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A PERIODIC OPTIMAL CONTROL PROBLEM

JEFFREY D. AZZATO & JACEK B. KRAWCZYK

Abstract. Computing a numerical solution to a periodic optimal control
problem is difficult. A method of approximating a solution to a given (sto-
chastic) optimal control problem using Markov chains was developed in [3].
This paper describes an attempt at applying this method to a periodic
optimal control problem introduced in [2].
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Introduction

In [2], Gaitsgory and Rossomakhine develop a numerical method for approximating a solution to

a long run average problem of optimal control via linear programming. They consider optimal

control problems of the form:

inf
(u(·), y(·))

1

S

∫ S

0
g(u(τ), y(τ)) dτ(1)

subject to:

ẏ(τ) = f(u(τ), y(τ))(2)

where:

• f : U × R
m → R

m is continuous in (u, y) and satisfies Lipschitz conditions in y,

• The controls are Lebesgue measurable functions u : [0, S] → U and U is a compact

metric space, and

• The infimum in (1) is taken over all admissible pairs (u(·), y(·)) on [0, S]. A pair

(u(τ), y(τ)) is said to be admissible on [0, S] if (2) holds for almost all τ ∈ [0, S] and

(∀τ ∈ [0, S]) y(τ) ∈ Y , where Y is a given compact subset of R
m.

If the infimum is taken over only those admissible pairs that are periodic, i.e. such that:

(∀τ > 0) (u(τ), y(τ)) = (u(τ + T ), y(τ + T ))

for some T > 0, then (1) becomes a periodic optimisation problem of the form:

(3) inf
(u(·), y(·))

1

T

∫ T

0
g(u(τ), y(τ)) dτ

where the infimum is now taken over T and all admissible pairs defined on [0, T ] that satisfy the

periodicity condition y(0) = y(T ).

In this paper, we show how SOCSol4L (see [1]) can be used to solve a periodic optimal control

problem of this type.

1. Periodic Optimal Control Problem

1.1. Problem Formulation. We examine Example 1 of [2]. In this example, Gaitsgory and

Rossamakhine take:

g(u, y) := u2 − y2
1(4)

and

f(u, y) := (y2,−4y1 − 3
10y2 + u)(5)

1



in (3) and (2) respectively, where y := (y1, y2) and U := [−1, 1]. Note that f results from the

reduction of the differential equation:

ẍ(τ) + 3
10 ẋ(τ) + 4x(τ) = u(τ)

to a first order system.

1.2. Remarks on Analytical Solution. This problem may be investigated analytically with

the aid of, for example, the Maximum Principle. While we shall not attempt a full analytical

solution here, it is instructive to consider how one might proceed.

The (simple) Hamiltonian for the problem is:

H(u, y, π) : = −g(u, y) +
2

∑

i=1

πifi(u, y)

= y2
1 − u2 + π1y2 + π2(−4y1 − 3

10y2 + u)

So the optimal control is:

û := arg max
u

H(u, y, π)

Clearly:

(6) û(τ) =



















1 if π2(τ) > 2

π2(τ)
2 if |π2(τ)| < 2

−1 if π2(τ) < −2

It follows that the optimal solution exhibits a “bang-bang control with a transition”. The system

of adjoint equations for the problem is:

π̇(τ) =

[

−∂H(u,y,π)
∂y1

−∂H(u,y,π)
∂y2

]

=

[

−2y1 + 4π2

−π1 + 3
10π2

]

Combining these with the state evolution ẏ = f(û, y) yields the canonical system:

(7)
d

dτ













y1

y2

π1

π2













=













0 1 0 0

−4 − 3
10 0 0

−2 0 0 4

0 0 −1 3
10

























y1

y2

π1

π2













+













0

û

0

0













Solving this when |π2(τ)| > 2 reveals the period to be:

T =
40π√
1591

= 3.150 (4 s.f.)

Note that knowledge of the period provides two constraints for eliminating constants from the

solution of (7), namely y(0) = y(T ).
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2. Solution with SOCSol4L

2.1. About SOCSol4L. SOCSol4L is a suite of MATLABR© routines for approximating solutions

to stochastic optimal control problems using Markov chains. The method used is described in

[3], while the use of SOCSol4L is explained in [1].

2.2. Solution Syntax. This section describes the commands used to solve the problem using

SOCSol4L.

The following functions are defined by the user and saved as MATLABR© .m files in a folder on

the MATLABR© path. Each file is composed of a header followed by one or more commands.

Delta Function File:

This determines the system dynamics (f), and is written as follows:

function v = Delta(u, x, t)

v = [x(2), -4*x(1) - 0.3*x(2) + u];

Instantaneous Cost Function File:

This determines the instantaneous cost of the system (g), and is written as follows:

function v = Cost(u, x, t)

v = u^2 - x(1)^2;

Terminal State Function File:

As the problem has no scrap value, this is simply zero:

function v = Term(x)

v = 0;

The values chosen for the SOCSol4L parameters are explained below.

StateLB and StateUB: These were set to [-3, -4.7] and [3, 4.7] respectively to yield a state

grid encompassing Gaitsgory and Rossamakhine’s optimal trajectory (see p. 2020 of [2]).
3



StateStep: This was set to [0.05, 0.05].

Naturally, both wide state bounds and fine state steps lead to increased computation times.

Here, the state bounds were chosen based on prior knowledge of the problem solution. If such

information is unavailable, a “calibration run” could be conducted with generous state bounds

and coarse state steps so as to sketch the solution’s behaviour.

The fine discretisation used reflects the “difficulty” of the problem: coarser state steps were

not found to yield good results. Determining good discretisation for a given problem depends

largely on experimentation.

