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Abstract 
Sunk costs for R&D are an important determinant of the level of innovation in the economy. 
In this paper I recover them using a Markov equilibrium framework. The contribution is 
twofold. First, a model of industry dynamics which accounts for selection into R&D, capital 
accumulation and entry/exit is proposed. The industry state is summarized by an aggregate 
state with the advantage that it avoids the "curse of dimensionality". Second, the estimated 
sunk costs of R&D for the Portuguese moulds industry are shown to be important (3.4 million 
Euros). They become particularly relevant since the industry is mostly populated by small 
firms. Institutional changes in the early 1990s generated an increase in demand from 
European car makers and created the incentives for firms to pay the costs of investment. 
Trade-induced innovation reinforced the selection effect by which international trade leads to 
productivity growth. Finally, using the estimated parameters, simulations evaluate the effects 
of changes in market size, sunk costs and entry costs. 
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1 Introduction 

In this paper I document one effect of trade on innovation, by focusing on sunk costs of R&D. Reducing 

trade barriers allows firms to access larger markets. In the presence of sunk costs, this can give firms 

enough scale and create the right incentives for them to devote more resources towards Research and 

Development. Innovations can then generate future productivity growth, further increasing the gains from 

trade.1 I structurally estimate the size of the sunk costs for the Portuguese moulds industry after joining the 

EU in 1986. Using the estimated "deep" parameters I perform counterfactual policy changes in market size 

that illustrate this mechanism. If the market size was exogenously reduced to the beginning of the sample 

level, the model predicts a reduction in R&D performance, average productivity, capital stock and number 

of firms. A second contribution is the estimation of a dynamic game with many players. I hope this opens 

the avenue for an increase in the use of structural estimation methods with microdata to studies on industry 

dynamics. 

The data normally reveals large productivity and size differences between R&D and non R&D firms. 

Firms decide on R&D start-ups depending on the costs and benefits. However, these observed differences 

can be driven directly by R&D expenditures and/or selection into R&D, therefore leading to the question of 

which came first. This creates a problem for identifying the costs and benefits of R&D. To understand why, 

notice that large differences between R&D and non-R&D firms can signal large benefits for R&D 

(observed) and can be rationalized by the large costs of R&D. In this case R&D expenditures cause 

observed differences. Alternatively, observed differences can be due to a very strong selection effect into 

R&D, motivated by (heterogeneous) benefits being larger (or costs being lower) for firms with larger 

productivity and/or capital stocks. These two (and other) possibilities are observationally equivalent and 

therefore indistinguishable without closer inspection. Furthermore, it is most likely that both play a role. 

One way to address this question is by directly modelling these effects and using a structural model (that 

gives us the unobserved counterfactual) to estimate the costs and benefits. It is important to stress that the 

selection of larger and more productive firms into R&D is directly addressed in the model. 

In this paper the role of sunk costs of R&D is investigated as a main force driving the discrete 

decision to become an R&D firm. Estimating sunk costs of R&D is important because it will determine 

R&D performance and in particular the effects market size can have on industry innovation and 

productivity, topics of extreme relevance for policy makers. In the presence of sunk costs, market growth 

will trigger R&D start-ups. For most industries, only a fraction of the firms actually perform R&D. The 

reason must be that: either the returns from R&D are too low or; the costs involved (not necessarily sunk) 

are very high and prevent firms from engaging in R&D. The evidence suggests significant returns from 

R&D which gives support to the latter explanation. Recovering the dynamic cost parameters, gives the 

opportunity to perform counterfactual analysis on the impact of changes in the sunk costs to the amount of 

 
1Pavcnik (2002) estimates these gains for the Chilean industry and De Loecker (2007) for the Belgian textile 

industry.  



R&D expenditures and industry structure.2

The Portuguese moulds industry has been a heavy exporter since the beginning of its exis-

tence and grew substantially during the 1994-2003 period (almost three fold increase in total

sales). One of the reasons for this growth was the increase in demand from European car-makers

after Portugal joined the EEC in 1986. This can be seen by the decrease in the share of exports

going to the US (traditionally the larger market) in favor of Europe (mostly Germany, France

and Spain). During this period there was also an increase in R&D and innovation with the

strategy adopted by some players being to reinforce strong links with clients, develop new ma-

terials (product innovation) and minimize waste (process innovation). It has been documented

(Beira et al, 2003; IAPMEI, 2006) that the close cooperation with car makers was a strong

push towards the development of new processes and products. This type of "demand driven"

innovation is not uncommon in industries where products are non-standardized and there is

normally very close collaboration between supply and demand as in the case of moulds. There-

fore, due to the lack of a national market, access to large foreign clients was a strong driver

for the success of the Portuguese industry. The reason why car makers preferred Portuguese

moulds in the �rst place was their recognized competence, technical skills and price competi-

tiveness. A report from the US international trade commission (USITC, 2002) emphasizes the

fast delivery, technology, quality and competitive price as the main strengths of the Portuguese

moulds industry. For example, CAD/CAM technology was �rst introduced in the 1980�s and

this was a requirement from car-makers in order to ensure compatibility of the design of moulds

(Beira and Menezes, 2003).

The contributions in this paper are twofold. First, a model of industry dynamics which

can be used empirically is proposed. This is done by assuming that �rms� individual states

are private information and that the industry state is summarized by a commonly observed

aggregate state. As a result there are two advantages for estimation: (i) it avoids the "curse of

dimensionality", typical in dynamic industry games and; (ii) it deals with unobserved �rms in

the data, a problem that arises if one wants to estimate using equilibrium conditions. Second,

sunk costs of R&D are estimated for the Portuguese moulds industry and found to be large

(more than one year worth of sales for an R&D �rm). This is done using the method developed

by Bajari, Benkard and Levin (2007), henceforth BBL, to estimate dynamic games.

Sunk costs become particularly relevant because this industry is populated by many small

�rms. Institutional changes (joining the EEC in 1986 and the Single European Market in

2One hotly debated (and unsolved) issue is the link between competition and R&D performance. Aghion
et al. (2005) provide a theoretical explanation and some empirical evidence arguing that there is an inverted
U-shape relationship between the two, whereby innovation is higher for mid levels of competition but lower for
either very competitive or weakly competitive industries. Blundell, Gri¢ th and Van Reenen (1999), by contrast,
�nd that the pre-innovation e¤ect dominates. However, since both market structure and R&D performance are
jointly determined in equilibrium, it is not easy to disentangle these e¤ects without a dynamic model that
addresses the market structure endogeneity issue.
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1993) caused an increase in demand from European car makers. Access to a large market gave

incentives for �rms to invest in R&D and physical capital which later translated into increases

in labor productivity. This mechanism of trade-induced innovation (i.e., gaining access to large

markets makes it pro�table to sink money into R&D projects) seems to reinforce the selection

e¤ect by which international trade can lead to productivity growth.

Regarding unobserved players, most �rm level datasets3 contain information on �nancial

variables (balance sheets, pro�ts and losses, number of workers) for a subset of the total pop-

ulation of �rms in the industry. To estimate game theoretic type of models where players

strategies depend on the state of all competitors, requires observing all players in the indus-

try (if only the distribution of states is relevant, as happens when imposing symmetry and

anonymity (Doraszelski and Satterthwaite, 2007), only data for the distribution of states is

needed which can potentially be recovered from the sample). To see this, imagine that we want

to estimate a policy function as a function of the state of all (N) competitors in the industry,

�(s1; :::sN ). If there is data on actions and individual states, this can easily be done non-

parametrically. However, if some players are not observed we immediately face a problem of

unobserved heterogeneity since some important variables are unobserved. So, either we control

for this unobserved heterogeneity in some way or we face problems in estimating the policy

functions.

Most studies in empirical Industrial Organization have then focused on oligopolies or regu-

lated industries where good information for all players in the market is available, but this leaves

aside a large number of industries which are relevant and interesting cases to study. In this

paper the proposed framework allows us to estimate a structural model without facing these

problems. Furthermore, for questions like the sunk costs of R&D, oligopolist markets are less

attractive since in most cases all �rms are su¢ ciently large and the sunk cost of R&D might

not bind.

Aw, Roberts and Xu (2009) document a set of �ndings regarding the interaction of R&D

and export status, namely the self selection into exporting and R&D of high productivity plants

and the impact of this in reinforcing their productivity advantage. They develop a single agent

framework where �rms decide on entering the export market and doing R&D. Their model is

very similar in spirit to the one proposed here. The di¤erences are that on the one side it

allows endogenous entry decision into the export market, something that I do not model due

to problems with little variation in observed export status. On the other side, they do not

model capital accumulation or the dynamic industry equilibrium. The second is an important

disadvantage because it is hard to evaluate policy changes within a single agent framework.

3Examples of these are Standard & Poor�s COMPUSTAT for US �rms, Bureau Van Dijk�s FAME (UK)
and AMADEUS (Europe) or Thomson Financial�s DATASTREAM (UK). Only census data would contain
observations for all �rms present in the industry and even in this case smaller �rms are sometimes sampled.
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The framework developed in this paper is a dynamic equilibrium model with productivity,

physical capital accumulation and entry and exit within a monopolistic competition setting.

There are both linear and quadratic costs with total irreversibility for physical capital invest-

ment. Productivity follows a �rst order Markov process which depends on whether the �rm is

an R&D performer or not. Finally, �rms compete in the market where demand is modeled by

a representative consumer with constant elasticity of substitution utility.

The reason to introduce both (total factor) productivity and capital stock is to account for

two important characteristics behind �rm and industry dynamics, size and productivity. In this

way, using total factor (as opposed to labor) productivity is important since labor productivity

is normally not scale free (i.e. �rms with larger capital stocks have, ceteris paribus, higher labor

productivity).

One hypothesis that could explain observed behavior is unobserved heterogeneity in the

returns from (and costs of) R&D. In principle this could be relaxed by letting either bene�ts or

costs depend on unobserved heterogeneity, but not both. However, this can only be done with

a su¢ ciently large time series so that �rm �xed e¤ects can be consistently estimated. Notice

however that part of the unobserved heterogeneity in returns is still accounted for by recovering

total factor productivity estimates via production function.

There are considerable costs of becoming an R&D �rm that besides producing moulds, is

also able to supply its clients with conception and design skills, moulds testing and development

of new materials, all at a competitive price. A successful innovative �rm is able to produce not

only the mould itself but also deliver all the pre and post production services required by their

clients. The costs of R&D we consider can range from the training and hiring of new employees,

investment in new machinery or even the establishment of links with universities and public

research agencies. These costs motivate the idea of sunkness.

Sunk costs have for a long time been regarded as one potential source of ine¢ ciency in

the economy. The earlier literature emphasizes the failure of the contestability theory in the

presence of sunk entry costs, which results in market failures because the industry will not be

competitive and �rms can maintain some degree of market power (Baumol and Willig, 1981;

Stiglitz, 1987). The issue is of great importance for policy makers and regulators since their

existence results in a market failure which induces the need for policy intervention.

Sunk costs of R&D, in particular, have been widely studied in the industrial organization

literature, especially following the work by Sutton (1991, 1998). The main objective of this

research was to explore the relationship between R&D and market structure. In particular,

�rms can use R&D as a strategic tool to increase barriers to entry and maintain a dominant

position even for large market size. One question raised by Schmalensee (1992) is how will the

incumbent maintain a dominant position, in the cases where R&D does not have a "forever

lasting" e¤ect and therefore does not create a "forever lasting" advantage/barrier. However,
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the study of more complex dynamics for the outcome of R&D requires a fully dynamic model

that goes beyond the two period approach and this type of framework was at the time in an

early development stage. Dixit (1988) acknowledges this in his work

"Perhaps the most important aspect ignored here is the possibility of partial progress

(state variables) in the R&D race. That has so far proved intractable at any rea-

sonably general level, but remains an important problem for future research". Dixit

(1988: 326)

As explained above, the incomplete information assumption whereby players only observe

an aggregate state addresses two problems both avoiding the "curse of dimensionality"4 by

reducing the dimensionality of the state space and dealing with unobserved �rms in the data by

only requiring the aggregate industry state to be observed. Industry state can be summarized

by the (payo¤ relevant) aggregate state and the notion of equilibrium is then very intuitive.

Given the beliefs about the evolution of the aggregate state, agents behave optimally. Evolution

of the industry state resulting from agents�optimal decisions is consistent with their (rational)

beliefs. Notice that restricting the strategies to be functions of the payo¤ relevant variables (in

our case the aggregate state) is common in the theoretical literature (Maskin and Tirole, 2001).

The main problem is to guarantee that the equilibrium transition for the aggregate state is

Markovian. In a sense this is close to macro-style models similar to Krusell and Smith (1998).

In related research Weintraub, Benkard and Van Roy (2008) propose the use of a di¤erent

equilibrium concept, the "Oblivious Equilibrium". In this type of equilibrium �rms disregard

the current state of the industry and base their decisions solely upon the long-run industry

state. As the number of �rms in the industry grows, this converges to the MPE provided the

industry state distribution satis�es a "light tail" condition. This result resembles Hopenhayn

(1992) and when the number of �rms grows large, with no aggregate shocks, the equilibrium is

deterministic.

