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Abstract 
What factors underlie industry differences in research intensity and productivity growth? We 
develop a multi-sector endogenous growth model allowing for industry specific parameters in 
the production functions for output and knowledge, and in consumer preferences. We find 
that long run industry differences in both productivity growth and R&D intensity mainly 
reflect differences in "technological opportunities", interpreted as the parameters of 
knowledge production. These include the capital intensity of R&D, knowledge spillovers, and 
diminishing returns to R&D. To investigate the quantitative importance of these factors, we 
calibrate the model using US industry data. We find that the observed variation in the capital 
intensity of research cannot account for industry differences in productivity growth rates, and 
that variation in intertemporal knowledge spillovers has counterfactual predictions for R&D 
intensity when it is an important factor behind differences in productivity growth rates. This 
suggests that diminishing returns to research activity is the dominant factor. 
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1 Introduction

Total factor productivity (TFP) growth rates differ widely across industries, and these dif-
ferences appear linked to persistent cross-industry differences in R&D intensity. This link is
sometimes interpreted as causation. However, a priori it is not clear why the level of indus-
try R&D should affect industry productivity growth, a point that has been made by Jones
(1995) for the aggregate economy. Rather, both R&D and productivity growth depend on
the response of firms to deeper industry parameters.
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We develop a general equilibrium model in which both research activity and productivity
growth vary endogenously across industries, to identify the factors that account for differences
in each. We show that the factors that influence TFP growth also have an impact on
R&D intensity. However, we also show that the converse is not true: there exists a set of
industry characteristics that affect the level of industry R&D, but not necessarily industry
productivity growth rates.
We build the model according to criteria that we believe define a natural benchmark.

First, industries differ in terms of factors commonly identified in the empirical literature as
being potential determinants of research intensity: technological opportunity (factors that
affect the efficiency of research), appropriability (the extent to which R&D benefits the
innovator) and demand (which influences the returns to research). Second, these factors are
implemented in the model using standard preference and technology parameters drawn from
growth theory. The industry-specific factors we study are: diminishing returns to research,
knowledge spillovers over time, knowledge spillovers across firms, capital intensity in the
production of goods, capital intensity in the production of ideas, the elasticity of substitution
across different varieties of goods within each industry, and the industry’s market size.
Comparing across industries, we find that differences in TFP growth rates depend only on

factors of technological opportunity. These include the extent to which research is subject to
diminishing returns, the capital share of research spending, and total knowledge spillovers.
By contrast, differences in R&D intensity also depend on appropriability, defined as the
extent to which knowledge spillovers accrue from the firm’s own stock of knowledge. Product
demand is fundamental in providing incentives to perform research: nevertheless, we find
that in an equilibrium where the distribution of firm productivity is stable within industries,
industry differences in equilibrium TFP growth rates and R&D intensity do not depend on
the parameters that underlie product demand.1

To narrow down which factors of technological opportunity might best account for cross-
industry comparisons in a production-function based framework, we calibrate as many model
parameters as possible using US industry data, and use simulations to investigate the impact
of the remaining parameters. The industry parameters we calibrate are the capital intensity
in the production of goods, capital intensity in the production of ideas, the elasticity of
substitution across different varieties of goods within each industry, and the industry’s market
size. We use simulations to assess the impact of diminishing returns to research, knowledge
spillovers over time, and knowledge spillovers across firms.2

We find that the capital intensity of research cannot account for the industry differ-
ences in productivity growth rates in the data. Thus, the model indicates that variation in
diminishing returns to research or in the magnitude of spillovers must be responsible. Fur-
thermore, we find that variation in appropriability has little impact on industry variation in

1For example we show that, while the price elasticity of demand affects the potential returns to innovation
in partial equilibrium, this may not affect returns in general equilibrium when all firms are conducting
research and trying to keep pace with each other. Indeed, the survey of Cohen and Levin (1989) finds at best
weak links between demand factors and industry R&D intensity, consistent with a pervading sense among
historians of technical change that the pace and direction of technical progress is primarily supply-driven,
such as Rosenberg (1969) and Nelson and Winter (1977).

2In addition, we also used the NBER patent citation database as an indicator of knowledge flows to
calibrate the spillover parameters, finding similar results.
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R&D intensity even when we choose appropriability values so as to maximize their influence.
As a result, the model indicates that variation in diminishing returns to research and in the
magnitude of spillovers must jointly account for patterns of productivity growth and research
activity.
Finally, we use simulations to compare different possible combinations of the two high-

lighted factors. We find that intertemporal knowledge spillovers have counterfactual predic-
tions for R&D intensity when they are assumed to be an important factor behind variation
in productivity growth rates, as they imply a non-monotonic relationship between these
variables. By contrast, the model is able to account jointly for the observed variation in
productivity growth rates and in R&D intensity when differences in diminishing returns are
emphasized instead. This suggests that variation in diminishing returns to research activity
is the dominating factor among those we consider.3 We find that the correlation between
industry R&D in the model and in the data can be as high as 72%, indicating that the
mechanisms in the model are able to account simultaneously for industry variation in both
productivity growth and research intensity.
In related work, Klenow (1996) studies the determinants of cross-industry differences in

TFP growth and R&D intensity in a 2-sector version of the Romer (1990) model. Krusell
(1998) develops a 2-sector framework to endogenize the decline in the price of capital rela-
tive to consumption goods documented by Greenwood, Hercowitz and Krusell (1997), and
Vourvachaki (2006) also features a two-sector endogenous growth model: however, in these
papers, there is only research in one sector, and the focus is not on the factors that determine
industry TFP growth rates. In the partial equilibrium model of Nelson (1988), the extent
to which knowledge spills from a firm to its competitors affects R&D intensity but not TFP
growth rates, and our general equilibrium environment also yields this result. Klevorick et
al (1995) and Nelson and Wolff (1997) provide evidence supporting this claim.
Section 2 provides an overview of the related literature. We do this to line up the

factors we wish to embody later in our model. Section 3 describes the structure of the
model and outlines the main results, and Section 4 studies its long run behavior. Section 5
uses a calibration of the model to determine the relative importance of different potential
determinants of research and productivity differences. Section 6 discusses possible extensions.

2 Related Literature

Industry TFP growth rates appear linked to cross-industry variation in R&D intensity —
see Terleckyj (1980) for an early survey. Many studies have attempted to identify the de-
terminants of industry variation in R&D. While some studies assume that research causes
productivity growth, others take our view that both are determined by deeper "fundamen-
tals" of each industry. Consistent with our approach, Nelson and Wolff (1998) are able to
identify factors that explain R&D intensity that do not account for TFP growth rates.
The literature has focused on three sets of factors that might drive industry research

activity and TFP growth: product demand, technological opportunity, and appropriability.

3Thus, our results do not hinge on the particular set of industries used, but on the fact that R&D intensity
and industry productivity growth are positively related in the data.
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Technological opportunity encompasses factors that lead research to be more productive in
some industries than others. Opportunity has been modeled in different ways — for example,
in Klenow (1996) it is a constant Zi in the knowledge production function for industry i.
Nelson (1988) interprets opportunity in terms of knowledge spillovers from different sources.
Measuring opportunity is difficult: however, using surveys of R&D managers, Levin et al
(1985), Cohen et al (1987) and Klevorick et al (1995) try to identify different kinds of
spillovers, relating them to R&D activity and to technical change.
Appropriability relates to the extent that an innovating firm (as opposed to its competi-

tors) benefits from its own newly generated knowledge. Cohen et al (1987), Klevorick et al
(1995) and Nelson and Wolff (1997) find evidence that appropriability is related to R&D in-
tensity and, interestingly, Klevorick et al (1995) and Nelson and Wolff (1997) argue that the
survey data are consistent with an influence of opportunity factors on both R&D intensity
and technical change, whereas appropriability is only related to R&D intensity.4

Demand factors affect the returns to R&D. In Schmookler (1966), larger product mar-
kets encourage innovation by offering higher returns to innovators, whereas in Kamien and
Schwartz (1970) the gains from reducing production costs may be larger when demand is
more elastic. The survey of Cohen and Levin (1989) suggests that the evidence concerning
demand factors is weak. For example, Levin et al (1985) find that they lose significance in
cross-industry R&D regressions when indicators of opportunity and appropriability are in-
cluded. Independently, several case-based and historical studies suggest that technical change
is driven by scientific or engineering considerations rather than by demand conditions.5

The following stylized facts emerge from the empirical literature: (1) There is evidence
that opportunity affects both statistics of interest; (2) appropriability is easier to relate to
R&D intensity than to TFP growth rates; (3) the link between demand factors and research
intensity (as well as rates of TFP growth) is not robust.
We wish to articulate opportunity, appropriability and demand factors within a general

equilibrium growth model, based on primitives of preferences and technology drawn from
the growth literature. Given the measurement difficulties inherent in studying the role of
knowledge in technical progress, we use the structure of the model to guide us regarding the
relationships that hold between R&D, TFP growth, and each of these factors. As a bench-
mark, we use a model of knowledge generation that is intentionally close to the production
function approach common in both the theoretical and the empirical literature. Our model

4Cohen et al (1987) do find a positive link between appropriability and an indicator of innovation, also
using survey data. What clouds these results is that the appropriability measure in all these papers may
not distinguish sharply between appropriability and opportunity. The measure is based on the response to
the question “in this line of business, how much time would a capable firm typically require to effectively
duplicate and introduce a new or improved product developed by a competitor?” This may not distinguish
between (a) the ease with which a competitor might access a firm’s knowledge, and (b) the ease in general
with which preexisting knowledge can be used to generate new knowledge. In particular, if appropriability
itself is generally low, then the measure may reflect mostly differences in opportunity.

