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Abstract

The dynamics of a welfare maximizing, heterogeneous agent, one sector op-

timal Ramsey model is analyzed assuming two agents, each with a distinct dis-

count factor and log utility. Production is Cobb-Douglas. Explicit time varying

policy functions are derived, one for each period. A Twisted Turnpike Property

and eventually monotone dynamics are demonstrated to govern the evolution of

the economy’s aggregate capital stock.

JEL Classification Numbers: C61, D51, D90, O41.

Key Words: Optimal Growth, Pareto Optimality, Symmetry, Twisted Turn-

pike Theorem, Monotone Dynamics.
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1 Introduction

The object of this paper is to modify the canonical representative agent dis-

counted optimal growth model with log utility and Cobb-Douglas production

function to include many households, each with a different discount factor. The

planner’s welfare function is taken to be a weighted function of the underlying

households’ intertemporal utility functions. The weights are predetermined and

fixed for all time as the planner solves the optimization problem. This maxi-

mization problem is a well-known way to compute a particular Pareto optimal

allocation for a many agent Ramsey model.1 By varying the welfare weights it

is possible to trace out the economy’s utility possibility frontier and find all the

Pareto optimal allocations. This procedure also yields a proof of the existence

of a competitive equilibrium by combining the welfare theorems with Negishi’s

(1960) existence argument.

The qualitative properties of the welfare maximization problem and the de-

tailed development of the Negishi argument can be found for the general one-

sector model in the papers by Duran and Le Van (2003) and Le Van and Vailakis

(2003). The latter authors prove that the optimal capital sequence is conver-

gent, but not necessarily monotonic, in a general one-sector framework. My

example supplements their results by showing the optimal paths starting from

different initial stocks come together in the limit. Mitra (1979) calls this the

optimal capital sequences’ twisted turnpike property. A second contribution is

to show that each optimal capital sequence starting from an arbitrary initial

capital stock is eventually monotonic.

3



That eventual monotonicity of the optimal capital sequence is the best pos-

sible convergence property reflects a point made by Le Van and Vailakis (2003).

Consider the case where both agents have positive welfare weights, yet the econ-

omy starts off with the stationary optimal capital stock for the representative

agent economy when the welfare weight is concentrated entirely on the most

patient agent. It turns out in the Le Van and Vailakis paper that this capital

stock is the attractor for the long-run optimal sequence and that sequence is not

a constant one.2 In fact, the first period’s capital stock must be smaller than the

initial stock in this situation. Put differently, this starting stock is not a steady

state for the heterogeneous agent optimum growth model even though it is the

limit point of the optimal accumulation program. This fact is also easily proven

in the example given the solution’s explicit formulas in terms of the economy’s

primitive taste and technology parameters.

The two-agent model is setup in Section 3 following a review of the repre-

sentative agent example in Section 2. The basic two-agent welfare optimization

problem is transformed to a representative agent problem with a time varying

discount factor in Section 3. The Twisted Turnpike result also appears there

along with a demonstration based on the formal properties of the policy function

sequences constructed in Section 4. Section 5 develops the qualitative dynam-

ics of the model including results on the optimal path’s eventual monotonicity

property. Concluding comments appear in Section 6.
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2 The Representative Agent Example

Frank Ramsey’s (1928) seminal article on optimal capital accumulation con-

centrated on a single planner’s infinite horizon optimization problem. Mod-

ern economic theorists interpret this planning problem’s solution as a perfect

foresight competitive equilibrium for an economy with a representative agent

whose preferences coincide with the planner’s preferences over future consump-

tion streams.3

The logarithmic utility, Cobb-Douglas production economy is an important

example of Ramsey’s one-sector optimal growth problem. Let consumption and

capital at time t be denoted by ct and xt, respectively. The planner solves the

discrete time program

sup
∞X
t=1

δt−1 ln ct

by choice of {ct, xt}∞t=1 subject to the constraints

ct + xt ≤ Lxρt−1, for t = 1, 2, . . .

and ct, xt ≥ 0 for all t with x0 ≤ k the given initial capital stock. Here 0 <

δ, ρ < 1 are this economy’s deep taste and technology parameters; L is a factor

which reflects the quantity of fixed labor. For the representative agent case

L = 1 and for the case of two agents supplying identical labor services analyzed

below L = 21−ρ as the underlying production function in capital and labor is

taken to be Cobb-Douglas.
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This Ramsey problem is explicitly solved by a variety of methods.4 The

solution is described by the consumption policy function H(k) = (1 − δρ)Lkρ

and the capital policy function h(k) = δρLkρ. At each date, the policy functions

tell the decision maker how much to consume and how much to save given the

current level of the capital stock, k. The optimal decision taken at any date

depends only upon the amount of capital the planner starts the period with and

not on the particular moment in calender time. This is the time consistency

property.

The optimal capital and consumption sequences are computed by iterating

the policy functions. Carrying out that iteration leads to the explicit solution

for the capital sequence:

kt(k) = (δρL)
ρt−1+···+1 kρ

t

, (1)

where k0(k) = k is the given initial capital stock.

The optimal capital sequence is monotonic and converges to the unique

positive fixed point of the capital policy function. That fixed point, k (δ),

is called the modified golden-rule level of capital and satisfies the equation

h(k (δ)) = k (δ), which implies that

k (δ) = (δρL)
1

1−ρ .

If the positive initial capital is below the modified golden-rule, then the econ-

omy accumulates capital and the sequence of optimal capital stocks increases
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and converges to the modified golden-rule capital stock. Similarly, the optimal

capital stocks decrease and converge to the modified golden-rule when the start-

ing stock is larger than the positive fixed point. If the initial capital happens to

equal the modified golden-rule stocks, then it will be optimal to maintain those

stocks in every period. Thus, the modified golden-rule is a steady state of the

dynamical system

kt+1 = h(kt) = δρLkρt .