Introducing this form of incomplete information has some potential drawbacks by implicitly

restricting strategic interactions since �rms now react to the "average" competitor (i.e. �rm

A�s reaction to a market structure where both competitors B and C are very similar will be

the same as when B is very large and C is very small). How well this approximates actual

competition in the industry will vary from case to case. It is more likely that the assumption

is not valid in oligopolistic industries with large players where strategic interactions are very

important. In other industries, competition might be well summarized by the aggregate vari-

ables. Some good examples are industries where there is a large number of players, no market

4The "curse of dimensionality" is not only a computational problem but will also arise in the estimation. As
we will see ahead, since this industry state is very large, if one tries to estimate a �exible policy function on
the whole state like proposed by Bajari, Benkard and Levin (2007), it will require a large amount of data (not
available on most �rm level dataset). The best one can do then is estimate the policies for some aggregation of
the state space as implemented in Ryan (2006).
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leaders and products are di¤erentiated like, for instance, Industrial Machinery Manufacturing

or Metalworking Machinery Manufacturing (moulds, dies, machine tools). What these indus-

tries share in common is the fact that each �rm sells specialized products, prices are contract

speci�c and information is not publicly available.

Earlier dynamic models only accounted for the e¤ects of entry and exit and did not allowed

for investment or R&D (Jovanovic, 1982; Hopenhayn, 1992). Ericson and Pakes (1995) develop

an attractive dynamic framework for modeling investment decisions where players use Markov-

ian strategies leading to a Markov Perfect Equilibrium (MPE) as later de�ned in Maskin and

Tirole (2001).

However, solving the MPE brings with it two complications. One was the possibility of non-

existence of equilibrium in pure strategies, addressed by Doraszelski and Satterthwaite (2007)

with the introduction of privately observed independent and identically distributed shocks.

These shocks "smooth out" reaction functions reestablishing the existence of equilibria. The

second, is the "curse of dimensionality" and the computational burden attached to solving the

model. Recent algorithms (e.g. Pakes and McGuire, 2001) are successful in minimizing this

second problem and (depending on the size of the recursive class) can solve the model for up

to 20 �rms, by using techniques borrowed from the arti�cial intelligence literature. However,

they might not solve problems where there is a larger number of �rms in the market. These are

exactly the kind of industries we might consider will adapt particularly well to the assumptions

introduced here.

Other theoretical models exist that study the R&D decisions in an equilibrium framework.

Vives (2004) for example, does this in a static setting, but it does not incorporate any hetero-

geneity, so that it cannot explain coexistence of R&D and non-R&D �rms. Klette and Kortum

(2004) use a dynamic framework with the advantage of providing an analytical solution. How-

ever, the simpli�cation that allows the elegance of an analytical solution is also the constraint

which prevents extensions to account for R&D sunk costs and aggregate uncertainty.

There has been a recent surge in the estimation of dynamic games5 after the development

of estimation methods (Aguirregabiria and Mira, 2007; Bajari Benkard and Levin, 2007; Pakes,

Ostrovsky and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008). The method used is an

extension of Hotz et al. (1994) as proposed by Bajari, Benkard and Levin (2007) which allows

for both continuous and discrete actions.

Estimation is done in three steps. In the �rst step productivity is recovered using production

function estimation methods. In the second step policy and transition functions are estimated.

By assumption, estimated policies are pro�t maximizing conditional on the equilibrium being

played, i.e. the equilibrium observed in the data. Continuation values are then estimated by

5A non-exhaustive list includes Aguirregabiria and Ho, 2009; Collard-Wexler, 2006; Hashmin and Van Biese-
broeck, 2008; Ryan, 2006; Santos, 2008; Santos and Van Reenen, 2008; Schmidt-Dengler, 2006; Varela-Irimia,
2008; Xu, 2008.
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simulating industry paths far enough in the future using the estimated policies and transitions.

Non-optimal policies are constructed by slightly perturbing the estimated policy functions and

simulating alternative (non-pro�t maximizing) continuation values. With these optimal and

non-optimal continuation values and exploring the property that the value function is linear in

the dynamic parameters, the dynamic parameters are estimated by imposing the equilibrium

condition, i.e., that optimal continuation values must be larger than non-optimal continuation

values. The linearity of the value function in the dynamic parameters greatly simpli�es the

problem since we do not need to recalculate (re-simulate) continuation values for each set of

parameters.
Finally, I evaluate the impact on investment, productivity and market structure of several

counterfactuals: a reduction in the sunk costs of R&D, an increase/decrease in market size to

assess the impact of trade opening and an increase in entry costs. The results show that a 10%

reduction in the sunk cost of R&D results in a 7% increase in average productivity and 50%

increase in average capital stock. Furthermore, a decrease in market size to the equivalent of

the early 1990�s leads to a reduction both in R&D performance and productivity. An increase

in entry barriers has a negative e¤ect on exit by less productive �rms while virtually no e¤ect

on R&D performance therefore leading to a reduction in average productivity.
The rest of the paper is organized as follows. Section 2 introduces the moulds industry,

section 3 gives an outline of the model, section 4 provides details of the application, section

5 describes the estimation, section 6 summarizes the data, section 7 contains the results and

section 8 the policy experiments, and �nally, section 9 concludes.

2 The moulds industry

The Portuguese moulds industry is an interesting case of success. With an almost nonexistent

internal market, from its early years the industry developed by exporting almost all produc-

tion. Currently it exports 90% of its production and supplies 72% of its production to the

very competitive car manufacturing industry accounting for more than 1% of total Portuguese

Exports (CEFAMOL, 2008). The main advantage is the ability to produce complex moulds

which require advanced technology at a low cost and high quality (USITC, 2002).

"Despite Portugal�s small size, it has emerged as one of the world�s leading exporters

of industrial molds. In 2001, despite limited production of dies, Portugal was the

eighth largest producer of dies and molds in the world and it exports to more than

70 countries. The Portuguese TDM industry�s success in exporting, and in adoption

of the latest computer technologies, has occurred despite the fact that Portugal has

a small industrial base on which the TDM industry can depend. Since joining the

EU in 1986, Portugal has focused on serving customers in the common

market." (USITC, 2002)
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The 1990�s saw a strong sales expansion, mostly to the automotive industry. Over the

period 1994-2003 total sales and value added more than doubled (Table B.I). The reason was

that joining the EEC in 1986 opened the doors to the European market causing the increase

in exports mostly to France, Germany and Spain. This was later reinforced when the Single

European Market came into place in 1993 and by the opening of a large car manufacturing plant

(joint venture between Ford and VW) which became a large player in the economy. Tables B.II

and B.III illustrate the change in export destinations from 1985 to 1990 and the strong export

growth in France, Germany and Spain. The industry has stabilized since 2001 (CEFAMOL,

2008).

These changes gave a strong push in the demand for Portuguese mouldmakers and caused a

shift (as requested by clients) from the production of very simple to more complex moulds. To

achieve this, the development of competencies and technical skills that made the Portuguese

industry a regular supplier to big European car-makers like Renault, VW, Mercedes or Saab

was necessary.

It was the opening to EU countries (1986 joining the EEC and 1993 the Single Market) that

gave these �rms su¢ cient size to introduce innovations which later translated into productivity

increases. Some �rms used this surge in demand for their products as an opportunity to invest

and innovate. This allowed them to maintain and improve their reputation. At the same time,

labor productivity increased by roughly 40% over the period. However, this performance was

not homogenous across �rms. As documented in Table B.IV, R&D �rms export more, are on

average almost three times as large and 20% more productive (labor productivity).

The mechanism behind this change is interesting in itself because it is what can be called,

trade-induced innovation. In particular, in the presence of large costs of performing R&D, the

access to a larger market (EU) induced by favorable trade agreements, makes it more attractive

to incur these costs. There is also strong selection since larger and more productive �rms are

more likely to develop R&D projects.

Another important industry characteristic is its fragmentation. The number of �rms is very

large and there are no dominant �rms (largest market share is below 10% in any given year).

This motivates the use of a monopolistic competition framework where strategic interactions

are negligible and the equilibrium e¤ects of entry, investment and pricing can be summarized

in the aggregate state.

Notice also that each mould is (quasi) unique, prices depend on the mould speci�cation and

are typically contract speci�c, agreed between the producer and the client. Individual prices

are therefore, either unobserved or di¢ cult to compare due to product speci�city. Firms tend

to specialize in a particular type of mould and therefore potential clients approach �rms with

the expertise in their product. Portuguese mouldmakers mostly produce moulds for plastics

and rubber (very little production of dies or moulds for metal). Within each type of mould,

9



the technology is su¢ ciently �exible and allows producers to satisfy most needs (depending on

the technology they control).

Industry history The history of the industry dates back to the 1930�s and 1940�s when

the development of plastics created a great demand for plastics�moulds. The Portuguese moulds

industry started to �ll this need in the late 1950�s as a major producer of moulds for the glass

(where it inherited some of its expertise) and especially for the toy manufacturing industry.

In the late 1980�s the production started shifting from toy manufacturing towards the growing

industries of automobiles and packaging as can be seen by export composition (share of exports

by main client/product type) in Figure B.1. During the 1990�s the biggest export markets

started shifting from the US towards France, Germany and Spain. (IAPMEI, 2006)

During this long period the industry su¤ered several changes both in terms of the number

of �rms with a big increase in the early 1980�s and a shift towards other main clients due to the

boom of the plastics and packaging sectors. This increased pressure for the introduction of new

technologies (e.g. CAD, CAM, Complex process, In-mould Assembling) and an increasingly

importance of innovation and R&D. For example, current computer operated machines for

building moulds use radically di¤erent techniques from the ones in the 1970�s and 1980�s. This

state of the art machinery allows �exibility at a low cost alongside a close collaboration with the

client in the pre-mould construction phase, which is crucial for car-makers. The design teams

can work closely with the clients�engineers and produce 3D virtual versions of the mould which

are then programed into the machine to start production. This was in fact a major requirement

for car-manufacturers and one of the big advantages of these producers.

Given the industry structure, it is important to take into account the following facts that

will be directly addressed:

� High investment rates in physical capital;

� Large growth in sales and productivity;

� Existence of important aggregate industry wide shocks;

� Endogeneity of the R&D start-up decision (larger and more productive �rms select to

R&D).

3 The aggregate state dynamic model

3.1 States and actions

This section describes the elements of the general model. Time is discrete and in every period,

t = 1; 2; :::;1, there are N �rms in the market (Nt incumbents and N�
t = N � Nt potential

entrants) where a �rm is denoted by i 2 f1; :::; Ng

10



States Agents are endowed with a continuous state sit 2 si6 and a vector of payo¤ shocks

'it 2 J both belonging to some compact set. Both the state and the payo¤ are privately

observed by the players. The econometrician observes the states, sit, but not the payo¤ shocks,

'it.
The industry state is st = (s1t; :::; sNt) 2 sNi . The vector of payo¤ shocks is independent and

identically distributed with distribution F' and can depend on the actions of the players. This

satis�es the conditional independence assumption and allows the value function to be written

as a function of the state variables which keeps the number of payo¤ relevant state variables

small (Rust, 1987).

Actions Incumbents choose l = lc + ld actions that can be continuous acit 2 Ac � Rlc

or discrete (exit, R&D start-up) adit 2 f0; 1gld and ait = facit; aditg 2 A � Rlc � f0; 1gld .

For expositional purposes, throughout the rest of the analysis, discrete actions are restricted

to be binary and there is only one continuous variable (investment) and one discrete variable

(entry/exit). For example, if adit = 1 represents incumbency and �rms decide to exit the industry

they set adit = 0 and collect a "scrap" value, e + 'scrapi . Potential (short lived) entrants may

choose to pay a privately observed entry cost (ent+ 'entryi ) and enter the industry.

State transition

Assumption 3.1 (No spillovers) Conditional on current state and actions, own state evolves

with transition function

p(sit+1jsit; ait)

This assumption excludes the cases where the opponents�states or actions directly a¤ect

(i.e. not through own actions) the evolution for the state. An example which violates this

is knowledge spillovers. This assumption is not necessary but it considerably simpli�es the

problem. In principle we could allow for p(sit+1jsit;at; st).

Per period payo¤ Time is discrete and �rms collect per period returns which depend on

the state of the industry, current actions and shocks (�(ait; st; 'it)) where the period returns

are assumed continuous and bounded.

Assumption 3.2 (a) There exists a function (S : sN ! S 2 R) that maps the vector of indi-

vidual states (st) into an aggregate index (S(s1t; s2t; :::; sNt)). This Aggregate State is observed

with noise (St = S(s1t; s2t; :::; sNt)+"t, where "t is independent and identically distributed with

cumulative function F" and bounded support).
(b) Per period returns can be written as

�(ait; st; 'it) = �(ait; sit; St; 'it)

6The model can be extended to discrete states. The focus in the continuous case is to keep notation simple
and easy to follow.
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Under this assumption, St is the payo¤ relevant variable commonly observed by all agents.

The random shock, "t, guarantees that there is no perfectly informative state St from which

agents could recover (s1t; :::; sNt) exactly.7 This is to prevent degeneracy of beliefs about the

current industry state g(stjSt; :::S0) (and the resulting equilibrium transition).

Note that the payo¤ relevant shocks ('it) do not enter the aggregate index (for example,

have no impact on the stage game pricing). One type of demand which meets this assumption

is the CES utility where the aggregate industry state is aggregate industry de�ated sales.

Assumption 3.3 (a) Individual states and actions are private information and;

(b) g(stjSt; :::; S0) = g(stjSt)
where g(stjSt) is the density function for the industry state, st, conditional on the aggregate

state St.

