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Abstract

This paper presents a simple regression test of parametric and semipara-
metric index models against more general semiparametric and nonparametric
alternative models. The test is based on the regression coeflicient of the re-
stricted model residuals on the fitted values of the more general model. A
goodness-of-fit interpretation is given to the regression coefficient, and the test
is based on the squared ”t-statistic” for the coefficient, where the variance of
the coefficient is adjusted for the use of nonparametric estimators. An asymp-
totic theory is developed for the situation where kernel estimators are used to
estimate unknown regression functions, and the variance adjustment terms are
given for this case. The methods are applied to the emprirical problem of char-
acterizing environmental effects on housing prices in the Boston Housing data,
where a partial index model is found to be preferable to a standard log-linear
equation, yet not rejected against general nonparametric regression. Various
issues in the asymptotic theory and other features of the test are discussed.




A REGRESSION TEST OF SEMIPARAMETRIC INDEX MODEL SPECIFICATION

by Diego Rodriguez and Thomas M. Stoker
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Introduction

The purpose of this paper is to propose and illustrate a simple
specification test for index models. The test can be used to judge the
adequacy of parametric index models; such as a linear model or a probit model,
against more general semiparametric or nonparametric models. Alternatively,
the test can be used to judge the restrictions of a semiparametric
partial index model, against more general semiparametric or nonparametric
alternatives. As such, the test is intended as a diagnostic tool to be used
in conjunction with empirical estimation of index models. We apply the test
to characterize the index structure of environmental effects in the Becston
Housing data.

The test is based on the bivariate OLS coefficient of the residuals from
the restricted model regressed on the fitted values from the general model.
The test statistic is square of the "t-statistic", or the ratio of the slope
coefficient to its estimated standard error; which is compared to a x2(1)
critical value. The value of the coefficient has a "goodness-of-fit"
interpretation, namely as the percentage of variation of the general model
that is not accounted for by the restricted model; and the restricted model
is rejected when the coefficient is significantly different from zero. The
appropriate standard error is estimated by adjusting the standard
(heteroskedasticity corrected) estimate for the presence of estimated features

of the restricted and general models.

The test is similar in spirit to the test of a linear model against




nonparametric alternatives proposed by Wooldridge (1991) and Yatchew (1988)
and related work by Hong and White (1991), Fisher-Ellison (1992) and Eubank
and Spiegelman (1990), among others. As discussed by Hong and White (1991),
this work is related to tests of moment restrictions as in Bierens (1990) and
Lewbel (1991).

Our approach differs from the earlier proposals in that a wide range of
restricted and general models are allowed, and that our test is based on an
adjustment of the familiar "t-statistic.” Our development of the limiting
statistical theory of the test is based on index models, although similar
tests could be devised for situations where the restricted and general models
are nested in the way discussed below. We give the adjustment terms
appropriate when kernel regression estimators are used for the unknown
functions in estimated (semiparametric and nonparametric) models, and kernel
average derivative estimators are used for index model coefficients. While
the asymptotic theory is likely to be the same when other kinds of
nonparametric estimators are used (Newey 1991), the relevant standard error
adjustment terms would need to be derived.

The exposition proceeds as follows. We begin with a brief layout of the
models and the test in Section 2. Section 3 applies the test in an analysis
of péllution effects on housing prices using the Boston Housing data of
Harrison and Rubinfeld (1978a, 1978b) among others. Section 4 gives the
asymptotic theory for the test, with proofs placed in Appendix 1, and the
variance adjustment terms listed in Appendix 2. Section 5 contains some
concluding remarks.

Section 4 also discusses a singularity issue raised by the asymptotic
theory of our test. In strict terms, this issue suggests that an extended
analysis (beyond that we have given) would recommend using tighter critical

values than we have. This would not affect cases where our test statistic




indicates rejection of the restricted model, but could lead to rejections
where our method as given fails to reject. We discuss this issue at length at

the end of Section 4.3.

2. Basic Layout

2.1 Basic Framework and Index Models

The empirical setting we c&nsider is an analysis of data (yi'xi)' i=
1,...,N, which is assume to be an i.i.d. random sample, where Yy is a response
of interest and x, is a k-vector of predictor variables. For the statistical
theory of Section 4, we assume that x is continuously distributed with density
f(x), where f(x) vanishes on the boundary of x values, and is also first
differentiable. We assume that the mean of y exists, and denote the mean
regression of y on x as m(x) = E(y|x).

Our interest is in testing index model restrictions on the structure of
m(x). To begin, m(x) is a single index model if there is a coefficient

vector 8 and a univariate function G such that
T
(2.1) m(x) = G(xB) a.e.

Familiar parametric models that are single index models include the standard

linear model; y = a + xTﬂ + € with E(e|x) = 0; giving
T
(2.2) n(x) =a + x' B

Likewise included is the standard probit model for analyzing binary responses;

y = 1lle < a + xTﬁ} with € ~ ¥(0,1); giving
T
(2.3) m(x) = ¥(a + x B)

with ¢®(.) the cumulative normal distribution function.
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A semiparametric single index model is based on
T
(2.4) m(x) = Gy (x A)

where G1 is treated as an unknown, smooth univariate function. Here A can be

estimated up to scale, and G, can be estimated given the estimate of . A

1

semiparametric partial index model is based on
(2.5) m(x) = G, (x, 78, ,x,)
' 2V 1 P’

and a k, vector

2 1’ 2
x2, and G2 is an unknown, smooth function of k2 + 1 arguments. OQur test is
applicable to testing a restricted index model (for instance (2.4)), against a

1

where x = (xl,xz) is a partition of x into a k-k, vector x

more general index model (for instance (2.5)).
At the extreme end of generality, we consider the nonparametric

regression model
(2.6) m(x) = g(x)

vwhere g(x) is an unknown smooth function of k arguments. Failure to reject a
proper index model against the general nonparametric regression constitutes
practical acceptance of the proper index model restrictions. Likewise,
failure to reject a parametric index model against the nonparametric
regression constitutes practical acceptance of the parametric regression
restrictions.

Our empirical and theoretical analysis employs kernel estimators for
unknown functions in semiparametric and nonparametric regression models, and
(kernel) average derivative estimators for index model coefficients.2 The
latter refer to (indirect) instrumental variables estimator of the vector 6 =
E(m’), where m’ = gm/dx. For model (2.4), the coefficients B are proportional

to 6, so we normalize the model by replacing 8 by 6, as in




(2.7) n(x) = Gl(xTé) ,

redefining G1 to reflect the scale normalization. Likewise, for the partial
index model (2.5), we have that ﬂl is proportional to the k - k2 subvector 61

of 6 (those components associated with xl), and so we normalize (2.5) as

(2.8) m(x) = G, (x Té , X

2(%1 %1%

We denote estimators using hats; ;, él' 62, ;, etc. One attractive feature of
the index model framework is that a single estimate of the average derivative
vector & can be used for coefficients in all single and partial index models,
replacing the unknown coefficients as in (2.7), (2.8).

We give the formulae for the kernel estimators used in Section 4.1. For
clarity of the main ideas, we now give a quick introduction to the ideas of
the specification test, and follow it with an empirical application. In the
next section, we abstract from various required technical details, such as

trimming and higher-order kernel structure, which are covered in detail in

Section 4, in order to give a straightforward motivation of the basic ideas.