5Nelson and Winter (1977) coin the term “natural trajectories” to describe the phenomenon that “inno-
vation has a certain inner logic of its own [...] — particularly in industries where technological advance is very
rapid, advances seem to follow advances in a way that appears somewhat ‘inevitable’ and certainly not fine
tuned to the changing demand and cost conditions.” There is some evidence of an impact of market size on
innovative activity at the firm or product level: however, these findings do not relate to industry differences.
More discussion will follow in Section 4.
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maps naturally into the frameworks of Jones (1995) and Krusell (1998). The functional
forms we use are necessary for balanced growth.

3 Economic Environment

3.1 Knowledge Production

The economy consists of z ≥ 2 industries. Consider a firm h ∈ [0, 1] in industry i, with a
level of productivity that depends upon the stock Tiht of technical knowledge at its disposal
at date t. Knowledge accumulates over time according to the function

Tih,t+1 = Fiht + Tiht (1)

where Fiht.6

New knowledge Fiht is generated using a knowledge production function, using the firm’s
research input and spillovers from other firms.7 The knowledge production function is:

Fiht = ZiT
κi
ihtT

σi
it

³
Q
ηi
ihtL

1−ηi
iht

´ψi
. (2)

where ηi, ψi ∈ (0, 1], and Qiht and Liht are capital and labor used in the production of
knowledge. The productivity index for industry i as a whole is Tit ≡

R 1
0
Tihtdh, which firm h

takes as given. Let γiht ≡ Tiht+1/Tiht be the growth factor of Tih.
Parameters Zi, κi, σi, ψi and ηi represent technological opportunity, as they affect the

productivity of research input. Parameter Zi is an efficiency parameter for carrying out
research in industry i.8 It could be linked to the nature of research in the industry, or to
the institutional environment. Parameter κi represents the effect of in-house knowledge
on the production of new ideas, and is known in the growth literature as the intertemporal
knowledge spillover. Parameter σi represents spillovers across firms within sector i. The total
knowledge spillover ρi ≡ κi + σi is the extent to which the production of new knowledge in
sector i benefits from prior knowledge. Parameter ψi indicates decreasing returns to research
inputs. One interpretation for ψi < 1 is that there is duplication in research, whereby some
of the knowledge created by a firm in sector i might not be new. Parameter ηi captures the
share of capital in R&D spending.
Conditional on total knowledge spillovers, industries may differ in the importance of

in-house knowledge relative to knowledge spillovers from its competitors. We define appro-
priability Ai as the share of total spillovers accounted for by in-house knowledge: Ai ≡ κi/ρi.

6It is common to assume that ideas depreciate. There is a distinction between physical depreciation and
economic depreciation, however. For ideas to physically depreciate would imply that some share of them is
exogenously forgotten. Economic depreciation, on the other hand, implies that old knowledge becomes less
valuable (obsolete) as newer knowledge accumulates, and rates of economic depreciation will be endogenous
in our model. See Laitner and Stolyarov (2008) for a different approach based on new knowledge sometimes
reducing the value of existing knowledge to zero.

7We focus for now on within-industry spillovers, and later discuss the impact of cross-industry spillovers.
8Nelson (1988) allows Zi grows at an exogenous rate. Since the trademark of R&D-based growth models

is that technical progress is endogenous, our model does not feature exogenously growing factors other than
the population.
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The last set of factors considered by the empirical literature relates to demand, which we
present later when we close the model using standard household preferences.

3.2 Firm’s problem

Each sector i ≤ z is monopolistically competitive. Firm h in sector i produces a differentiated
variety h ∈ [0, 1] of good i. Output of variety h of good i is

Yiht = TihtK
αi
ihtN

1−αi
iht , αi ∈ (0, 1) (3)

where Yiht is output, Kiht is capital and Niht is labor.
Firms are competitive in the input markets. Taking input prices (wt, Rt) and its demand

function piht (.) as given, firm h in sector i chooses both production inputs (Kiht, Niht) and
R&D inputs (Qiht, Liht) to maximize the discounted stream of real profits:

∞P
t=0

λt
Πiht

pct
; Πiht ≡ pihtYiht − wt (Niht + Liht)−Rt (Kiht +Qiht) , (4)

where pct is the aggregate price-index for consumption goods, λt is the discount factor at

time t, with λ0 = 1, λt =
tQ

s=1

1
1+rt

for t ≥ 1, and rt is the real interest rate. The transversality

condition is lim
t→∞

χihtTiht+1 = 0, where χiht is the shadow price of Tiht+1.9 The complete

derivation of the firm’s maximization problem is given in Appendix B.1.

3.3 Equilibrium Productivity Growth

Given free mobility of inputs and competitive input markets, marginal rates of substitution
are equal across activities within the firm (5), across firms within each industry (6), and also
across sectors (7):10

1− ηi
ηi

Qiht

Liht
=
1− αi

αi

Kiht

Niht
, (5)

Qiht

Liht
=

Qit

Lit
;

Kiht

Niht
=

Kit

Nit
, (6)

1− ηi
ηi

Qit

Lit
=
1− ηj
ηj

Qjt

Ljt
=
1− αi

αi

Kit

Nit
=
1− αj

αj

Kjt

Njt
. (7)

9Note that the transversality condition implies that the shadow price χiht is falling in any equilibrium
where Tiht is growing. In the rest of the paper we will continue to refer the expression χiht+1/χiht as the
growth factor of the shadow price.
10The linearity of quations (5)− (7) stems from our use of Cobb-Douglas production functions. If we were

to allowed for a general production function with constant elasticity of substitution, then marginal rates of
substitution would be log-linear in capital-labor ratios with a coefficient equal to the elasticity of substitution.
A linear relationship would still hold if the elasticity of substitution were identical across activities, firms
and sectors. We choose to focus on the Cobb-Douglas productions both for the lack of measure for the
sector-specific elasticity of substitution and for the possibility of deriving the balanced growth path later.
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It follows that:
Qiht+1/Liht+1

Qiht/Liht
=

Kiht+1/Niht+1

Kiht/Niht
= gkt ∀i, h. (8)

Using (1) and (6), the productivity growth of firm h in sector i depends on

γiht − 1 =
Fiht

Tiht
= Zi

µ
Tiht
Tit

¶κi−1
T
ρi−1
it

µ
Qit

Lit

¶ηiψi

L
ψi
iht. (9)

As our interest is in industry comparisons, we focus on equilibria where the distribution
of productivity within sectors is stable and rank-preserving i.e. in each industry γiht = γit
∀h.11 Then, (9) implies Liht = Lit. To make meaningful comparisons across sectors, we also
focus on equilibria with constant productivity growth, using (8) and (9):

Lemma 1 In any rank-preserving equilibria, constant γi satisfies

γi =

∙
g
ηi
ktgN

µ
lit+1
lit

¶¸ ψi
1−ρi

, ∀i, (10)

where lit ≡ Lit
Nt
is the fraction of labor allocated to research in sector i.

Three terms affect cross-industry comparisons of productivity growth: (i) the expression
ψi
1−ρi

, (ii) capital intensity of research activities ηi, and (iii) growth in the fraction of labor

allocated to research
³
lit+1
lit

´
.

The expression ψi
1−ρi

is related to the historical work of Rosenberg (1969) and Nelson and
Winter (1977) that underlines technological opportunity as a factor of productivity growth.
Specifically, our model emphasizes the degree of decreasing returns to research input, the
extent of intertemporal knowledge spillovers κi, and the magnitude of spillovers across firms
σi. Interestingly, as far as spillovers are concerned, only total spillovers ρi = κi + σi are
important, whereas the source of spillovers is not.
We are not aware of a precedent to the second factor — the capital intensity of research

activity. Technical improvements in the production of capital goods lead to capital deepening,
and the extent to which this encourages research depends on ηi. Rosenberg (1969) and Nelson
and Winter (1977) suggest that capital-intensive industries may enjoy inherently high TFP
growth. However, equation (10) shows that what matters is not capital intensity per se, but
the capital-intensity of research activity. The capital-intensity of production activity may
affect the measurement of productivity, but not equilibrium rates of productivity growth.
Industry-specific demand factors and appropriabilityAi ≡ κi/ρi can only matter for cross-

industry productivity growth comparisons if they alter the growth rate of labor allocated to
research across sectors through

³
lit+1
lit

´
.