Assumption 3.3 states that the only common information is the aggregate state. Moreover

it implies that everything agents can learn about the state of the industry, st, is contained in St

and history (St�1; :::; S0) adds no more extra information. This is a fundamental assumption

to guarantee a Markovian aggregate state.

The timing is the following:

1. States (sit) and shocks ('it) are observed by �rms;

2. Firms compete in the market and collect period returns (�(:));

3. Actions (at = (a1t; :::; aNt)) are chosen simultaneously;

4. New state is formed (st+1; St+1; 't+1 2 sN �S� JN );

3.2 Strategies

The aggregate state For each state �rms can take actions in some space ait 2 A. Players

are restricted to use Symmetric Markovian Pure Strategies.8 The strategies map the set of states

into the action space, � : s � S � J ! A (�it(sit; St; 'it) = (�
c
it(sit; St; 'it); �

d
it(sit; St; 'it)))

where the action space is de�ned by A(sit; St; 'it) � s�S�J�Rl
c�f0; 1gld . Using symmetry

we can drop the i subscript and imposing stationarity we can drop the t subscript:

�it(sit; St; 'it) = �(sit; St; 'it) (1)

7The intuition for this error term is the following, imagine sit is marginal cost which a¤ects pricing in the
stage game so that the price is a function of the state p(sit; St). If players make pricing mistakes, imagine the
actual price they set is p(sit; St) + "it, where "

i
t is independent and identically distributed, the aggregate state

(average price) is then St = 1
Nt

NtX
i=1

p(sit; St) + "
i
t =

1
Nt

NtX
i=1

pit + "t, where "t = 1
Nt

NtX
i=1

"it.

8Anonymity as de�ned in Ericson and Pakes is imposed by assuming that �rms do not observe each other�s
state.
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Proposition 1 If players use strategies of the form [1], under assumptions 3.1 to 3.3 the

industry aggregate state conditional distribution takes the form q�(St+1jSt).

Proof. See appendix.
So while the industry state is a vector st = (s1t; s2t; :::; sNt), St is a scalar variable that maps

all the industry state into an aggregate state St = S(s1t; s2t; :::; sNt) + "t. This result critically

depends on the validity of the Assumptions, in particular the restriction on learning in 3.3 (b).

As explained above this assumption can be tested and in the empirical section this is done by

directly evaluating whether the transition for the aggregate state is a �rst-order Markov process

by testing the signi�cance of previous lags.

When some actions and states are not observed, the �rm has to condition its strategies on the

expected actions and state of the competitors. When nothing is observed about the competitors,

the �rm will have the same expectation about the state and actions for all competitors.

To understand the implications of this incomplete information assumption, recall that in

the Ericson and Pakes framework with the symmetry and anonymity assumption �rms "keep

track" of the industry state distribution and not the whole industry state vector as would be

the case with no anonymity. This is because under anonymity, the industry state distribution

is a su¢ cient statistic for the industry state vector. In the proposed incomplete information

case what matters is just one moment of this same distribution so this imposes slightly stronger

conditions than the usual symmetry and anonymity. It implicitly imposes more structure in

the type of strategic interactions since �rms now react to the "average" competitor (i.e., ceteris

paribus, �rm A�s reaction to a market structure where both competitors B and C are very

similar will be the same as when B is very large and C is very small provided the aggregate

state is the same). Notice that it is implicitly assumed that �rms are in�nitesimally small

with respect to the aggregate state and, knowledge about own state is considered to have no

impact on the evolution of the aggregate state conditional on knowing the current state so that

q�(St+1jsit; St) = q�(St+1jSt). If this was violated, at each point in time a �rm would have own

individual beliefs about the evolution for the aggregate state. Although this can be allowed it

would signi�cantly complicate the structure of the game and remove most of the gains of using

the aggregate state model.

Corollary 2 In the case St =
PN

i=1 h(sit)+"t and under assumptions 3.1 to 3.3, as N becomes

large q�(St+1jSt) is approximately normally distributed with conditional mean ��St+1jSt = (1 �

��s )�S + �
�
sS and standard deviation ��St+1jSt = ��S(1 � (��s )2)1=2. Where ��S ; (�

�
S)
2; ��s are

respectively the unconditional mean, variance and autocorrelation for the St process when players

use strategies [1].

Proof. We can write the distribution f�(sit+1jSt) =
R
'

R
sit
p(sit+1jsit; �(sit; St; 'it))g(dsitjSt)dF'

which is independent and identically distributed across i = 1; :::; N . The result then follows

from the central limit theorem.
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Corollary 3 As N becomes large, three moments of the aggregate state distribution, (�S ; �S ; �S)

fully characterize q�(St+1jSt).

Proof. Follows directly from Corollary 2.

3.3 Equilibrium

The equilibrium concept is Markov Perfect Bayesian Equilibrium in the sense of Maskin and

Tirole (1988, 2001). Since strategies are restricted to be Markovian pure strategies the problem

can be represented as:

V (sit; St; 'it; q
�) = sup

a2A
�(sit; St; 'it; ait) + �EfV (sit+1; St+1; 'it+1)jsit; St; ait; 'it; q�g (2)

where

E [Vi;t+1jsit; St; 'it; ait] =
Z
s2s;S2S;'2J

Vi;t+1~q
�(dsit+1; dSt+1; d'it+1jsit; St; 'it; ait)

~q�(sit+1; St+1; 'it+1jsit; St; 'it; ait) = q�(St+1jSt)p(sit+1jsit; ait)�('it+1)

This value function depends on the beliefs about the transition of the aggregate state,

q�(St+1jSt). These beliefs depend on the equilibrium strategies played by all players. Notice

that since �rm i does not observe sjt;8j 6= i, it can only form an expectation of its rivals�actions

conditional on the information available. This has a similar e¤ect to the introduction of private

information in Doraszelski and Satterthwaite (2007) which smooths out the continuation value

and guarantees existence of equilibria (as if players used mixed strategies).9

De�nition 4 A collection of Markovian strategies and beliefs (�; q�()) constitute a Markov

perfect equilibrium if:

(i) Conditional on beliefs about industry evolution (q�) �rms�strategies (�it= ��(sit; St; 'it; q)

maximize the value function V (sit; St; 'it; q).

(ii) The industry transition (q�(St+1jSt;��(sit; St; 'itjq)) resulting from optimal behavior

(��it) de�ned above is consistent with beliefs q
�(St+1jSt)

9Doraszelski and Satterthwaite (2007) have shown that in some cases the original Ericson and Pakes frame-
work did not have an equilibrium in pure strategies.
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The solution to the dynamic programming problem conditional on q is the optimal strategy

��(:jq) and a solution exists, under Blackwell�s regularity conditions. These strategies will then

characterize the industry conditional distribution q�(St+1jSt;��) and the equilibrium is the

�xed point to a mapping from the beliefs used to obtain the strategies onto this industry state

transition

�(q)(St+1jSt) = q�(St+1jSt;��(:jq�))

where �rm�s follow optimal strategies ��(:). An equilibrium exists when there is a �xed

point to the mapping �(q) : Q! Q

A proof of existence for a similar class of models is provided in Doraszelski and Satterthwaite

(2007). The idea explored is that stochastic privately observed shocks "smooth" out reaction

functions guaranteeing continuity of own strategies on opponent�s actions. This ensures the

existence of at least one �xed point (there can be many). For the interested reader in the

technical appendix I provide a sketch for the existence proof using Schauder�s �xed point theo-

rem. I also discuss uniqueness which is not guaranteed but, there is some reason to believe the

problem becomes less severe in the aggregate state model.

3.4 Discussion

Reducing the industry state into an aggregate by introducing incomplete information avoids

the "curse of dimensionality". As noted before, this imposes more structure on the type of

strategic interactions by making policy functions identical to all industry structures that result

in the same aggregate state. In a sense this condition imposes slightly stronger restrictions

than the usual anonymity and symmetry assumptions which are also fundamental to reducing

the dimensionality of the state space. Symmetry and anonymity are a restriction that allows

the state space to be characterized more compactly as a set of "counting measures" (i.e. the

industry state distribution).10

Krusell and Smith (1998) explore a similar idea whereby the evolution of the aggregate

variables in the economy is well approximated by some summary statistics even in the presence

of substantial heterogeneity in the population.

Empirical methods like BBL can avoid equilibrium calculation and its computational burden.

However, they cannot avoid equilibrium calculations when producing counterfactuals. This is

one important reason for using structural econometrics models so that alternative policies can

be evaluated in the absence of good experimental data.

10Notice that the aggregate state is the payo¤ relevant variable and individual states are only informationally
relevant, i.e., to help forecasting what is the most likely aggregate state in the future.
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Assumptions 3.2 and 3.3 might be seen as restrictive in some settings.11 The �rst is satis�ed

by most reduced form pro�t functions whenever S is payo¤ relevant. For example, the model is

�exible enough to allow di¤erent demand structures provided the aggregate state is the payo¤

relevant variable.
The second assumption is more restrictive as it requires that �rms do not observe each other�s

states (and actions) and more importantly, that history of the aggregate state is irrelevant

conditional on the current state. Imagine the case where the state variable is price. It states

that �rms observe industry aggregate prices (e.g. published by some entity) but they do not

observe individual prices for the competitors (e.g. this would involve prohibitive costs in market

research). For the moulds industry, each product is individual and therefore prices are product

speci�c. Furthermore, there are many �rms in the industry and no signi�cant players. In this

sense, the assumption of incomplete information is not a severe restriction.
In industries where there are market leaders, Assumption 3.3 will not hold. A possible

extension in this case is to increase the state space to include the state of the market leaders

(notice this state is still only informationally relevant if the aggregate state is the payo¤ relevant

variable). There are now two dynamic problems to solve, one for the leader and one for all other

�rms. State space increases to (sit; St; sLt) where sLt is the state of the leader. However, it is

still to be checked what the equilibrium resulting from players using these strategies looks like.

This is not a trivial extension of the work presented here.
Once equilibrium transition, q�(St+1jSt), is known the problem can be represented as a

standard dynamic programming problem which can be estimated with available techniques for

single agent models (Rust (1987), Hotz and Miller (1993), Aguirregabiria and Mira (2002)) or

using estimators developed for dynamic games (Aguirregabiria and Mira, 2007; Bajari, Benkard

and Levin, 2007; Pakes, Ostrovsky and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008).

4 Recovering the Sunk Costs

The framework is the following: �rms sell di¤erentiated products and they can invest both in

physical capital and decide to engage in R&D for which they have to pay a sunk cost. These

sunk costs can range from building an R&D lab to the costs of internal reorganization or even

credit constraints. Finally, potential entrants can enter and incumbents can exit. The variables

and parametrization will now be de�ned.

4.1 State and action space

The state space sit for �rm i at time t is represented by four variables: Physical capital (K),

productivity (!), R&D status (R; where R = 1 denotes that the �rm has built the R&D lab

and R = 0 otherwise) and operating status (�; where � = 1 denotes incumbency).

11Assumption 3.1 ("no spillover") is standard in the literature and it allows us to write down the transition
for the individual state conditional on the �rms�actions independently of the other �rms�action/states.
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sit = (Kit; !it; Rit; �it)

where !it 2 
; a compact set on the real line andKit 2 �; a compact set on the non-negative

reals. For the discrete decisions, Rit 2 f0; 1g; �it 2 f0; 1g.
The aggregate state St is average de�ated industry sales ( ~Yt is average industry sales and

~Pt is the average industry price):

St =
~Yt
~Pt

There are also stochastic shocks (privately observed by the �rm and unobserved by the

econometrician) including shocks to investment 'invit , to the sunk cost of R&D 'RDit ; and to

the scrap value 'scrapit . The vector of payo¤ shocks 'it = ('inv; 'RD; 'entry; 'scrap) is an

independent and identically distributed standard normal random variable.

After entering the industry, �rms can invest in physical capital, pay a sunk cost and engage

in R&D and �nally decide to exit from the industry. Denote the action space as a; where

a superscript denotes either a continuous decision (c) such as investment levels or a discrete

decision (d) such as starting an R&D lab or exiting the industry.

ait = (a
c
it; a

d
it) = (Iit; Rit+1; �it+1)

Investment, Iit 2 I can take any non-negative value and the shape of the pro�t function

guarantees that this is always �nite.

The law of motion for the state variables depends on the previous state and actions with

density function. This law of motion will be stochastic for productivity and deterministic for

all other state variables.

4.2 Parametrization

Using a demand and production function we can solve the static pricing game to get the reduced

form pro�ts. This pro�t function satis�es Rust�s (1987) conditional independence and additive

separability assumptions

�(sit; St; ait; 'it) = ~�(sit; St; ait) + 'it(ait)

4.2.1 Demand

Using the Dixit-Stiglitz monopolistic competition framework in discrete varieties, there are Nt

available goods, each supplied by a di¤erent �rm so there are Nt �rms in the market. Consumers

choose quantities of each good Qi to consume at a price Pi.

Solving the representative consumer problem, �rm�s demand is [see the technical appendix]
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Qit =
~Yt
~Pt

�
Pi
~Pt

���
(3)

Where the price index is ~Pt =
h
1
N

�PNt

i=1 P
�(��1)
it

�i�1=(��1)
and

�
~Y
~P

�
=

1
N

PNt
i=1 PitQit

~P
is

average industry de�ated revenues. If the goods were perfect substitutes (� is in�nite), there

could be no variations in adjusted prices across �rms, Pi = ~P and ~Y
~P
= Qi for all �rms. Notice

that the representative consumer buys a fraction of each of the available goods. While this could

be relaxed using an alternative demand function, the bene�ts of it would only arise if there was

individual price and quantity data available so that more �exible elasticities of substitution

could be estimated.