2.2 Quick Start: The Test ggg'lgg Motivation

We introduce the test by considering the problem of testing a
(semiparametric) single index model against general (nonparametric) regression
structure. In particular, the null hypothesis is that the true regression

takes the restricted form

T
(2.9) m(x) = Gl(x 8)
The alternative is represented by

(2.10) m(x) = g(x)




where g(x) obeys the smoothness conditions given in Section 4.2. The

methods for applying the test with other restricted and alternative models

will be clear from considering this case. Using the data (y,, x,}, i =

1l,...,N, we assume that an estimator 6 of & is computed, that G1 is estimated

by the kernel regressicn G1 of y; on xiTé, and that g is estimated by the

A

kernel regression g of y; on x,. Following the results of Hirdle and Stoker

(1989), these procedures imply the Gl(xTé) is a consistent (nonparametric)

estimator of E(y|x 6) in general (i.e. with model (2.10)), so that when (2.9)

A A

is valid, Gl(x 6) is a consistent nonparametric estimator of Gl(xré).
The test statistic is computed as follows: for each observation i, form

the residual from the restricted model Yy - G(x;tb) and the fitted value from

A

the general model g(xi). and perform the bivariate OLS regression

A A A

(2.11) yi - G(xiTé) -a + v g(xi) + u1 , 1 =-1,...,N.

The test is based on the value of y; if large (indicating a significant
difference from zero), we reject the single index model against the general

regression; otherwise, we fail to reject:.3 In particular, if an estimate of

the asymptotic variance of y is denoted 01, then the appropriate "t value™ is

found as

(2.12) t = 4N ; / J:'
.

A

Our test compares t2 to a xz(l) critical value. We discuss the estimate a_7

below, following the motivation.

A

On "omnibus" grounds, basing a test on vy is sensible because if (2.9) is
the true model, y - Gl(xTé) is uncorrelated with any function of x. Provided
that Gl(x 6) is an accurate estimator of Gl(xTG), then y - Gl(xTG) should be

A

approximately uncorrelated with g(x), which is what is being checked. More




A A

T
formally, suppose G(xré) - E(yleé) denotes the consistent limit of Gl(x 6).
Consider the linear regression equation that holds if the true functions G and

g were known:

(2.13) y - G(X'8) =a + v g(x) +u

where the parameter 7y is defined via OLS projection, as

E((g(x)-E(g) ][y - G(x16)])

(2.14) Y - 7
E[g(x)-E(g)]
Here u is uncorrelated with g(x) by definition. Equation (2.11) is just the
sample analog of the equation (2.13). Obviously, 7y = 0 when g(x) = G(xTé),
reflecting the lack of correlation discussed above.
The value of vy is also easy to characterize under the alternative, when

Bg(x) » G(xT6). In particular, from the law of iterated expectations, we have

that
(2.15) G(x8) = E[y|x'6) = E[g(x)|x 6.
Consequently,

T T
(2.16) g(x) = E[g(x)|x 6] + (g(x) - E[g(x)[x &])

- G(xT86) + Ux)

where U(x) = g(x) - E[g(x)]xTé] has mean 0 conditional on xT6. Therefore

E[U(x)?]
(2.17) vy =- 5 > 0
E{g(x)-E(g)]

when g(x) differs from G(xTé) on a set of positive probability. Therefore,

7 is the percentage of (structural) variance of the true regression not

-~

accounted for by the restricted model. The statistic 7y is an empirical




measure of this "goodness of fit" value. The key feature of this motivation
is that the restricted regression is the expectation of the general
regression conditional on the index argument(s) of the restricted model. This
"nesting” is easily verified for comparing semiparametric index models (any
coefficients in the general model must also be coefficients of the restricted
model), and is assured by using kernel estimators for unknown functions and

average derivative estimators for coefficients as above.
We now describe how we measure the variance of y. If the parameters

A

46 and the functions G and g were known, then the variance of 7
would be consistently measured by the standard (White) heteroskedasticity
consistent variance estimator. Our approach is to add adjustments to the

standard term, to account for the presence of the estimates
A A A A

6, G and g. In particular, 01 is the sample variance of

x A

-1 "
(2.18) sg ([g(xi) - gl u, +ra, - lai)

i

x A
where g and s; are the sample average and sample variance of g(xt)

A A A

A A =
respectively, and u - Gl(xiTG) - [g(xi) - g] is the estimated

1~

residual. The term ra, is the adjustment for the estimation of g(xi)

(the "right-hand" function), and the term la, is the adjustment for the

i
estimation of G(xiT6) (the "left-hand" function). These terms are spelled out
in Section 4 and Appendix 2, as well as their formal justification. It should
be noted that the standard (White) variance statistic is given by (2.17) with
ra(xi) and la(xi) omitted. Moreover, in the next section, we show the
difference between the properly adjusted estimates as well as the unadjusted

(White) estimates for each test performed.

With this motivation, we now turn to an empirical example.




3. Index Structure of the Boston Housing Data

We illustrate the test by studying the index structure of the Boston
Housing data of Harrison and Rubinfeld (1978a,b). The focus of this study is
on measuring environmental effects on housing prices, for the purpose of
measuring the dollar-value benefits of lower air pollution levels. The method
of analysis is to estimate a standard log-linear hedonic price equation. All
nonparametric estimation uses kernel regression estimators, and testing is
performed on a "trimmed" sample, that omits the 5% of the observations that
displayed smallest estimated density values.

This data and the log-linear price equation has been extensively studied
elsewvhere, for instance, in the work of Belsley, Kuh and Welsch (1980) on
regression diagnostics, among others. There is no particularly persuasive
theoretical reason for choosing the log-linear form for the housing price
equation; however, the amount of previous study of this equation makes it a
good base case.s Our initial expectation was that our study of the index
structure of the data would give some confirmation to the log-linear model.

We adopt the definitions of the observed variables in Harrison and
Rubinfeld (1978a, 1978b). For notation, Yyq denotes the log of price
of house i, and x, denotes the vector of nine predictor variables that
Harrison and Rubinfeld found to be statistically significant in their
analysis. The data consists of 506 observations on the variables depicted in
Table 3.1. As mentioned above, the earlier work produced a linear equation

between y and x; of the form
T
(3.1) yslnp=a+x 8+ ¢

The coefficients B summarize the proportional impacts of changes in x on
housing prices. Table 3.2 contains the OLS estimates of these coefficients.

Our interest is in studying whether the linear model, or a more general




index model, is a statistically adequate representation of the true regression
m(x) = E(y|x) of log-prices on the predictor variables.6 We begin this by
looking at a direct estimate of the average proportional impacts of changes in
x on housing prices, or the average derivative § = E{m’'(x)]. When the true
model is linear as in (3.1), then m(x) = a + xTﬂ, with 6§ = 8. Moreover, as
discussed above, (the appropriate components of) the average derivative §
represent the coefficients in semiparametric index and partial index models,
so that our estimates can be used for coefficients of all such index
specifications. In any case, we can regard the vector & as giving generalized
values of typical effects of the predictors on log housing prices. Our

7

estimates are given in Table 3.2.

We see that the basic difference between the OLS coefficient estimates

A ~

B and the average derivative estimates § are minor. The Wald test that the

differences are zero is based on the statistic

a a a A
-~ o\'l

(3.2) V=N (- p)Tvé_p -8

A A
A

where V;_p is the consistent estimator of the asymptotic variance of § - 8
given by the sample variance of its influence representation. Here W = 13.44,
which fails to reject for significance levels less that 152.8

The largest qualitative difference in the coefficient estimates occurs
for the coefficient of B, or the race effect. This effect is strongly
positive in the OLS estimates but negative and negligible in the average
derivative estimates. From the consistency of average derivative estimates

for coefficients of the single index model
T
(3.3) m(x) = Gl(x &) ,

the difference in the B coefficient is interpretable as potential

nonlinearity in the function Gl' We investigate this by computing and

10




plotting the estimate of Gl obtained by nonparametric regression of y; on
x5 3. shown in Figure 3.1. This function appears as two lines with a shift
(flat) in the center. Therefore, the positive OLS coefficient for B can be
interpreted as resulting from forcing these two line segments together, by
assuming that the overall model is linear.

