marginal costs, common across locations
ec = ( 1 ~1 ) j // First Firm Entry Cost at each location
( 1 ~1 ) ; // Second Firm Entry Cost at each location
ev = ( .5 ~.5 ) j // First Firm Exit Value at each location
( .5 ~.5 ) ; // Second Firm Exit Value at each location

@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 2. Pack all parameters of the Spatial Economy @
@ speci�ed above into a PV structure @
@ called �theta�@
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
struct PV theta ;
theta = pvCreate ;
{theta} = spatial_pack( theta,
xaxis,yaxis,ncell,
Lnum,zmat,
tau,miu,outs,
phi,tr_p,
Inum,beta,omeg,c,ec,ev ) ;
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 3. Observable State Space �state.� @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
state = sigma_algebra(seqa(0,1,2),Inum*Lnum) ; // State Space of Spatial Market Structure (�n�)
state = seqa(1,1,rows(phi)).*.ones(2^(Inum*Lnum),1)
~ones(rows(phi),1).*.state ; // Entire Observable State Space ( �phi�~�n�)
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 4. Compute Second-Stage Spatial Bertrand price equil. �p�, @
@ total Demands �ad�, equil. variable pro�ts �vp�, @
@ consumer surplus �cs�, transportation costs �tc�, and @
@ elasticity of Demand with respect to price �Edp�. @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
{p,ad,vp,cs,tc,edp} = spatial_bertrand(theta,state) ;
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 5 Computes the MPE in Probability Space (�Palpha�) for the @
@ dynamic entry/exit/location game, the transition matrix @
@ for the state �tr_s�= Pr( state[t+1] j state[t] ), and @
@ the probabilistic steady-state equilibrium �psteady�. @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
{pia,v,Palpha,tr_s,psteady} = spatial_mpe(theta,state,vp);
output o¤;
end;
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A.2. Procedure spatial_bertrand.src