4.2.2 Production function

The production technology is assumed to be Cobb-Douglas where L is labor input:

Qi = e
!iL�li K

�k
i (4)

4.2.3 Static pricing game

Firms compete in the market by setting prices simultaneously in a static demand framework.

Since in the short run the only �exible input into production is labor and gross pro�ts are

~� = [P (Qit)Qit � wLit] (w is the wage rate), the resulting solution to the short run static

pricing game is: 12

~�(!it;Kit; St; �; �k) =
1



�
� � 1
�

��
� � 1
�

�l

w= ~P

��l
S
=(��1)
t (e!itK�k

it )
 (5)

where  = (� � 1)=(� � �l(� � 1)), ~� is gross pro�t and

St =
~Yt
~Pt
/

~Yt
1
N

P
j

�
!jtK

�k
jt

�
Productivity Productivity evolves stochastically with a di¤erent transition for R&D and

non-R&D �rms. In general, product and process innovation are di¢ cult to disentangle from

each other unless one observes �rm level price data (e.g. Foster, Haltiwanger and Syverson,

2008). Since the dataset for the moulds industry does not contain �rm level price data, they

are considered to be indistinguishable in the model and productivity is broadly de�ned.13

12See derivation in the technical appendix.
13The model can however be extended to allow for quality in the demand speci�cation (see Melitz, 2000).

This distinction would be important to model other type of phenomena like dynamic pricing, where for example
the e¤ects of product and process innovation would be qualitatively di¤erent.
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The �internal�source of uncertainty distinguishes R&D investment from other decisions as

capital investment, labor hiring, entry and exit which have deterministic outcomes and where

the only source of uncertainty is �external�to the company (e.g. due to the environment, to

competition, to demand, etc.). This distinction is important since the stochastic R&D outcome

will determine (together with entry and exit) the stochastic nature of the equilibrium.

Productivity is assumed to follow a controlled �rst order Markov process.

!it+1 = E(!it+1j!it; Rit) + �it

where vit is independently and identically distributed across �rms and time.

4.2.4 Cost function

Investment cost Investment adjustment costs are quadratic (Hayashi 1982) and totally

irreversible with the following parametrization:

CK(It;Kit�1) =

�
�1Iit + �2

I2it
Kit�1

�
+ 'IitIit if Iit > 0 (6)

where �2 > 0 indexes the degree of convexity and the �price�of investment is �1+ '
I
it > 0:

R&D technology The �rm has the choice of building an R&D lab at a sunk cost of �+

'Rit where '
R
it is a standard normal random variable. As mentioned above the continuous R&D

decision of how much to spend each period is not directly modeled. This is done mainly for

simplicity since otherwise there would be an extra policy function to consider. The empirical

results from the literature suggest that R&D intensity (R&D to sales ratio) is highly autocor-

related. For example, Klette and Kortum (2004) take this as a stylized fact that they �t with

their model. This simpli�cation could lead to overestimating the sunk costs of R&D because

the estimates do not take into account the period by period expenditures and would therefore

overestimate the bene�ts of R&D. The alternative followed in this paper is to estimate the

static pro�t function using observed pro�ts and allow for a �xed cost (or bene�t) for R&D

�rms. In this way, any R&D costs which are not incorporated in physical capital would in

fact be accounted for (see equation 11). Furthermore, physical capital decisions are directly

modeled so that any physical capital costs incurred due to R&D period by period expenditure,

would "show up" in the policy function for investment. The same applies for R&D labor or

materials expenditures (for accounting reasons some R&D costs can show up as normal labor

or physical capital in the data). For these two reasons, abstracting from the continuous R&D

decision should not cause a severe bias in the estimate of the sunk costs.
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Entry cost Potential entrants, denoted by �it = 0, are short lived and cannot delay

entry. Upon entry, �rms must pay a (privately observed) sunk entry fee of Ent+ 'entryit to get

a draw of (!;K) with distribution p(!t+1;Kt+1j�t = 0). Since entry e¤ects are captured in the

equilibrium transition for the aggregate state, entry does not need to be modeled for estimation

purposes. However, to produce counterfactuals, we need to recalculate equilibrium transitions

for the aggregate state and the entry process will then be explicitly modeled.

Exit value Every period the �rm has the option of exiting the industry and collecting a

scrap exit value of e+ 'scrapit .

Payo¤ shocks The vector of payo¤ shocks ' = ('inv; 'RD; 'entry; 'scrap) are indepen-

dent and identically distributed standard normal.

4.2.5 State transition

As explained above productivity follows a controlled Markov process. The capital stock depre-

ciates at rate � and investment adds to the stock:

Ki;t+1 = (1� �)Kit + Iit

If a �rm decides to start R&D, the sunk cost is paid only once at start-up:

Ri;t+1 =

8<: 1 if Rit = 1 or �rm pays sunk cost

0 otherwise

If a �rm exits it sets �i;t+1 = 0 and if it enters it sets �i;t+1 = 1

�i;t+1 =

8>>>>>><>>>>>>:
1

if �it = 0 and �rm i enters OR,

�it = 1 and �rm i stays

0
if �it = 0 and �rm i does not enter OR,

�it = 1 and �rm i exits

4.2.6 Period Returns

Using the speci�ed cost structure the per period return function of an incumbent is

�(!it;Kit; Rit; Rit+1; �it+1; Iit; St) =

=

8<: ~�(!it;Kit; St)� �1Iit � �2
I2it

Kit�1
� 'invit Iit

�(�+ 'RDit )(Rit+1 �Rit)Rit+1 + (1� �it+1)(e+ '
scrap
it )

9=;
The demand system speci�ed in equation [3] illustrates the two aggregate variables which

a¤ect a company�s revenues. One is market size ( ~Y ) which evolves exogenously and the other
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is average industry price ( ~P ) which is determined endogenously. Since individual prices are de-

termined in the static pricing game by productivity and physical capital (P �i = P (!i;Ki; ~P ; ~Y ),

see the technical appendix), the price index is a mapping from individual �rms�productivity

and capital stock onto a pricing strategy so that the aggregate state variable is

St =
~Yt

~Pt(!;K;R; ~Y )

5 The estimation procedure

There are several alternatives to estimate dynamic games (see for example Pesendorfer and

Schmidt-Dengler, 2008; Aguirregabiria and Mira, 2007; Bajari, Benkard and Levin, 2007; and

Pakes, Ostrovsky and Berry, 2007). The method used in this paper follows Bajari, Benkard and

Levin (2007) since this allows for both discrete and continuous choices and is easily applicable

to the model outlined above. This estimation procedure has been applied by Ryan (2006) to

study the impact of environmental regulation changes on capacity investment for the cement

industry in the US. Ryan (2006) also considers Markovian strategies on individual states and an

aggregate state. Since he models an investment capacity game, the industry state is the sum of

competitors�capacities. The di¤erence from the framework proposed here is that industry state

aggregation is only used for estimation of the policy functions and not in calculating equilibrium

transitions, i.e. the equilibrium transition is still the individual state by state transition.

The estimation proceeds in three steps. In the �rst step, unobserved productivity (!it) is

recovered by estimating a production function. A number of ways for estimating the production

function are considered (Olley and Pakes, 1996; Levinsohn and Petrin, 2002; Ackerberg et al,

2007, and Bond and Soderbom, 2005). The di¤erent methods give broadly similar estimates.14

The second step recovers the pro�t function (~�(!it;Kit; Rit; St)), the �rm-level and industry-

level state transitions, (p(!it+1j!it; Rit; �it) and q(St+1jSt)) as well as the equilibrium policy

functions for investment, R&D and exit. Finally, in the third step, the dynamic parameters

(�1; �2; �; e) are estimated using the equilibrium conditions.

5.1 Step 1: Productivity

Productivity is not directly observed and there are methods 15 to estimate it as the residual from

a production function (Olley and Pakes, 1996; Levinshon and Petrin, 2003; De Loecker, 2007).

De Loecker (2007) proposes an estimator for both the production function parameters and the

demand elasticity under imperfect competition when one uses de�ated sales instead of quantities

(see also Klette and Griliches, 1995). This method, however, cannot be directly applied to the

14See a companion paper (Santos, 2008) which compares several alternative production function methods to
recover productivity using the same dataset.
15Ackerberg et al. (2007) provide a survey on the literature for estimating production functions.
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model outlined above.16 The reason for this arises from the fact that input demand function

depends on the industry state, more precisely in our case, the aggregate industry state. To see

this, notice that for example investment functions depend on equilibrium beliefs about industry

evolution. Specifying the investment policy as originally proposed by Olley and Pakes (1996),

i(!), is a misspeci�cation since the equilibrium policy for investment in an Ericson and Pakes

(1995) style game depends on the state of all players in the industry i�(!1; ::; !N ).

Applying this to our case, elasticity of demand cannot be recovered in the �rst step since

the input demand is also a function of aggregate sales.17 Taking the log of total sales and using

equations (3) and (4):

yit � ~pt = qit + pit � ~pt =
1

�
(~yt � ~pt) +

� � 1
�

(!it + �kkit + �llit) (7)

Using materials to control for the unobservable as in Levinsohn and Petrin (2003), the input

demand is a function of the state at time t (individual and industry states)

mit = m(!it; kit; Rit; St) (8)

Assuming invertibility this can be expressed as18

!it = !(kit; Rit; St;mit) (9)

and the unobservable is now a function of observables. Note however that since productivity

is also a function of market conditions (St =
~Yt
~Pt
) in eq. (8), demand elasticity (�) cannot be

recovered in the �rst stage, because it enters nonlinearly in the control function (9). This is the

main di¤erence from a single agent framework as in De Loecker (2007) where input demand

depends solely on individual state variables (mit = m(!it; kit; Rit)).

Using the controlled �rst order Markov process assumption for productivity

!it = E[!itj!it�1; Rit�1] + �it

where �it is an independent and identically distributed random shock to productivity and

is assumed to be additively separable.

16This applies to most literature on production function methods following approaches similar to Olley and
Pakes (1996) which look at single agent problems and disregard the possibility that policy functions (investment
or materials) are equilibrium solutions to dynamic games. Therefore, the policy functions will be misspeci�ed
and the productivity control function will not include some important industry level variables leading to bias in
the parameter estimates due to unobserved heterogeneity.
17There is also the selection problem due to exit as explained in Olley and Pakes (1996). In this paper I will

abstract from this problem since the number of exits observed in the data is very small and the correction does
not a¤ect my estimates. However, if there were more observations on exits, this problem could be more carefully
addressed.
18A slight concern with invertibility and imperfect competition is the fact that with imperfect competition

an increase in productivity might not lead to a direct increase in output and therefore in materials usage. For
the demand system speci�ed, an increase in productivity is equivalent to a decrease in costs and it translates
directly into a decrease in prices (see the technical appendix). This means total output goes up and therefore
also does materials usage.
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Stage I From eq. (7) rewrite the production function using de�ated sales as variables ypit =

yit � ~pt and ~ypt = ~yt � ~pt = ln(St)

ypit =
� � 1
�

�llit + �(kit; Rit; ~y
p
t ;mit) + "

y
it

where "yit is measurement error in y
p
it and

�(kit; Rit; ~y
p
t ;mit) =

1

�
~ypt +

� � 1
�

�kkit +
� � 1
�

!(kit; Rit; ~y
p
t ;mit)

This can be estimated non-parametrically or using an nth-order polynomial approximation.

This provides estimates of \��1� �l and �̂.

Stage II For the second stage use the estimated values to construct�̂it = ŷ
p
it �

\��1
� �

l
lit and

with this get an estimate of ��1� !it for a given
�̂�1
� �k and e1�

\� � 1
�

!it = �̂it �
e1
�
~ypt �

^� � 1
�

�kkit

Approximate non-parametrically E[!itj!it�1; Rit�1]. Several approximations are used in

the empirical section and in practice a cubic polynomial �ts the data well for the productivity

transition without large unreasonable behavior at the tails of the observations19

ŷpit �
\� � 1
�

�llit =
1

�
~ypt +

� � 1
�

�kkit + (10)
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p
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��1
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p
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��1
� �kkit�1

�3
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+�it

Finally, use eq. (10) to estimate 1
� and �k by nonlinear least squares.

19 Instead of using a cubic polynomial, also reported are the results with a sigmoidal function which preserves

monotonicity: E(!itj!it�1) =
00

(1+01 exp(�!it�1))
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Robustness In the second stage, the error term in equation (10), �it, must be uncorrelated

with kit and ~y
p
t . While this might be a reasonable assumption for kit due to the timing of

investment that makes kit independent from "news" at period t, the same is not necessarily

true for ~ypt if there is an aggregate time component �t in the productivity shock �it . One

potential instrument is the use of lagged ~ypt�1.

The potential multicollinearity problem between lit and (kit; Rit; ~y
p
t ;mit) as mentioned by

Ackerberg, Caves and Frazer (2006) is acknowledged by estimating the production function and

recovering the labor coe¢ cient in the second step. An alternative to address this multicollinear-

ity problem is to use the method proposed by Bond and Soderbom (2005).

