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Abstract. We consider a team of agents with limited problem-solving ability facing a dis-
junctive task over a large solution space. We provide sufficient conditions for the following
four statements. First, two heads are better than one: a team of two agents will solve the
problem even if neither agent alone would be able to. Second, teaming up does not guarantee
success: if the agents are not sufficiently creative, even a team of arbitrary size may fail to
solve the problem. Third, “defendit numerus”: when the agent’s problem-solving ability is
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1 Introduction

Diversity is a word loaded with multiple connotations. We inquire about the value of bringing
a diverse toolbox to a difficult problem. This is well captured in an amusing story by Feynman,
a famous and eccentric physicist: “It turns out that [differentiation under the integral sign i]s
not taught very much in the universities; they don’t emphasize it. But I caught on how to use
that method, and I used that one damn tool again and again. . . The result was, when guys at
MIT or Princeton had trouble doing a certain integral, it was because they couldn’t do it with
the standard methods they had learned in school. . . Then I come along, and try differentiating
under the integral sign, and often it worked. So I got a great reputation for doing integrals,
only because my box of tools was different from everybody else’s. . .” (Feynman and Leighton,
1985).

Taking a managerial point of view, it is natural to expect that a team working on a problem
benefits both from the sheer ability of its members and from the diversity of their toolboxes.
For instance, upon being honored for excellence in diversity, Dalip Raheja, President and
CEO of The Mpower Group, states explicitly that the added value of this consulting firm
is in providing diversity of thought: “We want the client to have the benefit of getting all
different types of thinking applied to their problem.” (Consulting Magazine, 29th July 2008).

More explicitly, here is how Paul Bürkner, President and CEO of The Boston Consulting
Group, describes the power of diversity in problem-solving: “When were faced with what
looks at first like an unsolvable problem, a team with what I call ‘spikes’ of different talents
will come up with a better solution than a team whose members have similar strengths.
One person makes an oddball suggestion, the next person misunderstands it but in a fruitful
way, and together they end up devising a novel solution. The process can be slow and
uncomfortable; spikiness often hurts. But it can yield spectacular results.” (Harvard Business
Review Magazine, December 2007).

The power of diversity in problem-solving, recently popularized in Page (2007), has been
long recognized by the psychological literature (Michaelsen et al., 1989). The consensus
over the available evidence distinguishes between intellective and judgmental tasks (Hill,
1982). The former require the group to achieve a correct answer, while the latter strive
for consensus (Laughlin, 1999). It is apparent that groups tend to perform better than
individuals on intellective tasks (Hastie, 1986; Levine and Moreland, 1998). This effect is
particularly evident when, as in Feynman’s feats, the intellective task is demonstrable and
the correct solution (once found) is easily recognizable by the other members of the team
(Davis, 1992; Laughlin et al., 2002).

Some recent literature in experimental economics focuses on intellective tasks. Blinder
and Morgan (2005) observe that many important decisions, most notably in monetary policy,
are taken by committees rather than individuals. Comparing two laboratory experiments
based on a demonstrable intellective task, they reach three conclusions: groups take better
decisions than individuals; they require less information to act; and the quality of their
decision is not affected by whether decisions are taken by majority or unanimity. In a follow-
up study, Blinder and Morgan (2008) provide evidence that designating the ablest individual
as team leader has no discernible effects on performance. A different strand has worked on
game-theoretic intellective tasks, reaching the general conclusion that initially teams may not
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perform better than individuals but they learn faster to adopt and use strategic reasoning,
from which they gain a substantial payoff advantage; see the beauty contest in Kocher and
Sutter (2005), the limit pricing game in Cooper and Kagel (2005), and the centipede game
in Bornstein et al. (2004).

More generally, the literature on organizational and management science shares the insight
that functional diversity with a group tends to improve its performance (Krishnan et al.,
1997; Simons et al., 1999; Jackson et al., 2003). At the same time, much effort has gone into
factoring out a variety of details that promote or hinder the performance of a team (Pelled et
al., 1999; Mannix and Neale, 2005). For instance, Dahlin et al. (2005) argue that educational
diversity favors information use while the social categorizations cued by national differences
impair it. Reagans et al. (2004) show that the heterogeneity of the social networks associated
with its members is an important predictor of team performance.

Finally, even the ecological literature has recently turned its attention to experiments pro-
viding evidence that groups may perform better than individuals; see Conradt and List (2009)
for a wide-ranging survey. Liker and Bókony (2009) show that larger groups of house spar-
rows exhibit a faster and greater foraging performance; their superiority is not only due to
a higher number of attempts but to a greater effectiveness in problem solving. Burns and
Dyer (2008) argue for the evolutionary advantage of maintaining a diverse set of foraging
strategies in a bumblebee colony. Ward et al. (2011) point out that both speed and accuracy
of decision making increase with group size in fish shoals under predation threat.

The aim of this paper is to study the impact of diversity over individual problem-solving
abilities when a team faces a demonstrable intellective task over a large solution space. We
assume that the solution must be found in a very large solution space and that agents’
abilities are constrained to explore only limited regions of such space. We exhibit sufficient
conditions under which a team of two or more agents succeeds in solving a difficult problem
with a large solution space: even though no agent is sure to crack it, pooling their diverse
abilities achieves the goal. In other words, we prove when it takes (at least) two to solve
a problem. We also provide sufficient conditions under which teaming up does not always
guarantee success because agents are not sufficiently creative.

Moreover, we also consider situations in which the problem-solving ability of agents is
adversely affected by the dimension of the solution space. We prove how a small increase
in the size of the group can be highly effective to overcome the negative effects on agents’
abilities. A second negative effect is associated with groupthink, when the members of a team
tend to align their perspectives. We show that increasing groupthink induces progressively
greater losses in the group performance, but that these can to a large extent be compensated
by substantially stronger increases in team size.

The organization of the paper is as follows. Section 2 describes the main model, accom-
panied by an illustrative example. Section 3 shows that a team of at least two agents may
be always successful whereas a single agent would not. Section 4 discusses the equivalence
of our model with the one used in Hong and Page (2004), highlighting the differences in
our perspective. Section 5 considers a model where teaming up may fail to ensure success,
regardless of the size of the team. Section 6 deals with the assumption that problem-solving
abilities are inversely related to the size of the solution space and Section 7 with the effects
of groupthink. Section 8 offers a commentary. Proofs are relegated to the appendix.
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2 The model, illustrated by an example

There is a team T of m problem-solving agents of limited ability who attempt to maximize an
objective function V that maps a finite set X of n solutions into real numbers. The function
V : X → R is one-to-one; in particular, it has a unique maximizer at x∗. The task of the team
is locating x∗. Following Marschak and Radner (1972), we assume that the agents in the team
share the same objective and there are no frictions due to the difficulties of communication
among people.