/*
** spatial_bertrand.src
**
** Procedure that computes the Price equilibrium �p�in a static
** Bertrand game with spatially di¤erentiated products and
** random-�eld type of demand. It also computes the integrated Aggregate
** Demand �D�and Variable Pro�ts �R�of each �rm, as well as the
** total Consumer Welfare �cs�and Transportation Costs �tc�at
** each state space, and the cross Elasticities of Demand
** w.r.t. Price �Edp�for each store.
** A Gauss-Siedel Fixed-Point search method is used to �nd the optimal
** prices �p�given an initial price matrix �p0�.
**
** by Victor Aguirregabiria and Gustavo Vicentini
** University of Toronto and Boston University, respectively
**
** First version: August 2004
** This revision: November 2006
**
**
** � � � � � � � � � � � � � � � � � � � � � � �
** MODEL
** � � � � � � � � � � � � � � � � � � � � � � �
**
** i = Firm index;
** n = current network of stores of a �rm
**
** Assumption: All Players are "Global" in the city C
** Assumption: Firms may open, close or relocate at most one store per period
** Assumption: Consumers are truncated Normally at City C
**
** � � �
**
** PREFERENCES of a Consumer j with coordinates zj purchasing
** from a �rm i with coordinates zi at location l (i.e. A, B, C, or D):
**
** U(zj,zi): omeg[i] - p[i,l] - tau * d(zj,zi) + e[j,i,l]
**
** U(zj,outs): outs + e[j,outs] => Utility from outside alternative
**
** where:
** omeg[i] = �rm i�s observable quality (�omega�)
** p[i,l] = Firm i�s price at location l
** tau = consumer�s Transportation Costs parameter
** d(zj,zi) = distance between consumer and the �rm
** e[j,i,l] = unobservable taste of consumer j for �rm i at location l
**
** Remark: this utility speci�cation entails a �random �eld�
** type of demand
**
** � � �
**
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** VARIABLE PROFITS of Firm i with network n:
**
** Not active: Pro�t(0) = 0
**
** Active: Pro�t(i,n) = SUM(l locations) { (p[i,l]-c[i,l]) * D(i,l) }
** = R(i,n)
**
** where:
** p[i,l] = �rm i�s prices at Location l
** c[i,l] = �rm i�s marginal cost at Location l
** D(i,l) = total demand for �rm i at Location l
** R(i,n) = Total Variable Pro�ts for �rm i, as in the paper.
**
** Remark: in this second-state multi-store oligopoly game, �rms are
** allowed to charge di¤erent prices at di¤erent locations
**
** � � � � � � � � � � � � � � � � � � � � � � � � � -
**
** FORMAT:
** { p,D,R,cs,tc,Edp } = spatial_bertrand(theta,state) ;
**
** INPUTS:
**
** theta - this is a PV structure with all the parameter vectors of the
** City economy packed into it. Its member vectors are:
**
** * Parameters for Market �C�:
** xaxis = (1 x 2) left and right boundaries of x-axis of Market �C�, respectively
** yaxis = (2 x 1) upper and lower boundaries of y-axis of Market �C�, respectively
** ncell = (1 x 2) # of grid cells at x-axis and y-axis of the market, respectively (used at integration)
** * Aggregated Population Primitives:
** phi = (nump x 6) Matrix with parametrization of di¤erent possible
** realizations of Population process �phi�.
** (nump = jphij).
** (Please see the manual for further details).
** tr_p = (nump x nump) transition matrix for Population process �phi�.
** * Individual Consumers parameters:
** tau = scalar, consumers�Transportation Costs parameter
** miu = St. dev. of consumers unobserved heterogeneity
** outs = Utility of purchasing from Outside alternative
** * Geographic Locations parameters:
** Lnum = scalar - Number of Feasible Business Locations
** zmat = (Lnum x 2) - x and y coordinates of each location
** * Firms parameters:
** Inum = number of potential �rms in the market
** beta = Time discount factor
** omeg = (Inum x 1) vector with �rms�observable quality
** c = (Inum x 1) vector with �rms�variable costs
** ec = (Inum x Lnum) matrix of �rms�Entry Costs at each location
** ev = (Inum x Lnum) matrix of �rms�Exit Values at each location
**
** state - (nums x 1+Inum*Lnum) matrix listing the entire state space
** (nums = jstatej = size of state space).
** (Please see the manual for further details).
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**
**
** OUTPUTS:
**
** p - ( nums x Inum*Lnum ) Matrix with bertrand equilibrium prices for each
** �rm and store at each state space.
** Example with 2 �rms (Inum=2), 3 locations (Lnum=3), and nump=2 ;
**
** Location: A B C A B C
** Firm: 1 1 1 2 2 2
** Phi: Phi
**
** Row 1: 1 0 0 0 0 0 0
** Row 2: 1 p[1,A] 0 0 0 0 0
** Row 3: 1 0 p[1,B] 0 0 0 0
** Row 4: 1 p[1,A] p[1,B] 0 0 0 0
** Row 5: 1 0 0 p[1,C] 0 0 0
** Row 6: 1 p[1,A] 0 p[1,C] 0 0 0
** Row 7: 1 0 p[1,B] p[1,C] 0 0 0
** Row 8: 1 p[1,A] p[1,B] p[1,C] 0 0 0
** Row 9: 1 0 0 0 p[2,A] 0 0
** Row 10: 1 p[1,A] 0 0 p[2,A] 0 0
** Row 11: 1 0 p[1,B] 0 p[2,A] 0 0
** Row 12: 1 p[1,A] p[1,B] 0 p[2,A] 0 0
** .
** .
** .
** Row : 2 0 0 0 p[2,A] p[2,B] p[2,C]
** Row : 2 p[1,A] 0 0 p[2,A] p[2,B] p[2,C]
** Row : 2 0 p[1,B] 0 p[2,A] p[2,B] p[2,C]
** Row : 2 p[1,A] p[1,B] 0 p[2,A] p[2,B] p[2,C]
** Row : 2 0 0 p[1,C] p[2,A] p[2,B] p[2,C]
** Row : 2 p[1,A] 0 p[1,C] p[2,A] p[2,B] p[2,C]
** Row : 2 0 p[1,B] p[1,C] p[2,A] p[2,B] p[2,C]
** Row nums: 2 p[1,A] p[1,B] p[1,C] p[2,A] p[2,B] p[2,C]
**
**
** D - (nums x Inum*Lnum) Matrix of equilibrium Total Demand faced
** by each �rm and store at the equilibrium prices and state space.
**
** R - (nums x Inum*Lnum) Matrix of equilibrium Variable Pro�ts
** of each �rm and store at the equilibrium prices and state space.
**
** cs - (nums x 1) Matrix with total Consumer Surplus for each
** state space, computed using the logit assumption.
**
** tc - (nums x 1) Matrix with Average Transport Costs at each state space
**
** Edp - (nums x Inum*Lnum x Inum*Lnum) Array of own and cross Elasticities of
** Demand w.r.t. Price for each �rm at each state space.
**
**
** Remark: For further details on the algorithm, see the Manual:
** "Software for the Computation of Markov-Perfect Equilibria in a Dynamic Model of Spatial Competition,"
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** by Victor Aguirregabiria and Gustavo Vicentini, available at the Authors�websites.
**
*/
#include pv.sdf ;
proc (6) = spatial_bertrand(struct PV theta,state) ;
local ncell,zmat,Lnum,tau,miu,outs,phi,Inum,c,
xnod,ynod,weig,
p0,p,convc,crit,iter,
Ld,D,m_up,t,
R,cs,tc,Edp ;
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 0. Read in parameters of the City-Economy @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
// Market �C�:
ncell = pvunpack(theta,"ncell");
// Locations:
zmat = pvunpack(theta,"zmat");
Lnum = pvunpack(theta,"Lnum");
// Individual Consumers:
tau = pvunpack(theta,"tau");
miu = pvunpack(theta,"miu");
outs = pvunpack(theta,"outs");
// Population:
phi = pvunpack(theta,"phi");
// Firms:
Inum = pvunpack(theta,"Inum");
c = pvunpack(theta,"c");
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 1. Compute �weights�(= area*density) of Truncated @
@ Bivariate Normal densities at a grid of �nodes�, @
@ to be used to calculate local Demands (�Ld�) @
@ and at integration (�iv.src�) @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
{xnod,ynod,weig} = spatial_grid(theta) ;
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 2. Compute Equilibrium Prices (=�p�) @
@ It uses a Fixed-Point Gauss-Siedel method @
@ based on the FOC. @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
p0 = state[.,2:cols(state)].*(c�.*.ones(1,Lnum)) ; // initial guess for prices (= �mc�)
convc = (1e-6) ; // Convergence criteria for price