To see whether this difference is statistically important, we apply our
regression test to the linear model versus the single index model. All of our
testing results are summarized in Table 3.3. Both the estimate ; and the
"t-statistic" for testing the linear model against the single index model are
quite small, so the linear model is not rejected. Therefore, the linear
model (with the large race effect) and the single index model (with the
negligible race effect but nonlinear function Gl) are statistically equivalent
descriptions. Choice between these models rests on which has the more
sensible interpretation; we would be inclined to use the single index model,
but this is a purely subjective choice.

To see whether the linear model and/or the single index model stand up to
further generalization, we compute the nonparametric regression of y on x,

fitting the "model"

(3.4) m(x) = g(x)

~

The nine-dimensional curve g(x) is difficult to plot and interpret, and so we
mainly use it as the base case for the specification testing.

Again from Table 3.3, we see that the regression test rejects both the
linear model and the single index model against the general regression. The
estimates ; of the percentage of variance not accounted for by these models
relative to general regression are 17.1X% and 23.1%, which are each

significantly different from zero.9 Therefore, the restrictions of the single

index model are too strong, and we must look further for a model that

11



adequately captures the systematic variation between log price y and
predictors x.

Our approach for this is to consider partial index models of increasing
generality. 1In particular, we begin by estimating partial index models with
one variable excluded from the index, so that the impact of the excluded
variable is treated flexibly. This is computationally simple, since the
average derivative estimates can be used as the coefficients for the variables
remaining in the index. At any rate, the best model emerging from this

estimation is

(3.5) E(y[%) = Gy(xq, x_ 78 1)

where X4, - (x2,....x9) is the vector of all characteristics except for X -

NOXSQ, the pollution variable, and 5 .,69) is the vector of average

1" (62,..
derivatives of the characteristics in the index. The function 62 is a two

dimensional function, and permits a general impact of the pollution variable

X In Table 3.3, we refer to this model as PARTIALl.

1
We see that the single index model is rejected against model PARTIALL.

The graph of the function G, in Figure 3.2 reveals some variation in the

2
pollution effect, that is not consistent with the single index model (the

"slices” of G, for different values of x, have varying shapes). The model

2 1
PARTIALL is rejected against the general regression, failing to account for an
estimated 7.2X of the variation of the general regression. As such, we
proceed to a next level of generalization, namely dropping two variables from
the index.
Here, we find that the best model treating two variables flexibly is

TI\
(3.6) E(y[x) = Gy(y|x).%xg.% 1476 19) .

12




which permits flexible effects of the pollution variable x, = NOXSQ and the

1

"lower status" variable Xg = LSTAT. The function 03 is a three dimensional

function, with the estimated model is referred to as PARTIAL2 in in Table 3.3
From Table 3.3, we see that the model PARTIAL2 gives a fairly

parsimonious statistical depiction of the data. In particular, the estimate ;

of the variation of the general regression not accounted for by PARTIALZ is

a modest 1.16%, which is not significantly different at levels of significance

lower than 3%. We likewise note that each more restricted index model we

consider is rejected against PARTIAL2.

A

The three dimensional estimated function G3 of PARTIAL2 is somewhat
more difficult to depict than &1 and &2 of the more restricted index models.
Partial depictions are given in Figure 3.3, by plotting &3 holding
Xg constant at its mean, the lower status variable, (Figure 3.3a), and by

A

plotting 83 holding the partial index x_196_19 constant at its mean (Figure
3.3b). The clearest difference between this model and the more restricted
ones is the strong nonlinearity in the effect of Xy the pollution variable,
over ranges of Xgs the lower status variable. In particular, the marginal
pollution effect is flat or slightly positive for low "lower status” values,
and strongly negative for high "lower status® values. One interpretation of
our testing results is that this nonlinearity is sufficiently strong to
dictate a completely flexible treatment of both pollution and lower status

effects on housing prices.

We close out this discussion by pointing our the effects of the

nonparametric adjustments on the variances of the test coefficient y. In
Table 3.4, we include different estimates of the variance of ¥ for the tests
summarized in Table 3.3. The first column gives the standard OLS variance

estimates, which neglect heteroskedasticity as well as the fact that estimated

parameters and functions are used. The second column gives the (White)

13




heteroskedasticity-consistent estimates, which likewise neglect that estimated
functions are employed. Finally, the third column gives the variance
estimates adjusted for the presence of estimated parameters and functions.
Except for the test of PARTIAL2 against general regression, the adjustments
for heteroskedasticity increase the variance estimates. In all cases, the
adjustment for the use of estimated coefficients and functions increase the
variance values. We will make reference to this feature when discussing

issues with the limiting distributional theory below.

4. Technjcal Analysis of the Test Statistics

In this section, we give the explicit formulation of the estimators and
test statistics, and summarize the theoretical results. Foundational theory
and proofs are given in the Appendix. We focus on the cases where the
restricted and general models involve nonparametric estimation, and where
kernel estimators are used for unknown regression functions. The cases where
the restricted model is parametric are straightforward to incorporate, as

addressed in the remarks of Se~tion 4.3,

4.1 Estimation Formulae

" Each of our comparisons involve nested index models, for which we enhance
our notation as follows. Suppose that vector x of predictors is partitioned
into x = (x01'x02'x1)' In line with our treatment above, the symbol G is
associated with the restricted model, and the symbol g is associated with the
general model, as follows. The restricted model states that the regression
T& T

1~ o1 %01%%02 %02:%) ™

T
(x0 éo,xl), namely that E(ylx) - E(ylzl) = G(zl). The general model states

m(x) = E(y|x) is determined by d, arguments z

that the regressi is d - T
g on m(x) is determined by do arguments zZ, (x01 601,x02,xl),

dy > d,, namely that E(y|x) = E(ylzo) = 8(z;). In the following, the notation

14




g' refers to the partial derivative of g(xOITéol, X9 1%y ) with respect to its

index argument x01T601, and G' is likewise the partial derivative of

G(x xl) with regard to its index argument x T6

0 0 0 "0’

For estimating the density f(x) of x, we use the kernel density estimator

6.1) £(x) = N° h z X { ] :
he

where hf is the bandwidth value and Kf is the kernel density that gives

weights for local averages. One use of this estimator is to trim the sample

for analysis, whereby we drop the observations with low estimated density. 1In

particular, we drop observations with I, = 1[f(xi) > b] = 0, where b is

i
a constant. The results of Section 3 had b set so that Ii = 0 for 5% of the

observations. Our asymptotic results likewise take b as a fixed constant.
To measure the average derivatives (and therefore all index model

coefficients), we the "indirect slope"” estimator of Stoker (1991,1992). This

estimator is based on the density estimator f(x) of (4.1) as follows. Form

the estimated "translation score” l(xi) - - f'(xi)/f(xi) for each observation
X . Take § as the instrumental variables estimator of the coefficients of Yq

A A

regressed on Xy, using l(xi)Ii as the instrumental variable. Specifically,

set
o7 -1 -
(4.2) s - [2 c(x )1i (x; - [):i c(x )1 (yy - M.

See Stoker (1992) among others for explanation and motivation of this
estimator.