Finally, there can be sample selection due to exit. The selection problem arises if smaller

�rms are more likely to exit upon a negative shock generating a negative correlation between

productivity and capital stock for the �rms which remain in the industry. This is likely to be

relevant in industries with severe exit behavior, but less likely to be true for industries with

little exit.

Most of these problems are addressed in a companion paper where several methods for

estimating production functions are compared using data for the moulds industry (Santos,

2008).

5.2 Step 2: Policies and transitions

5.2.1 Static Pro�ts

There are two options to parametrize the pro�t function. First we can use the estimated para-

meters of the production function (�l; �k; �) and use the parametric form eq. (5). Alternatively,

since pro�ts are reported in accounting data, we can directly estimate the parameters of the

pro�t function. Since reported accounting pro�ts can be negative, this is only possible if there

are �xed production costs. To model the existence of �xed costs (which might depend on �rm

size) we can specify the pro�t function as

~�it = �
�
0 e
��1!itK

��2
it S

��3
t + ��4 + �

�
5Kit + �

�
6Rit + �it (11)

where �it is measurement error in observed pro�ts, ~�it. This can be estimated by nonlinear

least squares.

5.2.2 Policies

Using the observations for all state variables (!;K; S;R), the policy functions can be easily

estimated. The investment function which results as the solution to the dynamic problem is

Iit =
1

2�2

�
�
@E(V (sit+1; St+1jsit; St))

@Iit
� �1

�
� 1

2�2
'invit (12)
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which can be estimated separately for R&D and non-R&D �rms as

Iit = P
n;i(!it;Kit; St; Rit) + ~'

inv
it (13)

where Pn;i(:) is a nth-order polynomial. After trying with several polynomial degrees, the

evidence favors polynomials with smaller degrees because they produce policy functions which

are more robust at the tails of the observations. The reason is because even if higher order

polynomials produce a better �t in the range of data with more observations, it might create

large distortions outside this interval of data by imposing highly nonlinear and unreasonable

functional forms, similar to Runge�s phenomenon. Since the intervals with less observations

are normally in the extremes (tails), this can create large distortions in the estimates at the

extremes which are points that can signi�cantly drive the average results. Since errors in the

policy functions enter nonlinearly in the second step, this can signi�cantly bias the estimates

in small samples. All results have been checked to avoid this by looking at the predictions from

the policy functions.
The R&D equation is estimated with a probit model where �rms will decide to start doing

R&D if the costs (�+'Rit) are smaller than the bene�ts �[E(Vit+1jRit+1 = 1)�E(Vit+1jRit+1 =

0)] and the probability that the �rm starts performing R&D is

Pr(Rit+1 = 1jRit = 0; sit; St) = (14)

�

0@��+ �
24 EfV (sit+1; St+1)jRit+1 = 1g

�EfV (sit+1; St+1)jRit+1 = 0g

351A
since 'RDit is assumed to be a standard normal random variable. This can be approximated

by

Pr(Rit+1 = 1jRit = 0) = �
�
Pn;rd(!it;Kit; St; Rit = 0)

�
(15)

where again Pn;rd(:) is an nthorder polynomial (the same argument in favor of lower degree

polynomials is in place here).
The exit function can be treated in a similar fashion resulting in

Pr(�it+1 = 0j�it = 1) = � (Pn;�(!it;Kit; St; Rit))

5.2.3 The transition function

Aggregate state From Corollary 3 the observed aggregate state has a conditional normal

distribution with mean �St+1jSt = (1 � �S)�S + �SS and variance �St+1jSt = �S(1 � �2S)1=2.

Where (�S ; �S ; �S) are respectively the unconditional mean, variance and autocorrelation for

the S process and are easily estimated using the sample moments. Alternatively, q(S0jS) can

be estimated non-parametrically.
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Productivity The transition for individual productivity is estimated separately for R&D and

non-R&D �rms using a cubic polynomial on lagged productivity (gRD(!i;t�1); gNRD(!i;t�1)).

!i;t+1 = E(!i;t+1j!it; Rit) + �it+1 (16)

= (�!;R0 + �!;R1 !it�1 + �
!;R
2 !2it�1 + �

!;R
3 !3it�1)Rit

+(�!;NR0 + �!;NR1 !it�1 + �
!;NR
2 !2it�1 + �

!;NR
3 !3it�1)(1�Rit) + �it+1

Alternative functional forms (lower order polynomials) are also reported.

5.3 Step 3: Minimum distance estimator

Once the policy (investment, R&D and exit) and transition functions (productivity and aggre-

gate state) have been recovered, we can proceed as follows:

1. Starting from some state (sit; St) at t = 0, draw a random vector of payo¤ shocks 'it =

('invit ; '
RD
it ; '

scrap
it ); transition function shocks to productivity (�it) and to the aggregate

state ("t). Use ns di¤erent starting values so that (sit; St) = [(s1;it; S1;t); :::; (sns;it; Sns;t)]

which can be equal to the states for each observation in the dataset;

2. Simulate actions (ait) by reading o¤ the estimated policy functions and using the payo¤

shocks;

3. Update states (sit+1; St+1) by reading o¤ the transition functions and using transition

shocks (�it; "t);

4. Repeat 2-3 for several periods (each path simulated for �T periods), and construct a

sequence of actions and states fait(si0; S0); sit(si0; S0); St(Si0)g �Tt=1 from each of the ns

starting con�gurations;

5. Using the sequence of actions and states, compute the discounted stream of pro�ts for a

given parameter vector �:P �T
t=0 �

t�(ait; sit; St; 'it; ~�; ePn; �);20
6. Repeat steps 1-5 nJ times to produce an average estimate at each of the ns states. This

gives an estimate of the expected value from a starting con�guration, (sit; St)t=0:

dEV (si0; S0; ~�; �) = 1

nJ

nJX
j=1

�TX
t=0

�t�(ajit; s
j
it; S

j
t ; '

j
it; ~�;

ePn; �)
20The discount factor is set at � = 0:96.
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In order for a strategy, �, to be an equilibrium, at equilibrium beliefs, q�(:), for all �0 6= �

the following condition holds

V (si0; S0;�; q
�(St+1jSt); �) � V (si0; S0;�0; q�(St+1jSt); �)

Given the linearity of the value function in the dynamic parameters this can be written

as

V (si0; S0;�; q
�(St+1jSt); �) =W (si0; S0;�; q�(St+1jSt)) � �

where W (si0; S0;�; q�(St+1jSt)) = E�jsi0;S0
P1

s=0 �
swis and � = [1; �1; �2; �; e], wis =�e�(sis; Ss; �); Iis; I2is; 1(Ris+1 = 1; Ris = 0); 1(�is+1 = 0; �is = 1)�;

7. Construct alternative investment, R&D and exit policies (�0), for example, by drawing

a mean-zero normal error and adding it to the estimated second step policies. With

these non-optimal policies, construct alternative expected values following steps 1-6 to

get W (s0; S0;�0; q�(:)). Do this for n� alternative policies;

8. Finally, compute the di¤erences between the optimal and non-optimal value functions for

several (Xk) policies and states (Xk; k = 1; :::nI), where Xk is a given pair of (�0; si0; S0)

so that we have nI = n� � ns of them;

ĝ(Xk; �; ~�; ePn) = hŴ (si0; S0; �̂; q̂(St+1jSt))� Ŵ (si0; S0; �̂0; q̂(St+1jSt))i � �
Since the estimated policies should be optimal, the expected value when using � cannot

be smaller than using alternative �0. The empirical minimum di¤erence estimator minimizes21

squared equilibrium condition violations, g(Xk; �; ~�; ePn) < 0
Ĵ(�; ~�) =

1

nI

nIX
k=1

�
min

n
ĝ(Xk; �; ~�; ePn); 0o�2

and

�̂ = argmin
�2�

1

nI

nIX
k=1

�
min

n
g(Xk; �; ~�; ePn); 0o�2

21When the objective functions lacks smoothness (e.g. problems with discontinuous, non-di¤erentiable, or sto-
chastic objective functions) using derivative based methods might produce inaccurate solutions. Using derivative
free methods (for example, Nelder-Mead) to minimize the empirical minimum distance (Ĵ) helps to circumvent
these problems. Non-smoothness might occur with �nite nI , because of the min operator in the empirical ob-
jective function, Ĵ , which takes only the negative values of g(:) and this creates discontinuities even if g() is
continuous in �. All results are not a¤ected by the optimization method used.
These methods are known to be slow and sometimes innacurate. Speed is not a problem because the compu-

tational burden rests in the simulations and not in the optimization. To deal with possible innacuracy, an option
is to rescale the parameters so that they all lie within a small interval (e.g. [�1; 1]) and restart the optimization
algorithm at di¤erent starting values to check the answer is correct.
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The time of each path is set at �T = 75, the number of starting con�gurations ns = 1; 017

which is the total number of observations, the number of simulations for each con�guration

nJ = 200 and the number of alternative policies n� = 125, so that the total number of di¤erences

is nI = 127; 125.

A note on alternative policies and set identi�cation The vector of dynamic para-

meters �, must rationalize the observed strategy pro�le, �. In general � can be point or set

identi�ed depending on the model, data available and alternative policies. Bajari et al. (2007)

also propose a method for (bounds) set identi�cation on �.

The objective function, J(�), depends on the alternative policies used, �0, so that this is a

crucial step for identi�cation. The inequality in J(�) arises exactly from comparing � and �0.

If we use policies very "far" from �, the identi�ed set should increase and if we use policies very

"close" to �, the identi�ed set should shrink. Since we can produce as many alternative policies

as desired, the (set) identi�cation of the model can be improved by arti�cially generating non-

optimal data and wisely choosing the alternative policies. For this reason I will focus on the

point identi�ed case. One particular issue to address is how �0 is constructed. One option is to

slightly perturb the estimated policy function by adding some error. If the error is one sided (for

example positive) this means that all perturbed actions will be larger. Then, the parameters

are likely to be only set identi�ed (one sided set). For example, if perturbed R&D start-up

decisions are more frequent (i.e. only positive errors added to the optimal policy function), the

alternative policies will generate high levels of R&D behavior. Since these are much higher than

the ones actually observed in the data, the sunk costs of R&D which can be rationalized have

to be above a certain level (bounded below), otherwise �rms in the data must have performed

more R&D. However, the sunk costs are not going to be bounded above because only positive

errors have been added. For this reason the choice of alternative policies has an impact on

identi�cation so should be done carefully by adding, in this case, both positive and negative

errors to the estimated policies.

In the choice of �0 if the alternative policies are not binding (i.e. they are chosen to be

very loose meaning the distribution from which errors are draw has a very large standard

deviation) again the parameters are less likely to be point identi�ed. As the "looseness" of the

alternative policies increases so should the identi�ed set. However, if the alternative policies

are very tight (very close to the estimated ones with a very small standard deviation of the

errors for the alternative policies) it is going to be much harder to rationalize the observed

actions and we will have more violations of equilibrium behavior (i.e. observed actions that

cannot be rationalized by any given �). If the error in the estimated policies is large, this could

a¤ect identi�cation since we might be creating a more serious bias in � by forcing a non-optimal

(estimated) strategy to be optimal. Again a careful choice of the standard deviation for the
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errors a¤ects identi�cation. In the application below, these are set as standard normal errors

for investment and normal errors with mean zero and standard deviation 0:5 for R&D and

exit. These translate into the fact that 95% of the alternative policies for investment are in the

interval �200% from the optimal one.

5.3.1 Standard errors

Standard errors are estimated using sub-sampling or the bootstrap. An important remark is

that only simulation error is produced in step 3. This error disappears as nJ !1 for a given

set of alternative policies. In practice, since bootstrapping requires very intense computations,

the bootstrapped standard errors can overestimate actual standard deviations since they may

still contain some simulation error.

5.4 Identi�cation

5.4.1 Technical

The identi�cation problem in dynamic models is well known (Rust, 1994; Magnac and Thesmar,

2002; Pesendorfer and Schmidt Dengler, 2008; and Bajari et al., 2008). Assuming agent�s

optimal dynamic behavior, imposes no testable predictions. Without further restrictions, a

given reduced form (observed) model can be rationalized by more than one parametric form for

the structural model.

The structural objects to be identi�ed are the period returns, distribution for the shocks,

state transition function and discount factor: (�(ait; st; 'it); F ('it); p(sit+1jsit; ait); �). These

primitives are in general non-parametrically unidenti�ed (Rust, 1994), i.e., there is an in�-

nite amount of primitives that can rationalize observed decisions so that di¤erent models are

observationally equivalent. Magnac and Thesmar (2002) provide some conditions for the identi-

�cation in single agent models that is extended to dynamic games by Pesendorfer and Schmidt

Dengler (2008). The solution for the unidenti�cation result is to use exclusion restrictions (i.e.

state variables that do not enter period returns) and/or normalization of the period returns

for some outside alternative. Even in these cases the discount factor and distribution of costs

shocks are still non-parametrically unidenti�ed unless further restrictions are introduced.