As a simple running example, consider Figure 1: it depicts a solution space X with six
elements. We identify each point x with its value V (x) topping it; hence, the maximizer
x∗ = 6 is the bottom-left element associated with a value of 6.

1 2

3 4

6 5

Figure 1: A solution space with six elements

Locating the maximizer is a demonstrable intellective task that can be carried out dis-
junctively : if one of the agents finds x∗, he can show its value to his teammates and the task
is accomplished (Gerchak and He, 2004). However, due to their limited ability, each of the
agents in the team may fail to discover x∗.

We represent the limited problem-solving ability of each agent i by a partition Πi of X;
see Rubinstein (1993) for a related approach. Suppressing momentarily subscripts, consider
one agent. The mutually disjoint and exhaustive classes constituting the partition Π are
called blocks. The agent can find the best solution within the block is working on, but he is
impervious to the other blocks unless his attention is redirected there by someone else. The
availability map Π : X → 2X \ ∅ describes the search space of the agent: for each x ∈X,
Π(x) is the set of solutions that he can explore when he is aware of a candidate solution x.
The availability map is consistent : x is in Π(x) for all x in X; that is, the search space of an
agent always contains the candidate solution.

We assume that each agent correctly identifies and compares the values of V for each
solution he examines. Therefore, given a candidate solution x, he explores the search
space Π(x) ⊆ X and finds x0 = arg maxy∈Π(x) V (y): since V (x0) ≥ V (x), the search is
always (weakly) improving. More generally, when the agent has access to an initial sub-
set S ⊆ X of candidate solutions, he explores Π(S) = ∪x∈SΠ(x) and finds the solution
x0 = arg maxy∈Π(S) V (y).

Continuing our running example, Figure 2 depicts a partition for a (male) agent who
thinks “horizontally”: working over the top (respectively, middle or bottom) block of possible
solutions, the best solution he can find is 2 (respectively, 4 or 6). However, by himself, the
agents lacks the ability to move from one block to another. Unless he happens to begin his
search in the bottom block, he cannot find x∗ = 6.

When two or more agents work together, they can pool their abilities and expand their
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3 4

6 5

Figure 2: The partition of an agent

search spaces. Following the general framework developed in Hong and Page (2001), it is not
necessary to specify the minute details of their interaction because there are many alternative
procedures that lead to the same outcome. However, for the sake of clarity, we describe a
specific procedure inspired by sequential search. Number agents from 1 to m. Agent 1 works
on the task from an initial set S0 of candidate solutions. He discovers a set S1 = Π1(S0) ⊇ S0

of possible solutions that he hands over to Agent 2. She then explores the search space
S2 = Π2(S1) ⊇ S1. In each stage, the tentative solution is x∗i = arg max{V (x) : x∈Πi(Si−1)};
clearly, V (x∗i ) ≥ V (x∗i−1) and the search is (weakly) improving. The process continues, cycling
over all permutations of the agents, until no one can find further improvements; then the
search stops and the tentative solution becomes final. If, along the process, no agent ever
gets to explore the block in his partition that contains x∗, the optimal solution is not found
and the team fails (although it may succeed in discovering a very good local optimum).

Continuing with our illustrative example, suppose that there is a second (female) agent
with the “vertical” partition shown in the center of Figure 3. She teams up with the first
agent, whose partition from Figure 2 is reproduced on the left of Figure 3. The male agent

1 2

3 4

6 5

1 2

3 4

6 5

1 2

3 4

6 5

Figure 3: The partitions of two agents and their meet

starts with S0 = {1} and discovers the set of solutions S1 = Π1(S0) = {1, 2} in his top block.
He hands this information to the female agent, who can explore S2 = Π2(S1) = {1, 2, 3} and
thus finds x = 3. Exchanging information, she passes her insight back to her teammate. As
S3 = Π1(S2) = {1, 2, 3, 4}, this unlocks his access to x = 4. When the male agent returns
this new piece of information, this opens her eyes on her bottom-right block. She finds out
x = 5 and communicates it to the male agent, leading him to finally discover x∗ = 6.

We formalize the problem-solving ability of a team T = {1, 2, . . . ,m} as follows. Each
agent i in T is associated with a partition Πi that represents his ability to explore the search
space. Starting with an initial set S of candidate solutions, each agent i explores Πi(S);
analogously, any team of two agents i = 1, 2 explore Πi(Π3−i(S)); and, more generally, the
team jointly explores the union of all subsets representable as Πik(Πik−1

. . . (Πi1(s))) ⊆ S for
any k and any sequence i1, i2, . . . , ik.
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Figure 4: The partitions of two other agents and their meet

When X is finite, there is a simple characterization of the set of solutions that are jointly
explored by a team. The finest common coarsening of the partitions (Πi, i ∈ T ) is another
partition M called their meet. Then, from an initial subset S of candidate solutions, the
team explores M(S). In other words, the meet describes the problem solving abilities jointly
attained by the team.

For instance, the meet of the partitions of the two agents used in our example is repre-
sented on the right of Figure 3. This is the trivial partition: regardless of its starting point,
the team can access the entire space of solutions and thus it is always successful. On the
other hand, things may not work as smoothly. For instance, switch her right blocks and
suppose that the second agent comes with the partition given at the center of Figure 4. If
the two agents work on any subset of S = {1, 2, 3, 4}, they are jointly unable to access any
point x ≥ 5 and will not find x∗ = 6. The meet of their partitions is shown on the right of
Figure 4: it reveals that the team, albeit more powerful than each of its members alone, still
exhibits limited problem-solving abilities.

The next short subsection conveniently collects a few technicalities used in the paper.

2.1 Technicalities

We assume that X is a finite set with n elements; when useful, we write it as Xn to make
the number of elements evident. We label the elements of Xn with the integers {1, . . . , n}.
Following custom, we list the blocks of a partition of X in increasing order of their least
elements and the elements of each block in increasing order. For instance, the blocks of the
partition {3, 4, 5}, {6, 1}, {2} of a set with six elements are listed {1, 6}, {2}, {3, 4, 5}. For
brevity, we simplify notation and write the partition as 16|2|345.