The asymptotic results only require that we have an estimator

A A A

60 - (601 02) of the coefficients that obeys

p -1/2
(4.3) IN(s, - & N DR FNC AN

15




and therefore is {N asymptotically normal. Denote the subvector of 50

corresponding to 601 - 601 I The components of the estimator (4.2)

have réo(y,x) - m, (x) - 60 + |y - m(x)]lo(x), where m,' = 6m/ax0, and lo(x) -

- dln f/axo, as derived in Hirdle and Stoker (1989) and Stoker (1991).
Nonparametric estimators of unknown regression functions are

summarized as follows. The function G of the restricted model is estimated by

A A

G, the d1 dimensional kernel regression of y on zy = (xoTé

kernel function Kl and bandwidth h

0.x1), using

1’ or

N
. ~ 11 -4 t h
(4.4) G(z) = F,(2) [N h, 1 Z xl['—h_l] Yy )
j=1 1
where
A P
(4.5) F,(z) = [N'lhldl z Kl[——ﬁ]]
j=1 By

The function g of the general model is estimated by g, the dq dimensional
T

A

é

kernel regression of y on zy = (x01 01,x02,x1), using kermel function XO and
bandwidth ho, or
N 2z
(4.6) g(z) = Fo() [t % T ok |—3 5, |
0 0 0 h ]
j=1 0

where

N
A - 2z

4.7) Fo(z) = [N'lho'do z xo[f___ﬂ]]

j=1

While these formulae are somewhat daunting, they are directly computed

from the data, given bandwidth values and specifications of the kermel

16




- 10 . . .
functions. The same is true of the adjustment terms required for the
variance of our t-statistic. Because of their size, we give the formulae for

these adjustment terms in Appendix 2.

4.2 Summary of the Test and Asymptotic Results

We now formally introduce the test, in order to present the asymptotic
results as well as the ideas on which precision measurement is based. To keep

the presentation compact, subscript "i" denotes evaluation of relevant terms
at (y,x) = (yi,xi); for instance, By denotes g evaluated at 204 Gi denotes G

A

evaluated at zli' and Ii is the trim indicator that is 1 if f(xi) >b, and 0

otherwise, as above.

A

With trimming incorporated, our test is based on the coefficient vy of the

regression
4.8) (yi - Gi)Ii - Ii + v giIi + ug
Letting

R _1 A x 2A x -1 A A
4. - - : -
(4.9) Sg =N Y (g - =N Ygl

denote the sample variance and mean of giIi' we have that the coefficient 4 is

A 1 A A

(4.10) 1= — N T (g - 0y - 6D
S‘\

-4

In line with of the discussion of Section 2, this regression procedure

amounts to fitting a sample analog of the equation

(4.11) (yq - 601, = v [g; - E(BDII  + u,

where the parameter vy is defined via OLS projection as

17



E({g-E(gD)I(y - GII)

(4.12) Y = 5
E((g-E(gIl)] 1)

Consequently, 7y is the percentage of variation of g not accounted for by G,
over the untrimmed part of the population. Moreover, 7 = 0 if and

only if g = G a.s. for x such that f(x) > b.

We require the following basic assumptions
ssum on 1l: The fourth moments of (y,x) exist.

4
Assumption 2R: For F the density of z,, we have that E(y |zo)Fo(zo) and F,
are bounded, (g - G)I is continuously bounded a.e., and [g - G]F0 and

Fo are continuously differentiable of order P0 > do.

Assumption 2L: For F1 the density of z,, we have that E(yalzl)Fl(zl) ard Fl
are bounded, GI is continuously bounded a.e., and GF1 and
Fl are continuously differentiable of order P1 > dl'

Assumption 3R: The kernel Ko has bounded support, is Lipschitz, [ Ko(u) du =

>dq 11

1, and is of order PO 0

Assumption 3L: The kernel Kl has bounded support, is Lipschitz, f Kl(u) du =
1, and is of order P1 > dl'

Assumption 4: For f the density of x, f1 is continuously bounded a.e., £
is continuously differentiable of order P_ > k. The kernel X_ has

f f

bounded support, [ Kf(u) du =~ 1, and is of order Pf > k.

18




A

Our approach to characterizing the limiting distribution of v is to

establish the following decomposition:

4. J_A- - dN(y - - 1
(4.13) N(v - 7) (v Y) + RAN IAN+0p()

where 7 is the "estimator"” based on known functions;

1
(4.14) 7-— N T (g - EG@DIG, - 6T,
S
g
with
(4.15) s =N1F (g - E@D]L
' g By & i

an estimator of the (trimmed) variance ag - E([g - E(gI)]I)z. The remaining
terms are the adjustments for using estimates on both sides of the regression

equation: first,

1 .
(4.16) RA, = — N2 T (g - gy, - 6L,
o

i
g
is the adjustment for nonparametric estimation of the "right hand side", or

predictor variable, and second,

(4.17) LAN -

o

g

is the adjustment for nonparametric estimation of the "Left-hand-side", or
dependent variable, of the original regression. Standard limit theory applies

to the "estimator"™ 7 of (4.14); with u = (y - G - v[g - E(gl)), we have that
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(4.18) NG - y) = — N M2

[2)

g

Llgy - E@)uT; + o (1),

so our conditions imply that 7 is asymptotically normal.
Therefore, the characterization of the limiting distribution of 7

requires studying the adjustment terms, and establishing (4.13). The

adjustment terms are characterized through

Lemma R: Given Assumptions 1, 2R and 3R suppose (a) N 3 =, h > 0;

0
2d0 2P0
(b) Nho /(ln N) 3> =« and (c) Nho 5> 0. Let
r

Ri " Fgi * Bo Tsol¥y X)Ly
where Bo - [801,
801 - E(g'[E[(y-G)xolzo]I - (g-G)IE[xolzl] + (g'-G')I[E[yxo|21] - gIE[xolzll).

0] and

Then we have that

-1/2
RA, - - N ) Tyt op(l)
g

(In the case where d, = k, where g(x) = E(y]x) involves no estimated

0

coefficients, we set B 0.)

0-

Lemma L:b Given Assumptions 1, 2L and 3L, suppose (a) N » =, ho - 0;

2d1 2P1
(b) Nh /(ln N) > = and (c) Nh 2 0. Let
1 1

r -

L~ Tor t OBy Teo(yexpIy
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where B1 = E(G’ [E[(y+g)xolzll -2G E[x0|zl]). Then we have that

-1/2
Loy - —;—- N Y r* op(l)

24

The relation (4.13) is then shown as part of the proof of the Theorem 1.

Theorem ]1: Suppose that Assumptions 1, 2R, 2L, 3R, 3L and 4 are valid, and

assume the bandwidth conditions of Lemmae R and L. Suppose further that

2k 2P k d. d

f 0, "1 3
(a) N 3 =, hf > 0; Nhf /(ln N) > = and Nhf > 0, (b) Nhf ho h1 /(ln N)
k 2d0 3 k 2d1 3
5> ®, (¢) Nhf ho /(ln N)” 3 =, (d) Nhf h1 /(ln N)” > « and (d)
d 2d
Nho oh1 1/(ln N)2 > «, Define

r { = [gi - E(gI)]uiIi + rRi -r

v Li

= (gy - EgDu,I, + [gy - G 1(y; - &) - (65 - EMI(y; - 6
+ FBo - Bylrge(yyexy)
We then have that

R 1
NGy - - —

o
g

-1/2
N ) LI op(l)

so that {N(y - 7) - N(O,ay), where 07 - 05.2 Var (r

estimator 07 given in Appendix 2 is a consistent estimator of 07.

7i)' Further, the

A

Consequently, Theorem 1 gives the conditions under which y is asymptotically

normal, so that the squared "t-statistic” has a limiting x2(1) distribution.
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4.3 Related Remarks

A. Testing Parametric Regression Models
When the restricted regression model is parametric, as with our tests of
the linear model in Section 3, the test is modified in a straightforward way.
In particular, suppose that the restricted model is m(x) = I'(x,8), and
that we wish to test it against -a general nonparametric regression, m(x) =
g(x) above. Suppose further that we have a {N asymptotically normal estimator

A

B of the parameters of the restricted model, wherein

P -1
(4.19) {N(8 - B8) = N /2 ) rﬂ(yi,xi) + op(l)

A

(where 8 = plim B8 if the restricted model is not true).