Alternative solutions are when returns are observed and the return function can be estimated

non-parametrically or to use parametric restrictions. In our case part of the return function

(e�(:)) is identi�ed in the second step because pro�ts are observed. The evolution for the states
p(sit+1jsit; ait) is also estimated in the second step (assuming agents have rational expectations

this allows us to recover their beliefs which coincide with the actual evolution for the state

variables) while the distribution of cost shocks F ('it) is assumed to be normal and the discount

factor, �, is set exogenously. The only object left to estimate is the cost function which is non-

parametrically identi�ed. To understand why, notice that in the model the return function
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is �(ait; sit; St; 'it) = e�(sit; St) � C(sit; ait) + 'it(ait) . e�(sit; St) is estimated using observed
data while the cost function takes the value zero when there is inaction (no investment and no

R&D start-up), C(sit; ait = 0) = 0. This satis�es the exclusion restriction and normalization

assumptions in Pesendorfer and Schmidt Dengler (2008).22

Notice two drawbacks. First the error distribution (F (')) has to be speci�ed parametrically

and there cannot be serially correlated �xed e¤ects. Second, these identi�cation results are as-

ymptotic. However, in applied work, identi�cation can sometimes be harmed by the availability

of data in �nite samples. This can be due to the fact that there is no su¢ cient variation in the

data. In this case the parameters might be weakly identi�ed.

5.4.2 Empirical

I will discuss now the particular features of the data that identify the parameters of interest

(cost function). The second step is probably the most important part of the estimation. It

recovers the pro�ts that �rms expect to earn at each state (gross of adjustment costs), how

they make their decisions and also how they expect states to evolve over time. All these objects

will play a decisive role in identifying the parameters of interest. These objects can be estimated

non-parametrically and identi�cation of these functions depends on having enough variation in

the data (rank condition) and not having unobserved heterogeneity (model misspeci�cation).

In our case part of the unobserved heterogeneity is productivity, which is recovered in the �rst

step.

Once the second step is concluded, the estimated dynamic (cost) parameters rationalize

observed behavior (i.e. the parameters for which estimated policy functions, returns, and state

transition are optimal). The lack of an analytical solution for the optimality conditions, forces

us to use computational methods. I now describe how the process works and clarify that

identi�cation does not depend on implausible features of the data. Take our main object of

interest, sunk costs of R&D. We know the size, productivity and the (rational) expectations

of the �rms who decided to start doing R&D. We also know (recovered) the gross pro�ts they

expect to earn from making these decisions. The estimated sunk costs compare the pro�ts

earned by the �rms at a given state that decided to do R&D with the pro�ts of the �rms

that decided not to do R&D. Had these costs been higher, we would have observed less R&D

and had these costs been lower, we would have observed more R&D. The identi�cation of the

parameters is therefore very intuitive given the data and observed decisions.

Notice that the use of rationality here might be seen as imposing too much structure as

it is not guaranteed that �rms form rational equilibrium beliefs. However, this would not be

needed if we knew how beliefs are formed. Imagine that �rms did not have rational beliefs,

22Further restrictions given by economic theory can be used to guarantee identi�cation like continuity and
monotonicity (Matzkin, 1994)
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but were instead using some ad-hoc (non micro-founded) forecasting method to construct their

expectations. Since the equilibrium transition is estimated from the observed data, one could

argue that the beliefs they were using would match what we (as econometricians) also observe.

This would be along the lines of a behavioral model.23

6 The data

The data is part of a database compiled by the Portuguese Central Bank ("Central de Bal-

anços"). Observations are for the period between 1994-2003 for the �ve-digit NACE (rev

1.1) industry, 29563. This database collects, �nancial information (balance sheet and P&L)

together with other variables like number of workers, occupation of workers (5 levels), total

exports, R&D, founding year and current operational status (e.g. operating, bankrupt, etc).

Industry aggregate variables for sales, number of �rms, employment and value added come from

the Portuguese National Statistics O¢ ce (INE, 2007) and industry price data from IAPMEI

(2006). The detailed data appendix provides a thorough description of the dataset and variable

construction.

6.1 Descriptive statistics

The dataset contains 1,290 observations for 231 �rms over the period 1994-2003. There are 265

observations with positive R&D that correspond to 59 �rms and 49 R&D start-ups (de�ned

as the �rst year of positive R&D expenditures reported). On average, an R&D �rm reports

positive R&D for 2.5 consecutive years (Table B.V).

Due to the short nature of the panel, there are very few observations on entry and exit.

A further complication arises due to the way data has been collected. Since answering the

questionnaire is not compulsory, some �rms might not be reported in the dataset but still be

active in the industry. This complicates the identi�cation of exiting and entering �rms since

they could have been operating in the market before �rst appearing in the dataset. This problem

is addressed with two variables that help to identify entry and exit. For entry, �rms report their

founding year so this is matched with the year the �rm �rst appeared in the sample and if this

is within a 2 year window, the �rm is considered a new entrant (this is reported in Table B.V

under the column "entry"). Regarding exit, the central bank collects a variable that reports

the "status" of the �rm. The problem with this variable is that some �rms that might have

closed down are still reported as "active", so only a fraction of the total exits can be captured.

Using this methodology identi�es a total of 48 entries and 7 exits from the panel.

23An alternative recently explored in Aradillas-Lopez and Tamer (2009) is the use of rationalizability to derive
bounds on the parameters by using weaker concepts than full rationality. Fershtman and Pakes (2009) also have
some very interesting work on extending the rationality concept.
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Tables B.I and B.IV report summary statistics for the main variables. The average �rm in

the sample sells goods worth 1.5 million Euros and employs 32 workers with an average labor

productivity of 20,381 Euros. Over the period 1994-2003, real sales have grown at an average

8.9% and labor productivity at 5.7%.

After a decline until 1998, the total number of �rms in the industry has grown to a maximum

of 1,230 in 2003, employing 10,108 workers. The industry is populated by small and medium

�rms and there are no market leaders. R&D performers are larger and older and their labour

productivity is on average 20% higher.

7 Results

As explained above, the estimation is performed in three steps. The �rst step recovers an esti-

mate for productivity (TFP). In the second step the reduced form pro�ts, the policy functions

for investment, R&D and exit are estimated as well as the transition functions for productivity

and the aggregate state (capital accumulation is deterministic). Finally in the third step the

dynamic parameters are recovered so that they rationalize these estimated objects. Since any

error or bias in the policies or transitions will be transmitted nonlinearly in the �nal step,

the results are sensitive to the second step . For this reason several robustness checks were

performed in the second step, using alternative polynomials, di¤erent static pro�t functions or

productivity measures. Besides this, alternative speci�cations for the dynamic cost parameters

are reported. Overall the evidence of relatively large sunk costs of R&D is quite robust.

7.1 First step

7.1.1 Productivity (production function)

Production function estimates are reported in Table I.24 . The estimated labor and capital

coe¢ cients are 0.51 and 0.4, respectively, while the estimated demand elasticity implies a price-

cost margin of 8%. These values are at a reasonable level and within the range of parameters

found in the literature for other industries. In columns (iii) and (iv) results are also reported for

a linear and a sigmoidal parametrization for productivity transition. The advantages of these

two speci�cations is that they both preserve monotonicity. Overall the di¤erences are negligible

which gives us more con�dence that functional forms are not restrictive.

Results using alternative methods are also reported. In particular using a simple �xed

e¤ects speci�cation with time dummies (column (v)) does not perform well due to the fact

that productivity is serially correlated. Adding the control function E[!itj!it�1; Rit�1] to this

24The results are reported for value added (and not sales) production functions. The approach is identical
under the assumption that materials are a constant share of total sales. Since by de�nition Yit = V Ait +Mit,
if Mit = �mYit then Yit = V Ait + �mYit so that Yit = 1

(1��m)
V Ait.
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(i) (ii) (iii) (iv) (v) (vi)
Dependent Variable: log of value added vait

First stage 2nd stage 2nd stage 2nd stage Fixed E¤ects
(OLS) (NLLS) (NLLS) (NLLS)

Cubic Linear Sigmoidal Control
Approx. Approx. Approx. function

Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e.
�l 0.47 0.04 0.69 0.04 0.52 0.04
�k 0.37 0.02 0.41 0.03 0.38 0.02 0.37 0.03
� 0.08 0.04 0.07 0.05 0.07 0.04
00 42.45 33.63 -0.10 0.31 4.32 0.18
01 -20.93 16.77 1.02 0.06 300.39 191.51
02 3.76 2.84 4.09 0.09
03 -0.21 0.16 270.20 169.97
10 7.76 3.59 0.33 0.13
11 -3.17 1.70 0.94 0.02
12 0.75 0.28
13 -0.04 0.02

const. 3.57 0.64

R2 98% 92% 92% 92% 92% 93%

Year dummies

Obs 1,271 1,044 1,044 1,044 1,271 1271
Firms 227 223 223 223 227 227

Labor coef, 0.51 0.51 0.74 0.69
Capital coef. 0.40 0.44 0.40 0.37 -
PC Margin 8% 7% 7% - -

Notes: Column (i) reports the results for the �rst stage of the production function estimates.
Columns (ii) to (iv) present the second stage estimates using a cubic, linear and sigmoidal
approximation, respectively. Results in column (v) are for a simple �xed e¤ects speci�cation
with year dummies and �nally column (vi) is identical to column (i) added for �xed e¤ects.

Table I: Production function estimates.

speci�cation (column (vi)), reduces the magnitude of the labor coe¢ cient which suggests that

�xed e¤ects and time dummies are not properly capturing the correlation between labor and

productivity.

Firms are willing to pay a sunk cost for R&D, if they expect a gain (higher productivity) in

the future. In Figure 1 the productivity distribution for R&D and no-R&D �rms is reported.

There is evidence that R&D �rms have better productivity draws and TFP is on average 26%

larger.

Finally, notice that results for the dynamic parameters in step three should be sensitive to

these productivity estimates. To resolve this issue several alternatives are used. The important

feature which a¤ects �nal estimates is the higher productivity for R&D �rms and this is quite

robust across all speci�cations.
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Figure 1: Productivity distribution (cubic, linear and sigmoidal approximation)

(i) (ii) (iii) (iv) (v) (vi)
Dependent Variable: Operational pro�ts ~�it

Cubic Cubic Cubic Cubic Linear Sigmoidal
approx. approx. approx. approx. approx. approx.

Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e.
��1 0.42 0.17 0.43 0.17 1.15 0.05 1.14 0.05 0.40 0.17 0.42 0.17
��2 0.88 0.05 0.88 0.05 0.71 0.02 0.70 0.02 0.90 0.04 0.88 0.05
��3 0.04 0.03 0.04 0.03 0.04 0.06 0.04 0.06 0.04 0.03 0.04 0.03
��0 -1.63 1.12 -1.71 1.14 -4.80 0.83 -4.72 0.85 -1.55 1.14 -1.63 1.12
��4 * -10.7 14.6 -7.6 14.5 -10.5 14.6 -10.7 14.6
��6 * 111.8 25.3 110.9 25.3 126.7 25.0 127.3 25.1 112.1 25.4 111.8 25.3
��5 -0.59 0.37 -0.58 0.37 -0.63 0.41 -0.59 0.37

R2 85% 87% 87% 85% 84% 84%

Notes: Results for the reduced form pro�t function using di¤erent speci�cations and alternative
productivity estimates. *The coe¢ cients ��4 and �

�
6 are scaled down by a factor of 1000.

Table II: Reduced form pro�t function estimates.

7.2 Second step

7.2.1 Static pro�ts

Using reported pro�ts (cash �ow) the reduced form pro�t function (gross of adjustment costs)

in equation (11) can be estimated. On average, �rms report 366,146 Euros in pro�ts (with a

range from negative 740,000 to more than 14 million Euros). Fixed operating costs seem to be

important and increasing for �rms with larger capital stocks since both �̂�4 and �̂
�
5 are negative.

R&D �rms are estimated to earn on average 111,776 Euros more. All these results are robust

across all speci�cations as reported in the remaining columns of Table II.
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7.2.2 Transition function

Aggregate state The aggregate state will be a normally distributed Markov process if the

assumptions of Corollary 3 are satis�ed. This is useful since we are only required to estimate

three parameters: the mean, variance and autocorrelation. These are:

�S = 13:18 �S = 0:28 �S = 0:79

However, since the aggregate state is average industry de�ated sales, it is not guaranteed

that it can be represented as the sum of independent and identically distributed conditional

variables. Alternatively, the transition function, q(St+1jSt) can be estimated. Results using a

polynomial approximation are reported in Table III.

(i) (ii) (iii) (iv)
Dependent Variable: Aggregate State ln(S)

Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e.

ln(St�1) 0.54 0.14 0.39 0.30 16.11 14.54 1592.84 1049.42
ln(St�2) -0.11 0.21
ln(St�1)

2 -0.60 0.56 -121.61 80.54
ln(St�1)

3 3.09 2.06
Constant 6.15 1.87 9.52 2.53 -95.03 94.51 -6940.60 4556.67

Observations 11 10 11 11
Adjusted R2 62% 25% 66% 75%

Mean ln(S) 13.18
St. Dev ln(S) 0.28

Autocorrelation ln(S) 0.79

Notes: Column (i) speci�es a linear �rst order Markov process and column (ii) a second order
Markov process. Columns (iii) and (iv) present results for a second and third degree polynomial.

Table III: Aggregate state transition estimates.

Speci�cation test A test which rejects the results from Proposition 1, would cast doubts

on the aggregate state model. In particular, rejection of a Markovian aggregate state would

raise concerns about using an aggregate state model to represent industry dynamics. The

problem arises because, even by restricting players to use Markovian strategies (dependent on

payo¤ relevant variables), the resulting equilibrium evolution for the aggregate state might not

be Markovian.25

p(St+1jSt; St�1; :::S0) 6= p(St+1jSt)

The violation of Assumption 3.3 could lead to a history dependent evolution for the aggregate

state. Results in column (ii) of Table III do not reject the aggregate state model.26

25 In general, an agggregate state which is a collection of several independent Markovian variables of order
one, will not be Markovian of order one in itself.
26 I have also tested the signi�cance of distribution moments for the state variables (!it; kit) conditional on
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Productivity Using the productivity estimates from step one, we estimate the transition

function in eq. (16), separately for R&D and non R&D �rms. Again, other parametric speci�-

cations are reported. The use of a cubic polynomial �ts the data well (Table IV). R&D �rms

have a smaller productivity dispersion.