11This includes the case of symmetric equilibria (Tiht = Tit ∀h).
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3.4 Equilibrium research activity

Let χiht be the shadow price of knowledge Tiht+1, which is determined by the arbitrage
condition for allocating inputs across activities. In the case of capital:

χiht = −
µ
λt
pct

¶
∂Πiht/∂Qiht

∂Fiht/∂Qiht
. (11)

The firm’s dynamic optimization condition implies that

χiht =

∙
λt+1
pct+1

∂Πiht+1

∂Tiht+1

¸
(a) production

+ χiht+1

∙
∂Fiht+1

∂Tiht+1
+ 1

¸
(b) research (c) future knowledge

, ∀i ≤ z. (12)

Equation (12) reflects three benefits to the firm of producing more knowledge: (a) more
efficient production of goods and services, (b) more efficient production of knowledge, and (c)
a larger stock of future knowledge.
To determine the extent to which resources are directed towards research (as opposed to

production), we define research intensity as the share of research spending in total costs:

RNDiht ≡
wtLiht +RtQiht

wt (Liht +Niht) +Rt (Qiht +Kiht)
.

Using (12) we have:

RNDiht =

"
1 +

1

ψi

Ã χiht
χiht+1

− 1
γi − 1

− κi

!#−1
, (13)

where by the definition of χiht in (11):

χiht
χiht+1

=
λtpiht/pct

λt+1piht+1/pct+1
γκi−1iht γσiit g

ηiψi−αi
kt

µ
gN

liht+1
liht

¶ψi−1
. (14)

It follows from (10) that in any rank-preserving equilibria with constant γi,

χiht
χiht+1

=
λtpiht/pct

λt+1piht+1/pct+1
g−αikt

µ
gN

lit+1
lit

¶−1
. (15)

Growth in the price of i relative to consumption piht/pct
piht+1/pct+1

requires knowledge of the

demand function faced by each firm. Assume that price elasticities μi ≡ ∂piht/∂Yiht
piht/Yiht

are
sector-specific constants (i.e. identical across firm within any sector i). Equating the value
of marginal products of labor across firms, together with (6):

piht+1/piht
pih0t+1/pih0t+1

=
γih0t
γiht

; ∀i, h, h0, (16)

which implies that in any rank-preserving equilibria with constant γi :

piht+1/piht
pjht+1/pjht

=
pit+1/pit

pjt+1/pjt+1
=

γjt
γit

g
αj−αi
kt , (17)

where the last equality follows from using (7) and equating the value of marginal products
of labor across sectors. Substituting into (15), we have:
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Lemma 2 If price elasticity μi is a sector-specific constant then, in any rank-preserving
equilibria with constant productivity growth, research intensity for any sector i satisfies:

RNDit =

"
1 +

1

ψi

Ã χit
χit+1

− 1
γi − 1

− κi

!#−1
; ∀i, (18)

where
χit/χit+1
χjt/χjt+1

=

µ
γi
γj

¶
lit/lit+1
ljt/ljt+1

; ∀i. (19)

In addition to the factors that determine γi, there are three additional terms affecting
cross-industry comparisons of research intensity: (i) the degree of diminishing returns to
research input ψi, (ii) the effect of in-house knowledge on the production of new ideas κi,

and (iii) growth in the fraction of labor allocated to research
³
lit+1
lit

´
.

Recall that κi = Aiρi, implying that research intensity is affected by both opportunity
and appropriability. Moreover, if price elasticities are sector-specific constants, industry-
specific demand factors can only matter for cross-industry R&D intensity comparisons if
they alter the growth rate of labor allocated to research across sectors.

3.5 Relating the model to the literature

We now compare our results so far with the empirical findings reviewed in Section 2.
Consistent with evidence, comparisons of industry TFP growth rates depend on factors

of technological opportunity, whereas R&D intensity also depends upon appropriability. Low
appropriability lowers R&D intensity without affecting productivity growth rates, so a pre-
diction is that there should be a negative relationship between measures of intra-industry
spillovers and R&D intensity, controlling for other variables. This is exactly what Nelson
and Wolff (1997) find.
Klevorick et al (1995) identify two effects of appropriability on R&D intensity. First,

in their terminology, there is an "incentive effect" whereby large, un-internalized spillovers
reduce R&D activity, causing the negative relationship between appropriability Ai and R&D
intensity in Lemma 2. Second, there is also an "efficiency" effect, whereby larger spillovers
may encourage R&D at other firms. The efficiency effect is seen in that, conditional on
κi, a larger value of σi raises ρi while leaving Aiρi constant, so that R&D intensity rises.
However, in our model, the "efficiency" effect is related to the magnitude of spillovers, not
to appropriability per se and, as suggested by Klevorick et al (1995), this effect disappears
once opportunity is kept constant.
Demand parameters can only affect comparisons of TFP growth rates and research in-

tensities through the growth in the fraction of labor allocated to research lit+1/lit, which is
unlikely to be affected stationary demand parameters such as industry size and the price
elasticity of demand. This is broadly consistent with the evidence in Section 2. We return
to this point after presenting the demand side of the model.
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3.6 Closing the model: Households

We now close the model by specifying the demand side of the economy.
There is a continuum of households, each of measure Nt = gtN , where gN captures the

constant population growth. In what follows, we use lower case letters to denote per-capita
variables. Goods i ∈ {1, ..m− 1} are consumption goods while goods j ∈ {m, ...z} are
investment goods.
The life-time utility of a household is

∞X
t=0

(βgN)
t c
1−θ
t − 1
1− θ

(20)

ct =
m−1Q
i=1

µ
cit
ωi

¶ωi

, cit =
µZ 1

0

c
μi−1
μi

iht dh

¶ μi
μi−1

i ∈ {1, ..,m− 1} (21)

where β is the discount factor, and 1/θ is the intertemporal elasticity of substitution. We
assume that βgN < 1, θ > 0, μi > 1, ωi > 0 and

Pm−1
i=1 ωi = 1. Parameters μi and ωi

capture the industry-specific demand factors considered in the literature. μi is the elasticity
of substitution across different varieties of good i which, in equilibrium, determines the price
elasticity of demand, while ωi determines the spending share of each good (market size).
Each household member is endowed with one unit of labor and kt units of capital, and

receives income by renting capital and labor to firms, and by earning profits from the firms.
Her budget constraint is

m−1X
i=1

Z
pihtcihtdh+

zX
j=m

Z
pjhtxjhtdh ≤ wt +Rtkt + πt (22)

where xjht is investment in variety h of capital good j, piht is the price of variety h of good i,

wt and Rt are rental prices of labor and capital, and Ntπt ≡
zP

i=1

R 1
0
Πihtdh equals total profits

from firms. Her capital accumulation equation is

gNkt+1 = xt + (1− δk) kt. (23)

The composite investment good xt is produced using all capital types j:

xt =
Qz

j=m

µ
xjt
ωj

¶ωj

, xjt =
∙Z

x
(μj−1)/μj
jht dh

¸μj/(μj−1)
j ∈ {m, ..., z} , (24)

where μj > 1, ωj > 0 and
Pz

j=m ωj = 1.12 Finally, the transversality condition for capital
is lim

t→∞
ζtkt = 0, where ζt is the shadow price of capital. Define the price index for the

consumption composite ct and the investment composite xt respectively as:

pct ≡
Pm−1

i=1

R 1
0
pihtcihtdh

ct
; pxt ≡

Pz
j=m

R 1
0
pjhtxjhtdh

xt
. (25)

12Cobb-Douglas aggregation across goods allows us to derive an aggregate balanced growth path. In
a multi-sector model with exogenous technological progress, Ngai and Pissarides (2007) show that Cobb-
Douglas aggregation across capital goods is necessary for deriving an aggregate balanced growth path.
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4 Decentralized Equilibrium

The decentralized equilibrium is standard, where the firms’ and consumers’ problems are
defined as in Section 3. In any period t, prices must clear all goods and input markets:

Yiht = cihtNt; i < m; Yjht = xjhtNt, j > m; (26)

Kt =
zP

i=1

Z 1

0

(Kiht +Qiht) dh, Nt =
zP

i=1

Z 1

0

(Niht + Liht) dh. (27)

Our aim is to compare productivity dynamics across industries, and not across different
varieties of any given good. Therefore, we focus on equilibria that treat varieties within each
sector i symmetrically, and suppress the firm index h henceforth.13

Full derivation of the household’s utility maximization is given in the Appendix. The
implied Euler condition is:

u0 (ct)

βu0 (ct+1)
=

pxt+1/pct+1
pxt/pct

µ
1− δk +

Rt+1

pxt+1

¶
, (28)

which implies the real discount factor:

λt+1
λt

=
1

1 + rt+1
=

βu0 (ct+1)

u0 (ct)
=

pxt/pct
Gt+1pxt+1/pct+1

, (29)

where Gt+1 ≡ 1− δk +
Rt+1

pxt+1
is the gross return on capital.