The specification test is applicable as above, namely by computing the

OLS regression coefficient y of

A A A A

(4.20) Yy - F(xi,ﬁ) - a+ v g(xi) + u i=1,...,N.

Testing is based on whether y = 0, which is likewise tested by the square of

the "t-statistic.” The only complication (actually simplification) is that

the asymptotic variance of y must reflect the fact that the estimator g is

used. The only change to the above development is that the "left" adjustment

only contains the influence of 8, with the "right" adjustment left unaffected.

In particular, here we have

1

(4.21) LAN - —
g

g

N2 Y (rex .8 - Toxg.B)1lg, - EGBDIT,.

This term is analyzed in an entirely standard fashion, namely we have
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(4.22) LAN - E(Bf(xi.ﬂ)/aﬁ [gi - E(gl)]Ii) IN(B - B) + Op(l)
If rﬂ(yi,xi) is a (uniformly) consistent estimator of the influence rﬂ(yi,xi),
then the relevant estimate for the influence term of the left hand

adjustment is

X A Ly

-1 ~ A
(4.23) la, = (N Y aT(x;,8)/3p (g; - glI;) rﬂ(yi.xi)

A

We then estimate the asymptotic variance of y by the sample variance of

(2.18). This method was applied for the test statistics involving the linear

model of Section 3.

B. Issues of Practical Implementation

As is now standard, our asymptotic results above have assumed the use of
higher order kernels for nonparametric estimation. It is also well known
that such kernels, with giving positive and negative local weighting, do not
give good estimator performance in small samples. Consequently, for our
estimation of Section 3, we have used positive kernels throughout. 1In
particular, each kernel function is the product of biweight kermels: for

estimation of a d dimensional function, we used

(4.24) X(

ul....,ud) -1 &k(u,)

3

where &(u,) is given as

3
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(4.25) k(u) = [%%] (1 - u2)2 1[|u] £ 1)

We have likewise used these kernel functions in the variance adjustment

formulae.

Since there is no developed theory for optimal bandwidth choice for the
purpose of our specification test, we chose bandwidth values using Generalized
Cross Validation (GCV) of Craven and Wahba (1979). For instance, to estimate
the general regression m(x). let Y denote the vector of observations (yi) and

Hh denote the vector of values (m(xi)) computed with bandwidth h. Consider

the weight matrix Wh defined from

(4.26) Mh - WhY

The GCV bandwidth is the value of h that minimizes

-1 2
N (T - W)Y
(6.27)

N Te(r - wh)l2

We also standardized the predictor data for the nonparametric estimatiomn.

This method of bandwidth choice was used for simplicity. However, it is
unlikely that this method applied in increasingly large samples will give the
bandwidth conditions of Theorem 1 above. In particular, those conditions
require pointwise bias to vanish faster than pointwise variance, which is not
implied by GCV bandwidths chosen for each sample size.

As indicated above, we have incorporated the trimming indicator, dropping
the 5% of data values with lowest estimated density values. In practical
terms, this drops observations with isolated predictor values, such as remote
outliers. Moreover, since the regression estimators involve dividing by
estimated density, dropping observations with small estimated density likely

avoids erratic behavior in the nonparametric estimates.
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C. e Singularity Issue

While we have departed from the conditions for the asymptotic theory as
outlined above, there is a further issue with using Theorem 1 as a foundation
for our test procedure. In particular, the asymptotic distribution of
Iﬁ(; - v) displays a singularity under the null hypothesis that the restricted
model is valid. Formally, with reference to Theorem 1, if G = g a.e., then

the influence function r1i = 0 for all 1. Therefore, under the null

A

hypothesis, Theorem 1 shows that fﬁ(; - 0) = op(l), or that v converges to the
true value 0 at rate faster than {N. This issue seems endemic to
specification tests involving nonparametric estimation, and is discussed in
Yatchew (1988) and Wooldridge (1990), among others.

We have presented the procedure we utilized above, and so we now discuss
the implications of this issue for our method, as well as possible
justifications. Omne implication is that our results where rejection is
indicated should not be affected. In particular, the t-statistic (2.12)
should have the leading factor {N replaced by a larger power of N, or
equivalently, we should choose smaller critical values for the test. While
there is also a question of the normality of the test statistic under the null
hypothesis, the main implication for our results of Section 3 would be to
open the possibility that model PARTIAL2 should be rejected against the
general regression with this modification. The estimate ; = .0116 of the
percentage of variance of the general regression not accounted for by the
model PARTIAL2 is unaffected, however it could be significantly different from
zero when the critical values are tightened.

The singularity problem appears to arise because the nonparametric
estimators "overfit" the response yi, leaving too little variation in the

limit. The peculiarity of this feature is illustrated bty noting that the
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OLS coefficient ; of the regression (4.11), which involves the true functions,
does not exhibit the same singularity in its asymptotic normal distribution.
The variation of this regression is canceled out by the use of nonparametric
estimation.

Several (somewhat artificial) theoretical justifications for our method
could be devised. One would be to note that {N asymptotic normality of ;
would hold under the null if independent noise were added to the residuals for
performing the test; namely draw g for each i, independently of X, and
perform the regression (4.8) with (yi - &(xiTs) + ni)ii as the dependent
variable. Our method of measuring the variance of ; would be consistent in
this case as well. We have not stressed this idea because the variance of nyg
could be chosen to be extremely small, and therefore one would not expect that
this method would make any difference to the testing results. An alternative
method follows Yatchew (1988), whereby we could split the sample, carrying
our estimation of the parameters and functions using one part of the
data set, and carrying out the specification test using the other part. It
would be of interest to see if this method caused dramatically different
results with large data sets - the latter a necessity since equal sample
splitting drops the effective sample size in half for nonparametric estimation
and specification testing.

Our view of the most promising justification for our method would arise
from asymptotic theory that is sensitive to the amount of smoothing carried
out in the statistical analysis. In particular, such a theory would be based
on fixed or slowly shrinking bandwidth values, and would be in line with
Wooldridge's (1990) results for his test of a linear model against a
nonparametric (polynomial) alternative model. While we have not developed

such a theory, some features appear sufficiently apparent to mention them as

conjectures. For instance, such a theory would deal with variability of the
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statistics, and not be fully "nonparametric". In particular, all function
estimates would centered around their consistent limits, which would be biased
representations of the true functions.12 However, such a theory could give a
better approximation to the distribution of ; in samples of moderate size. In
this regard, the U-statistic structure of the basic estimators would not be
affected, and the variance adjustments we have proposed would lead to
consistent estimation of the variance of ;.13 Consequently, since ; is a
reasonable reflection of the sample correlation between the restricted model
residuals and the general model fitted values, one should conclude that the
restricted model is adequate if 0 is in the appropriate confidence interval.

It should also be noted that the adjustments for nonparametric estimation
exhibited in Table 3.4 are not in line with what one would expect from the
standard theory, and could be consistent with fixed bandwidth approaximation.
In particular, the singularity under the null hypothesis implies that our
adjustments for nonparametric estimation should cancel out the residual
variation (standard White term), with the estimated influence (2.18) a
uniformly consistent estimator of the zero function. However, as we pointed
out in Table 3.4 of Section 3, adjustment for nonparametric estimation does
not reduce the estimated variance of ;, but rather increases it over the
standard heteroskedasticity consistent estimate.