(i) (ii) (iii) (iv) (v) (vi)
Non-RD RD Non-RD RD Non-RD RD

Dependent Variable: Productivity [!t]
Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e.

[!t�1] -2.80 0.98 -8.12 4.65 0.92 0.02 0.93 0.02
[!t�1]

2 0.61 0.17 1.39 0.74
[!t�1]

3 -0.03 0.01 -0.07 0.04
const. 7.97 1.87 19.94 9.66 0.46 0.09 0.46 0.10
[0] 7.04 0.03 7.43 0.03
[1] 64.65 1.80 90.32 2.75

R2 84% 93% 82% 92% - -
Obs. 790 254 790 254 790 254
Firms 197 59 197 59 197 59

s.e. resid. 0.18 0.09 0.18 0.10 0.23 0.13

Notes: Columns (i) and (ii) present results for the productivity transition using a 3rd degree
polynomial, columns (iii) and (iv) a linear speci�cation and columns (v) and (vi) for the
sigmoidal approximation.

Table IV: Productivity transition estimates.

7.2.3 Investment, R&D and Exit policies

Lastly, estimates of the policy functions are needed for the third step where they will be used to

simulate optimal behavior. The results are reported for lower order polynomial approximations.

The choice against higher order polynomials is due to their weak performance in subsets of

the state space with little observations (particularly at the tails). The �tted functions might

not preserve basic properties like monotonicity. This can generate very inaccurate predictions

for optimal actions, particularly at the tails of data distribution where there are very few

observations. Incorrect predicted actions at the extremes might generate very high/low returns

because they have a signi�cant impact on average estimates. As mentioned by Aguirregabiria

and Mira (2007), noise in the estimates is magni�ed in the third step due to the nonlinearity

in the minimum distance estimator.

The R&D (equation (15)) and exit policy functions were estimated using a probit model

whereas the investment policy function (equation (13)) was estimated by ordinary least squares.

For the exit policies a simple linear probit on the state variables is used because of data limi-

tations.

St. Their signi�cance would again reject the aggregate state model, i.e. it would test the hypothesis that
p(St+1jg(st); St) = p(St+1jSt). Results (not reported) show that further moments of the state variables are
not statistically signi�cant.
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(i) (ii) (iii) (iv) (v)
Dep. Var.: RD probit Investment Exit probit

RD �rms Non-RD �rms
Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e.

ln(St�1) -0.06 0.22 -0.18 0.16 -0.09 0.33 0.05 0.47
ln(Kt�1) 2.32 0.98 2.09 0.90 0.63 0.42 -2.71 1.66 -0.002 0.11
ln(Kt�1)

2 -0.08 0.04 -0.07 0.03 0.00 0.02 0.13 0.06
[!t�1] -1.34 2.23 0.10 0.22 2.47 1.56 16.61 6.17 -0.50 0.32
[!t�1]

2 0.12 0.19 -0.15 0.13 -1.27 0.48
Constant -13.32 7.97 -16.87 6.09 -4.85 4.88 -27.92 17.50 -0.21 6.33

R2 - - 40% 38% -
Observations 838 838 801 204 1044

Firms 212 212 208 51 223

Notes: Columns (i) and (ii) contain results for the RD start-up probit regression. Columns (iii) and (iv)
contain results for the invesment OLS results for the non-RD and RD �rms. Finally column (v) contains
results for the exit probit regression. All results use productivity estimates with a cubic approximation.

Table V: Policy function estimates: RD, investment and exit.

The results are presented in Table V. The probability of doing R&D is increasing and

concave in capital stock which means that larger �rms are more likely to pay the sunk cost

probably because they are also able to extract a larger bene�t from doing R&D. On the other

hand, it is only weakly increasing in productivity and there is no clear evidence that more

productive �rms are more likely to start R&D (selection). It seems that the selection e¤ect

occurs non monotonically with �rms at the extremes of the productivity distribution being

more likely to start R&D but this result is not statistically signi�cant.

Regarding investment decisions, larger �rms or those with higher productivity tend to invest

more. This e¤ect is stronger for non R&D �rms. Finally, larger and more productive �rms are

less likely to exit but given the number of exits observed, these results are not statistically

signi�cant.

7.3 Third step

To estimate the dynamic parameters reported in Table VI (linear and quadratic investment

cost, R&D sunk cost and exit value), the third step implements the minimum distance estimator

outlined above. Standard errors were calculated using the bootstrap.

The values are estimated with the expected signs. Investment costs are increasing and

convex. The exit value is estimated at around 1.8 million Euros. However, given the very

small number of exits observed, this exit cost is very imprecise and not statistically signi�cant.

Finally for the parameter we are interested in, R&D sunk costs are estimated at about 3.4

million Euros which is almost 2 times the average �rm level sales in the industry and more than

one year worth of sales for an average R&D �rm.

Alternative speci�cations where the quadratic investment cost term, �2, is dropped or a

�xed operating cost, z, added are also reported. Overall, the precision of the linear cost for
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�1 �2 � e F

Cubic approximation
Coefs -0.61 -5.82 -3,403,000 1,776,700 -
s.e. 0.87 3.02 1,254,081 3,490,173 -

Coefs -1.61 -4,010,500 759,500 -
s.e. 0.75 - 1,234,338 3,933,133 -

Coefs -1.62 -3,868,200 94,488,600 4,174,210
s.e. 0.77 - 1,598,430 137,614,269 6,195,137

Notes: Estimates for the dynamic parameters and bootstraped standard errors.

Table VI: Estimates for the dynamic parameters.

investment improves and it gives an estimated investment cost of 1.6 Euros for each euro of

investment, so that indirect investment costs for investment are around 60%.

A �xed operating cost has been estimated in the pro�t function (��4 ; �
�
5 ) as reported in

Table VI. Further introducing another �xed operating cost automatically increases the exit

value, which is now unrealistically large. This illustrates the identi�cation problems where the

two parameters are not separately identi�ed because they are almost a combination of each

other. For example, if we assume no stochastic environment, a �rm can decide to exit today

and collect the exit value e or stay one more period and exit tomorrow and collect �+ ẑ+ �ê.

An indi¤erent �rm will have � + ẑ + �ê = ê. In the model with no �xed cost (z), for an

indi¤erent �rm we get � + �ee = ee. Replacing and solving ê � ee = 1
1�� ẑ. This illustrates the

di¢ culty in separately identifying ẑ and ê because in this case there is no normalization for the

outside alternative.27 For this reason, estimating the �xed operating cost in the �rst step using

observed pro�ts is clearly a preferred approach since it normalizes the pro�ts for the outside

alternative (i.e. not exiting).

As explained above, bias in the policy function estimates will translate non-linearly into

the dynamic parameters�estimates. Several alternative speci�cations for the policy functions

using di¤erent degrees for the polynomials were tried. The estimated dynamic parameters are

relatively robust to these alternative polynomials. One issue not addressed here is the possibility

of unobserved state variables. This is a problem which can bias the estimates but the literature

with methods for properly addressing it is still at an early stage.

Using a simple "back of the envelope" calculation we can compare average pro�ts of an

R&D �rm in the period before it started doing R&D against average pro�ts of an R&D �rm

and this gives us a di¤erence of 230; 000 Euros. Discounting this di¤erence over a 40 year

horizon (imagine on average �rms expect to live for 40 years) with a discount factor � = 0:96

gives a current discounted value of 4.6 million Euros which is slightly above our estimates. This

larger value comes from the fact that this rough measure does not account for selection into

R&D by larger or more productive �rms and it also does not account for capital investment

27The estimated values of ê = 94; 488; 600 and ee = 1; 776; 700 with � = 0:96 rationalize a "net" value (i.e.
(1� �)(ê� ee) = 3; 708; 406) close to the �xed cost estimate, ẑ = 4; 174; 210. This illustrates the identi�cation
problem since there will be an in�nite combination of pairs (ẑ; ê) which can rationalize observed decisions.
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after the R&D decision. Therefore, this value is in line with the estimates and reinforces the

credibility of our results.

Finally, these estimates are relatively robust to di¤erent approximations for the policy and

transition functions as well as the reduced form pro�t function. They are also relatively robust

to di¤erent discount factors, i.e. estimates for the sunk costs increase (decrease) with an increase

(decrease) in the discount factor within a sensible range (e.g. � 2 [0:92; 0:98]).

8 Counterfactual Experiments

This section reports the results from three simple policy changes. The objective is to assess

their impact on industry R&D, productivity and investment. In the �rst, sunk costs of R&D

are exogenously decreased by 10%, in the second market size is reduced to early 1990�s levels

(from 405 to 150 million Euros) and �nally entry costs are increased by 10%. The simplest

example of the �rst policy could either be a direct R&D start-up subsidy or some more general

incentive like the creation of a public research agency dedicated to advising �rms during R&D

start-ups or the supply of training for workers with very speci�c skills required to do R&D.

These are probably more e¤ective because some of the start-up sunk costs might be duplication

costs and a research agency would be able to explore the economies of scale. The second policy,

for example, illustrates the e¤ects of increasing trade barriers. The �nal policy could be the

result of an argument whereby the development of su¢ ciently large �rms should be supported

in order for these big �rms to start doing R&D.

To simulate the e¤ects of these policies we are now required to solve the model. The new

equilibrium industry evolution, q(St+1jSt), has to be calculated. Some parameters have to be

set. These are the distribution for entry cost, total number of players, market size, discrete grid

for the state variables and the productivity distribution for entrants. The mean and variance for

the productivity distribution of entrants is matched with the actual value in the dataset (5.76

and 0.587 respectively). Total number of players is set at 1,000 and market size at 405 million

Euros. The grid used to discretize the state variables is similar to the distribution of the state

variables in the data.28 Finally, the mean and variance of entry costs is calibrated, so that we

get an equilibrium number of �rms consistent with those observed in the data. Since estimated

exit values were negative and very poorly estimated, the exit value distribution is calibrated

jointly with the entry distribution to get sensible entry and exit rates of 5% per year.29

28For productivity (!): {4; 4.5; 5; 5.5; 5.75; 5.9; 6.05; 6.25; 6.5; 6.75; 6.9; 7.05; 7.2; 7.4; 7.75}
For capital (k): {5; 8.5; 9; 10; 10.5; 10.9; 11.2; 11.5; 11.8; 12; 12.2; 12.4; 12.6; 12.7; 12.8; 12.9; 13; 13.2; 13.4;

13.6; 13.8; 14.1; 14.4; 14.7; 15.25; 16.5}
For the aggregate state (S): {12; 12.15; 12.3;... 14.7; 14.85; 15}
29Both distributions are assumed normal. For the entry distribution the mean is set to 660,000 and the

standard deviation to 130,000. For the exit value distribution, the mean is set to -360,000 and the standard
deviation to 50,000.
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Original Policy Change
Data Simulated Sunk Cost Market Size Entry Cost

Average Sales (EUR) 529,665 680,171 768,042 581,636 696,345
Average Number of �rms 681 601 654 280 535

% of RD �rms 21% 22% 74% 14% 22%
Average Productivity 6.13 6.29 6.36 6.21 6.24
Average Capital Stock 351,512 383,310 577,001 303,246 414,033

Entry Rate - 5.36% 2.87% 9.30% 3.12%
Exit Rate - 5.31% 2.63% 9.23% 3.06%

Notes: Simulated results for the impact on market structure of a 10% reduction in RD sunk costs,
decrease in market size from 405 to 150 millions of euros and 10% increase in entry cost.

Table VII: Counterfactual results.

After setting these I use the algorithm provided in the technical appendix to calculate

the equilibrium for the model using the estimated structural parameters. Notice that these

experiments are only possible using the aggregate state model which is also relatively fast.30

Solving a full dynamic game would be computationally prohibitive.

Results are presented in Table VII. A 10% decrease in sunk costs leads to a strong increase

in R&D performance, a 7% increase in average productivity and 50% increase in average capital.

This means that by reducing sunk costs of R&D the average �rms gets larger. Reducing market

size to the equivalent of the early 90�s leads to a reduction in R&D performance from 22% to

14%. There is also a decrease in average productivity (8%) and capital stock (20%) which

illustrate the trade-induced innovation mechanism. Finally, the increase in entry costs has a

negative e¤ect on productivity (by reducing exit of less e¢ cient �rms) while virtually no e¤ect

on R&D performance. This shows that while increasing entry costs could potentially be seen

as a positive measure in the presence of sunk costs, this would actually have negative e¤ects on

average productivity.

9 Conclusion

In this paper I have estimated the sunk costs of R&D for the Portuguese moulds industry using

a model, which is computationally tractable and, can be implemented empirically with the most

common type of �rm level datasets. The model both avoids the "curse of dimensionality" and

the existence of unobserved �rms in the data. The empirical �ndings suggest a role for trade-

induced innovation. In the presence of sunk costs of R&D, access to large external markets might

create the necessary conditions for an industry to develop itself and become more competitive

by investing in R&D. This seems to be what happened in the Portuguese moulds industry after

the country joined the EEC in 1986.