We write Π � Π′ to denote that Π is coarser than Π′. Clearly, an agent endowed with
partition Π has a higher problem-solving ability than another agent endowed with Π′. The
trivial partition Π0 that has X as its unique block satisfies the property Π0 � Π for any
partition Π; therefore, an agent endowed with the trivial partition has the highest problem-
solving ability of all and, indeed, will find the global optimum from any starting point. The
set of all the partitions of X partially ordered by the refinement relation �, is a lattice. In
particular, the notation Π1 ∧ Π2 denotes the finest coarsening of Π1 and Π2; analogously,
Π1 ∨Π2 stands for their coarsest refinement. The meet of (Πi, i∈T ) is M =

∧
i∈T Πi.

The number of partitions for a (finite) set Xn of n elements is given by the Bell number
Bn. As an example, consider X3 = {1, 2, 3}. The set of all its partitions, denoted by P(X3), is
P(X3) = {123, 1|23, 2|13, 3|12, 1|2|3} and thus B3 = |P(X3)| = 5. The first few Bell numbers
are B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, and B6 = 203. The Bell numbers
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satisfy the recursive formula

Bn+1 =
n∑

k=0

(
n

k

)
Bk

as well as the Dobinsky’s formula

Bn =

+∞∑
k=0

kn ·
(
e−1

k!

)
according to which Bn is the n-th moment of a Poisson distribution with expected value 1.

We are to study spaces of solutions when n is large. The number Bn of possible partitions
is much larger. Some intuition for its rate of growth can be gathered considering that B10 =
115, 975;B100 ≈ 4.7585× 10115; and B1000 ≈ 2.9899× 101927. More precisely, an asymptotic
formula for the Bell numbers as n ↑ +∞ is

Bn ∼
1√
n
rn+1/2er−n−1

where r is defined as the root of rer = n; see Pitman (2006). Recently, Berend and Tassa
(2010) have proved a convenient upper bound

Bn <

(
0.792n

ln(n+ 1)

)n

(1)

that holds for all n.

3 Two heads are better than one

This section studies the performance of a randomly chosen team of problem-solvers. We fix
both the number n of solution in Xn and the size m of the team Tm. A team is always
successful if it can find the optimal solution in Xn from any starting point; that is, if the
meet of the partitions of its agents is the trivial partition. We assume that the agents in the
team are randomly chosen so that the composition of the team is stochastic and we ask what
is the probability that the team is always successful.

Since a problem-solver is represented by a partition, we need to construct a model of
how agents are randomly drawn from the set of partitions of Xn. To stack the deck against
success, we borrow from Hong and Page (2004) the assumption that no single agent can find
the optimum alone.

Assumption 1 (Difficulty). No agent in the team is endowed with the trivial partition.

The simplest way to build a random model for the problem-solving abilities of the mem-
bers of a team is to assume that they are independently chosen according to the uniform
distribution over all partitions. Formally, let P(Xn) denote the set of all partitions of Xn.
The number of elements of P(Xn) is the Bell number Bn. The uniform distribution on P(Xn)
assigns probability B−1

n to each partition. We call this the uniform model. In order to satisfy
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the difficulty assumption, it suffices to attach zero probability to the trivial partition and
update the uniform model by giving probability (Bn − 1)−1 to every nontrivial partition.
We call this the uniform model with difficulty and study it in this section. Section 5 and 6
consider two alternative models.

It is intuitively clear that the size n of the set Xn of solutions is going to affect how easy
is for a team to be always successful. The main focus of this paper is over the case when n
is large. However, to build up intuition, we look first at the case where n is quite small.

Consider two agents and three elements, so that m = 2 and n = 3 with X = {1, 2, 3}.
There are B3 = 5 possible partitions, namely: 123; 1|23; 2|31; 3|12; 1|2|3. Each of these
five partitions has identical probability 1/5 and each pair of partitions (one for each agent)
has identical probability 1/25 of occurring. Denoting by × the event that the meet of two
partitions is the trivial coarse partition, we obtain the left-hand side of Table 1 where it is easy

123 1|23 2|31 3|12 1|2|3
123 × × × × ×
1|23 × × ×
2|31 × × ×
3|12 × × ×
1|2|3 ×

No difficulty

1|23 2|31 3|12 1|2|3
1|23 × ×
2|31 × ×
3|12 × ×
1|2|3

Difficulty

Table 1: When the meet of two partitions is the trivial partition

to check that there are 15 favorable events out of 25 possible ones. Since the joint probability
distribution is uniform, the probability that a team of two agents is always successful under
the uniform model is 15/25 = 0.6.

Under the difficulty assumption, the probability that an agent is endowed with the trivial
partition 123 is zero: so we delete the first row and the first column and get the right-hand
side of Table 1. Now, there are 6 favorable events out of 16. Thus, under the uniform model
with difficulty, the probability that a team of two agents is always successful is 6/16 = 0.375.
Introducing difficulty reduces the probability of success from 0.6 to 0.375: as expected, it is
harder to find the optimal solution.

Using a similar reasoning, we have computed the probability that a team of m = 2 agents
is always successful under the uniform model with difficulty for n = 2, 4, 5 as well. The
results are summarized in the first row of Table 2, whereas the second row reports the same
probabilities without the difficulty assumption.

n = 2 n = 3 n = 4 n = 5
Difficulty 0 6/16 = 0.375 90/196 = 0.459 1240/2601 ≈ 0.477

No difficulty 3/4 = 0.750 15/25 = 0.600 119/225 ≈ 0.529 1343/2704 ≈ 0.497

Table 2: Probability that a team of two agents is always successful

We make a few observations. The probability that a team is always successful is definitely
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smaller than 1, regardless of whether we assume difficulty or not. Under the uniform model,
a team of two person may fail to solve the problem even if the solution space is very small.
This provides an important baseline for appreciating the result we are going to prove below;
namely, as the size n of the solution space Xn grows, the probability that a team of two people
is always successful approaches 1. That is, for a fixed team size, expanding the solution space
makes the team much better at problem-solving.

A hint of this surprising result shows up in Table 2 if we look at the first row from left to
right. As n increases, the ability of the team of always solving the problem under difficulty
increases from 0 to 0.477. What is going on? The basic idea is that a larger solution space
makes it easier for new ideas or novel approaches to emerge. Given the current set St of
candidate solutions, the team can make progress only if the search space Πi(St) accessible by
some agent i contains some element x new with respect to St. Since agents can transfer their
insights to teammates, such additional element x expands the team’s solution space from St
to St ∪ {x} and leads to a (weak) improvement. Each fresh insight x may suggest a new
approach and open up new possibilities. When the search space grows large, there are more
items that can be discovered: each of them can be a stepping stone or a bridge to a better
solution. Creativity is fostered by tossing around many alternatives.