Consequently, we have taken a practical stance, applying the test without
a complete standard distributional theory under the null hypothesis.
While rejections by the statistic are valid wi;hin the context of the
singularity, more research is definitely called for to either justify or

suggest adjustments for our method of setting critical values for

our statistic under the null hypothesis.
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5. Conclusion

In this paper we have presented a simple specification test for assessing
the appropriate index model in an empirical application. The index model
framework gives a generalization of linear models that may be informative for
applications where there is no theoretical reasons for specifying a
particular functional form. Our application to measuring environmmental
effects from housing prices had this feature, and we have tried to illustrate
the index models can give an enhanced depiction of the data relationships
over standard linear modeling. We have used our test to check to the adequacy
of a parametric (linear) model versus nonparametric regression, and it seems
natural that the test will be useful in other (nested) testing problems.

We have focused on the use of nonparametric kernel estimators. While the
adjustment terms listed in Section 2 involve large formulae, they are computed
directly from the data and do not involve more complicated computation than
required for the kernel estimators themselves. We also have developed a
standard asymptotic theory for using kernel estimators; but from the results
of Newey (1991), it is natural to conjecture that the same distributional
results would be obtained when other nonparametric estimators are used, such
as truncated polynomials or other series expansions. We have raised the
singularity issue for tests using nonparametric estimators, and discuss
various ways our basic method might be further justified.

We do want to stress one feature of our method that we find appealing
relative to alternative testing procedures. In particular, focusing on the
single coefficient ; is valuable because of its goodness of fit
interpretation. This likely led to overly complicated technical analysis,
such as the precise analysis of the adjustments required to account for

nonparametric estimation. But in our view, the value of focusing on an
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interpretable statistic is the immediate practical sense it gives for which
models "fit" the data and which do not. For instance, the model PARTIAL2
accounts for an estimated 1-; = .9884 of the variation of the general
regression, which is strong support for the notion that the model PARTIAL2
captures the systematic features of the the log housing price regression in
the Boston Housing data, especially relative to the more restricted models.
As such, we find our method more appealing on practical grounds than

specification tests that just take on an uninterpretable "accept or reject”

posture without further giving useful information.
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Appendix 1; Impact of Estimated Regression and Proofs of Results

The structure of the terms that adjust for estimated functions and
parameters are quite similar, so we present generic results which specialize
to Lemmas L and R above. For this section, refine the notation slightly for

any partial index model: suppose that x is partitioned as x = (x ), with x

0'*1

a d-1 vector, d £ k, and z denotes the the d vector of predictors for a

1

partial index model, namely z = (xOTGO, xl). Thus, the notation can range
from the case of a single index model, where d = 1 and z = xTé, to the general
regression case where d = k, where without loss of generality we set z = x

(and ignore the adjustment term for the estimation of &, below).

0

Further, let %, denote a k - d subvector of Xg» where the remaining
component of X, has a positive coefficient 61. The transformation

(Z.xz) - r(x)

is linear and nonsingular with (constant) Jacobian 61,
r'l is 1/61. Below, we need to consider several functions of x as functions

so that the Jacobian of

of (z,xz). To keep this compact, we use a "*" to signify this simply: for

a function a(y,x), we have
* -1
a (Y’z'xz) - a(y»f (zvxz))

We will mention this explicitly when necessary for clarity.

We will focus on adjustment terms that arise from the estimation of the
regression function M(z) = E(y|z). Recall that the marginal density of x is
f(x), and the joint density of y and x is q(ylx)f(x). The regression of y on

z is written explicitly as

M(z) = C(z)/F(2)
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where C(z) 1is

C(z) = 61-1 f yq*(z,xz)f*(z,xz) dx, = 6 -1 f m*(z,xz)f*(z,xz) dx

2 1 2

and F(z) is the marginal distribution of z; namely

-1 *
F(z) = 6, [ £ (z,x,) dx,

All the adjustment terms that we consider are based on kernel estimation

of M(z) = E(ylz). Let zi - (inTéo, xli) denote the ithobservation of the
predictor based on estimated index coefficients, and z, = (x01T60, xli) denote

the analogous vector based on the true coefficient values. The kernel
A A

estimator used in estimation is M(z), computed using z namely

il yi'
M(z) =« C(z)/F(z)

where

N A
A zZ -~ Z
C(z) = N 1nd ) K[———l] Yy
ST
where X is a kernel function, h is a bandwidth parameter that must be set for

estimation, and

N A
A zZ - 2
F(z) = N "¢ ¥ :-([—1]

ISR

Finally we will need to make reference to the kernel estimator that would be

computed if the coefficients &, were known, namely

0
M(z) = C(z)/F(z)

where

K




ST
and
N
_ 1 -d z -z
F(z) = N 'h Zx-——l
B
Each adjustment term takes the following form:
-1/2 .
(A.1) A=N L (M(z)) - M(z))] aly %) I,

where a(y,x) has mean 0 and finite variance. We first split this

into variation due to the estimation of 60, and due to the estimation of M:

A= A6 + AH
where

Ay, = V2T MGz - Hz)) alyx) I,

-2 5 [z - Mz alyx) T,

Ay

Again, recall that for k = d, we set A6 - 0.

First, consider the adjustment for nonparametric estimation, or AH' This
is analyzed by linearizing M in terms of its numerator and denominator,
analyzing its U-statistic structure to show asymptotic normality, and
analyzing its bias separately, along the lines of Hirdle and Stoker (1989).

Fortunately, some recent unifying theory is applicable. Let

d(z) = Ela(y,x)I|z)




Begin with the following generic assumption:

Assumption Al: We assume that
D EGY <=,
2) E(y“]z)F(z) and F(z) are bounded,
3) E[a(y,x)zl] < o
4) The kernel X has bounded support, is Lipschitz, J K(u) du =1,
and is of order P > d.

5) 4(z)F(z) and F(z) are continuously differentiable of order at

least P,

6) There exists a compact set # such that 4(z) = 0

for z € Rd/ﬁ

7) 4(z) is continuously bounded a.e.

The adjustment for nonparametric estimation, AH' is characterized by applying

Theorem 3.4 of Newey (1992).

Lemma 1: Given Assumption Al, if Nth/(ln N) 3 @ and N th 2 0, then

-1/2
Ay = N ) T * op(l),

where Tomi = l(zi) [yi - M(zi)], and Ay 2 N[O, E(rAHirAniT)].

The adjustment for using estimated coefficients is characterized directly

as follows. Recall that

p -1/2
Iﬁ(ao -6 = N ) Too(yy %) + op(l)
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B - E( 3M/3z)(2) [E(axy|z) - d(2)E(xg|2)] + ad/dz (2) [E(yxglz) - M(2)E(xy|2)])

then we have

Lemma 2: Given Assumption Al, if th+2/(1n N) » « and h » 0, then

Ag = B Iﬁ(éo -6y o+ op(l).