4.1 Balanced growth

We look for a balanced growth path equilibrium (BGP), along which aggregate variables
are growing at constant rates although industry TFP growth rates may be different. Such
a BGP requires a constant ratio of consumption to capital: c/ (qk) , where q is the relative
price of capital. Define Φ and γxt as:

Φ =

P
j=m,z

ωjψj
1−ρj

1−
P

j=m,z

ωjψj
1−ρj

ηj
1−αx

; γxt ≡
Q

j=m,z

γ
ωj
jt ; αx ≡

P
j=m,z

ωjαj. (30)

Proposition 1 Suppose there exists an equilibrium with constant li, ni > 0 that satisfies the
transversality conditions for Ti and k. If Φ > 0, then there exists a unique balanced growth
path. Along this path c/q and k grow by a constant factor (γx)

1/(1−αx) where γx = gΦN , and
γi is constant and satisfies (10).

The proof observes that the return to investment G is constant if k grows by a factor
γ
1/(1−αx)
xt , which by (30) is constant if γi is constant in all capital good sectors. The restriction
for constant γi follows from Section 3.3, and γx is derived from (30).14

13In notes available upon request, we show asymmetric rank-preserving equilibria exist in which all the
results of the paper hold.
14The Appendix reports sufficient conditions for the existence of a BGP with R&D activity in all sectors.
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Proposition 1 contrasts with the behavior of the one-sector model of Jones (1995). In
Jones (1995), Φ is replaced by ψ1

1−ρ1
, so balanced growth path requires ρ1 < 1 (where 1 indexes

the only industry in the economy). There are two important differences compared to our
requirement that Φ > 0. First, suppose ηj = 0, i.e. capital is not used in the production

of knowledge. Then Φ > 0 is equivalent to
Pz

j=m

ωjψj
1−ρj

> 0, so the Jones (1995) restriction

applies to the weighted average of ψj
1−ρj

across capital goods in the multi-sector model.15

Second, the restriction
Pz

j=m

ωjψj
1−ρj

> 0 is not sufficient when capital is used in the production

of knowledge (ηj > 0 for some j ≥ m), as productivity improvements targeting capital goods
become a factor of aggregate productivity growth by inducing capital deepening in R&D.

4.2 Comparing industries

In equilibrium, industries with the same level of technological opportunity (i.e. the same
values of ψi, ρi = κi + σi and ηi but different appropriability Ai = κi/ρi) display different
R&D intensity, even if they have the same TFP growth rate. It follows from Lemmae (1)
and (2) that:

Proposition 2 Along the balanced growth path,
(i) Cross-industry comparisons of productivity growth depend only on the technological

opportunity factors ρi, ψi and ηi.
(ii) In addition to these factors, cross-industry comparisons of R&D intensity depend

also on appropriability Ai.

Notice that differences in demand parameters affect neither comparisons of productivity
growth rates nor of R&D intensity when li are constants.16 General equilibrium mechanisms
play a key role in this result.
In the model there are two industry demand parameters: ωi, the weight of good i in the

demand function, and μi, the elasticity of substitution across varieties of i. The spending
share of each good depends on ωi, and the elasticity of a firm’s demand function depends on
μi. Since ωi affects the level of returns to production at all dates, but not their growth rate,
it does not affect the decision of whether to use resources for investment in future production
(via increases in knowledge) instead of current production.
The reason μi maymatter in partial equilibrium is that elastic demand allows an innovator

to increase market share without having to lower her output price to the same extent as the
cost reduction. However, in equilibrium, all firms are performing research: R&D by the
firm’s competitors results in a commensurate fall in the relative price of their goods, so that
this partial equilibrium benefit of research need not materialize in general equilibrium.
It is worth elaborating upon this last point. The literature on appropriability distin-

guishes between two channels whereby research by a firm might affect its competitors. The

15From (10), given gk, gN > 1, productivity growth in sector i is positive only if ρi < 1.
16Some empirical studies do find a demand-innovation link — for example, Newell et al (1999), Popp (2002)

and Acemoglu and Linn (2004). These findings underline the importance of demand in providing incentives
for R&D, but do not provide evidence relating to industry differences in productivity growth nor R&D
intensity.
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first is the "spillover effect" (captured by σi in our model) whereby innovations by one firm
may be used by another. The second is the "business stealing" or "product rivalry" effect
whereby innovations by a firm’s competitors decreases its market share. In our model, the
severity of this rivalry depends on μi. To see this, note that cih is proportional to p

−μi
ih , so

that the relative market share of two firms h and h0 in the same industry is:

pihcih
pih0cih0

=

µ
pih
pih0

¶1−μi
=

µ
Tih
Tih0

¶μi−1
(31)

where pihcih are the sales of firm h. Consider two firms that start period t with equal
productivity. A given productivity improvement in one firm relative to the other will result
in a larger increase in demand for higher values of μi > 1.
Even though the rivalry effect is present in the model, this does not imply that μi af-

fects equilibrium TFP growth rates, as these considerations influence R&D incentives at all
firms in the industry. In a symmetric equilibrium, firms keep pace with each other techno-
logically so that μi does not affect equilibrium research expenditure, as it does not affect
equilibrium returns. The results hold in any rank-preserving equilibrium. Consistent with
our results, Bloom et al (2007) estimate that the rivalry effect is quantitatively dominated
by the "spillover effect" as a determinant of research activity.
The model suggests some caution in linking research intensity to demand factors empir-

ically. The most common measure of research intensity is R&D spending divided by sales
or, in terms of the model, RNDSales ≡ wLi+RQi

piYi
. Combined with the conditions for optimal

input allocation, equation (12) becomes:

RNDSales =

µ
1− 1

μi

¶
ψi

" χit
χit+1

− 1
γi − 1

− κi

#−1
(32)

This formula would appear to indicate an influence of demand parameters μi on research
spending in the model, and indeed Cohen et al (1987) find some indicators of industry concen-
tration to be related to the ratio of research spending to sales. However, in an environment
with imperfect competition, the volume of sales contains a markup over cost, which is not an
indicator of the quantity of resources devoted to research as opposed to other activities. The
denominator in this measure of research activity contains demand side variables by construc-
tion. Future empirical work may turn out to substantiate an economic link between R&D
and markups or other demand factors: however, the model suggests caution in employing
sales-based measures of R&D activity in such work.

5 Quantitative findings

We now calibrate our model using US industry data to identify whether set of opportunity
factors can account for observed industry differences in R&D and productivity growth. We
match the model to United States data because of the rich sources of information available,
because the US is arguably at the technological frontier in most industries, and because
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GDP has grown at a stable rate for over a century, which is consistent with our focus on the
balanced growth path of our model.17

We address the following questions:

1. The model predicts that productivity growth should be positively linked to the oppor-
tunity parameters ψi, ρi and to ηi. Which of these parameters do the data suggest to
be the main factor?

2. The model suggests that R&D intensity should be linked to opportunity parameters,
but also to appropriability Aj. Which of these parameters do the data suggest to be
the main factor?

3. What values of these parameters best account for industry variation in productivity
change and research intensity in the data?

To answer these questions, we proceed as follows. We first calibrate as many parameters
as possible in the model using post-war US data. Then, we ask what combinations of the
remaining parameters allow the model to best match industry data on productivity growth
and R&D intensity. This allows us to assess whether variation in certain variables is sufficient
to account for observed industry differences, and the circumstances under which the variables
we do not observe directly are or are not able to account for the data.
We do not match measured TFP growth rates directly. For example, several of the long-

term rates of TFP growth estimated by Jorgenson et al (2006) are negative, and we do not
believe that productivity can decline in absolute terms in the long run when it is driven
by knowledge accumulation. We take seriously the view of Greenwood et al (1997) among
others that quality improvements are an important source of productivity change. Thus,
we calibrate model TFP growth rates using quality-adjusted relative prices. Specifically,
equation (17) implies a relationship between relative rates of price decline, capital shares,
and TFP growth, and we use these to compute relative TFP growth rates.
To our knowledge, comparable quality adjusted prices are available only for durable

goods. Hence, we assume that m = 2, so that there is only one sector producing non-
durables. We set z = 15, so that there are 14 capital-producing industries. This partition
was the finest that allowed us to match the relative price data with the patent data we
employ later to measure knowledge spillovers.
It is worth pointing out that our quantitative conclusions turn out not to depend on

the use of these particular industries. The main sources of discipline on our quantitative
exercise turn out to be (a) the extent of variation in productivity growth rates, and (b)
the fact that productivity growth and R&D intensity are positively linked across industries.
Ilyina and Samaniego (2009) find support for this positive relationship in post-war US data
for a comprehensive sample of industries.