The corresponding consumption sequence is also monotonic since the con-

sumption policy function is increasing in capital. The resulting consumption

sequence converges to the modified golden-rule consumption level defined by

c (δ) = (1− δρ) (k (δ))ρ .

The convergence of the optimal capital and consumption sequences is known

as the turnpike theorem. Finally, note that the turnpike property implies that

| kt(k)−kt(k0) |→ 0 as t→∞ for nonzero initial conditions k 6= k0. That is, the

optimal capital sequences “come together” as t tends to infinity. This obtains

in the two agent example developed below and the optimal capital sequence is

shown to be eventually monotonic.
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3 A Two Agent Ramsey Model Example

Assume for simplicity that there are only two households, denoted by h =

1, 2, with lifetime utility given by
P∞

t=1 δ
t−1
h ln cht . Here {cht }∞t=1 is a given

(nonnegative) consumption sequence and 0 < δh < 1 is the agent’s discount

factor and δ2 < δ1. Let λ ≥ 0 denote the welfare weight assigned to agent 1 and

(1− λ) the welfare weight assigned to the second agent. Assume further that

0 ≤ λ ≤ 1 until otherwise noted. The cases where λ equals zero or one reduce to

representative agent problems of the form found above. The planner’s welfare

maximization problem is

supλ
∞X
t=1

δt−11 ln c1t + (1− λ)
∞X
t=1

δt−12 ln c2t

by choice of nonnegative sequences {c1t , c2t , kt−1}∞t=1subject to

c1t + c2t + kt ≤ Lkρt−1,for t = 1, 2, . . .

and k0 ≤ k, where k > 0 is given, 1 > δ1 > δ2 > 0, and L = 21−ρ. The

parameter ρ satisfies 0 < ρ < 1. The parameter L is the labor input to the

production process. Note that both households inelastically supply one unit

of identical labor services at each time to a Cobb-Douglas production function

F ( , k) = 1−ρkρ with Lkρ = F (2, k).
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The welfare maximization problem’s objective can be rewritten as

sup
∞X
t=1

δt−11

"
λ ln c1t + (1− λ)

µ
δ2
δ1

¶t−1
ln c2t

#
.

Define aggregate consumption at time t as ct with c1t+c2t = ct. The distribution

of aggregate consumption within each period can be separated from the problem

of calculating the optimal aggregate consumption over time by solving in every

period the auxiliary problem

u(t, λ, ct) = supλ ln c
1
t + (1− λ)

µ
δ2
δ1

¶t−1
ln c2t

by choice of nonnegative consumption levels c1t and c
2
t and given ct > 0 subject

to

c1t + c2t ≤ ct,

where λ is given and 0 < λ < 1. The function u(t, λ, ct) is this program’s value

function. This auxiliary problem’s first order conditions imply that

c2t
c1t
=

µ
1− λ

λ

¶µ
δ2
δ1

¶t−1
.

Using the constraint, it is easy to show that each agent’s optimal consumption
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share can be written as

c1t
ct

=

Ã
1 +

µ
1− λ

λ

¶µ
δ2
δ1

¶t−1!−1
, and

c2t
ct

=

Ã
1 +

µ
1− λ

λ

¶µ
δ2
δ1

¶t−1!−1µ
1− λ

λ

¶µ
δ2
δ1

¶t−1
.

These equations yield an interesting result. Notice that (δ2/δ1)
t−1 & 0 as

t→∞ implies

c1t
ct
% 1 and

c2t
ct
& 0 (2)

provided the aggregate consumption path is bounded away from zero along a

welfare maximizing path. This will hold as long as the initial capital stocks

are positive. Hence, the first household emerges as the dominant consumer;

its consumption approaches one hundred percent of the economy’s aggregate

consumption and the second household’s consumption shrinks towards zero.5

The calculation of each agent’s consumption share yields the explicit form

of the value function by substitution. That is,

u(t, λ, ct) =

"
λ+ (1− λ)

µ
δ2
δ1

¶t−1#
ln ct + γt,

where

γt = (1− λ)

µ
δ2
δ1

¶t−1
ln

Ãµ
1− λ

λ

¶µ
δ2
δ1

¶t−1!

−
Ã
λ+ (1− λ)

µ
δ2
δ1

¶t−1
ln

Ã
1 +

µ
1− λ

λ

¶µ
δ2
δ1

¶t−1!!
.
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From the viewpoint of intertertemporal maximization, a sequence {ct, kt−1}∞t=1
solves the welfare optimization problem if and only if it solves the problem

sup
∞X
t=1

δt−11 u(t, λ, ct)

by choice of nonnegative sequences {ct, kt−1}∞t=1 subject to

ct + kt ≤ Lkρt−1, for t = 1, 2, . . .

and k0 ≤ k, with k > 0 given. The information stored in the value function u is

sufficient to decompose the aggregate consumption into the optimal consump-

tion allocations for each agent given the preassigned welfare weights.

The constant γt defined at each time does not depend on the aggregate

consumption’s level or how it is allocated across households. Hence, the {γt}

have no influence on the determination of the optimal aggregate consumption or

capital accumulation paths and can be neglected when calculating the welfare

maximizing optimal program. So, the welfare maximization problem is solved

if and only if the Ramsey problem with a time variable discount factor defined

below is solved. The latter problem is expressed as theWelfare Optimization

Problem:

sup
∞X
t=1

∆t ln ct (P(y,∆,L))
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by choice of nonnegative sequences {ct, kt−1}∞t=1 subject to

ct + kt ≤ Lkρt−1 for t = 1, 2, . . .

and k0 ≤ k, with k > 0 given. Here the planner’s discount factor at time t, focal

date time 0, can also be written as

∆t =
¡
λδt−11 + (1− λ) δt−12

¢
.