" ";
" *********************************** ";
" *********************************** ";
" BEGIN Bertrand Price Computation: ";
" *********************************** ";
" "; " Price Optimization (Fixed-Point by Gauss-Siedel): "; " ";
p = p0 ;
for s(1,rows(state),1) ; // loop on state space
crit = 30 ; // Initial criteria for price convergence
iter = 1; // iteration on Prices
do while crit>convc ;
for j(1,Inum,1) ; // loop on �rms
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Ld = spatial_Ld(theta,p[s,.],state[s,.],xnod,ynod) ; // Local Demands given p
Ld = Ld[.,(j-1)*Lnum+1:j*Lnum,.,.] ; // Local Demands for �rm �j�
D = iv(Ld,weig[state[s,1],.,.]) ; // Aggregate Demands for �rm �j�
m_up = -(1/miu)*iv(Ld.*(Ld-1),weig[state[s,1],.,.]) ; // to be used at new mark-up (SAME-STORE price e¤ect)
m_up = diagrv(zeros(Lnum,Lnum),m_up) ;
for k(1,Lnum,1) ; // loop on stores of �rm �j�
t = k%Lnum+1 ;
do while t/=k ;
m_up[k,t] = - (1/miu)*iv(Ld[.,k,.,.].*Ld[.,t,.,.],weig[state[s,1],.,.]) ; // OTHER-STORES price e¤ect
t = t%Lnum+1 ;
endo;
endfor;
p[s,(j-1)*Lnum+1:j*Lnum] = c[j]*(D.>0) + D*invswp(m_up)�; // new prices for �rm �j�(�Delta�mapping)
endfor; // end loop on �rms
crit = maxc(maxc(abs(p[s,.]-p0[s,.])));
p0[s,.] = p[s,.] ;
iter = iter+1 ;
endo ;
" state= ";; s;; " Converged in ";; iter-1;; "iterations";
endfor; // end loop on state
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 3. Compute Per-Capita �D�, �R�, �cs�, �tc�, �Edp�. @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
Ld = spatial_Ld(theta,p,state,xnod,ynod) ; // Equilibrium (per capita) Local Demands
D = iv(Ld,weig) ; // Equilibrium Aggregate Demands
R = (p-c�.*.ones(1,Lnum)).*D ; // Equilibrium Variable Pro�ts
cs = reshape(state[.,2:1+Inum*Lnum],prodc(ncell�),rows(state)*Inum*Lnum)�; // Consumer Surplus
cs = areshape(cs,rows(state)jInum*Lnumjncell[2]jncell[1]) ;
cs = (1-asum(cs.*Ld,3))./exp(outs/miu);
cs = iv(miu*ln(1./cs),weig) ;
tc = 0*R ; // Transportation Costs
for s(1,rows(state),1); // loop on state space
for j(1,Inum*Lnum,1); // loop on �rms and stores
Edp = tau * dist_p( zmat[((j-1)%Lnum)+1,1],zmat[((j-1)%Lnum)+1,2],
xnod,ynod ) ;
Edp = areshape(Edp,1j1jncell[2]jncell[1]) ;
tc[s,j] = iv(Ld[s,j,.,.].*Edp,weig[state[s,1],.,.]) ;
endfor;
endfor;
tc = sumc(tc�) ; // Equilibrium Transportation Costs
Edp = arrayinit(Inum*LnumjInum*Lnumjrows(state)j1,0); // Elast. Demand w.r.t. Price
for s(1,Inum*Lnum,1);
Edp[s,s,.,.] = -(1/miu)*p[.,s].*(1./D[.,s])
.*iv((1-Ld[.,s,.,.]).*Ld[.,s,.,.],weig) ;
t=s%(Inum*Lnum)+1;
do while t/=s ;
Edp[s,t,.,.] = (1/miu).*p[.,t].*(1./D[.,s])
.*iv(Ld[.,t,.,.].*Ld[.,s,.,.],weig) ;
t=t%(Inum*Lnum)+1;
endo;
endfor;
Edp = missrv(Edp,0) ;
Edp = atranspose(Edp,3j4j1j2);
Edp = areshape(Edp,rows(state)jInum*LnumjInum*Lnum); // Equilibrium Elasticity Demand w.r.t. Price
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@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 4. Compute NON-Per-Capita �D�, �R�, �cs�, �tc�. @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
D = D.*phi[state[.,1],6] ; // Equilibrium Aggregate Demands
R = R.*phi[state[.,1],6] ; // Equilibrium Variable Pro�ts
cs = cs.*phi[state[.,1],6] ; // Equilibrium Consumer Surplus
tc = tc.*phi[state[.,1],6] ; // Equilibrium Transportation Costs
" ";
" *********************************** ";
" END of Bertrand Price Computation. ";
" *********************************** ";
" *********************************** ";
" ";
clear weig,p0,Ld ;
retp(p,D,R,cs,tc,Edp) ;
endp ;
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A.3. Procedure spatial_pack.src

/*
** This procedure packs all the parameters from the Spatial
** Economy into a single PV Structure called �theta�
**
** Written by: Gustavo Vicentini
** March 2005
**
** Format: {theta} = spatial_pack(theta, all parameters listed ) ;
**
** Input: an empty PV structure called �theta�and all the
** parameters from the spatial economy listed.
**
** Output: the PV structure �theta�with all parameters of
** the spatial economy packed and named.
**
**
*/
#include pv.sdf ;
proc(1) = spatial_pack(struct PV theta,
xaxis,yaxis,ncell,
Lnum,zmat,
tau,miu,outs,
phi,tr_p,
Inum,beta,omeg,c,ec,ev ) ;
// Market �C�boundaries and cells:
theta = pvpack(theta,xaxis,"xaxis");
theta = pvpack(theta,yaxis,"yaxis");
theta = pvpack(theta,ncell,"ncell");
// Business Location Parameters:
theta = pvpack(theta,Lnum,"Lnum");
theta = pvpack(theta,zmat,"zmat");
// Individual Consumer Parameters:
theta = pvpack(theta,tau,"tau");
theta = pvpack(theta,miu,"miu");
theta = pvpack(theta,outs,"outs");
// Aggregate Population Parameters:
theta = pvpack(theta,phi,"phi");
theta = pvpack(theta,tr_p,"tr_p");
// Firms Parameters:
theta = pvpack(theta,Inum,"Inum"); theta = pvpack(theta,beta,"beta");
theta = pvpack(theta,omeg,"omeg"); theta = pvpack(theta,c,"c");
theta = pvpack(theta,ec,"ec"); theta = pvpack(theta,ev,"ev");
retp(theta);
endp;
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A.4. Procedure sigma_algebra.src