17The model ranking of TFP and R&D intensity is stable in a rank-preserving equilibrium. To make
industry comparisons of TFP growth rates and research intensity requires those features to be stable over
time in the data. We computed TFP growth rates for durable goods over non-overlapping 10-year periods,
using the procedure below. We found that the correlations between cross sections were always 80% or
higher. Ilyina and Samaniego (2008) find that the decade-to-decade correlation of R&D intensity across US
manufacturing industries is over 90%.
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5.1 Calibration

We calibrate the model economy as follows. We compute industry spending shares ωi from
the Bureau of Economic Analysis’ capital flow tables, 1947-2007. These shares for each of our
14 capital goods sectors appear to be fairly stable during the post-war era, consistent with
our Cobb-Douglas capital good aggregator (24). We draw values of αi from the BEA industry

GDP tables. The implied value of αx ≡
15P
j=2

ωjαj equals 0.3. Using (25), the growth of the

relative price of capital, px/pc, is gq =
15Q
j=2

³
pjt+1/pct+1
pjt/pct

´ωj
. We compute gq using

pjt+1/pct+1
pjt/pct

(the growth of the quality-adjusted capital price relative to consumption) from Cummins
and Violante (2002) for our 14 capital goods.
Ours is a multi-industry value-added growth model. Ngai and Samaniego (2009) argue

that relative prices in the data do not correspond to relative productivity indices in a value
added model. However, assuming that the share and composition of intermediate goods in
gross output are each similar across sectors, they show that there is a simple transformation
between relative prices in a value added model and relative prices in the data. If the relative
price of a good in a value added model is pit

pct
, and the relative price of good i in the data is p̃it

p̃ct

(measured at the level of the good, i.e. gross output) then pit
pct
=
³
p̃it
p̃ct

´ 1
1−αm where αm is the

share of intermediate goods in gross output. We set αm = 0.45, and find that gq = 1.052−1.
In the working version of the paper, however, we show that results are strikingly similar
when we use unadjusted prices.
Let gy equal the growth factor of real output measured in units of consumption. US

National Income and Product Accounts indicate that gy = 1.022 in consumption units. In
the model, gy also represents the growth of real consumption, so we can compute the growth
rate of capital in quality-adjusted units gk = gy/gq. The model implies that gk = γ

1/(1−αx)
x ,

which implies that γx = 1.052. The growth rate of the population is reported by the US
Census Bureau. Table 1 summarizes the values of these variables.
The final two variables required for calibration are γi and ηi. As discussed earlier, we

compute TFP growth to match the decline in the quality-adjusted relative prices for our 14
capital goods industries. This mapping is slightly complicated in our model compared to
Greenwood et al (1997) because we allow input shares to differ across industries. Using (17),
the definition of px and the calibrated value of γx, we compute γi as follows:

pxt+1/pxt
pit+1/pit+1

=
γi
γx

gαi−αxk =⇒ γi = γxg
αx−αi
k gq

µ
pit+1/pit
pct+1/pct+1

¶−1
, (33)

where values of pit+1/pit
pct+1/pct+1

are drawn from Cummins and Violante (2002), and adjusted as
discussed above.
We measure ηi as the capital share of research expenditures using data from the National

Science Foundation Industrial Research and Development Survey.18 The values of γi and ηi
are reported in Table 2.

18See the Appendix for further notes on the data used for ωi, αi and ηi.
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5.2 Opportunity and TFP growth rates

The model implies that variation in industry productivity growth rates depends on tech-
nological opportunity. We now use the data to learn about which of these factors appear
quantitatively important. Using (10) and the restrictions imposed by balanced growth, in-
dustry productivity growth follows:

γi = (g
ηi
k gN)

ψi
1−ρi ; ∀i. (34)

Our first step is to ask whether variation in ηi can account for industry variation in γi.
To this end, we use (34) to compute ψi

1−ρi
as a residual. Results are reported in Table 2. The

correlation between γi and
ψi
1−ρi

is 0.985. There are two reasons why the contribution of ηi to
industry growth differences is low. First, as seen in Figure 1, the correlation between ηi and
γi is not statistically significant (although it is positive, as implied by the model). Second,
most importantly, variation in ηi is not of sufficient magnitude to generate large differences
in γi on its own. To see this, we re-compute γi from (34) under the assumption that

ψi
1−ρi

was

equal in all industries. When we set ψi
1−ρi

to equal the weighted average across industries,
we found that productivity growth rates ranged from 2.9% to 4.7%, which accounts for only
about a tenth of the variation in Table 2. Thus, industry differences in productivity growth
reflect significant variation in technological opportunities, as captured by ψi and ρi.
Determining whether ρi or ψi is responsible for differences in γi requires measures of at

least one of these two parameters. Distinguishing between ρi and ψi is also needed later to
compute R&D intensities. In what follows, we follow two approaches:

1. First, we discuss a possible measure of ρi, based on patent data. We then think of ψi

as a residual, computing it from the values of ψi
1−ρi

in Table 2 for given values of ρi.
We will find that variation in ρi is unable to jointly account for industry differences in
productivity growth rates and R&D intensity, whereas variation in ψi is able to do so.

2. Second, we assume that ρi is perfectly correlated with γi, to give variation in ρi its
"best shot." Thus, there will be parameterizations under which variation in ρi accounts
for all industry differences in γi, and parameterizations under which ψi accounts for
all differences in γi. Even so, in this case we still find that variation in ρi is unlikely
to matter much.

Parameter ρi is linked to the magnitude of knowledge spillovers received by each industry.
Following Jaffe et al (2000), we measure knowledge spillovers using the NBER patent citation
database described in Hall et al (2001). For each patent granted over the period 1975-1999,
the database mentions every patent that it cites — its bibliography. The database also
includes patent categories for patents granted 1963-1999, at the 2-digit SIC level and also
more finely. We use this information to assign patents to industries.
At the United States Patent and Trademark Office, one role of the patent examiner is to

determine that the applicant has cited all relevant "prior art," and the presumption is that
this mechanism ensures that patent citations accurately report the intellectual precursors of
the patent under review. The examiner’s name is reported on the patent, so the examiner
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is responsible for any mis-attributions. This suggests that patent citations accurately reflect
knowledge spillovers from sources of patented knowledge. Since the bibliography does not
include knowledge that is not patented, the presumption is also that the ranking of extent
to which different sectors build on unpatented knowledge is not too different from ranking
constructed using patented knowledge.
Parameter ρi represents the extent to which new knowledge in industry i "stands on the

shoulders" of prior knowledge. Hence, to get a sense of relative magnitudes of ρi between
industries we examine the rate at which patents in a given industry cite other patents —
the rate of "backwards citations". We call this CITi. We assume that relative CITi is an
indicator of relative ρi, and use CITi to examine a variety of possible parameterizations of
the model, by changing the range over which ρi varies while assuming that ρi and CITi are
correlated.
Aggregate estimates of the decreasing returns to research investment (analogous to ψi)

vary between 0.1 and 0.6 (see Kortum (1993) and Samaniego (2007) for surveys): however,
to our knowledge industry level estimates do not exist. Hence, we will think of ψi as a
residual, computing it from ψi

1−ρi
for given values of ρi. We remind the reader that we follow

two approaches to selecting ρi: we use patent citation data, and we also give variation in ρi
its "best shot" by assuming it is perfectly correlated with productivity growth rates.
Figure 1 reports the correlation between CITi and γi. We do indeed find a correla-

tion between backwards citations and productivity growth.19 This suggests that ρi may be
important for industry variation in productivity growth rates — although, just because ρi is
correlated with γi does not mean that it is a quantitatively important factor behind variation
in γi, something we will check below.

5.3 Decomposing opportunity

Tomake further progress in decomposing the sources of opportunity that account for industry
growth, we turn to the model predictions for research intensity.
Assuming that CITi is an indicator of relative values of ρi, we examine a broad set of

possible mappings between CITi and ρi. Given the series for
ψi
1−ρi

in Table 2, a choice of ρi
implies values of ψi for each industry. Specifically, given a lower bound ρ and an upper bound
ρ̄, we assume that ρi is perfectly correlated with CITi between these two parameters. We
explore all values of ρ and ρ̄ in the range [−1, 1), provided ρ ≤ ρ̄. We set ρ̄ < 1 because this
is required for positive industry productivity growth rates. The bound ρ ≥ −1 is arbitrary
but, as we shall see, results for lower values are straightforward to infer. Note that, given a
value of γi, parameters ρi and ψi are negatively related.
The correlation between ρi and γi equals the correlation between CITi and γi by con-

struction, which is 60% (the P-value is 2%). However, the correlation between ψi and γi is
also high for most parameterizations — see Figure 2. Thus, correlations between parameters
and productivity are not enough to indicate whether variation in γi is mainly due to ρi or ψi.
It is interesting to note that the highest correlations between ψi and γi occur when the upper

19For robustness, we also checked the same link with productivity growth rates measured by Jorgenson
et al (2006). Results were similar but statistical significance hinged on an outlier (Computers and Office
Equipment).
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and lower bounds on ρi are close together (near the 45 degree line): in this case, although
ρi and γi are significantly correlated, most of the variation in productivity is in fact due to
differences in ψi. On the 45 degree line itself, ρ = ρ̄, so that variation in ρi accounts for none
of industry variation in productivity growth.