The dependence of ∆t on the choice of the welfare weight λ is suppressed

in this notation. This time-varying discount factor is clearly the weighted

average of the two agents’ discount factors where the weights are given by

the preassigned welfare weights. Problem P(y,∆,L) is an example of the

time varying discounted optimal growth model studied by Mitra (1979).The se-

quence ∆ ≡{∆t}∞t=1 does not form a geometric sequence, unlike the sequences

{δt−1h }∞t=1 for h = 1, 2. This implies that the optimal welfare maximizing path

of consumption is not time consistent in the manner defined by Strotz (1955), in

contrast to the representative agent model discussed above. A direct argument

supporting this conclusion is found in Section 4.

The main result is:

Theorem 1: Twisted Turnpike. If {kt (y)} and
©
kt
¡
y#
¢ª
are optimal

capital sequences starting from the endowments y and y#, respectively, then¯̄
kt (y)− kt

¡
y#
¢¯̄→ 0 as t→∞.

The welfare optimization problem P(y,∆,L) is explicitly solved, and the

12



theorem proved, using Boyd’s symmetry technique (1986, 1990).6 Let

μj =
∞X
t=j

∆tρ
t−j, for j = 1, 2, . . . .

Clearly μj depends on the choice of the welfare weight, λ, and

μj =
λδj−11

1− δ1ρ
+
(1− λ) δj−12

1− δ2ρ
for j = 1, 2, . . . .

This model’s optimal capital stock at time t, denoted by kt(y), has the explicit

form:

kt(y) =

µ
1− ∆t

μt

¶µ
1− ∆t−1

μt−1

¶ρ
· · ·
µ
1− ∆1

μ1

¶ρt−1

yρ
t−1

, (3)

where y = Lkρ is the output of goods available at time 1 given the initial stocks

k.7

Now suppose that k# is any other initial capital stock, y# = L(k#)ρ and

the corresponding optimal capital sequence is denoted by {kt
¡
y#
¢}∞t=1. Then

kt
¡
y#
¢
=

µ
1− ∆t

μt

¶µ
1− ∆t−1

μt−1

¶ρ
· · ·
µ
1− ∆1

μ1

¶ρt−1

(y#)ρ
t−1

.

Following Boyd (1990), define zt = kt (y) /kt
¡
y#
¢
and notice that

zt =

µ
y

y#

¶ρt−1
,

or

ln zt = ρt−1 ln
µ

y

y#

¶
.
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As 0 < ρ < 1, this last equation implies ln zt → 0 as t → ∞ and hence zt → 1

as t→∞. In particular, this means that ¯̄kt (y)− kt
¡
y#
¢¯̄→ 0 as t→∞. Put

differently, the optimal capital accumulation sequences starting from different

initial capital stocks converge to each other, or come together, in the limit. The

optimal capital sequence exhibits the twisted turnpike property.

There is a feasible path of capital accumulation in which aggregate con-

sumption is stationary, over time as is the capital stock, which also satisfies the

condition δ1ρLk̄ρ−1 = 1. This last equation is the steady state capital stock for

the Ramsey optimal growth model when λ = 1 and c2t = 0– the case where the

model collapses to a single agent problem with the first agent’s welfare receiving

all the planner’s weight in the objective. One might think that the stocks k̄ so

defined would attract, in the limit, the economy’s aggregate capital stocks when

both agents have positive welfare weights. After all, agent 2’s consumption con-

verges to zero as time unfolds, so perhaps it is possible that k̄ is the limiting

capital stock for those nontrivial welfare weights. This turns out to be true,

but the reason is very subtle. The convergence of the optimal capital sequences

along the twisted turnpike to k̄ is true, but that stock is not itself a steady

state. This is a fundamental property of the many agent Ramsey model and it

shows one way in which the many agent problem differs significantly from the

representative agent model. The fact k̄ is not a stationary equilibrium stock is a

consequence of a general result due to Le Van and Vailakis (2003), but is easily

shown for my example. Their theorem states that the constant path defined by

k̄ = kt is not an optimal path from initial stocks k0 = k̄ and hence, it is not a
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stationary equilibrium. I give an independent proof of this fact to illustrate one

benefit derived from knowing the example’s explicit solution.

Proposition 1. k̄ is not a steady state for the Welfare Optimization Prob-

lem P(y,∆,L).

Proof. It is shown in Section 4 that this problem is solved by calculating a

sequence of policy functions, one for each period of time. The general form of

the optimal decision at time t is

kt =

µ
1− ∆t

μt

¶
yt,

where yt is the output available at the start of period t. Iterating from time

t = 1 starting at y1 ≡ y yields kt (y) as displayed in (3). In particular,

k1 (y) = k1 =

µ
1− 1

μ1

¶
y

in period 1. Set y = Lk̄ρ; a simple calculation shows k1 < k̄. Hence, k̄ is not a

steady state for P(y,∆,L).8

Le Van and Vailakis’ Theorem shows something more: the optimal capital

sequence initiated at k̄ converges to it in the long-run even though it is not a

constant sequence.9 In this case, {kt (ȳ)} is not monotonic since k1 (ȳ) < k̄. The

twisted turnpike property implies all optimal capital sequences converge

to the stock k̄ as time tends to infinity. In particular, this implies that if the

economy starts with the stocks k̄, then it is optimal for the planner to devi-

ate from those stocks and only return to them asymptotically. The resulting
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optimal capital sequence may not be monotonic, although it turns out to be

eventually monotonic.10 In part, this reflects the fact that the households enjoy

time varying consumption along their optimal path. The aggregate consump-

tion levels change over time, but the first household emerges as the dominant

consumer in the limit.