TimeStep: This was set to ones(1, 30*32)/32, giving a finite time horizon of length 30, sub-

divided into thirty-seconds.

This long time horizon in fact spans several periods, facilitating easy estimation of T and iden-

tification of any anomalies near the time boundaries 0 and 30. Had periodicity been suspected

but the period unknown, a calibration run could have been conducted with a generous time

horizon to check for periodicity and provide a broad estimate of the period were it present.

Problem File: This is the name for the results files, say ‘output’.

Options: It is worthwhile tightening the termination tolerance on the function value, so this is

set to {‘TolFun’, ‘1e-12’}.

Initial Control Value: This is given the value 0. As this value is only an approximate

starting point for the routine, it may be specified with some inaccuracy.

A, b, Aeq and beq: As there are no linear control constraints other than bounds, these are all

passed as empty: [ ].

ControlLB and ControlUB: These are set to -1 and 1 respectively to define U .

User Constraint Function File: As there are no constraints requiring the use of this argu-

ment, it is also passed as empty: [ ].

Consequently SOCSol4L could be called in MATLABR© as follows:

SOCSol(‘Delta’, ‘Cost’, ‘Term’, [-3, -4.7], [3, 4.7], [0.05, 0.05],

ones(1, 30*32)/32, ‘output’, {‘TolFun’, ‘1e-12’}, 0, [], [], [], [], -1,

1, []);

However, it seems preferable to write and execute a script. This might look something like:
4



StateLB = [-3, -4.7];

StateUB = [3, 4.7];

StateStep = [0.05, 0.05];

TimeStep = ones(1, 30*32)/32;

Options = {‘TolFun’, ‘1e-12’};

InitialControlValue = 0;

A = [];

b = [];

Aeq = [];

beq = [];

ControlLB = -1;

ControlUN = 1;

SOCSol(‘Delta’, ‘Cost’, ‘Term’, StateLB, StateUB, StateStep, TimeStep,

‘output’, Options, InitialControlValue, A, b, Aeq, beq, ControlLB,

ControlUB);

If this script were called workspace.m and placed in a directory visible to the MATLABR© path,

it would then only be necessary to call workspace in MATLABR© to run SOCSol4L.

On running, SOCSol4L produces a pair of results files - in this case output.DPS and output.DPP.

These are then interpreted with the aid of other package routines as described below.

2.3. Results.

2.3.1. State and Control vs. Time. GenSim uses the results files to derive a continuous-time,

continuous-state control rule. It then simulates the system with this rule to produce state

and control time paths starting from a given initial condition. The performance index is also

returned.

A very fine simulation step is necessary to yield smooth time paths from this problem’s control

rule - here 75000 steps were used. Examination of Gaitsgory and Rossamakhine’s optimal time

paths (see Figure 5 of [2]) suggests (2.1, 0.1) as an approximate initial condition. Consequently,

GenSim was called as:

GenSim(‘output’, [2.1, 0.1], 30*ones(1, 75000)/75000)

yielding the time paths shown in Figure 1 (which correspond to Figures 5 and 4 of [2]). The

transitions between control −1 and control 1 in Figure 4 of [2] occur faster than those in Figure

1 overleaf (approximately 0.35 time units versus approximately 0.50 time units). The latter
5



decreases with the time step: the transitions would have taken approximately 0.70 time units

had half as many time divisions been used.
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−1

0

1

u 1
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Figure 1. Approximated Time Paths.

T can be estimated from Figure 1 as 3.14. The first and last peaks in y1 appear to occur at 3.15

and 28.23 respectively. This suggests calling GenSim again as:

( GenSim(‘output’, [2.1, 0.1], 28.23*ones(1, 70575)/70575)

- GenSim(‘output’, [2.1, 0.1], 3.15*ones(1, 7875)/7875) )/25.08

yielding an estimate of −1.322 for the performance index, which closely agrees with Gaitsgory

and Rossamakhine’s estimate of −1.327 in [2]. The choice of TimeStep is important in deriving

this value: halving the number of time divisions yields an estimate of only −1.218.

2.3.2. State vs. State. Plotting the pairs (y1, y2) from the time paths in Figure 1 yields the

approximation of the optimal state trajectory shown in Figure 2. This corresponds closely to

Gaitsgory and Rossamakhine’s approximation in Figure 1 of [2].

2.3.3. Control vs. State. ContRule graphs the control rule against the selected state variable

for a specified time and value of the other state variable.

For a graph of the control rule against y1 at (τ, y2) = (14.85, 3.904), ContRule would be called

as:

ContRule(‘output’, 14.85, [0, 3.904], 1);
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Figure 2. Approximated Trajectory.

Several similar calls were used to produce the control rules shown in Figures 3 and 4. The

control rules are graphed against y1 (on the left) and against y2 (on the right) for four pairs

(τ, y) taken from Figure 1.
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Figure 3. Control Rules.
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As τ increases, a clear “flip” is evident in the control rules graphed against y1, reflecting the

form of (6). As y2 is out of phase with y1 by one quarter of a cycle, such a “flip” is absent in

the control rules graphed against y2.
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Figure 4. More Control Rules.

Note that Figure 2 of [2] is consistent with the upper-right plot in Figure 3, while Figure 3 of

[2] is consistent with the lower-right plot in Figure 4.

2.4. System Specifications and Computation Time. The results presented here were de-

rived in 2 days 9.32 hours on a computer having a 2.80Ghz PentiumR© 4 processor and 3Gb of

memory. MATLABR© version 7.2.0.232 (R2006a) with Optimization Toolbox version 3.0.4 was

run on a Windows XP ProfessionalR© operating system.

As computation time rises linearly with the number of time divisions (see [3]), results could have

been derived considerably faster by reducing the length of the time horizon to, say, 10.
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