5.4 Opportunity, appropriability and research

To further narrow down the parameters that best account for the data, we use the model to
compute predicted research intensity at the industry level, and examine for what parameter
values the model generates research intensity values that most resemble those in the data.
We look at two different criteria:

1. Is research intensity in the model correlated with research intensity in the data?

2. Is the magnitude of research intensity in the model close to that in the data?

Following the literature we measure R&D intensity as the median ratio of R&D expen-
ditures to sales among firms in Compustat over the period 1950-2000.20 The maintained
assumption is that the median firm in Compustat is subject to weak if any financial con-
straints, so that its R&D behavior should reflect the "pure" technologically determined level
of R&D intensity for the industry. See Rajan and Zingales (1998) and Ilyina and Samaniego
(2008) on the use of median firms to detect technological characteristics. We discard the
top and bottom 1% of observations in the sample, to reduce the influence of outliers and of
possible measurement error.21

The model R&D spending to sales ratio
¡
RNDSales

¢
is determined by equation (32) ,

which requires an expression for the growth rate in the shadow price of knowledge χit+1
χit

along a balanced growth path. Using (15), (17) and (29) this expression is:

χit+1
χit

=
γx
Gγi

gαxk gN =
gkgN
Gγi

. (35)

Thus, computing RNDSales in (32) requires values for industry-specific parameters ρi, ψj, Ai

and μi, as well as G, which is common across industries. Again, we examine a variety of
values of ρi and ψi by assuming a linear mapping between ρi and CITi as described above,
and alternatively by assuming ρi is correlated with γi.

22

As for appropriability Ai, we follow two approaches.

1. We use patent data to get a sense of the likely values of Ai.

20Ideally we would like to use an expenditure-based (RNDit) rather than a sales-based measure¡
RNDSales

¢
to compute R&D intensity, however, we could not use Compustat to construct the shares

of R&D as labor expenditures were very sparsely reported.
21The medians were in fact quite close to R&D/sales numbers reported by the NSF, so we view them as

accurate (NSF values were not available for all industries, which is why we did not use them directly).
22Notice that 1 − χit+1

χit
is the rate of economic depreciation of knowledge in our model. We find that

computed values of this expression are almost perfectly correlated with γi, and vary between 5% and 23%
across industries. Samaniego (2007) surveys values for the rate of economic depreciation of knowledge in a
1-sector economy that range between 10% and 25%.
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2. We select Ai ∈ [0, 1] so as to maximize the influence of appropriability on R&D inten-
sity.

Appropriability is related to whether spillovers across firms are a significant source of
knowledge. As before, we use patent data to get a sense of the magnitude of these spillovers.
The NBER patent citation database reports the assignee of each patent awarded since 1969.
Consequently, we can establish what proportion of own-industry citations are in fact self-
citations. We define appropriability Ai as this ratio. The required assumption is that Ai

does not differ significantly for a given industry depending on whether or not knowledge is
patented. If unpatented knowledge flows across firms more easily than patented knowledge,
then the measure of spillovers implied by the patent data is an upper bound on Ai. On
the other hand, if ideas that flow most easily across firms are the ones patented, then our
numbers represent a lower bound on Ai. As we shall see, appropriability differences between
patented and unpatented knowledge must be quite drastic to affect our results (in fact, when
we assumed that Ai varied between 0 and 1 and that it was perfectly correlated with R&D
intensity, our results were almost identical). Table 2 finds that appropriability Ai is generally
quite low — 18.5% on average. In addition, it appears to vary little across industries, ranging
in the interval [0.12, 0.34]. Thus, R&D intensity in equation (18) will be mainly determined
by differences in ρi and ψi.
We calibrate μi using industry markups from Oliveira, Scarpetta and Pilat (1996). These

authors report markups over average cost. In the model, μi is linked to the markup over
production cost — which could be significantly larger than the markup over total cost in very
research-intensive industries. In the Appendix we discuss the mapping between the reported
markups and those required to calibrate μi.
Finally we set values for G. Using the Euler condition (29), the gross return to capital,

G = (1 + r) /gq. We match the real rate of return on capital to be 7% as in Greenwood et
al (1997). Hence the gross return in terms of capital goods is G = 1.07/gq.
We find that the strongest correlations between R&D in the model and in the data

(about 0.72) are generated by parameterizations under which ρ and ρ̄ are close. See Figure
3. However, the magnitude of R&D intensity in the model is much larger than in the data
for most parameterizations. Magnitudes are comparable only when ρ and ρ̄ are both high.
See Figure 4.
Along the locus of parameterizations such that overall R&D intensity in the model econ-

omy matches that in the data, the parameters that generate model industry R&D intensity
numbers that correlate most strongly with those in the data satisfy ρ = ρ̄ = 0.94, so that
differences in ρi account for little of the variation in γi. Thus, industry variation in R&D
intensity indicates that ρ and ρ̄ are close, whereas the magnitude of R&D intensity indicates
that the values of ρ and ρ̄ are high. As a result, for the parameterization preferred by the
data, variation in ψi is primarily responsible for industry differences in both R&D intensity
and productivity growth.
Note that this is not because we have an imperfect measure of ρi. We repeated this

exercise assuming that ρi was perfectly correlated with γi, also obtaining the result that the
data prefer a parameterization under which variation in ψi is the paramount factor. Indeed,
the results for the figures are almost identical.
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There are two reasons for this result. First, (32) and (35) together imply that:

RNDSales =
(1− 1/μi)ψi

1−Aiρi +
³

G
gkgN
− 1
´
/ (γi − 1)

, (36)

Thus, given the calibrated value of γi, research intensity depends on ρi only through Ai. Our
measures of Ai are not correlated with RNDSales and are in fact negatively correlated with
CITi (which we use to rank ρi across industries), so that industry variation in ρi does not
necessarily translate into industry differences in research intensity.
The main reason is much simpler, however, and in no way hinges on the use of patent data

nor on the fact that we are looking at a particular set of industries. The link between ψi and
RNDSales is monotonic, whereas that between ρi and RNDSales is non-monotonic — in fact,
it is an inverted U-shaped. To see this, we set μi, Ai, αi and ηi to be equal across industries,
so that ψi

1−ρi
is be perfectly correlated with log γi. Moreover, we assumed that γi and ρi were

perfectly correlated. Eliminating variation in Ai slightly increased correlations between R&D
in the model and the data. However, once more, the correlation between R&D intensity in
the model and the data was highest when ρ ≈ ρ̄, and the data preferred a specification with
ρ = ρ̄ ≈ 0.9. What happens is that, when values of ρi differ and the value of ρi is very high
for the highest-growth industries, the value of ψi in those industries is driven towards zero.
Since ψi enters the R&D expression multiplicatively, this drives research intensity to zero in
those industries. As a result, when ρi is very high in some industries, there is no longer a
monotonic relationship between γi and R&D intensity in the model. Since the data indicate
that γi and R&D intensity are correlated, the presence of variation in ρi leads patterns of
R&D intensity in the model to differ from those in the data. Interestingly, the parameters
that give a better correlation between model research intensity and productivity change are
those that also yield the strongest link between R&D intensity in the model and the data.
For the preferred parameterization, the correlation between R&D intensity in the model and
in the data is fully 0.72.
We began the paper noting that several authors have found an empirical link between

industry R&D intensity and TFP growth rates — including Terleckjy (1980) and more recently
Ilyina and Samaniego (2009). For the preferred parameterization, the correlation between
the research-to-sales ratio in the data and the values of γi computed using the model is fully
84%. We also find that the correlation between model R&D intensity and γi is very high for
most parameterizations — see Figure 5.
In the preferred parameterization, since values of ρi appear close to one, we expect

values of ψi to be relatively small. Table 3 reports values of ψi that correspond to this
parameterization. Are they consistent with the data? As mentioned, aggregate measures of
the counterpart of ψi vary between 0.1 and 0.6, whereas the ωi-weighted average value in the
model economy is 0.12, which lies in this range (when ψi is weighted by R&D intensity, the
average value is 0.26). We conclude that the data and the structure of the model together
indicate that most of the dispersion in both productivity growth and research intensity is
driven by industry differences in ψi — the extent to which there are decreasing returns to R&D
— and that values of ψi are likely to be small in most industries, consistent with independent
data on decreasing returns to research at the aggregate level.
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To further assess the robustness of these conclusions, we maximized the ability of Ai

to account for the R&D data, assuming that Ai is distributed between zero and one and
that it is perfectly correlated with RNDSales. Our results were essentially the same. Simply
put, variation in Ai is small compared to variation in γi, so that the denominator is not
significantly affected by appropriability.