4 The Symmetry Solution

This section details the symmetry solution to the Welfare Optimization Prob-

lem, the derivation of a sequence of Bellman equations of optimality, and the

calculations giving rise to (3). Boyd’s (1986, 1990) symmetry technique under-

lies the calculations that support the following results. Also, see Kamihigashi

(2008) for a general treatment of nonstationary deterministic dynamic programs

of which this model is one example. A symmetry is a one-to-one mapping be-

tween feasible sets for the problems P(y,∆,L) and P(y,∆,1) in such a manner

that if consumption program {ct} is at least as preferred as consumption pro-

gram
n
c
0
t

o
in one problem, say P(y,∆,1), then its image under the symmetry

mapping preserves that preference order in the other problem, P(y,∆,L).

Let J (y|∆, L) be the value function for problem P(y,∆,L)and let J (y|∆, 1)

be the value function for problem P(y,∆,1). Set ∆ = {∆t}∞t=1 and put

S∆ = {∆t}∞t=2, where S is the corresponding shift operator (also known as the

backward shift operator). Symmetries mapping feasible (and optimal) solutions

for problem P(y,∆,1) to P(y,∆,L) underlie the computations supporting the
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Twisted Turnpike result.

Lemma 1. The symmetry S (ct, kt) = eσt (ct, kt) maps P(y,∆, 1) to

P(y,∆,L). This mapping is 1− 1 and onto for each L > 0. Here

σt = + ρ+ ρ2 + · · ·+ ρt−1,

= lnL.

Proof. Suppose {ct, xt} is a feasible program for problem P(y,∆, 1). A routine

computation shows the program defined by

(c∗t , x
∗
t ) = eσt (ct, xt) , t = 1, 2, . . . ,

is feasible for problem P(y,∆,L). The planner’s discounted utility in the first

problem is
P∞

t=1∆t ln ct and it is
P∞

t=1∆t ln c∗t in the second. Clearly,

∞X
t=1

∆t ln c
∗
t =

∞X
t=1

∆t ln ct +
∞X
t=1

∆tσt,

where the series
P∞

t=1∆tσt is convergent as it is the weighed average of series of

the form
P∞

t=1 (δhρ)
t−1 (h = 1, 2). Hence, {ct, xt} is at least as preferred as the

feasible program {c̄t, x̄t} for problem P(y,∆,1) if and only if the transformed

sequences have the property {c∗t , x∗t } is at least as preferred as {c̄∗t , x̄∗t } for

problem P(y,∆,L).
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Corollary 2. The corresponding value functions are related as follows:

J (y|∆, L) = J (y|∆, 1) +
∞X
t=1

∆tσt.

The symmetry S (•) did not act on the endowment, y. The symmetry

T defined next maps P (y,∆, 1) to P (θy,∆, 1) for some positive constant θ.

Formally, given the feasible sequence {ct, xt} for P (y,∆, 1), let

T (c t, xt) = eτ t (c t, xt) ,

where τ t = ρτt−1 and τ1 = ln θ. Then, τ t = ρt−1 ln θ; follow the same line of

reasoning as in Lemma 1 and Corollary 2 to obtain:

Lemma 3.

J (y|∆, 1) = J (1|∆, 1) + ln θ
∞X
t=1

∆tρ
t−1

= J (1|∆, 1) + ln θ
∙

λ

1− δ1ρ
+
(1− λ)

1− δ2ρ

¸
.

Commentary: The trick here is to let ȳ = 1 and for y 6= 1 set θȳ = y. That

is: θ = y. Then

ln θ + ln ȳ = lny, so,

ln θ = lny.

Restating Lemma 3:

18



Lemma 3*.

J (y|∆, 1) = J (1|∆, 1) + ln y
∙

λ

1− δ1ρ
+
(1− λ)

1− δ2ρ

¸
.

4.1 Period 1 Policy Functions

J is differentiable in y (apply the argument developed by Mirman and Zilcha

(1975)). Hence

∂J

∂y
=

∙
λ

1− δ1ρ
+
(1− λ)

1− δ2ρ

¸
Áy.

Equivalently,

∂J

∂y
=

μ1
y
.

Standard Mirman-Zilcha (1975) arguments yield the envelope relation:

∂J

∂y
=

∆1
c
, or, since ∆1 = 1 :

∂J

∂y
=

1

c
.

Combining and solving for the first-period’s optimal consumption and capital,

given the endowment yields:

Lemma 5.

c1 =
∆1
μ1

y, and

k1 =

µ
1− ∆1

μ1

¶
y.
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The Le Van — Valiakis (2003) result that k̄ ≡ (δ1ρ)
1

1−ρ is NOT a steady state

follows. This result also uses the symmetry structure to prove it for the case

L = 1 and then know it can be mapped to the case L = 21−ρ. This result also

depends crucially on 1 > λ > 0.

Corollary 6. Let L = 1; set ȳ = (δ1ρ)
ρ

1−ρ =
¡
k̄
¢ρ
. Then

k1
¡
k̄
¢
=

µ
1− ∆1

μ1

¶¡
k̄
¢ρ 6= k̄.

4.2 Policy Functions for t ≥ 2.

Bellman equations capturing the Principle of Optimality are expressed for

each time t, with focal date time 0:11

J (y|∆, 1) = max
0≤c≤y

{∆1 ln c+ J ((y − c)ρ |S∆,1)} ,

J (y|S∆, 1) = max
0≤c≤y

©
∆2 ln c+ J

¡
(y − c)ρ |S2∆, 1¢ª ,

...