One last technical observation compares the values in Table 2 column by column. The
difference between the probability that a team is always successful is decreasing in the size
n of the solution space Xn. In other words, as the solution space expands, the impact of the
difficulty assumption on the ability of the team to solve the problem tends to be negligible.
Indeed, it turns out that it is asymptotically irrelevant.

We are ready to consider what is the probability that a team of m people is always
successful under the uniform model when the space Xn of solutions grows large and n ↑ ∞.
We find that this probability approaches one for any m ≥ 2, with or without difficulty. On
the other hand, the probability that an agent is always successful is zero under the difficulty
assumption, while it goes down to zero as 1/Bn without it. This is a sharp difference: when
the space of solutions is sufficiently large, we are almost sure that no single agent is able to
solve it but a team of just two (or more) people will. Tossing many solutions around unclench
the power of diversity.

Theorem 1 Under the uniform model, the probability that a team of at least m ≥ 2 people
is always successful tends to 1 as n increases.

For n large, an exact computation of the probability is prohibitive because of the size of
the Bell numbers involved. However, Equation 7 in the Appendix provides an asymptotic
estimate for the rate at which this probability approaches 1. Moreover, as suggested by
one referee, we have estimated the probabilities (assuming no difficulty) for a few different
values of n over 10,000 rounds of simulations using a plain Monte Carlo approach. These are
reported in Table 3.
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n = 25 n = 50 n = 75 n = 100
No difficulty 0.679 0.797 0.847 0.871

Table 3: Probability that a team of two agents is always successful (estimates)

4 A comparison with Hong and Page

The seminal reference for the power of diversity is the work of Hong and Page (2001, 2004),
recently popularized in Page (2007). This section shows that the model used in Hong and
Page (2004) for the limited problem-solving ability of an agent is equivalent to ours and that
we abide by the same three main assumptions (Difficulty, Diversity, and Uniqueness) made
there. However, our perspective is novel in two important respects.

First, from a methodological point of view, we introduce partitions as an effective tool to
represent the limitations in problem-solving ability. Second, from a substantial point of view,
the main result in Hong and Page (2004) assumes that the number m of agents is sufficiently
large but the solution space Xn has a fixed size n. We take the opposite point of view and
let n grow large while keeping fixed the cardinality of the team of problem solvers who are in
charge of tackling it. They are interested in large teams; we study large solution spaces. So
we view the two papers as complementary with regard to exploring the power of diversity.

We also argue that proving the power of diversity over a large solution space Xn is more
challenging than establishing it for a large team of m agents. If we assemble a larger team to
work over a fixed solution space, it stands to reason that it should have a better chance to
succeed. On the other hand, consider a team of fixed size working on an ever larger solution
space. It is far less obvious that the team should always be successful. A simple example
may help to ground this intuition.

Table 4 exhibits the probability that a team of m = 2, 4, 8, 16 agents is always successful
for n = 3 or n = 4 under the uniform model with difficulty. All values are rounded to

m = 2 m = 4 m = 8 m = 16
n = 3 0.37500 0.82031 0.98831 0.99995
n = 4 0.45918 0.91977 0.99881 1−

Table 4: Probability that a team of m agents is always successful over Xn

the closest fifth decimal digit and we write 1− when the probability is within 10−5 from 1.
Assuming ever larger teams over a given solution space Xn corresponds to reading a row in
the table from left to right: as expected, for small values of n, the probability that a team
of m agents is always successful is rapidly approaching 1. Our paper, on the other hand, is
concerned with what happens when we descend a column in the table.

The general framework in Hong and Page (2001) describes the problem-solving ability
of an agent as the pairing of his perspective with a set of heuristics. The perspective is the
agent’s internal representation of a problem; the heuristics are the algorithms he applies to
locate solutions. To facilitate the mathematical study of disjunctive tasks, Hong and Page

9



(2004) suppress their own distinction between perspectives and heuristics and characterize
each agent i by a mapping ϕi : X → X and a probability distribution ν on X. The initial
distribution ν has full support and it is the same for all agents: it is used to randomly
generate the starting point of the search process; without loss of generality, let ν be the
uniform distribution on X.

For each x, ϕi(x) denotes the local solution found by Agent i when he starts his search
at x. Assumption 0 in Hong and Page (2004) states two properties valid for any mapping ϕi

and encapsulates the hypothesis that each Agent i is intelligent:

(0.a) V (ϕi(x)) ≥ V (x) for all x in X;

(0.b) ϕi(ϕi(x)) = ϕi(x) for all x in X.

Assumption (0.a) is the obvious requirement that the agent never finds a local solution worse
than his starting point. Assumption (0.b) states that the local solution found starting at
x cannot be further improved upon by the agent and that the final point of his search is
unique. This is natural if we take the point of view that Agent i tries his best given his set
of heuristics.

Under Assumption 0, it takes a simple change of perspective (pun intended) to derive the
equivalence between our partitional model and the ϕ-representation. Suppressing subscripts
momentarily, consider an agent associated with the mapping ϕ and the equivalence relation
x ∼ y on X × X defined by ϕ(x) = ϕ(y). When x ∼ y, the agent starting his search at
either point ends up discovering the same local optimum. With respect to the objective of
maximizing V , he is indifferent between x and y because they both lead to an identical result.
Hence, ∼ defines an indifference relation that partitions X into equivalence classes such that
each starting point in the same class leads to the same local maximum.

Clearly, the problem-solving ability of an agent represented by ϕ is uniquely identified
with the partition Π induced by ϕ. In this respect, it is worth noting that Assumption (0.b)
implies x ∼ ϕ(x) for any x and thus plays the important role of ensuring that ϕ induces a
partition Π that is consistent in the sense defined in Section 2.

Vice versa, any partition Π of X uniquely defines a problem-solving mapping ϕ by the
following construction. Let ∼ be the equivalence relation on X ×X defined by x ∼ y if and
only if y∈Π(x), where Π(x) denotes the block of the partition Π that contains x. Then, for
each x in X, the mapping ϕ(x) = arg maxy∼x V (y) characterizes the problem-solving ability
of the agent endowed with the partition Π. This establishes a formal equivalence between
the mapping ϕ and the partition Π as models of limited problem-solving for an agent.