/*
** sigma_algebra.src
** This procedure takes an input (Kx1) vector �x�and computes
** a ( K^j x j ) matrix where each row is all possible
** j-combinations between each element in �x�to all its
** other elements ==> its �sigma algebra�.
**
** Written by Gustavo Vicentini, August 2005.
** Department of Economics, Boston University.
**
** Format: {y} = sigma_algebra(x,ncol) ;
**
** Inputs: x = (Kx1) input vector to be expanded into its sigma algebra
** ncol = # of columns (=�j�) for the expansion of vector �x�
**
** Output: y = �sigma algebra�of vector �x�, expanded �ncol�(=�j�) times.
**
*/

proc(1) = sigma_algebra(x,ncol);
local nrow, y ;
nrow = rows(x) ;
y = {} ;
for i(1,ncol,1);
y = ones(nrow^(i-1),1).*.x.*.ones(nrow^(ncol-i),1)
~y ;
endfor;
retp(y);
endp;
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A.5. Procedure spatial_grid.src

/*
**
** spatial_grid.src
**
** Procedure that computes Weights (�weig�) based on the weighted
** AREA and DENSITY of each of the Partitions of the City-Market C
** used in the dynamic network location game from �Spatial_game.prg�.
** It also returns the center coordinates (the �nodes�) of each
** of the partitions, �xnod�(x-axis) and �ynod�(y-axis).
**
**
** by Gustavo Vicentini, Boston University
** First version: August, 2005
**
**
** � � � � � � � � � � � � � � � � � � � � � � � � � -
**
** FORMAT:
** { xnod,ynod,weig } = spatial_grid(theta) ;
**
** INPUTS:
**
** theta - this is a PV structure with all the parameter vectors of the
** City economy packed into it. Its member vectors are:
** See �bertrand_spatial.src�for a list of these parameters.
**
** OUTPUTS:
**
** xnod - ( numv x ngr[1] ) Matrix of rows with X-axis coordinates
** of the center of each partition, for each type of Var-Cov.
** ynod - ( ngr[2] x numv ) Matrix of colums with Y-axis coordinates
** of the center of each partition, for each type of Var-Cov.
** weig - ( numv x ngr[2] x ngr[1] ) Array with �weights�(= area*density)
** of the Partitions of the City-Market C.
**
**
*/
#include pv.sdf ;
proc (3) = spatial_grid(struct PV theta) ;
local xaxis,yaxis,ncell,phi,
xgr,ygr,area,xnod,ynod,
weig,den ;
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 1. Read in parameters of the City-Economy @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
// Aggregate Population:
xaxis = pvunpack(theta,"xaxis"); yaxis = pvunpack(theta,"yaxis");
ncell = pvunpack(theta,"ncell"); phi = pvunpack(theta,"phi");
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 2. Compute Weights (�weig�) to be used at @
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@ integration of the Trunc. Biva. Normal densities. @
@ Also compute the node points (�xnod�& �ynod�). @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
xgr = seqa(xaxis[1],(xaxis[2]-xaxis[1])/ncell[1],ncell[1]+1)�; // grid for partitions at x-axis
ygr = seqa(yaxis[1],(yaxis[2]-yaxis[1])/ncell[2],ncell[2]+1) ; // grid for partitions at y-axis
area = (xgr[2]-xgr[1])*(ygr[1]-ygr[2]) ; // area of each partition cell
xnod = meanc(trimr(xgr�,0,1)�jtrimr(xgr�,1,0)�)�; // nodes at x-axis for each partition cell
ynod = meanc(trimr(ygr,0,1)�jtrimr(ygr,1,0)�) ; // nodes at y-axis for each partition cell
weig = arrayinit(rows(phi)jrev(ncell�),0); // �weights�used at integration
for j(1,rows(phi),1);
den = pdf_bn(xnod,ynod,phi[j,1:2]�,phi[j,3:4]�,phi[j,5]) ; // Bivariate Normal Density at each node
weig[j,.,.] = (area*den)/sumc(sumc(area*den)) ; // weights at each node (used at integration)
endfor;

clear xgr,ygr,area,den;
retp(xnod,ynod,weig);
endp;
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A.6. Procedure pdf_bn.src

/*
* pdf_bn.src This procedure returns the density values for the
* Bivariate Normal distribution given speci�ed
* mean and Variance-Covariance parameters.
*
* Written by Gustavo Vicentini
* First version: March 2006
* This revision: March 2006
*
* Format: {den} = pdf_bn (xref,yref,mean,var,cov) ;
*
* Inputs:
* xgr - row grid of reference points at x-axis
* ygr - column grid of reference points at y-axis
* mean - (2x1) coordinates of mean of the distribution
* var - (2x1) Variances of x- and y-axis, respectively
* cov - scalar - Covariance of the distribution
*
* Outputs:
* den - density values at the reference points
*
*
*/
proc(1) = pdf_bn(xref,yref,mean,var,cov) ;
local sd,cor,den ;
sd = sqrt(var) ; // standard deviations of x and y
cor = cov/prodc(sd) ; // correlation between x and y
xref = (xref-mean[1])/sd[1] ; // standardized x variables
yref = (yref-mean[2])/sd[2] ; // standardized y variables
den = (1/(1-cor^2)) * ( xref.^2 + yref.^2 - 2*cor*yref.*xref ) ; // quadratic form
den = 1/(2*pi*prodc(sd)*sqrt(1-cor^2))*exp(-1/2*den) ; // density points
retp(den);
endp;
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A.7. Procedure spatial_ld.src