J
¡
y|St∆, 1¢ = max

0≤c≤y
©
∆t ln c+ J

¡
(y − c)ρ |St+1∆, 1¢ª .

Here,

J
¡
y|St∆, 1¢ = J

¡
1|St∆, 1¢+ μt ln y;

μt =
∞X
s=t

∆sρ
s−t =

λδt−11

(1− δ1ρ)
+
(1− λ)δt−12

(1− δ2ρ)
.
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Lemma 7. For each t:

∂J

∂y
=

μt
y
=
∆t

c
;

c =
μt
∆t

y;

k =

µ
1− μt

∆t

¶
y.

Now iterate: start at t = 1 with the endowment, y. Then (recalling L = 1):

k 1 (y) =

µ
1− ∆1

μ1

¶
y; y1 = k 1 (y)

ρ ,

k2 (y) =

µ
1− ∆2

μ2

¶
y1

=

µ
1− ∆2

μ2

¶
(k1 (y))

ρ

=

µ
1− ∆2

μ2

¶µ
1− ∆1

μ1

¶ρ

yρ,

and so on. Note: It is easy to verify that 0 <
³
1− μt

∆t

´
< 1 for each t.

Lemma 8. The optimal capital sequence up to period t is found by the

formula:

kt (y) =

µ
1− ∆t

μt

¶µ
1− ∆t−1

μt−1

¶ρ

· · ·
µ
1− ∆1

μ1

¶ρt−1
yρ

t−1
.

The Twisted Turnpike property follows.

NOTE: When 1 > λ > 0, the terms

µ
1− ∆t

μt

¶
6=
µ
1− ∆t−1

μt−1

¶
.
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This means that the optimal policies at each time t depend on calendar time –

this is the manifestation of the time inconsistency, or, the Strotz effect.

Everything is proven for L = 1. Use the symmetry maps to find the L = 21−ρ

optimum.

5 The Convergence Theorem

The Twisted Turnpike property is a sweeping characterization of optimal so-

lutions starting from different initial conditions. It does not fully exploit the

information contained in the sequence of policy functions derived in the sym-

metry procedure. The following Convergence Theorem provides additional

qualitative properties of each optimal path and refines the Twisted Turnpike

property. The Convergence Theorem implies all sequences of optimal capital

stocks converge to k̄ independently of the initial conditions. The Convergence

Theorem embodies the same conclusions as reached by Le Van and Vailakis

(2003, Propositions 4 and 7). The policy function based proof, exploiting all

available information, is considerably shorter, and more elementary, than theirs

which considers a broader class of utility and production functions. The basic

logic of the argument is analogous to one pursued by Becker and Foias (1987)

in a different heterogeneous agent model.

Theorem 2: Convergence. If {kt (y)} is the optimal capital sequence for

the problem P (y,∆, 1), then

lim
t→∞ kt (y) = k̄. (4)
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Moreover, the sequence {kt (y)} is eventually monotonic.

For each y, y# > 0 the optimal capital sequences kt (y)→ k̄ and kt
¡
y#
¢→ k̄

as t →∞ implies the Twisted Turnpike property: |kt (y)− kt
¡
y#
¢ | → 0. The

Convergence Theorem contains more information on the mode of convergence

to k̄ and refines the interpretation of “all optimal paths coming together.”

The Convergence Theorem’s proof follows from a series of lemmas developed

below that are constructed on the basis of properties enjoyed by the policy

functions. The results are demonstrated for the case L = 1; by symmetry the

qualitative results carry over to the case L = 21−ρ. Note that it is convenient to

let the initial capital stock be k = f−1 (y), y = f(k) = kρ. Denote the optimal

sequence by {kt−1}∞t=1 , k0 = k, and define the sequence of policy functions in

terms of k:

θλt (k) =

µ
1− ∆t

μt

¶
kρ, t = 1, 2 . . . . (5)

where

∆t (λ) = λδt−11 + (1− λ) δt−12 ; (6)

μt (λ) = λ

µ
δt−11

1− δ1ρ

¶
+ (1− λ)

µ
δt−12

1− δ2ρ

¶
. (7)

Optimal capital sequences are computed by the recursion: kt = θλt (kt−1) for

each t assuming k0 = k. Choose λ, 0 ≤ λ ≤ 1 and assume k > 0. Notice:

θ1t (k) = δ1ρk
ρ and θ0t (k) = δ2ρk

ρ.
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It will be convenient to define g(k) = δ2ρk
ρ = θ0t (k) and h(k) = δ1ρk

ρ = θ1t (k)

and observe that h(k) ≥ g(k) with equality when k = 0 as δ1 > δ2.

When the welfare weights are concentrated on one agent alone (λ = 1 or

λ = 0), the corresponding policy function sequences are constant sequences for

each k. In addition, each of the functions g and h has a unique positive fixed

point. Clearly k̄ = h
¡
k̄
¢
and there is a unique k > 0 such that k = g (k).

Evidently, k < k̄. Moreover, k > k̄ implies h(k) > k and 0 < k < k̄ implies

k < h(k). A similar property holds for g and k. Each element of the sequence

of policy functions when 0 < λ < 1 also has a positive fixed point and related

inequalities as seen in the next lemma.

Policy functions have a number of important properties expressed in the

following list. The indexing of the policy function at time t by the weight λ is

suppressed below to ease notation when the meaning is clear.