-1/2
- N / )y B réO(yi’xi) + op(l)

Proof: Denote the kernel regression as a function of x, and & as

i
N (X, -X% )TG X, -X N (XA, -X )T5 X. . -X
Mxi6) = ) X 01 0§ . “1i "1j R oF S M ¢ S § |
' h h h h ]
-1 §-1
N T
(Xn, "X~ ) 8 x,,-X%
- SJ((xi;G)'1 Z K[ 01 0j : 1i 11] y
h h 3
j=1

By the Mean Value Theorem, we have that

Ag = Ly [an* (x,;3,)/86) a(y,.x,) I, {K(S - 6,)

where 31, i=1,,..,N lies on the line segment between 6, and 6.,. Therefore, if

0 0

-1 -
B, - N UL [0M7(x,:3,)/80) a(y %) 1

N i

and we can characterize plim ﬁN = B, then we will have

As = B Iﬁ(ao - 60) + op(l)

We have
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T
Xn: X s (X\.-X..) 6 x .
oM’ (x 16)/88, = s, (xi6) 1§ 2R DLy | 0L 0 1yl
1 0 K*"i ;
i=1
N T
Xa. "X (X4, -X )6 X, -X%. .
- M+(xi;6) sK(x,;a)'lz 01 "0j .| 0L 0j° . 1i '1j
i ' R N N
j=1
+ , .
= in M )1 (xi,é)
N T
. 1 (X\.-X.,) 6 X,,-X,.
- Sy (x.;8) 1 Z Xl, 0i “0j ; 1i "1j o
j=1 h h h 373

j=-1

where " 1' " denotes differentiation with regard to the index, or first

argument. Under our conditions, as h 3 0 and § > 60, these terms estimate
. ' -1

OM(x,;8) /38y = xo, M '(z)) - [F(z,)] "[3[E(xzy|z,)F(z,)]1/82,]

+ M(z,) [F(2,)] M {a1E(xy |2 )F(z))]1/02)]

= Xoq My'(2)) - [El'(xoylzi) - H(zi)El'(xolzi)]

- [E(xoylzi) - H(zi)E(xolzi)][F(zi)]-lFl'(Zi)

Since x can be regarded as bounded because of
trimming on small positive density, then uniform convergence follows as in

Newey (1992), since th+2/(1n N) >oas h>0ands, -5,~ op(l). Therefore

B - E(a(y.x)[xg M, (2) - [E)* (xoy|2) - M(2)Ey" (x42)]
- [E(xgy|z) - M(2)E(xg|2) 1 [F(2)]7'F " (2)])

- E{ Ml'(z)[E(axolz) - A(z)E(xolz)]
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+ 4, (2) [E(yxglz) - M(z)E(xy|z)])

giving the characterization of As above. QED

Consequently, we conclude that

Lemma 3: If Nth/(ln N) > © and N th > 0, then

p -1/2
A= BANG, - 6 + N 77 Lr, .+ 0, (1),

IR ERCHCRIE R 0, (1)

_ w172
N Y T, o+ op(l)

where r - B té(yi'xi) +r

A AM{

Applying Theorem 1 to RAN and LAN yields Lemmae R and L.

Estimation of asymptotic variance is accomplished by using an estimate of
the influence terms for the adjustment factors, with the consistency of this
procedure verified by an argument similar to that in Hirdle and Stoker (1989).
With regard to the generic adjustment term (A.l), the matrix B is consistently
estimated by evaluating the expression for BN above at 3 and the bandwidth
used for estimation. The influence term TaMi is estimated from the

U-statistic structure of AM’ which would be used in a direct proof of Lemma 1

above. 1In particular, we have that

172

Ay = N

[U1 - U2] + op(l)




N -1 N N
S L oL ppg
i=1 j=i+l
with
z. -z, a(y,,x.)y.I. a(y. .x.0y.I.
Plij-l/Zh'd x[‘ J][ LD S B SRR R R TN
h F(zi) F(Zj)
and
-1 N N
N
Uz'[z L L Py
i=1 j=i+1
where
) z, - z a(y,,x, )M(z)I a(y, ,x, )M(z,)1I
puj-l/ﬂ\dxi J S0 SS S S I M M
h F(zi) F(zj)

A A A A

If plij and ;)21_1 denote the above expressions evaluated at 6, M, F, I and the

bandwidth used for estimation, then the influence term rAHi is estimated

A

A -1 A A
b - - .
Y Tamg N ZJ (plij p21j)11. Carrying out these manipulations for
the "right" adjustment RAN and and the "left" adjustment LAN give the
estimators presented in Appendix 2.

Therefore, the remainder of the proof of Theorem 1 rests on the validity

of
I'ﬁ(y-?)-RAN-uN+op(1)

This equation is demonstrated by verifying two features: namely that trimming
with regard to the estimated density gives the same results as trimming with

regard to the true density; and that the equation can be linearized into the

adjustment terms above.

A

The first piece requires showing that the estimated trimming index Ii -
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1[f(xi) > b] can be replaced by Ii - l[f(xi) > b} in the terms

~ ~

L (gg - By, - 6T

N-l/Z

L

-1 " 27

~

that comprise vy, without affecting their asymptotic distribution. This

feature follows from a term-by-term analysis which we highlight below. In

particular, we have that

-1/2 . : p - . A
NPy - o0y - 61,1 = N2y (By - g (yg - G A;-19)

-1/2 - . : -1/2 - z
- ) (g; - 8;)(G;-GH(I;-1.) - N / ) (gy- E(B1))(G6-G)(1,-1))

-1/2 : ‘172 ¢ 1
+ 028 (g - By - 6T - N YT (g E(eDI(y, - 6T, -1)

+ N2 5 (g B (66,1

and
N T (g; - g)z(Ii-Ii) ) (g; - 51)2(11'11) AR E(gI))z(Ii-Ii)
f 8T (g - E@HEA, 1) - 2 8T (g EGD) (e, - EGD),-L,)
5y & 1771 g BlellIlg & i1

_1 A A -1 A .3 A
-2 ¥ (gi - 51)(31 - E(gI))(Ii-Ii) +2 N Y (g - gi)(g - E(SI))(Ii-Ii)

Each of the terms in these expression can be shown to be op(l) by a similar

method, which we outline as follows. Begin by noting that that our

A

assumptions implies uniform convergence of f(x) to f(x) (when f(x) > ¢ > 0),

so that with high probability

f(x) - y < f(x) < £(x) + ¢

vwhere cy = ¥ [(Nhfk/ln N)'l/z], ¥ a constant. If I - 1(b-cy < f(x) < bteyl,

N
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note that

Prob( i - 1 nonzero} = E[(i - I)2] < E(I) = ¥ ((Nhfk/ln N)-l/2]'
Further, let NI - z (Ei - Ii)2 denote the number of nonzero terms in each of
the terms above.

To illustrate how the terms are analyzed, consider the first term of

the first expression, for which we have

- ~ ~ 2
NlE(T (g - 8)(yy - G)(I;-1)]

N " 2 : 2
< N [Prob(I -I, nonzero}] (sup Igi-gi|) (x |(yi- Gy - Ii)l/NI] + op(l)

d 2d
<O[ N (Nhfk/ln Ny “1/2 (Nh, %/1m MYy - o(qn hfkho 0y -1/2 (1n 8372

= ao(l)

given our bandwidth conditions. Similarly, the third term of the second

expression is

N2 E(I(e, - B A1) = (™ BT, - EGINP,-1)MN )

- 0[(Nhfk/1n M1 = eq1)

and so forth. All the other terms are treated similarly.