/*
** spatial_ld.src Procedure that computes the equilibrium LOCAL
** DEMANDS �Ld�of each representative consumer in the
** city-market C for each �rm�s branches, given the price vector
** of all �rms and the Geographic pro�le of �rms�
** networks (i.e. the locational state space). Firms are
** competing in a Bertrand Spatial competition model in this
** City-Economy.
**
**
** by Gustavo Vicentini
** First version: August, 2004
** This revision: August 2006
**
** � � � � � � � � � � � � � � � � � � � � � � �
** MODEL
** � � � � � � � � � � � � � � � � � � � � � � �
**
** Please see �bertrand_spatial.src�for the Economy Model.
**
** � � � � � � � � � � � � � � � � � � � � � � � � � -
** � � � � � � � � � � � � � � � � � � � � � � � � � -
**
**
** FORMAT:
** {Ld} = Ld_spatial (p,aval,theta,xnod,ynod) ;
**
**
** INPUTS:
**
** p - (numa*numv x nf*L) matrix with prices charged at each �rm/branch
** aval - (numa x nf*L) matrix with possible network state spaces
** theta - see �bertrandSpatial.src�for a description of this PV structure
** xnod - points of reference of x-axis
** ynod - points of reference of y-axis
**
**
** OUTPUT:
**
** Ld - (numa*numv x nf*L x ngr[2] x ngr[1]) Array with bertrand equilibrium
** local Demands for each �rm (given the state space and a price vector p).
**
**
** Note: when a �rm-outlet is inactive, its demand is 0.
**
*/
#include pv.sdf ;
proc (1) = spatial_Ld (struct PV theta,p,state,xnod,ynod) ;
local tau,miu,outs,zmat,Lnum,
Inum,omeg,Ld,dis ;
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@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 1. Read in parameters of the City-Economy @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
// Individual Consumers:
tau = pvunpack(theta,"tau");
miu = pvunpack(theta,"miu");
outs = pvunpack(theta,"outs");
// Locations:
zmat = pvunpack(theta,"zmat");
Lnum = pvunpack(theta,"Lnum");
// Firms:
Inum = pvunpack(theta,"Inum");
omeg = pvunpack(theta,"omeg");
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 2. Compute local Demands �Ld�for each state space, @
@ given the price matrix p @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@

Ld = arrayinit(rows(state)jInum*Lnumjrows(ynod)jcols(xnod),0); // matrix of local Demands
for s(1,rows(state),1); // loop for State Space
for j(1,Inum*Lnum,1); // loop for each �rm and location
if state[s,1+j]==0 ;
dis = zeros(rows(ynod),cols(xnod)); // �dis�is a Disposable matrix
else;
dis = exp ( 1/miu * ( omeg[ceil(j/Lnum)] - p[s,j] // Consumers indirect utility
- tau * dist_p(zmat[(j-1)%Lnum+1,1],zmat[(j-1)%Lnum+1,2],
xnod,ynod))) ;
endif;
setarray Ld,sjj,dis ;
endfor;
dis = asum(Ld[s,.,.,.],3)+exp(outs/miu);
dis = areshape(dis,1jInum*Lnumjrows(ynod)jcols(xnod));
Ld[s,.,.,.] = Ld[s,.,.,.]./dis;
endfor;
clear p,state,xnod,ynod,dis ;

retp(Ld);
endp;
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A.8. Procedure dist_p.src

/*
** dist_p.src This procedure computes the linear distance ON A PLANE
** between a given point �z�and the plane point(s) in �xnod�and �ynod�.
** Note that �z�is a single point, while �nod�can be many points.
**
** Written by Gustavo Vicentini
** Department of Economics, Boston University
** August 2005
**
** Inputs: Zx = x-coordinates of point Z
** Zy = y-coordinates of point Z
** xnod = x-coordinates of point(s) �nod�==> a row vector (x grid)
** ynod = y-coordinates of point(s) �nod�==> a column vector (y grid)
**
** Output: distance �dist2�between �Z�and the �nods�
**
*/
proc (1) = dist_p(Zx,Zy,xnod,ynod) ;
local dist2 ;

dist2 = (Zx-xnod).^2 ;
dist2 = dist2 + (Zy-ynod).^2 ;
dist2 = sqrt(dist2) ; // linear distance
clear Zx,Zy,xnod,ynod ;
retp(dist2) ;
endp ;
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A.9. Procedure iv.src

/*
* iv.src This procedure returns the Integrated Value (=�intv�)
* for a function �funct�in the city C. It applies a
* simple Gaussian Quadrature method by multiplying
* �funct�(the function to be integrated) by the
* �weight�(=area*density) at speci�ed Node points.
* See Judd (1995, page 257)
*
* Written by Gustavo Vicentini
* First version: August 2004
* This revision: March 2006
*
* Format: {intv} = iv (funct,weight) ;
*
* Inputs:
* funct - ((numa*numv) x (nf*L) x ngr[2] x ngr[1]) -
* values of the function to be integrated in the city
* weig - ( numv x ngr[2] x ngr[1] ) Array with �weights�(= area*density)
* of the Partitions of the City-Market C.
*
* Outputs:
* intv - ((numa*numv) x (nf*L)) - integrated value at each state
* space and �rm/location
*
*
*/
proc (1) = iv(funct,weig);
local a,b,intv ;
a = getorders(funct) ;
b = getorders(weig) ;
weig = areshape(weig,a[1]*a[2]/b[1]jb[1]ja[3]ja[4]) ;
weig = atranspose(weig,2j1j3j4);
weig = areshape(weig,a[1]ja[2]ja[3]ja[4]);
intv = asum(asum(funct.*weig,2),1);
intv = arraytomat(areshape(intv,a[1]ja[2]));
clear funct,weig ;
retp (intv);
endp;
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A.10. Procedure spatial_mpe.src