Lemma 9. For each given t :

A. θt(0) = 0, θ
0
t(k) > 0, θ

00
t (k) < 0, θ

0
t(k)→ +∞ as k → 0, k > 0, and there is

a unique k(t) > 0 such that

θt(k (t)) = k (t) . (8)

B. If k > k(t), then θt(k) < k; if k < k(t), then θt(k) > k.

The proof is omitted as it is an easy consequence of the assumed properties

of the production function. Suppose k = k̄, then k̄ > k(1). Hence, along an

optimal path starting from k̄, in period 1: k1
¡
k̄
¢
= θ1

¡
k̄
¢
< k̄, as promised
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earlier.

The next results list properties of sequences of policy functions. The first is

the crucial Fence Property.

Proposition 2. For each t, and for each λ, 0 ≤ λ ≤ 1, and for each k,

g(k) ≤ θt(k) ≤ h(k), with strict inequality if k > 0. (9)

Proof. The Proposition is valid if either λ = 0 or λ = 1. Assume 0 < λ < 1.

The result follows by showing θt(k) − h(k) ≤ 0 and θt(k) − g(k) ≥ 0 with

strict inequalities whenever k > 0. Notice that it suffices to show for each t :

δ2ρ ≤
µ
1− ∆t

μt

¶
≤ δ1ρ.

The sign of θt(k)− g(k) =
³
1− ∆t

μt

´
− δ2ρ ≡ G is found by computing:

G = 1− δ2ρ− λδt−11 + (1− λ) δt−12

λ
³

δt−11

1−δ1ρ
´
+ (1− λ)

³
δt−12

1−δ2ρ
´

=
(1− δ2ρ)

h
λ
³

δt−11

1−δ1ρ
´
+ (1− λ)

³
δt−12

1−δ2ρ
´i
− ¡λδt−11 + (1− λ) δt−12

¢
λ
³

δt−11

1−δ1ρ
´
+ (1− λ)

³
δt−12

1−δ2ρ
´

=
λδt−11

h
1−δ2ρ
1−δ1ρ − 1

i
h
λ
³

δt−11

1−δ1ρ
´
+ (1− λ)

³
δt−12

1−δ2ρ
´i

=
λδt−11

h
ρ(δ1−δ2)
1−δ1ρ

i
h
λ
³

δt−11

1−δ1ρ
´
+ (1− λ)

³
δt−12

1−δ2ρ
´i > 0

as (δ1 − δ2) > 0.
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A similar argument shows
³
1− ∆tμt

´
− δ1ρ < 0 and θt(k)− h(k) ≤ 0.

Assume that 0 < λ < 1 in the sequel unless expressly noted other-

wise.

One immediate application of the Lemma 9B and Proposition 2 is the ob-

servation:

k < k(t) < k̄ for each t. (10)

That is, the sequence of fixed points {k(t)} derived from the policy function

sequence inherits the Fence Property in the form of inequalities given in (10).

These relations play an important role in proving the eventual monotonicity of

the optimal capital sequence.

Another application of (10) occurs if k = k̄ and t = 1. Then k̄ > k(1) and

k1 = θ1
¡
k̄
¢
< k̄, as promised earlier in Proposition 1.

The following results apply to sequences of policy functions, {θt}, and the

optimal capital sequence, {kt−1} with kt = θt (kt−1) and k0 = k.

Lemma 10. The sequence of policy functions {θt} converges pointwise to

h. That is, for each k > 0

lim
t→∞ θt (k) = h(k). (11)

Moreover, the convergence is uniform on each compact interval [0, b], b > 0.

Proof.
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Observe

µ
1− ∆t

μt

¶
=

⎛⎝1− 1 +
¡
1−λ
λ

¢
(δ2/δ1)

t−1³
1

1−δ1ρ
´
+
¡
1−λ
λ

¢
(δ2/δ1)

t−1 ³ 1
1−δ2ρ

´
⎞⎠ . (12)

Since (δ2/δ1) < 1, it follows that

lim
t→∞

µ
1− ∆t

μt

¶
= δ1ρ. (13)

This implies (11).

Fix b, 0 < b < +∞. For each t, set

Mt = sup
k∈[0,b]

|θt (k)− h(k)|.

Clearly f(k) = kρ increasing in k implies

Mt = bρ
¯̄̄̄µ
1− ∆t

μt

¶
− δ1ρ

¯̄̄̄
→ 0 as t→∞.

This proves θt → h uniformly on each non-empty compact interval.

The upper limit b used to define a particular compact interval [0, b] may be

chosen as the maximum sustainable stock, but this interpretation is not required

for the lemma’s validity. Evidently the choice b = 1 is the maximum sustain-

able stock for the specification f(k) = kρ. Hence, the policy function sequence

converges to h uniformly on any compact interval containing the maximum sus-
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tainable stock. As typical of optimal growth models, the optimal accumulation

sequence will eventually reside in that particular compact interval.

Lemma 10 tells us that the function h is well-approximated by the sequence

of policy functions {θt} even though h is NOT a policy function when 0 < λ <

1. The uniform convergence property suggests that the long-run qualitative

properties of the aggregate capital stock should follow from the monotonicity

properties of optimal paths when λ = 1 and h is the optimal policy function. In

this sense, it should not be a surprise that monotonicity over all time periods

might fail for finitely many periods when 0 < λ < 1. Over a sufficiently long time

period agent 1 emerges as the dominant household and the welfare problem’s

solution emulates the case where ALL the welfare weight is placed on that

person. The Convergence Theorem formalizes this intuition and is modeled by

way of the following lemmas and corollaries.

Corollary 11. If the optimal capital sequence {kt−1} has a limit, k∗ > 0,

then k∗ = k̄.

Proof.