This formal equivalence allows us to rephrase results from one perspective to the other.
For instance, Hong and Page (2004) note that the image ϕ(X) of the mapping is the set
of local optima discoverable by the agent. Since the elements in ϕ(X) are in a one-to-one
correspondence with the blocks in the partition Π, the cardinality of ϕ(X) is the same as
the number of blocks in Π. More generally, in the Hong and Page model, an agent is more
creative if he has more heuristics (or possibly more perspectives) and thus can generate more
points in the search space; in our model, this naturally translates into having a partition
made of larger blocks.
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In a similar vein, it is easy to check that our paper satisfies the three main assumption
(Difficulty, Diversity, and Uniqueness) made by Hong and Page (2004). For instance, consider
Difficulty. We use Φ = {ϕi : i ∈ T} or P = {Πi : i ∈ T} to denote the team of agents in
either perspective. Hong and Page (2004) state that, for any ϕ in Φ, there exists a solution
x such that ϕ(x) 6= x∗. That is, for each agent, there exists at least one starting point from
which the global optimum x∗ is not available; any problem solver has a nut he cannot crack.
Hence, the problem is difficult because no agent alone is sure to be always successful. Our
Assumption 1 that no agent is endowed with the trivial partition is logically equivalent.

5 Teaming up does not ensure success

The power of diversity demonstrated in Section 3 depends crucially on our assumptions
about the model that describes how the problem-solving abilities of the members forming
a team are drawn. Clearly, one cannot claim that Theorem 1 holds in any situation. This
section demonstrates a different model under which the opposite conclusion is reached: the
probability that a team (regardless of its size) is always successful at solving a problem is
zero. At the end of this section, we compare the two models and gain insight in what drivers
enable the formation of successful teams.

The uniform model studied in Section 3 assumes that agents are independently chosen
according to the uniform distribution over all partitions. This section works with what we
call the urn model after the following intuitive description. (A formal definition is given
immediately after.) There are n numbered balls and n urns. One by one, each ball is tossed
into a urn independently chosen with equal probability. At the end of the process, some balls
end up in the same urn and some urns remain empty. Each ball represents a solution in Xn

and each nonempty urn a block of the partition of an agent. The procedure is repeated afresh
for each agent.

For instance, suppose n = 3 so that there are three balls to be distributed in three urns.
This can be done in 33 = 27 possible ways. When the three balls end up in the same urn,
we generate the trivial partition. Since there are three urns, the trivial partition is generated
three times and, under the assumption that a ball is equally likely to end up in any urn, the
probability of the trivial partition is 3/27 = 1/9. Similarly, there are six possible ways to
generate each of the other four possible partitions 1|23, 2|13, 3|12 and 1|2|3. Hence, the urn
model assigns probability 6/27 = 2/9 to each of these partitions.

The formal definition is as follows. For a given mapping f : Xn → Xn, the sets {x ∈
X : f(x) = y} form a partition Πf of Xn. If f is chosen uniformly at random from the set
of all nn mappings then Πf is random, but not uniform. For instance, consider the trivial
partition. Under the uniform model without difficulty, the probability to draw this partition
over a set Xn is 1/Bn; under the urn model without difficulty, it is 1/nn−1. Using (1), it is
easy to check that Bn < nn−1 for any n ≥ 2, so the trivial partition is more likely to occur
under the uniform model.

Similarly to Section 3, we build up intuition for the urn model by looking first at the
case where n is quite small. Consider two agents and three elements, so that m = 2 and
n = 3 with X = {1, 2, 3}. There are B3 = 5 possible partitions. As discussed above, the urn
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model generates the trivial partition with probability 1/9 and each of the other four with
probability 2/9.

In order to compute the probability that a team of two agents always discovers the global
maximum, we apply these marginal probabilities to Table 1 and obtain Table 5. Its two
panels are arranged as in Table 1: on the left, the case without difficulty; on the right, the
case with difficulty. Adding up the joint probabilities, we find that the probability that a
team of m = 2 agents is always successful is 41/81 ≈ 0.506 without difficulty and 3/8 = 0.375
with difficulty.

123 1|23 2|31 3|12 1|2|3
123 1/81 2/81 2/81 2/81 2/81 1/9
1|23 2/81 4/81 4/81 2/9
2|31 2/81 4/81 4/81 2/9
3|12 2/81 4/81 4/81 2/9
1|2|3 2/81 2/9

1/9 2/9 2/9 2/9 2/9
No difficulty

1|23 2|31 3|12 1|2|3
1|23 1/16 1/16 1/4
2|31 1/16 1/16 1/4
3|12 1/16 1/16 1/4
1|2|3 1/4

1/4 1/4 1/4 1/4 1/4
Difficulty

Table 5: Probability of the trivial partition under the urn model

Table 6 reports the probability that the team of m = 2 agents is always successful for
n = 2, 3, 4, 5 under the urn model with (and without) difficulty. Contrary to the uniform

n = 2 n = 3 n = 4 n = 5
Difficulty 0 6/16 = 0.375 138/441 ≈ 0.313 5400/24336 ≈ 0.222

No difficulty 3/4 = 0.750 41/81 = 0.506 1369/4096 ≈ 0.334 87649/390625 ≈ 0.224

Table 6: Probability that a team of two agents is always successful under the urn model

model with difficulty, this probability is now decreasing in n — exception made for the
special case at n = 2. When the size of the solution space grows, the team seem to become
less and less effective in finding the optimal solution. Theorem 2 confirms this conjecture by
proving that this probability actually goes to zero when n ↑ ∞.

Theorem 2 Under the urn model, the probability that a team of at least m ≥ 2 people is
always successful tends to 0 as n increases.

It is worth noting that the proof works unchanged for m = 1 as well, so that the conclusion
of Theorem 2 actually applies for any m ≥ 1. Moreover, similarly to Theorem 1, it holds
regardless of whether difficulty is assumed or not.

Why is there such a stark difference between the uniform model and the urn model? It
can be shown that, when n is large, the expected number of blocks in a random partition
for the uniform model is n/ log n while it is (1 − e−1)n for the urn model (Sachkov, 1997).
Intuitively, the uniform model tends to generate fewer blocks than the urn model. Since
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the total number of solutions to partition among the available blocks is the same under
both models, this implies that the average number of solutions per block is higher under the
uniform model. Hence, this latter model tends to produce partitions that on average offer
more bridges to a better solution. Differently put, given an arbitrary solution x, an agent
with problem-solving ability drawn according to the uniform model has on average a larger
set Π(x) of solutions available; that is, he is more imaginative.

6 Defendit numerus

It is a reasonable assumption that the size of the solution space should adversely affect the
ability of an agent to solve the problem. When n grows large, an agent should be less apt
to discover the optimal solution. Our analysis for the uniform model and the urn model
sidesteps an explicit discussion of this issue. This section introduces and studies a third
model that formalizes this effect in a simple and attractive way.