/*
** spatial_mpe.src
**
** This procedure computes players�Markov Perfect Equilibrium (MPE)
** strategies in Probability Space, and the corresponding Value Functions.
** The MPE is for �rms�entry/exit/location choice under incomplete information.
** The game is one of �rms�entry, exit and location choice under incomplete
** information, combined with Spatial Bertrand Competition in
** di¤erentiated products, in a city-market C with continuous population.
** It uses Gauss-Jacobi �xed-point iteration procedure for the
** computation of value functions.
**
** by Victor Aguirregabiria and Gustavo Vicentini
** University of Toronto and Analysis Group, respectively
**
** First version: December 2005
** This revision: May 2007
**
** � � � � � � � � � � � � � � � � � � � � � � �
** DETAILS OF PROGRAM
** � � � � � � � � � � � � � � � � � � � � � � �
**
** FORMAT:
**
** { pia, ccvalue, Palpha, tr_s, psteady }
** = spatial_mpe ( theta, state, R ) ;
**
**
** INPUTS:
**
** theta - this is a PV structure with all the parameter vectors of the
** City economy packed into it. Its member vectors are:
**
** * Parameters for Market �C�:
** xaxis = (1 x 2) left and right boundaries of x-axis of Market �C�, respectively
** yaxis = (2 x 1) upper and lower boundaries of y-axis of Market �C�, respectively
** ncell = (1 x 2) # of grid cells at x-axis and y-axis of the market, respectively (used at integration)
** * Aggregated Population Primitives:
** phi = (nump x 6) Matrix with parametrization of di¤erent possible
** realizations of Population process �phi�.
** (nump = jphij); (Please see the manual for further details).
** tr_p = (nump x nump) transition matrix for Population process �phi�.
** * Individual Consumers parameters:
** tau = scalar, consumers�Transportation Costs parameter
** miu = St. dev. of consumers unobserved heterogeneity
** outs = Utility of purchasing from Outside alternative
** * Geographic Locations parameters:
** L = scalar - Number of Feasible Business Locations
** z = (L x 2) - x and y coordinates of each location
** * Firms parameters:
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** I = number of potential �rms in the market
** beta = Time discount factor
** omeg = (I x 1) vector with �rms�observable quality
** c = (I x 1) vector with �rms�variable costs
** ec = (I x L) matrix of �rms�Entry Costs at each location
** ev = (I x L) matrix of �rms�Exit Values at each location
**
** state - (nums x 1+I*L) matrix listing the entire state space
** (nums = jstatej = size of state space).
** (Please see the manual for further details).
**
** R - (nums x I*L) Matrix of equilibrium Variable Pro�ts
** of each store at each state space.
**
**
** OUTPUTS:
**
** pia - (I x nums x (1+2*L)) array with Obervable Portion of Current
** Pro�t function of Firms (the �pi(a)�function in the paper,
** for each Player, State and Action
**
** ccvalue - (I x nums x (1+2*L)) array with conditional choice Value Functions
** for each Player, State and Action
**
** Palpha - (I x nums x (1+2*L)) array with MPE Conditional Choice
** Probability strategies (CCP) for each �rm, state, and action.
** The �rst �face�of the array re�ects the optimal strategies for
** �rm 1 for either doing nothing, opening a store somewhere,
** or closing an active store.
** (please see �Spatial_Manual.pdf�for further details.)
**
** tr_s - (nums x nums) matrix with equilibrium transition matrix
** for the states { phi[t], Market Structure[t] }
**
** psteady - (nums x 1) vector with steady-state distribution
** of states { phi[t], Market Structure[t] }
**
**
** REMARK: For further details on the algorithm, see the Manual:
** "Software for the Computation of Markov-Perfect Equilibria in a Dynamic Model of Spatial Competition,"
** by Victor Aguirregabiria and Gustavo Vicentini, available at the Authors�websites.
**
**
*/
#include pv.sdf ;

proc (5) = spatial_mpe(struct PV theta,state,R) ;