Suppose kt−1 → k∗ > 0. Then, Lemma 10 implies θt (kt−1) = kt → h(k∗) =

k∗ by Ash (1970, Problem 4, p. 133). But h(k∗) = k∗ > 0 if and only if k∗ = k̄.

The next result based on the Fence Property says there is a time such that

kt−1 ≥ k. Its proof turns out to imply the optimal capital sequence cannot

converge to zero.

Lemma 12. Given the optimal capital sequence {kt−1}, there is a finite
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time T such that kT−1 ≥ k.

Proof.

Step I. Suppose there is a time T such that

kT−1 < k and kT < kT−1 < k implies kT+1 < kT .

Notice k(T + 1) = θT+1 (k(T + 1)) > k = g(k) by the Fence Property (10) and

kT < k < k(T + 1). Hence, by Lemma 9B:

kT+1 = θT+1 (kT ) > kT ,

contradicting the assumption kT+1 < kT . Hence, it must be the case that

kT−1 < k and kT < kT−1 < k implies kT+1 ≥ kT .

Step II. Assume that kt < k for all t. Then k ≥ kt+1 and k ≥ kt by the

assumed condition. As kt−1 < k, either kt < kt−1, or kt ≥ kt−1 hold as well.

In the first alternative, Step I implies kt+1 ≥ kt . In the second alternative

kt−1 ≤ kt < k implies kt < k < k(t + 1) by (10). Hence kt+1 > kt as well.

Hence, kt+1 ≥ kt obtains in either situation.

The Fence Property (10) once again yields : k(t + 2) > k > kt+1, so kt+2 =

θt+2 (kt+1) > kt+1. Hence, kt+2 > kt+1 and k ≥ kt+2 (by assumption). The

previous paragraph’s argument can be repeated starting from any t, in particular
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at t = 1, to yield:

k1 ≤ k2 ≤ · · · ≤ k.

Thus, the sequence {kt−1} is bounded above by k and it is eventually non-

decreasing.12 Therefore, the limit of this sequence exists, is smaller than or

equal to k, and must be positive. Corollary 11 implies the limit should be k̄,

which is larger than k, which is impossible. Therefore, there must exist some

T , 0 < T < +∞ such that kT−1 ≥ k.

The proof of Lemma 12 shows kt−1 9 0 as t→∞. If kt−1 → 0, then there is

a time T such that kt < k for all t ≥ T . But then repeating the argument in Step

II of Lemma 12 from time T onwards shows {kt−1} is eventually nondecreasing

and convergent to k̄, which is impossible. Thus,

Corollary 13. {kt−1} optimal implies lim supt→∞ kt > 0.

The Fence Property (10) tells us that if kt > k̄, then k(t + 1) < k̄ < kt, so

θt+1 (kt) = kt+1 < kt. There are two possibilities: either kt+1 > k̄ or kt+1 ≤ k̄.

The next result addresses the case where kt > k̄ for all but a finite number of

periods.

Lemma 14. Let {kt−1} be the optimal capital sequence and suppose there is

a T such that kt > k̄ for all t ≥ T . Then limt→∞ kt−1 = k̄ and the convergence

is eventually monotonic. In particular,

kT > kT+1 > · · · > k̄. (14)
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Proof.

Repeated application of the Fence Property (10) and Lemma 9B yields (14).

Hence, the sequence {kt−1} is eventually decreasing and bounded from below

by k̄. Thus, kt−1 → k̄ by Corollary 11.

The next result is concerned with situations in which there is a first time in

which kt ≤ k̄. This can arise either at the start, t = 1, or at some finite date

T in the future. One quick application of Lemma 15, in combination with the

previous result, is that T = 1 in Lemma 14.

Lemma 15. Let {kt−1} be the optimal capital sequence and suppose there

is a T such that kT ≤ k̄. Then kt ≤ k̄ for all t ≥ T .

Proof.

Let T be the first time kT ≤ k̄. The Fence Property (10) insures k(T+1) < k̄.

Then either case (A) or (B) occurs, where

Case (A) kT ≤ k (T + 1) < k̄, or

Case (B) k (T + 1) < kT < k̄.

In Case (A) Lemma 9B implies θT+1 (kT ) = kT+1 ≥ kT with equality if and

only if k (T + 1) = kT . Moreover, θT+1 increasing implies

kT+1 = θT+1 (kT ) ≤ θT+1 (k (T + 1)) = k (T + 1) < k̄.

So, kT+1 < k̄.

31



In Case (B), Lemma 9B, once again, implies θT+1 (kT ) = kT+1 < kT < k̄.

Therefore, kT+1 < k̄ holds in either case. Repeat the argument at T + 2, and

so on. The conclusion follows.

The last step in proving the Convergence Theorem is to show that once

the optimal capital stock falls below k̄ it yields a monotonically nondecreasing

capital sequence thereafter.

Lemma 16. Let {kt−1} be the optimal capital sequence and suppose there

is a T such that kT ≤ k̄. Then

kT ≤ kT+1 ≤ · · · ≤ k̄. (15)

Hence, the optimal capital sequence is eventually nondecreasing and converges

to k̄.

Proof.

Simplify notation in the proof by dropping the T notation and understand

the argument applies for all t taken sufficiently large. The previous lemma

implies that once kt ≤ k̄ then kt+1 ≤ k̄, kt+2 ≤ k̄, and so on.

Either

kt−1 < kt < kt+1 < · · · < k̄, (16)

or there is a first time, t such that

kt−1 < kt and kt+1 ≤ kt. (17)
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Suppose that the optimal capital sequence satisfies (17). Now consider

θt+1 (kt) = kt+1. There are two possibilities:

Case (A) kt ≥ k (t+ 1);

Case (B) kt < k (t+ 1) .