Roughly speaking, the model is based on the following idea. Recall that the problem-
solving ability of an agent is represented by a partition Π of the solution space X. This
partition describes the search space of the agent: for each x∈X, Π(x) is the set of solutions
that he can explore when he is given a candidate solution x. An alternative representation is
by means of an undirected graph G. Let X be the set of nodes in G. Two nodes x and y in G
are linked by an edge if and only if they belong to the same block in Π or, equivalently, if and
only if x∈Π(y). Then, each block of the partition Π corresponds to a connected component
of the associated graph G. Intuitively, if one thinks of an edge as a mental shortcut linking
a solution x to y, two nodes are in the same block if an agent contemplating x can think of
y as well.

More generally, if we start with an arbitrary (undirected) graph Gn over n nodes, we can
define the partition Π formed by the connected components of Gn. This second construction
is more general, because it assumes that two nodes belong to the same block if there is a
path connecting them (but not necessarily a direct link). Intuitively, if each edge represents
a link from x to y, then x and y belong to the same block when an agent can reach and
explore solution y when starting at x, through a chain of (possibly multiple) intermediate
steps z, w, . . .

This insight allows the tools of graph theory to bear on the modeling of the problem-
solving abilities of an agent. Formally speaking, we view a partition Π of Xn as a graph Gn

with n nodes, where each block of Π is a maximally connected subgraph of Gn. Within this
setting, for instance, the trivial partition Π0 formed by the unique block Xn corresponds to
the property that Gn is a connected graph.

The model studied in this section is based on the theory of random graphs and thus will
be called the random graph model. A random graph is obtained by starting with a set of n
vertices and adding edges between them at random. A celebrated approach to the generation
of random graphs is due to Erdős-Rényi. Given the set Xn, each of the

(
n
2

)
possible edges

between distinct nodes from Xn is independently added with the same probability p. We
denote the random graph by Γ(n, p) to highlight the number n of nodes and the probability
p of adding an edge.
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Clearly, the structure of the partition Π associated with the random graph Γ(n, p) depends
on p: the larger p, the lower the expected number of blocks in Π. For instance, for p = 0
all nodes are isolated and we get the finest partition, while for p = 1 the graph is fully
connected and we obtain the trivial partition Π0. Thus, higher values of p correspond to
higher problem-solving ability. Consistently with the objectives of this section, we assume
that the size of the solution space Xn adversely affects the problem-solving abilities of an
agent and therefore that p is a decreasing function of n; when useful, we write pn to remark
the dependence on n.

The random graph model postulates that the problem-solving abilities of each member of
the team are represented by the partitions generated by i.i.d. draws of Γ(n, pn). For simplicity,
we assume the same function pn for each agent. Diversity still matters, because each agent
is associated with a different random graph. Therefore, two nodes x and y may be linked by
an edge (and be available from each other) for one agent but not for another. This leads to
the key observation that uncovers the power of a diverse team.

Given two nodes x and y, the probability that a single agent connects them is p. However,
it is enough that one of the agents has an edge between two nodes to make them available
to the entire team. The probability that at least one of m team-mates connects x and y
is 1 − (1 − p)m. Thus, we can build the random graph representing the team’s problem-
solving ability by assuming that each edge between two nodes is independently present with
probability 1− (1− p)m. Formally speaking, when the partition of each of the m agents in a
team is represented by a random graph Γ(n, p), the meet is described by the random graph
Γ(n, 1 − (1 − p)m). When this graph is connected, the meet is the trivial partition and the
team has access to the whole solution space, making sure that the solutions is always found.

As usual, our main object of interest is the probability that a team is always successful
when n is large. Therefore, we need to consider the probability that Γ(n, 1 − (1 − p)m) is
connected. An important result from random graph theory provides a powerful sufficient
condition. If (eventually) pn ≥ (1 + ε) lnn/n for some ε > 0, the probability that Γ(n, pn)
is connected tends to 1 as n ↑ ∞; and, vice versa, if (eventually) pn ≤ (1 − ε) lnn/n, then
this probability tends to 0; see Theorem 2.8.1 in Durrett (2007). This result states that
the connectedness of the graph undergoes a phase transition around the sharp threshold
provided by lnn/n. Given a team of m agents whose meet is described by the random graph
Γ(n, 1− (1− pn)m), this implies the following result.

Theorem 3 Under the random graph model, the probability that a team of at least m ≥ 1
people is always successful tends to 1 as n increases if

1− (1− pn)m ≥ (1 + ε)
lnn

n
(2)

for all sufficiently large n, and tends to 0 if

1− (1− pn)m ≤ (1− ε) lnn

n
(3)

for all sufficiently large n.
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This sufficient condition extends easily to the case where we remove the simplifying as-
sumption that the random graph for each agent in the team is drawn independently according
to the same model Γ(n, pn). In fact, suppose that the partition for each agent i is drawn
according to a different model Γ(n, pin). Define p̂n = mini p

i
n and substitute it for pn in (2).

Similarly, it would suffice to replace p̄n = maxi p
i
n in (3).

Theorem 3 formalizes an important trade-off, that we illustrate by means of an example.
Suppose that pn = 1/(n−1) for each agent in the team. Fix n and an arbitrary node x. Since
there are other n − 1 nodes besides it, node x can have at most n − 1 incident edges. Each
of these edges has probability pn of being present, so the expected number of edges incident
to x (a.k.a. degree of x) follows a binomial distribution B(n− 1, pn). Hence, pn = 1/(n− 1)
corresponds to the special case where each node has an expected degree of (n− 1)pn = 1 or
each agent has access on average to only another solution from any node x. This makes his
availability map pretty limited and, indeed, applying (3) shows the probability that a single
agent is always successful for large n must be close to zero.

However, if we put together a sufficiently large number m of agents, we can make the
probability that they will be jointly successful very close to one as far as (2) holds. Table 7
shows the minimum size of a team that is necessary to pass the threshold lnn/n and make the
team almost sure to be always successful for n = 10, 102, 103, 104, 105, 106 and pn = 1/(n−1).
All values are approximated to the sixth decimal digit.

n pn lnn/n 1− (1− pn)m m

10 0.111111 0.230259 0.297668 3

102 0.010101 0.046052 0.046052 5

103 0.001001 0.006908 0.006986 7

104 0.000100 0.000921 0.001000 10

105 0.000010 0.000115 0.000120 12

106 0.000001 0.000014 0.000014 14

Table 7: Minimum size m for an (almost) always successful team as a function of n

As it is easy to see, the minimum number of members necessary to make the team almost
sure to be always successful increases very slowly with respect to the size of the solution space.
This is not a coincidence.1 Since pn is very small, we can use the Taylor’s approximation
1− (1− pn)m ≈ mpn and rewrite (2) as mpn = lnn/n, so that m ≈ [(n− 1)/n] lnn ≈ lnn. In
other words, the minimum size for an always successful team increases logarithmically with
respect to the size of the solution space. The power of diversity is apparent. Each agent
in the team has an expected degree of one so his problem-solving ability is severely limited.
However, even a small team can span a huge search space because the number of possible
combinations across the perspectives of its agents increases exponentially. There is power in
(even small) numbers or, for short, defendit numerus.