local Lnum, tr_p, Inum, beta, ec, ev,
kcons, nump, nums, numa, pia,
Palpha, crit, iter, Palpha0, tr_s,
i, ccvalue, bu¤pi, psteady0, psteady ;
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 0. Read in parameters of the City-Economy @
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@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
// # of Locations:
Lnum = pvunpack(theta,"Lnum");
// Markov Transition Matrix for Aggregate Population Distribution (�phi�):
tr_p = pvunpack(theta,"tr_p");
// Firms:
Inum = pvunpack(theta,"Inum"); beta = pvunpack(theta,"beta");
ec = pvunpack(theta,"ec"); ev = pvunpack(theta,"ev");
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 1. Some Constants & Parameters @
@ used through the procedure @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
kcons = -(1 + abs(maxc(maxc(R))))*1e6 ; // payo¤ for infeasible choices
nump = rows(tr_p) ; // # of possible realizations of �phi�
nums = rows(state) ; // size of state space
numa = 1 + 2*Lnum ; // Number of choice alternatives
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 2. Conditional-Choice Current Pro�ts (= �Pi(a)�). @
@ This is the �Pi(a)�pro�t in the paper. @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
R = R * (eye(Inum).*.ones(Lnum,1)) ; // Equilibrium Variable Pro�ts aggregate over locations
R = reshape(R�,nums*Inum,1) ;
pia = areshape(state[.,2:1+Inum*Lnum]�,InumjLnumjnums) ;
pia = atranspose(aconcat(pia,pia,2),1j3j2) ;
pia = arraytomat(areshape(pia,1jInum*numsj2*Lnum)) ;
pia = (pia.==(1~0).*.ones(1,Lnum))*kcons ; // impose penalty for non-feasible actions
pia = pia + (-ec.*.ones(nums,1)~ev.*.ones(nums,1)) ; // entry costs and exit values
pia = areshape(R~(R+pia),Inumjnumsj2*Lnum+1) ; // Add Equilibrium Variable Pro�ts
@ ~~~~~~~~~~~~~~~~~~~~~@
@ 3. Computation of MPE @
@ ~~~~~~~~~~~~~~~~~~~~~@
"***********************************" ;
"***********************************" ;
" BEGIN MPE Computation:" ;
"***********************************" ;
// Initial choice probabilities
Palpha = arrayinit((Inumjnumsj(1+2*Lnum)),0);
i=1 ;
do while i<=Inum ;
Palpha[i,.,.] = ones(nums,1)~zeros(nums,2*Lnum) ;
i=i+1 ;
endo ;
crit = 1000 ; // Initial Criterium
iter = 1 ;
do while crit>1e-6 ; // Outer loop
Palpha0 = Palpha ;
i=1 ;
do while i<=Inum ; // Inner loop
// Calling procedure to compute conditional choice values
ccvalue = spatial_dp(i,arraytomat(pia[i,.,.]),beta,state,Palpha,tr_p) ;
// Calling procedure to compute best response probabilities
bu¤pi = spatial_bestp(ccvalue) ;
Palpha[i,.,.] = bu¤pi ; // Updating probabilities
i=i+1 ;
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endo ;
// Check for Convergence of �Palpha�
crit = arraytomat(maxc(areshape(abs(Palpha-Palpha0),Inum*nums*numaj1))) ;
" iter:";; iter;; " Criterion = ";; crit;
iter=iter+1;
endo;
"***********************************" ;
"***********************************" ;
" END MPE Computation:" ;
"***********************************" ;

@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
@ 4. Vector of Equilibrium Steady-State �psteady�. @
@ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@
tr_s = spatial_tranp(Palpha,tr_p,state) ;
crit = 30 ;
psteady0 = (1/nums) * ones(nums,1) ;
do while crit>(1e-5) ;
psteady = tr_s�* psteady0 ;
crit = maxc(abs(psteady-psteady0)) ;
psteady0 = psteady ;
endo ;
retp(pia,ccvalue,Palpha,tr_s,psteady) ;
endp ;

32



A.11. Procedure spatial_dp.src

/*
** spatial_dp.src
**
** This procedure takes as inputs of �rms�pro�ts and
** choice probabilities and it solves the Bellman equation
** of an individual �rm
**
** by Victor Aguirregabiria and Gustavo Vicentini
** (University of Toronto) (Analysis-Group)
**
** This revision: May 2007
**
** � � � � � � � � � � � � � � � � � � � � � � �
** MODEL
** � � � � � � � � � � � � � � � � � � � � � � �
** See Aguirregabiria and Vicentini (2007) "Dynamic Spatial Competition
** Between Multi-Store Firms"
**
** � � � � � � � � � � � � � � � � � � � � � � �
** DETAILS OF PROGRAM
** � � � � � � � � � � � � � � � � � � � � � � �
**
** FORMAT:
**
** ccv = spatial_dp(i,pro�t,beta,state,Palpha,tr_p) ;
**
** INPUTS:
**
** i - Firm index (an integer between 1 and Inum)
**
** pro�t - nums x numa matrix of current pro�ts
** (nums = jstatej = size of state space)
** (numa = 1 + 2*Lnum = size of action space)
**
** beta - Discount factor
**
** state - nums x (1 + Inum*Lnum) matrix with the value of the
** state variables (columns) at every state (rows).
**
** Palpha - Inum x nums x numa array of conditional choice
** transition probabilities
** (nums = jstatej = size of state space)
** (numa = 1 + 2*Lnum = size of action space)
**
** tr_p - nump x nump matrix of transition probabilities of phi
**
** OUTPUTS:
**
** ccv - nums x numa matrix of choice speci�c values
** (nums = jstatej = size of state space)
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** (numa = 1 + 2*Lnum = size of action space)
**
*/

proc (1) = spatial_dp(i,pro�t,beta,state,Palpha,tr_p) ;

local ordprob, Inum, nums, numa, value0, ccval, criter,
cconv, j, value1 ;
ordprob = getorders(Palpha) ;
Inum = ordprob[1] ;
nums = ordprob[2] ;
numa = ordprob[3] ;
value0 = zeros(nums,1) ;
ccval = zeros(nums,numa) ;
criter = 1000 ;
cconv = 1e-6 ;
do while criter>=cconv ;
"Firm";; i;; "Value Function itertion" ;
// Calling procedure for expected next period value
ccval = spatial_ccvalue(i,state,Palpha,tr_p,value0) ;
// Value function iteration
value1 = ln(sumc(exp(pro�t + beta*ccval)�)) ;
// Check for convergence
criter = maxc(abs(value1-value0)) ;
value0 = value1 ;
endo ;
retp(ccval) ;
endp ;
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A.12. Procedure spatial_ccvalue.src