Start with Case (B) where θt+1 (kt) = kt+1 > kt holds by Lemma 9B as kt <

k (t + 1). This violates the assumed satisfaction of inequality (17). Therefore,

Case (A) must hold.

Assume now Case (A) obtains and kt+1 ≤ kt from (17). Thus, kt+1 =

θt+1 (kt) ≤ kt by assumption.

Case (A) has two subcases analogous to those defining Cases (A) and (B).

Subcase (a) kt+1 ≥ k (t+ 2) ;

Subcase (b) kt+1 < k (t+ 2) .

If subcase (b) occurs, then kt+2 > kt+1 holds as θt+2(kt+1) > kt+1 by Lemma

9B.

Suppose Subcase (a) occurs. Then either

kt+2 ≤ kt+1 ≤ kt or kt+2 > kt+1.

In this situation, new subcases analogous to (a) and (b) arise for kt+2 taking

the place of kt+1 and k (t+ 3) in place of k (t + 2). In these situations we once
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again have two possibilities:

kt+3 ≤ kt+2 ≤ kt+1 ≤ kt, or

kt+3 > kt+2 > kt+1.

These alternatives are also the only ones that can arise whenever Subcase (b)

occurs. Thus, we may continue in this manner to produce the alternatives:

k̄ ≥ kt ≥ kt+1 ≥ · · · , or

kt+1 < kt+2 < · · · < k̄.

In the first situation, kt & k∗ for some k∗. Clearly k∗ > 0 by Corollary 13.

Thus, k∗ = k̄ by Corollary 11. This can only occur if kt = k̄ for all t. Hence, k̄

must be a steady state, which is impossible as
³
1− ∆t+1μt+1

´
6=
³
1− ∆tμt

´
for any

t when 0 < λ < 1. Thus, the only remaining possibility is for all t sufficiently

large,

kt+1 < kt+2 < · · · < k̄.

In this event, kt % k̄ as well.

The proof of Theorem 2 follows from Lemmas (and Corollaries) 9-16.

Just note that the optimal capital sequence {kt−1} must satisfy the hypotheses

of either Lemma 14 or Lemma 15 (and, hence Lemma 16) and those cases are

mutually exclusive.
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The need for qualifying statements such as eventually nondecreasing or even-

tually increasing is necessary to accommodate special cases of optimal solutions.

The easiest example occurs in the now familiar situation where the economy

starts at k̄ with k1 = θ1
¡
k̄
¢
< k̄. The first period’s stocks decline from the ones

given in the initial condition, but the optimal sequence of capital eventually

increases over time and converge to k̄.

6 .Concluding Comments

The monotonicity of the optimal capital sequence is a fundamental property of

the representative agent model. It implies that the shadow prices supporting

the optimal path are also monotonic. In particular, if the capital sequence

is increasing, then capital’s rental price (its marginal product) declines and the

wage rises over time. Bliss (1975, 1999) calls this feature the “Orthodox Vision”

of capital theory. This property is easily seen in the familiar log utility, Cobb-

Douglas production, representative agent example.

The heterogeneous agent extension of this example cannot exhibit the Ortho-

dox Vision as a result of the Le Van and Vailakis (2003) theorem. The twisted

turnpike property in the example implies | f 0(xt−1(k) − f 0(xt−1(k0) |→ 0 as

t→∞, where f 0(x) = ρLx1−ρ is capital’s marginal product. That is, the rental

prices of capital come together from two different initial conditions. However,

the sequence of rental prices from a given initial condition are not generally

monotonic as the sequence {f 0(xt−1(k̄)}∞t=1 fails to be monotonic. However, the
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eventual monotonicity property exhibited along the turnpike shows that even-

tually the Orthodox Vision obtains provided the initial stocks start at or below

k̄ or fall below k̄ in finite time. The turnpike’s “twists” occur early over an ini-

tial segment of finitely many periods before settling down to monotonic capital

accumulation.
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Notes

1The example corresponds to the model in Le Van and Vailakis (2003) with 100 percent

depreciation. The welfare maximization approach to optimal growth was developed in Bewley

(1972), Coles (1985, 1986), Kehoe, (1989), Kehoe and Levine (1985), and Kehoe, Levine and

Romer (1989, 1990).

2Note that they assume each agent’s felicity function is bounded below, whereas the log

felicity assumed here is not. This fact is demonstrated in my log utility example.

3See Becker and Boyd (1997) for more on this interpretation of the planner’s problem.

4See Becker and Boyd (1997), and Boyd (1986, 1990) for the symmetry technique solution

that underlies the example developed below. Other techniques are based on value function

iteration using Bellman’s optimality equation and Howard’s policy improvement algorithm.

5Rader formalized this result for exchange economies in Rader (1971, 1972, and 1981).

The latter paper emphasizes the class of Bernoulli (iso-elastic) one-period return functions,

which include the logartithmic case. A similar result is found in Kehoe (1989) for the two-

person exchange economy when agents have log felicity functions. Capital theoretic versions

are found in Bewley (1982), Coles (1985, 1986), and Le Van and Vailakis (2003).

6The detailed development of this solution is deferred to the next section.

7See Boyd ([8] p.253) as well as the discussion in Section 4 for details.

8 See the comments following Proposition 2 in Section 5.

9Recall, they assume that the planner’s felicity function is bounded below.

10See Le Van and Vailakis (2003) for details as well as my arguments for the Convergence

Theorem in the next section.

11See Kamihigashi (2008) for related presentations of Bellman equations in non-stationary

models.

12 In fact, it is increasing as the capital stocks are non-zero at each time, so a strict inequality

actually obtains.
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