The intuition that a small increase in a team makes it more effective at finding the solution
is also true for the uniform and for the urn model. However, since these models exhibit no

1Laughlin et al. (2006) provide empirical evidence that the marginal contribution from the size of the team
is decreasing.
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phase transition, the limit of the probability that a team is always successful as n ↑ ∞ is the
same, regardless of the number of its members. That is, the size of the team affects the speed
of convergence but not the value of the limit. The phase transition exhibited by the random
graph model, instead, implies that the size of the team may radically change the limit value
from zero to one.

Nonetheless, Collevecchio and LiCalzi (2011) prove that, if the number of urns may be
different from the number of balls, the urn model can be nested in a more general scheme
that exhibits a phase transition. Reinterpreted in our framework, their result implies that
the probability that a team is always successful goes to zero or one depending both on the
number and on the cognitive ability of the agents.

7 Groupthink impairs the power of diversity

Groupthink is a situation where the members of a team align their thinking. Originally coined
by W.H. Whyte in an article appeared on Fortune, the term entered the academic literature
in Janis (1972) where it was argued that the search for consensus in the decision-making team
had adversely affected the quality of some important policy decisions. In the psychological
literature, groupthink carries a pejorative connotation and it is sometimes offered as a possible
explanation for why individuals might take better decisions than groups. Within this paper,
we take a neutral stance over the causes and effects of groupthink except for its impact on
the ability of a team to find the optimal solution.

To study how groupthink affects team performance, we enrich the random graph model
introduced in the previous section with the assumption that the probability pn that an agent
has an edge between two nodes x and y is positively dependent among agents. Intuitively,
the higher the groupthink, the higher the correlation. Consider first the two extreme cases.
Under independence, the probability that a team of m agents has an edge between two nodes
is 1− (1− pn)m, as discussed in the previous section. Under complete dependence, all agents
think exactly alike so the probability that an edge is present is pn, independently of the
number of agents in the team.

To study the intermediate cases, we model the dependence across agents as a convex
combination of the two extreme cases. Suppose that each agent has the same marginal
probability pn to have an edge between any two nodes. Then the joint probability that the
edge is present for a team of m agents is

δpn + (1− δ) [1− (1− pn)m] (4)

where δ in [0, 1] is a dependence parameter that describes the alignment between agents’
partitions. We call this the random graph model with dependence. For δ = 0, we obtain
the random graph model with independence among agents; for δ = 1, we obtain the random
graph model with complete dependence. Clearly, there are many alternative ways to introduce
dependence in the random graph model; however, our choice is the simplest one that suffices
to capture the features in which we are interested. See the B11 copula in Joe (1997) for its
properties. The next result follows immediately from (4) and the techniques of Section 6.

16



Theorem 4 Under the random graph model with dependence, the probability that a team of
at least m ≥ 1 people is always successful tends to 1 as n increases if

δpn + (1− δ) [1− (1− pn)m] ≥ (1 + ε)
lnn

n
(5)

for all sufficiently large n, and tends to 0 if

δpn + (1− δ) [1− (1− pn)m] ≤ (1− ε) lnn

n
(6)

for all sufficiently large n.

Theorem 4 can be used to compare how more groupthink (represented by a higher value
of δ) affects the performance of a team over a large solution space. The following example
illustrates how. As in Section 6, suppose that pn = 1/(n − 1) so that each node has an
expected degree of 1. Under independence, for δ = 0, we have seen that a single agent may
fail to find the optimal solution; however, we can assemble a sufficiently large team to ensure
success. Table 8 reports the minimum size m of a team necessary to satisfy (5) for a given
value of n (and a sufficiently small ε > 0) in order to make the team almost sure to be
always successful for δ = 0, 0.25, 0.50, 0.75, 1 and n = 10, 102, 103, 104, 105, 106. The first four
columns (up to δ = 0) are the same as in Table 7.

n pn lnn/n m
δ = 0 δ = 0.25 δ = 0.50 δ = 0.75 δ = 1

10 0.111111 0.230259 3 3 4 8 ∞
102 0.010101 0.046052 5 6 9 17 ∞
103 0.001001 0.006908 7 9 13 25 ∞
104 0.000100 0.000921 10 12 18 34 ∞
105 0.000010 0.000115 12 15 22 43 ∞
106 0.000001 0.000014 14 18 26 51 ∞

Table 8: Minimum size m for an (almost) always successful team under groupthink

The focus of interest is the relationship between m and δ. It is easy to see that m is
increasing in δ: the greater the extent of grouphthink, the larger the number of agents for
a successful team. When groupthink is extreme and δ = 1, any team is as good as a single
agent so no size is sufficiently large to ensure success. More interestingly, if we treat m as
a continuous variable for the sake of convenience, it is easy to see that the relationship is
also convex. When δ increases from 0 to 0.25, a modest upward adjustment in m suffices
to preserve the performance of the team. However, when δ goes from 0.50 to 0.75, a much
larger adjustment is necessary.

An approximate but effective estimate of the phenomenon can be obtained as follows.
Use the Taylor’s approximation 1 − (1 − pn)m ≈ mpn and substitute in (5) to obtain δpn +
(1− δ)mpn > lnn/n, or

m >
lnn
n − δpn

(1− δ)pn
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For n large, pn · n ≈ 1 and lnn � δ so the right-hand side approximates to lnn/(1 − δ).
Under no groupthink, when δ = 0, we know already that the minimum size for a success-
ful team increases logarithmically in the dimension of the solution space. However, under
groupthink, this logarithmic growth is magnified by the 1/(1 − δ) multiplicative factor. As
δ ↑ 1, the necessary size increases without bounds. This shows clearly the countervailing
effect of groupthink on diversity: the more likely the agents are to have the same perspective
on a problem, the greater is the number of agents required to cooperate before the optimal
solution can be found.

While it is plausible to expect that correlations exist among the perspectives used by
teammates, it is important that they should not be so high to wipe out the advantages
brought by the diversity in perspectives (Lazear, 1999). Clearly, this intuition carries over to
other models, as long as we view groupthink as a form of positive dependence among agents’
partitions. Nonetheless, it is an open problem to find a simple and tractable way to formalize
positive dependence in the uniform or in the urn models.