/*
** spatial_ccvalue.src
**
** This procedure takes as inputs �rms�choice probabilities
** and a value function and it returns expected next period
** values conditional on current decision.
**
** by Victor Aguirregabiria and Gustavo Vicentini
** (University of Toronto) (Analysis-Group)
**
** This revision: May 2007
**
** � � � � � � � � � � � � � � � � � � � � � � �
** MODEL
** � � � � � � � � � � � � � � � � � � � � � � �
** See Aguirregabiria and Vicentini (2007) "Dynamic Spatial Competition
** Between Multi-Store Firms"
**
** � � � � � � � � � � � � � � � � � � � � � � �
** DETAILS OF PROGRAM
** � � � � � � � � � � � � � � � � � � � � � � �
**
** FORMAT:
**
** ccv = spatial_ccvalue(i,state,Palpha,tr_p,value0) ;
**
** INPUTS:
**
** i - Firm index (an integer between 1 and Inum)
**
** state - nums x (1 + Inum*Lnum) matrix with the value of the
** state variables (columns) at every state (rows).
**
** Palpha - Inum x nums x numa array of conditional choice
** transition probabilities
** (nums = jstatej = size of state space)
** (numa = 1 + 2*Lnum = size of action space)
**
** tr_p - nump x nump matrix of transition probabilities of phi
**
** value0 - nums x 1 vector of values
**
** OUTPUTS:
**
** ccv - nums x numa matrix of expected next period values
** conditional of current decision.
** (nums = jstatej = size of state space)
** (numa = 1 + 2*Lnum = size of action space)
**
*/
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proc (1) = spatial_ccvalue(i,state,Palpha,tr_p,value0) ;
local ordprob, Inum, nums, numa,
nump, ccv, aj, pbu¤, tr_s ;
ordprob = getorders(Palpha) ;
Inum = ordprob[1] ;
nums = ordprob[2] ;
numa = ordprob[3] ;
nump = rows(tr_p) ;
ccv = zeros(nums,numa) ;
aj = 1 ;
do while aj<=numa ;
pbu¤ = Palpha ;
// Replace �rm i choice probabilities by deterministic choice
if (aj==1) ;
pbu¤[i,.,.] = ones(nums,1)~zeros(nums,numa-1) ;
elseif (aj>1)and(aj<numa) ;
pbu¤[i,.,.] = zeros(nums,aj-1)~ones(nums,1)~zeros(nums,numa-aj) ;
elseif (aj==numa) ;
pbu¤[i,.,.] = zeros(nums,numa-1)~ones(nums,1) ;
endif ;
// Calling procedure to calculate transition probabilities
// Obtain expected next period values
tr_s = spatial_tranp(pbu¤,tr_p,state) ;
ccv[.,aj] = tr_s*value0 ;
aj=aj+1 ;
endo ;
retp(ccv) ;
endp ;
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A.13. Procedure spatial_tranp.src

/*
** spatial_tranp.src
**
** This procedure takes as input �rms�choice probabilities
** and transition probabilities of phi and it returns a matrix
** of transition probabilities for market structure and phi
**
** by Victor Aguirregabiria and Gustavo Vicentini
** (University of Toronto) (Analysis-Group)
**
** This revision: May 2007
**
** � � � � � � � � � � � � � � � � � � � � � � �
** MODEL
** � � � � � � � � � � � � � � � � � � � � � � �
** See Aguirregabiria and Vicentini (2007) "Dynamic Spatial Competition
** Between Multi-Store Firms"
**
** � � � � � � � � � � � � � � � � � � � � � � �
** DETAILS OF PROGRAM
** � � � � � � � � � � � � � � � � � � � � � � �
**
** FORMAT:
**
** tr_s = spatial_tranp(Palpha,tr_p,state)
**
** INPUTS:
**
** Palpha - Inum x nums x (1+2*Lnum) array of choice probabilities
**
** tr_p - nump x nump matrix of transition probabilities of phi
**
** state - nums x (1+Inum*Lnum) matrix with the values of the state
** variables (columns) at every state (rows).
**
** OUTPUTS:
**
** tr_s - nums x nums matrix of transition probabilities for
** phi and market structure.
**
*/

proc (1) = spatial_tranp(Palpha,tr_p,state) ;

local ordprob, Inum, Lnum, nums, numa, nump,
amat, tr_s, s, j, sj, tr_sj, aj, ak ;
ordprob = getorders(Palpha) ;
Inum = ordprob[1] ;
nums = ordprob[2] ;
numa = ordprob[3] ;
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Lnum = (numa-1)/2 ;
nump = rows(tr_p) ;
amat = zeros(1,Lnum)j(1j-1).*.eye(Lnum) ; // choice set of �rms
tr_s = ones(nums,nums) ;

s=1 ;
do while s<=nums ; // loop on state
j=1 ;
do while j<=Inum ; // loop on players
sj = state[.,2+(j-1)*Lnum:1+j*Lnum] ; // state of player �j�
tr_sj = 0 ;
aj=1 ;
do while aj<=(1+2*Lnum) ; // loop on actions
// ak is a nsum x 1 vector with zeros at every positiion
// except at those positions (states) for which the network
// of �rm j at t+1 is reached from state s and choice aj
ak = prodc((sj-sj[s,.].==amat[aj,.])�) ;
// tr_sj is a 1 x nsum vector with the probabilities that
// that �rmj reaches the correspoinding next period state
// given that the current state is s
tr_sj = tr_sj+ak�.*arraytomat(Palpha[j,s,aj]).^(ak�) ;
aj=aj+1 ;
endo ;
tr_s[s,.] = tr_s[s,.].*tr_sj ;
j=j+1 ;
endo ;
s=s+1 ;
endo ;
tr_s = tr_s.*(tr_p.*.ones(nums/nump,nums/nump)) ;

retp(tr_s) ;
endp ;
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