6 Discussion and extensions

We have abstracted from cross-industry spillovers to keep the mechanism transparent, but
it would be interesting to include them in the model. There are two reasons why allowing
them is unlikely to change our results. First, the model does not suggest that knowledge
spillovers are the driving force behind industry differences in productivity: ψi takes center
stage. Second, cross-industry spillovers appear small compared to within-industry spillovers.
To see the second point, we use the patent citation database to estimate the importance

of cross-industry citations. This is analogous to classifying all Economics papers by field,
and looking at the rates at which papers in any given field cite papers in any other given
field. As discussed in Hall et al (2001), industries seem to vary in their propensity to patent.
We handle this by normalizing cross-citations by the total number of patents in the citing
industry. Thus, the citation matrix we construct reflects the average rate at which patents
in industry i cite patents in any industry j.
Table 4 reports the patent citation matrix. Each row corresponds to the average number

of citations made by a given industry. Numbers on the diagonal represent within-industry
citations. CITj is the sum of each row, the average number of citations per patent in each
industry. For all industries, citations are dominated by within-industry citations, suggesting
that cross-industry spillovers are relatively small.
We do not distinguish between product and process innovation, for several reasons. First,

much (although by no means all) of the related empirical literature neglects the distinction.
Second, it is rare that a "truly new" product is introduced. Rather, thinking of industries as
being defined at the 2- or 3-digit SIC level, both product and process innovations may result
in improved (or cheaper) consumer (or capital) services of a given type. Thus, our modeling
approach is consistent with our use of quality-adjusted price data. Third, although one-
sector growth models that distinguish between product and process innovation sometimes
have different properties (such as Young (1998)), Jones (1999) argues that these properties
require a "knife-edge" condition on the parameter linking the rate of product innovation to
the scale of the economy. Still, it would be interesting to perform our analysis in a model
that allows for product innovation.
There are three ways for a firm to acquire knowledge for use in production. First, firms

may produce knowledge by investing in R&D, as in our model. Second, knowledge that
spills between firms may be used as an input into R&D. This activity is free in the sense
that, for example, if one patent cites another, there is no requirement that any payments
be made between patent holders. While our model allows for such spillovers, the knowledge
production function (1) implies that a firm can only receive spillovers from other firms if it
is also carrying out research, as argued by Cohen and Levinthal (1990). Third, firms may
employ the knowledge produced by other firms in production, by means of a license payment
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— as in Klenow (1996). However, Arora et al (2002) find that revenues from licensing equal
about 4% of R&D expenditure, suggesting that licensing is not a major incentive behind
R&D activity in general. We abstract from this third form of knowledge transfers, as the
other two appear to be more quantitatively important. Still, an extension of the model could
be useful for studying patterns of licensing activity.

7 Concluding remarks

We develop a multi-sector, general equilibrium model of endogenous growth, incorporating a
number of factors identified in the literature as potential determinants of the costs and bene-
fits of research. We find that the main determinant of productivity growth differences across
sectors are the technological opportunity parameters, especially the extent of decreasing re-
turns to research activity. Although this parameter has not been identified as a potentially
important source of cross-industry differences in the related literature, it turns out to play
a pivotal role in a growth model that is consistent with stable growth over the long run.
Theoretically, we find that two more factors of opportunity may be important — the extent
to which new knowledge "stands on the shoulders" of prior knowledge, and the capital share
of research activity — although quantitatively they do not appear to play an important role.
The fraction of total spillovers that accrues from the firm’s own stock of knowledge affects

research intensity but not TFP growth, whereas differences in demand factors affect neither,
consistent with the lack of robustness in the empirical literature on the role of demand, and in
line with a sense in the technology literature that technical change is primarily supply-driven.
Nelson and Winter (1977) argue that innovations follow "natural trajectories" that have a
technological or scientific rationale rather than being driven by movements in demand and,
similarly, Rosenberg (1969) writes of innovation following a "compulsive sequence." In our
model, equilibrium differences in long run productivity growth rates depend on opportunity
parameters, so that long-run TFP growth rates are determined by technological factors:
"natural trajectories" are an equilibrium outcome.
We see several directions for future work. It would be interesting to provide micro-

foundations for different factors of opportunity and appropriability. For example, could the
magnitude of knowledge spillovers or the extent to which they accrue to different agents
depend on the institutions that govern research, or even on organizational structure? Also,
we have not used our model to explore policy implications. However, one of the key impli-
cations of our results is that a "one-size fits all" R&D subsidy may not be an optimal policy
when technological opportunities vary significantly across industries. We leave this topic for
future work.
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A Data

A.1 Patent data

The NBER patent database, described in detail in Hall et al (2001), classifies patents accord-
ing to their industry of origin and type of innovation. This involves tracking the industry of
origin of each patent, and of the patents that each patent cites, for 16,522,438 citation entries.
While data on patents begin in 1963, citations are only available for patents granted since
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1975. For most of the paper we place durables into 14 categories we could identify in the cita-
tion data. The industry classification in Hall et al (2001) mostly coincides with that in Table
2. The exceptions were Aircraft, Ships and Boats, Autos and Trucks, and Structures, which
we put together from their finer classification, including only rubrics that we could defini-
tively associate with the industry in question. Autos and Trucks combines classes 180, 280,
293, 278, 296, 298, 305 and 301. Structures combines classes 14 and 52 (Bridges and Static
Structures). Aircraft equals class 244 (Aeronautics), and Ships and Boats is class 114 (Ships).
The full list of categories may be found at http://www.nber.org/patents/list_of_classes.txt
Patents from other categories were counted as "Other" (i.e. non-durables). There is also

an issue with the 15% of patent citations where the industry of origin of the cited patent was
not available (i.e. the cited patent was older than 1963). When the industry of a citation
was not known, we assumed that the industry distribution of citations was the same as for
citations with a reported industry (which make up 85% of the database). Excluding these
patents, or counting them as "Other", did not affect results. Assuming no spillovers between
capital and "Other" also had little impact on the matrix for capital.

A.2 Capital shares

The NSF does not report capital expenditures related to R&D, rather they report a value of
depreciation costs. Using a perpetual inventory method and the physical depreciation rates
in the model, we derive the capital stocks implied by the depreciation costs and use them to
impute the values of ηi reported in Table 2. This requires a value of the depreciation rate
for capital δ: we use a value of 0.056, which we calibrate as in Greenwood et al (1997). We
use the 2003 edition of the Industrial Research and Development Survey.
Values of αi come from the Bureau of Economic Analysis Industry GDP tables. Not all

industries were specifically listed as the industry classification of the BEA is coarser than
ours. Thus, for example, the BEA entry for "Machinery" included both our "Machinery"
and our "Mining and oilfield Machinery". In this case we used the same value for both sub
industries. We used tables for 1987-1997 as earlier years were even more aggregated. We
followed the same procedure for ηi.

A.3 Research intensity

Research intensity numbers from Compustat include labor and materials costs but not cap-
ital. In the model we have removed intermediates, and we also include capital. To make the
numbers comparable, first, we remove materials using the materials share of R&D in NSF
data (which is small and averages around a fifth of labor spending). Then, to impute capi-
tal expenditures related to research, we use the values of ηi reported earlier. Finally, formal
R&D spending does not necessarily reflect all the costs of conducting R&D. For example, the
Bureau of Labor Statistics Occupational Employment Statistics 2007 report that, for firms
in NAICS 541700 (Scientific Research and Development Services) scientists and engineers
make up about 40 percent of the wage bill. Assuming that the activities of pure research
firms are broadly similar to those at research units within firms that do not outsource their
R&D, this suggests multiplying the Compustat R&D numbers by a factor of 2.5. The effect
of the above adjustments was to increase the values of RNDSales somewhat above the raw

25



numbers in Compustat, but the results that follow were qualitatively unchanged by using
the "raw" numbers from Compustat instead.

A.4 Markups

Markups are from Oliveira, Scarpetta and Pilat (1996). Where industry values were not
available for the US, we took them from Canada (or in the case of Aircraft from Italy23).
These are markups over average cost. In the model calibrating μi requires a measure of the
markup over production cost — which could be significantly larger than the markup over total
cost in very research-intensive industries. Let M be the markup in the model, so M = 1

μ
.

N is the measured markup, which is the markup over average cost. Suppose P is sales, R
is research cost and C is production cost. Then, the measured markup N = P−R−C

R+C
. Let

r equal R&D intensity as measured in the data (relative to sales), so that R = rP . Then,
it can be shown that M = r(N+1)+N

1+r(N+1)
, so the measured markups can be derived from those

reported in the data using R&D intensity numbers.