8 Closing comments

This paper studies the power of diversity in a model where a team of agents with limited
problem-solving ability faces a disjunctive task over a large solution space. From a man-
agerial viewpoint, the overarching conclusion is that firms searching solutions over difficult
intellective problems need to tap people with different perspectives.

From a modeling perspective, it is important to assess the reach of our model. We formal-
ize the limitations in agents’ abilities using partitions and the variability in their perspectives
as randomness over the partitions. As discussed in Section 4, this is formally equivalent to
a setup (Hong and Page, 2001) where agents draw heuristics from their toolbox. However,
the assumption that agents’ partitions are independently drawn from the same distribution
is a crude approximation and cannot capture the degree with which agents’ toolboxes overlap
in different organizations, making them more or less apt to problem-solving. It may be ap-
propriate to qualify this special case as a form of “idiosyncratic” search, where each agent’s
toolbox is independent from his teammates’.

A useful benchmark is the compact summary in Lazear (1999) of three main factors driving
the success of a diverse team working on an intellective task: a) how disjoint are the agents’
information sets; b) how relevant they are; and c) the quality of the communication processes.
Our model implicitly recognizes and takes into account the first two items, but assumes away
any negative effect from the third one. Communication is advantageous because it may
unstuck a team from a bad solution. However, many different biases may adversely affect
knowledge transfer among agents (Argote et al., 2000). Diversity promotes both improved
knowledge sharing (Cummings, 2004) and more misunderstandings (Postrel, 2002).

A different line of research with important analogies to our model is the study of groups
engaged in idea generation, where performance is defined as the quality of the best ideas
identified (Girotra et al., 2010). These processes can exhibit several inefficiencies (Paulus
and Yang, 2000). In particular, when search is carried out in parallel, they are subject to
redundancies that may become very expensive over large spaces (Kornish and Ulrich, 2011).
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Our model will benefit when adequate formalizations for the effects of communication and
for the process of idea sharing shall be available.

Appendix

Proof of Theorem 1

As discussed above, the probability that a team is always successful is equal to the probability
that the meet of their partitions is the trivial partition. Let Pmn denote the probability that
the meet of m ≥ 2 partitions of Xn chosen under the uniform model with difficulty is the
trivial partition. It suffices to show that Pmn → 1 as n ↑ ∞.

Denote by P ′mn the probability that the meet is the trivial partition under the uniform
model without difficulty. Theorem 5 in Pittel (2000) shows that

P ′mn = 1−O
(

logm+1 n

nm−1

)
(7)

from which it follows immediately that limn↑∞ P
′
mn = 1. We establish the claim by proving

that (1− P ′mn)/(1− Pmn)→ 1 as n ↑ ∞.
The difficulty assumption removes the trivial partition from the set of possible partitions

of each agent. This decreases by one the number of equally likely partitions for each agent,
from Bn to Bn − 1. On the other hand, this removal does not affect the total number of
m-tuples of partitions whose meet is not the trivial partition. Denote this number by Wn.
Then

lim
n↑∞

1− P ′mn

1− Pmn
=

Wn/(Bn)m

Wn/(Bn − 1)m
=

(
Bn − 1

Bn

)m

= 1.

Note also that P ′mn → 1 by Pittel’s result, so Theorem 1 holds for the uniform model
regardless of whether difficulty is assumed or not. �

Proof of Theorem 2

Let P ′mn the probability that the meet is the trivial partition under the urn model without
difficulty. Since P ′mn ≥ Pmn, it suffices to show that P ′mn → 0 and the theorem holds
regardless of whether we assume difficulty or not. The strategy of the proof is the following.

We say that a solution j is isolated for an agent i when {j} is a singleton block for his
partition. Analogously, a solution j is isolated for the team if it is isolated for each agent. Let
Ai

j and Aj denote the event that the j-th solution is isolated for Agent i and for the team,
respectively. When the meet of the agents’ partitions is the trivial partition, no solution j
can be isolated for the team. Therefore,

P ′mn ≤ 1− P

 n⋃
j=1

Aj

 .

We are going to show that P
(⋃n

j=1Aj

)
→ 1 as n ↑ ∞.
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We begin with a few preliminary observations. Given a set Xn of n possible solutions, Ai
j

corresponds to the event that the j-th ball ends up alone in one of the n urns; thus

P
(
Ai

j

)
=
n(n− 1)n−1

nn
=

(
1− 1

n

)n−1

Analogously, for j1 < j2 . . . < jk, the probability that k ≤ n solutions in Xn are isolated for
Agent i is

P

(
k⋂

s=1

Ai
js

)
=

k∏
s=1

(
1− 1

n− s+ 1

)n−s
.

To see why, use the following inductive argument. The probability that the j1-th solution is
isolated (or, equivalently, the j1-th ball ends up alone) is (1− 1/n)(n−1). Conditional on this
event, the other n−1 balls are distributed uniformly in the remaining n−1 urns. Hence, the
probability that the j2-th solution is isolated (or, equivalently, the j2-th ball ends up alone)
is (1− 1/(n− 1))(n−2). And so on.

Finally, since all agents’ partitions are identically and independently distributed,

P (Aj) =

m∏
i=1

P (Ai
j) =

(
P (Ai

j)
)m

and thus, for j1 < j2 . . . < jk, the probability that k ≤ n solutions in Xn are isolated for the
team is

P

(
k⋂

s=1

Ajs

)
= P

(
m⋂
i=1

k⋂
s=1

Ai
js

)
=

k∏
s=1

(
1− 1

n− s+ 1

)m(n−s)
(8)

Note that, for any fixed k, P
(⋂k

s=1Ajs

)
→ e−mk as n ↑ ∞.

We are now ready for the main argument. Given ε > 0, choose a sufficiently large integer
M so that (1− e−m)M < ε. By the inclusion-exclusion formula, we have

P

 M⋃
j=1

Aj

 =

 M∑
j=1

P (Aj)−
∑

1≤j1<j2≤M
P (Aj1 ∩Aj2) + . . .+ (−1)M+1P (

M⋂
j=1

Aj)


Taking limits on both sides,

lim
n
P

 M⋃
j=1

Aj

 =
M∑
j=1

(−1)j+1

(
M

j

)
e−mj = −

M∑
j=1

(
M

j

)
(−e−m)j

= 1−
M∑
j=0

(
M

j

)
(−e−m)j = 1−

M∑
j=0

(
M

j

)
(−e−m)j · 1M−j

= 1− (1− e−m)M > 1− ε

where the last step follows from our choice of M . This concludes the proof. �
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