Finally, with trimming based on the true density, the linearization is
shown by uniformity arguments analogous to those used above. Denote the
sample variance based on trimming with the true density as

A ‘1 - l2 A
SgI -N" 7 (gi - g) Ii' It is easy to show that plim SgI - ag, so
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. 1 A oa .
IN(y-7) = — N'1/2 (z (gi 3 g)(yi - Gi)Ii ) [gi - E(g)](yi - Gi)Ii]

Sep

Se " Se1 (.12
+ b5 [N L lg, - B, - ci)xi]
s s
g gl
L1 o .
= N (Z (g - 8)(yy - GDI, - X g - E@I(y; - Gi)IiJ
a
g

1
+ op( )

so we focus on the overall adjustment term

A

-1/2 A X )
Some tedious arithmetic gives that

-1/2 - -1/2 ~
ADJ = N ) (g - g)(y; - GDI, - N ) (g; - E(8)](G; Gi)Ii]

where

-1/2

T,y - (8 - E(®] N Ly - 6PL,

T - N-1/2

N (g - E(@)] (6-06) LI,

Ty = N 728 (g - g6, - 6T,

3N
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Moreover, by the methods used above, if is easy to verify that each T is

o (l1). For instance, for T, ., we have
) 3N

1/2 - -
|Toql = N / sup(|(g; - g, |1 sup(je, - 6T

-d /2 -d, /2
-1/2 0 1

- 0[N hg hy (In M)} = o (1)
dy d

since Nho h1 1/(ln N)2 5> ., The other terms follow similarly.

have that

ADJN - RAN - LAN + op(l)

which completes the proof of the Theorem.
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Appendix 2: Variance Adjustment Terms

Recall that we use subscript "i" to compactly denote evaluation of
relevant terms at (y,x) = (yi,xi); for instance, g, denotes g evaluated at
z. ., G, denotes G evaluated at z,., and I. is the trim indicator

0i i 1i i
that is 1 if f(xi) > b, and 0 otherwise, as above.

To account for the estimation of 6 (or a subvector), we use the

"slope" influence estimator discussed in Stoker (1992), namely

A -1 A A - T -1
re(y %) = (N © kL LI (x - x)7)

A A A N . - ~ iA.
L Tv + N'lhf'k ) [hf'l va[fi___fi] ) xf[fi___fl]g ] _,lﬁl_]
h|
j=1 he he £

where ui - (yi-;) - (xi-i)Té is an estimated residual. The asymptotic

A

covariance matrix of 6 is estimated as the sample variance of rd(yi,xi).

The adjustment terms are given as follows. The "right-hand" adjustment

is

ra;, = rgi + B
where Ts01 refers to the subvector of 50 corresponding to the coefficients of
the more general (right hand) regression function, and where

A

A

0 Ts0(V10%y)

rg1 -
N z . -z (y. - 6Oy.1I. (v, - Gy.I
ho-do ) [x 04 01] [ o S b I R I 1o ] )
0 h F F
j=1 0 01 05
X [201 - sz] [ (g - 698414 .\ vy - Gi)gjli]
o Ea) A
Ry Foi Foj
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0 0 if m does not have an index variable as an argument,

Recall B otherwise

where K.’ denotes the derivative of KO with regard to its index argument, and

N T;
b= st T *o17%0y | Foi*oy) 0 *uiMy
0~ Yok“*i N 0 N RN Y3
=1 B 0

N
. ‘e foi®oy . | ®oiX05’ % *117*yy
- 8y Sox(xp) ) K :
1 Sox(*s N 0 N -
j=l 0 0

) Ts
01 %03’ ¢ *117%1j
Sox(*y) = Z K [ 2
Bo 0

Finally, the "left hand” adjustment is

A A A

la, - * By Tu01(Yy0%y)

where

A A R A A R A

N A
R [x [z1 . zJ] [ (g - B)y;1;  (gy - @)y, ]
1 x + x -
1 F11

Flj

z, - zj] [ (g; - 8)G(z)L . (gjh- g)G(zj)Ij]]
1

F1i i

1 A A

and where K.’ denotes the derivative of Kl with regard to its index argument
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a1 M Ry hy
N T,

N -X ., ( J) .
.G, s (x')-l Z 0i 0j y . 0i "0j : 11 "1j
i "KL h h h

j=1 1 1 1
N T
(Rp,"%Xn:) 6 Xy -Xo.
- 0i 70j o li Tl
S1x(%4) ) Kl[ N S ]
j=1 1 1

With these assignments, the asymptotic variance of v is estimated as the

sample covariance 07 of

A Y = ~

A'l 2
r1i - sg ([g1 - gl u, + ra, - lai)Ii

A A

and so the variance of 7 is estimated by aY/N.
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Notes

1 We could likewise apply our test using other kinds of index models as
either the restricted model (null) or the general model (alternative), such
as the multiple index model m(x) = G(xlTﬂl,szﬂz). The key requirement for

our development is that the restricted model is nested in the more general

model, as discussed in Section 4.2.

See Stoker (1992) for a discussion of average derivatives, kernel estimation
and the connection to index models, and Hirdle (1991) for a thorough

development of nonparametric regression estimation.

We include the constant term to permit minor differences in the mean of the

fitted values of the restricted and general models.

4 This "goodness of fit" interpretation may not apply for parametric

model -semiparametric model comparisons where estimation methods are used for
the restricted and unrestricted models. For example, when the null hypothesis
is a linear model, the mean of y conditional on the index xTﬂ will be
nonlinear under general alternatives, so that the relevant analog of (2.15)

will not hold.

> A brief description of the issues is given in Stoker(1992), as well as a
brief discussion of the results discussed below.

6 We do not take account of the jointness of the hypotheses to be tested. It

would be useful to develop Bonferoni critical values or a Scheffe S-method for
the tests involved with characterizing index structure.

7 These are "indirect slope™ estimates in the parlance of Stoker (1992).

Details on estimation are discussed in Section 4.
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Strictly speaking, this is a test of the equality of the average derivative
-1 .
6 = E(m') and the limit of the OLS coefficient 8 = [Var(x)] Cov(x,y), which

must coincide when the model is linear.

In terms of the fact that the linear model appears to explain more

variation than the single index model, it is worth noting that the v
values are estimates that are not constrained to decrease for less

restrictive models, and, as noted before, that the variance interpretation of

-~

Y 1s not strictly correct for testing the linear model against a general
alterative.

10 The specifications used in Section 3 are discussed in Section 4.3 below.

a
1 A kernel K is of order P if [ K(u)du = 1, and "moments" [ IIuJ J K(u)du = 0

a
when § ay <pP; [ IIuJ 3 K(u)du » O when J a

However, convergence to these consistent limits (under fixed bandwidths) is

= P.

at rate N, with uniformity following from standard results, so much of this

kind of theory would be simpler than the shrinking bandwidth theory of Section
4.2,

13 As discussed in Appendix 1, our variance adjustments are directly suggested

by the U-statistic structure of RAN and LAN. It is likely that these
adjustments also arise from the general variance estimation formulae of Newey

(1992), however we have not verified this.
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TABLE 3.4: ADJUSTED AND UNADJUSTED STANDARD ERROR ESTIMATES

TESTS AGAINST GENERAL REGRESSION

Restricted Unrestricted
LINEAR GENERAL
INDEX GENERAL
PARTIALL GENERAL
PARTIAL2 GENERAL

PARTIAL INDEX MODEL TESTS

Restricted Unrestricted
LINEAR INDEX
LINEAR PARTIAL2
INDEX PARTIALL
PARTIALL PARTIAL?

.1712

.2314

.0718

.011e6

.0276

.1862

.1975

.0893

Standard
OLS

.0211

.0224

.0131

.0053

Standard

OLS

.0252

.0186

.0232

.0122

Hetero.

Consist.

(White)
.0268
.0311
.0149

.0047

Hetero.

Consist.

(White)
L0279
.0255
.0301

.0146

Corrected
for NP

Estimation
.0500
.0388
.0157

.0053

Corrected
for NP
Estimation

.0413

.043

.0240




TABLE 3.1: VARIABLE SPECIFICATION IN THE BOSTON HOUSING DATA

NOXSQ
CRIM
RMSQ

DIS

TAX

PTRATIO

LSTAT

log of home value

nitrogen oxide concentration

crime rate

numbér of rooms squared

distance to employment centers

accessibility to radial highways

tax rate

pupil teacher ratio

(Bk - .63)2, where Bk is proportion of black
residents in neighborhood

log of proportion of residents of lower status




Figure 3.2
Effects of NOXSQ and Index Variable: Model PARTIAL1l
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