30Solving the model takes about 150 minutes of computer time on a simple 2.0 Ghz Pentium Core2 Duo with
2GB Memory RAM.
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The idea explored to simplify the complex models�dynamics, was to summarize the industry

state by the (payo¤ relevant) aggregate state. As explained, this implicitly imposes more

structure in terms of strategic interactions, i.e. the �rms react symmetrically to all of its

competitors independently of its state (size, productivity, etc). This simpli�cation does not

seem severe for the moulds manufacturing industry because each �rm specializes in a particular

product, does not observe what its competitors o¤er, produces almost per piece and prices are

contract speci�c. We have reasons to accept that demand can be reasonably well approximated

with a constant elasticity of substitution framework. This simpli�cation goes a long way in

allowing us to construct the counterfactuals and answer some signi�cant policy questions.

Finally, the sunk costs of R&D for the Portuguese moulds industry are recovered by using a

structural estimation method for microdata (BBL). These are estimated at around 3.4 million

Euros, more than one year worth of sales for an R&D �rm. The magnitude of the sunk

costs suggest that policies cannot disregard the discreteness of the R&D decision. Particularly,

policies targeted at reducing the sunk costs and increasing R&D start-ups will be more e¤ective

at increasing overall industry productivity.

Using the aggregate state framework, we are able to solve the model and perform coun-

terfactual experiments. In particular, market size increase (similar to entering the EU) has a

positive e¤ect on R&D performance and productivity. Furthermore, a decrease in the sunk

costs of R&D will have a similar e¤ect while an increase in protectionism by increasing entry

costs, will have a negative e¤ect on productivity via selection (exit of less productive �rms).

The existence of serially correlated unobservables and the extension to estimation techniques

which can be more e¢ cient but require equilibrium calculations (Rust, 1987) are important

concerns, left for future research.
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A Appendix

A.1 Proof of proposition 1

Proof. Using Assumptions 3.1 to 3.3, St is the payo¤ relevant variable and g(stjSt;:::S0) =

g(stjSt). De�ne (i) the conditional industry state evolution resulting from assumption 3.1

and the Markovian strategies as p�(st+1jst; St) = �Ni=1
R
'it
p(sit+1jsit; �(sit; St; 'it))dF'it (ii)

f�(st+1jSt; :::; S0) as the industry state distribution conditional on the whole history for the

aggregate state. The distribution for the aggregate state conditional on the history is

f�(St+1jSt; St�1; :::; S0) =

Z
"t+1

Z
st+1:St+1=S(st+1)+"t+1

f�(dst+1jSt; :::; S0)dF"t+1

=

Z
"t+1

Z
st+1:St+1=S(st+1)+"t+1

Z
st

p�(dst+1jst; St; :::; S0)g(dstjSt; :::; S0)dF"t+1

=

Z
"t+1

Z
st+1:St+1=S(st+1)+"t+1

Z
st

p�(dst+1jst; St)g(dstjSt; :::; S0)dF"t+1

=

Z
"t+1

Z
st+1:St+1=S(st+1)+"t+1

Z
st

p�(dst+1jst; St)g(dstjSt)dF"t+1

=

Z
"t+1

Z
st+1:St+1=S(st+1)+"t+1

f�(dst+1jSt)dF"t+1

= q�(St+1jSt)

where the �rst step follows from using the law of total probability; the second step from the

de�nition of p(st+1jst; St) given above; the third step from 3.3; and the �nal step again from

the law of total probability.

B Detailed Data Appendix

B.1 Data and sample construction

The data comes from three sources: Aggregate variables (sales, value added, employment) come

from the Portuguese National Statistics O¢ ce (INE); Industry price de�ators are collected from
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IAPMEI (2006); Finally �rm level data was extracted from the Bank of Portugal database on

�rms across the economy (Central de Balancos, 5 digit NACE code industry 29563 - moulds

industry).

Some notes on the "Central de Balancos": The dataset has been collected by the

Central Bank since 1986. However, due to changes in accounting rules, it is only comparable

from 1990. The quality of the data between 1990 and 1994 is not considered reliable. From

2000, the sampling method (simple random sampling) was changed to strati�ed sampling and

this caused a drop in the number of observed (mostly smaller) �rms in 1999 and 2000.

Representativeness: The sample is representative of the whole industry, in particular

for the early periods. It covers 90% of total sales and industry employment in 1994 and this

coverage decreases to a minimum of 50% of sales (40% of employment) in 2003. This reduction

is mainly due to changes in the sampling procedure as explained above. There is an obvious gap

in productivity trends between the sample and the industry (also total sales and employment).

Labor productivity in the sample increased by roughly 60% while this was only 40% in the

industry. For this reason none of the aggregate variables are calculated using the sample but

come directly from the collected industry wide variables.

Variable construction:

- Capital stock was calculated using the perpetual inventory method with a 8% depreciation

rate

Kit+1 = (1� depreciation) �Kit + Iit

- Value added is equal to sales subtracted from materials and external services expenditures

V Ait = Yit �Mit � ESEit

- R&D dummy variable takes a value equal to one whenever positive R&D was reported in

the past or present and zero otherwise.

Both aggregate and individual sales and value added were de�ated with the industry price

de�ator.

In 11 observations the number of workers reported was zero and these were dropped.

There were 9 holes identi�ed in the sample, i.e. �rms that interrupt reporting for 1 or more

consecutive years. In these cases either the earlier or later periods are dropped, minimizing the

total number of observations lost.

Entry and exit are di¢ cult to identify since it is not compulsory for �rms to report to the

central bank. However, the dataset has information on the founding year and current �rm

"status" (i.e. active, bankrupt, merged, etc). Using this information 48 actual entries and 7

exits were identi�ed.
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B.1.1 Aggregate State

Market de�nition: The market is de�ned as total worldwide demand for Portuguese moulds.

This is mainly for simplicity reasons since there is no good data on worldwide production and

our dataset contains total industry sales (national plus exports). This adds the restriction that

�rms in the Portuguese market take as exogenous the evolution of demand for their market.

Imagine that YW is world demand for moulds and Y = YW � Y NP is total demand for Por-

tuguese moulds. The assumption is that foreign competition is exogenous so that Y NP evolves

exogenously (YW , is assumed to evolve exogenously depending on the economic conditions,

etc).

Variable de�nition: The aggregate state is de�ned as average de�ated total industry sales,

which approximately matches the variable in the demand system: Y=NeP .

This can be divided into three variables. The �rst is total industry sales (Y ) and can easily

be assumed to evolve exogenously. As explained above, this is total demand for Portuguese

moulds. The second variable is the industry price ( eP ) and is the solution to the static pricing
game. In the technical appendix the pricing strategies are shown to be a mapping from states

onto the pricing space. Therefore, this variable evolves endogenously. Finally, the total number

of incumbents (N) is also endogenous and it depends on market size. Modeling these three

variables separately would involve taking into account (and estimating) all cross correlations.

In Figure B.2 I plot the evolution of all variables. We can observe that the market was

growing mainly between 1993 and 2000 and pauses until 2003 and the number of �rms share a

similar pattern. On the other side prices were increasing slightly over this period and decreased

in the later years. This characterizes most of what has already been explained before. The

industry grew substantially after 1994 due to the strong increase in demand for Portuguese

moulds. Together with this increase in demand we also observe an increase in labor productivity

and R&D. The cross correlations are as expected with prices being negatively correlated with

number of �rms and market size, and the number of �rms being positively correlated with

market size. The evolution of these three variables will be summarized by the evolution of

the single index variable, eYeP (average de�ated sales). This also helps to address potential non-
stationarity problems (see below).

Addressing non-stationarity issues: The industry grew substantially in the period 1994-

2003 so this raises concerns over non-stationarity. To analyze this we can look at the evolution

of average de�ated industry sales. The plot in Figure B.2 clearly shows that while it is true

that average sales were growing between 1994-1998, it seems to have stabilized over the later

period. The justi�cation for this performance is the increase in the number of �rms in the later

period (after 1998) as is evident in Table B.I.
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Number Production Exports Exports Total Value Added Price
of �rms (EUR mio) (EUR mio) % Employment (EUR mio) (EUR/ton)

1994 644 171 132 77% 5,133 101 24.43
1995 570 193 151 78% 5,796 114 25.25
1996 452 244 191 78% 7,316 143 25.71
1997 477 293 220 75% 7,821 166 25.73
1998 461 322 232 72% 7,740 167 24.62
1999 549 362 250 69% 8,429 208 25.23
2000 604 412 277 67% 8,879 228 26.49
2001 612 421 328 78% 8,919 240 26.74
2002 722 378 310 82% 9,312 235 24.97
2003 738 403 303 75% 8,766 227 22.86
2004 1109 455 340 . 9,846 259 20.33
2005 1230 468 298 . 10,108 256 18.69

Source: National statistics o¢ ce, INE 2007

Table B.I: Aggregate variables

1970 1980 1985 1990 1995 2000 2003
1 USA USA USA USA USA France Germany
2 UK UK UK France France USA France
3 W. Germ. Sweden Russia Germany Germany Germany Spain
4 Canada Mexico Israel UK UK Spain USA
5 Venezuela W. Germ. Venezuela Netherlands Netherlands UK UK
6 Nd France France Spain Israel Sweden Sweden
7 Nd Netherlands Netherlands Sweden Belg./Lux. Netherlands Netherlands
8 Nd Venezuela Sweden Israel Sweden Israel Romania
9 Nd Spain Spain Belg./Lux. Brazil Belg./Lux. Switzer.

Source: CEFAMOL, 2008

Table B.II: Export ranking by destination country.

France Germany Spain USA UK Sweden Netherlands Belgium-Lux
1996 31,044 23,912 6,746 30,737 10,181 18,130 14,393 7,995
1997 30,416 31,462 8,740 33,714 21,333 19,179 11,771 7,561
1998 26,456 35,230 11,176 32,115 25,079 12,670 9,323 7,289
1999 45,767 36,314 23,172 37,876 17,058 9,760 9,103 9,210
2000 51,829 37,869 28,843 46,857 27,670 13,055 11,862 7,229
2001 71,222 53,863 35,659 36,687 25,133 10,979 12,940 8,444
2002 65,368 53,007 47,796 36,210 24,541 18,377 7,911 7,971
2003 61,633 66,837 39,909 44,102 16,177 15,364 6,527 6,527
2004 71,766 61,395 42,781 30,720 33,618 13,556 5,478 5,478
2005 68,221 47,233 40,399 20,074 16,615 11,586 9,275 9,275

Source: CEFAMOL, 2008

Table B.III: Exports to main destinations, thousands of euros.
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Mean Std. Dev. Min Max
All �rms: 1274 observations

Sales (EUR) 1,574,073 2,869,201 3,292 34,700,000
Exports (EUR) 891,333 2,483,554 0 31,800,000

Capital Stock (EUR) 1,058,104 2,130,734 135 23,800,000
Employment 32 39 1 258

Labor Productivity (EUR) 20,381 9,044 359 74,632
Investment rate 0.20 0.25 0.00 5.32
Sales growth 8.9% 34.5% -195.8% 469.0%

Value added Growth 9.4% 40.5% -289.3% 477.0%
Labor Productivity growth 5.7% 37.1% -289.3% 284.3%

Non RD �rms: 1009 observations
Sales (EUR) 1,198,854 2,321,233 3,292 26,800,000

Exports (EUR) 640,879 1,919,257 0 25,200,000
Capital Stock (EUR) 835,706 1,854,294 135 20,600,000

Employment 27 35 1 230
Labor Productivity (EUR) 19,609 9,178 359 74,632

Investment rate 20.9% 27.5% 0.0% 531.7%
Sales growth 9.9% 37.9% -195.8% 469.0%

Value added Growth 10.4% 45.2% -289.3% 477.0%
Labor Productivity growth 6.2% 41.1% -289.3% 284.3%

RD �rms: 265 observations
Sales (EUR) 3,002,735 4,066,477 99,206 34,700,000

Exports (EUR) 1,844,947 3,811,178 0 31,800,000
Capital Stock (EUR) 1,904,897 2,802,605 53,161 23,800,000

Employment 52 45 3 258
Labor Productivity (EUR) 23,321 7,861 7,148 59,923

Investment rate 16.7% 14.2% 0.0% 77.5%
Sales growth 5.6% 20.1% -101.8% 123.3%

Value added Growth 6.3% 19.6% -113.3% 102.4%
Labor Productivity growth 3.9% 19.9% -87.2% 116.9%

RD to sales ratio 0.9% 3.4% 0.0% 46.5%

Source: "Central de Balanços", Bank of Portugal

Table B.IV: Summary statistics, by RD status.

Year Number Number of Number of RD start-ups Entry Entry in the Exits
of �rms non-RD �rms RD �rms dataset

1994 144 134 10 - 2 3 0
1995 157 137 20 10 12 14 2
1996 165 141 24 4 8 14 0
1997 170 145 25 2 11 20 2
1998 164 135 29 7 9 33 0
1999 136 108 28 3 2 46 1
2000 92 68 24 7 2 8 0
2001 88 56 32 9 1 5 0
2002 88 53 35 4 1 2 0
2003 86 48 38 3 0 0 2
Total 1290 1025 265 49 48 145 7

Source: "Central de Balanços", Bank of Portugal

Table B.V: Descriptive statistics.
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