B Derivations and Proofs

B.1 Firm’s maximization

Taking the demand function piht (.) and input prices {wt, Rt} as given, the firm chooses
{Niht,Kiht, Qiht, Liht}t=0,.. to maximize (4) subject to (1)-(3). Optimal conditions imply:

wt = piht
∂Yiht
∂Niht

µ
1 +

Yiht
piht

∂piht
∂Yiht

¶
; Rt = piht

∂Yiht
∂Kiht

µ
1 +

Yiht
piht

∂piht
∂Yiht

¶
. (37)

Using (3), relative prices are,

piht
pjht

=

³
1 +

Yjht
pjht

∂pjht
∂Yjht

´
(1− αj)Tjhtk

αj
jht³

1 + Yiht
piht

∂piht
∂Yiht

´
(1− αi)Tihtk

αi
iht

. (38)

All firms take {wt, Rt} as given, so marginal rate of substitution between capital and labor
are equal across activities, firms and sectors: ∂Yiht/∂Niht

∂Yiht/∂Kiht
= wt

Rt
= ∂Fiht/∂Liht

∂Fiht/∂Qiht
. Using (37), the

capital-labor ratios in equations (5)-(7) follows from (2)&(3) . Let kiht ≡ Kiht

Niht
, (5)-(7) imply:

kiht = kit, kjt =
αj

1− αj

1− αi

αi
kit;

Qiht

Liht
=

ηi
1− ηi

1− αi

αi
kit. (39)

So (17) follows from focusing on a rank-preserving equilibrium where γiht = γit and assuming
price elasticities of demand are constants and sector-specific.
R&D Intensity: The firm’s optimal allocation of capital across activities implies (11)

and its optimal condition for Tiht+1 implies (12). Using (11),

23Aircraft values were also available for France but French markups appeared systematically larger.
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1
χiht+1

λt+1
pct+1

∂Πiht+1
∂Tiht+1

= − ∂Πiht+1/∂Tiht+1
∂Πiht+1/∂Qiht+1

∂Fiht+1
∂Qiht+1

. Together with (2)-(4),

λt+1
pct+1

∂Πiht+1
∂Tiht+1

χiht+1
=

³
1 + Yiht

piht

∂piht
∂Yiht

´
piht+1

Yiht+1
Tiht+1³

1 + Yiht
piht

∂piht
∂Yiht

´
αipiht+1Yiht+1

Kiht+1

ηiψiFiht+1

Qiht+1

=
Kiht+1

Tiht+1αi

ηiψiFiht+1

Qiht+1
=
1− ηi
1− αi

Niht+1

Liht+1
ψi

£
γiht+1 − 1

¤
.

where the last equality follows from (1) & (39). Rearrange (12) as:

χiht
χiht+1

=

λt+1
pct+1

∂Πiht+1

∂Tiht+1

χiht+1
+

∂Fiht+1

∂Tiht+1
+ 1

=
1− ηi
1− αi

Niht+1

Liht+1

£
ψiγiht+1 − 1

¤
+ κi

£
γit+1 − 1

¤
+ 1,

where the equality follows from (1), finally,

niht+1
liht+1

=

µ
1− αi

1− ηi

¶
1

ψi

" χiht
χiht+1

− 1
γiht+1 − 1

− κi

#
, (40)

where niht ≡ Niht/Nt and liht ≡ Liht/Nt. Using (37),

wtLiht +RtQiht =
³
piht + Yiht

∂piht
∂Yiht

´
Tihtk

αi
iht [(1− αi)Liht + αiQiht] .

Use (39) : wtLiht +RtQiht =

µ
1 +

Yiht
piht

∂piht
∂Yiht

¶
1− αi

1− ηi
pihtYiht

Liht

Niht
. (41)

Similarly : wtNiht +RtKiht =

µ
1 +

Yiht
piht

∂piht
∂Yiht

¶
pihtYiht.

So :
wtNiht +RtKiht

wtLiht +RtQiht
=

µ
1− ηi
1− αi

¶
Niht

Liht
=
1

ψi

Ã χiht
χiht+1

− 1
γiht+1 − 1

− κi

!
,

where the last equality follows from (40). Substituting into the definition ofRNDiht to obtain

(13). To derive χiht/χiht+1, use (2) & (39):
∂Fiht+1/∂Qiht+1

∂Fiht/∂Qiht
= γκiihtγ

σi
i gkt

ηiψi−1
³
liht+1
liht

´ψi−1
.

Use (11)&(37) :
χiht
χiht+1

=

µ
λtpiht/pct

λt+1piht+1/pct+1

¶
γκi−1iht γσiit gkt

ηiψi−αi
µ
gN

liht+1
liht

¶ψi−1
. (42)

B.2 Household maximization

We first determine the consumer’s optimal spending across goods taking as given the total
per capita spending on consumption sc and investment sx. Omitting time subscripts:

max
{cih}

c s.t. sc =
Xm−1

i=1

Z 1

0

pihcihdh, and

max
{xjh}

x s.t. sx =
Xz

j=m

Z
pjhxjhdh
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where c and x are defined (21) and (24). The optimal spending across varieties of consump-
tion goods: (cih/cih0)

−1/μi = pih/pih0 =⇒ cih0 = cih (pih/pih0)
μi , so

ci =

µR 1
0
c
μi−1
μi

ih0 dh0
¶ μi

μi−1

= cih
£R
(pih/pih0)

μi−1 dh0
¤ μi
μi−1 .Define pi ≡

£R
pihcihdh

¤
/ci =

hR
p
1−μi
ih dh

i1/(1−μi)
to rewrite ci = cih (pih/pi)

μi . Thus across good i, pici/ (pjcj) = ωi/ωj =⇒ pici = ωisc, to-
gether with (21),

cih = sc (pi/pih)
μi ωi/pi; pc ≡ sc/c =

Qm−1
i=1 pωii . (43)

The result follows analogously for investment,

xjh = sx (pj/pjh)
μj (ωj/pj) and xj = sx (ωj/pj) , (44)

pj ≡
R
pjhcjhdh

xj
=

∙Z
p
1−μj
jh dh

¸1/(1−μj)
; px ≡ sx/x =

Qz
j=m p

ωj
j (45)

Finally, the dynamic problem is to maximize
P∞

t=0 (βgN)
t u (ct) by choosing {ct, xt}t=0,.. s.t.

pctct + pxtxt = wt +Rtkt + πt and gNkt+1 = xt + (1− δk) kt.

The solution implies (28) and (29).

B.3 Market Equilibrium

The goods market clearing condition (26) together with the demand for goods ih in (43) and
(44) imply Yiht

piht

∂piht
∂Yiht

= 1
μi
together with (39), equations (37) and (38) become:

Rt = αipihtTihtk
αi−1
it (1− 1/μi) ; wt = (1− αi) pihtTihtk

αi
it (1− 1/μi) , (46)

piht
pjht

=

¡
1− 1/μj

¢
(1− αj)Tjhtk

αj
jt

(1− 1/μi) (1− αi)Tihtk
αi
it

. (47)

The capital market clearing condition (27) and (39) imply

kjht =

µ
αj

1− αj

¶
kt
Ψt
; Ψt =

X
i,h

µ
αi

1− αi
niht +

ηi
1− ηi

liht

¶
. (48)

In any rank-preserving equilibrium, we know (8) and (17), using (25),

pxt+1/pxt
pit+1/pit+1

=
zQ

j=m

µ
pjt+1/pjt
pit+1/pit+1

¶ωj

=
γit
γxt

gkt
αi−αx, (49)

pct+1/pct
pit+1/pit+1

=
m−1Q
j=1

µ
pjt+1/pjt
pit+1/pit+1

¶ωj

=
γit
γct

gkt
αi−αc

γxt ≡
zQ

j=m

γ
ωj
jt ; γct ≡

m−1Q
i=1

γωiit ; αc ≡
m−1P
i=1

αiωi; αx ≡
zP

j=m

αjωj (50)

So:
qt+1
qt

=
γct
γxt

gkt
αc−αx. (51)
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In any rank-preserving equilibrium, substituting (29) into (42) implies
χiht
χiht+1

= χit
χit+1

=
³

Gtpiht/pxt
piht+1/pxt+1

´
γ
ρi−1
it g

ηiψi−αi
kt

³
gN

lit+1
lit

´ψi−1
. Use (49):

χit
χit+1

=
Gt

γxt
γ
ρi
it g

ηiψi−αx
kt

µ
gN

lit+1
lit

¶ψi−1
. (52)

Symmetric Equilibrium

We now focus on the symmetric equilibrium across firms and omit index h. Using (47)&(25),
pi
px
=

zQ
j=m

³
pi
pj

´ωj
=

zQ
j=m

µ
(1−1/μj)(1−αj)Tjtk

αj
jt

(1−1/μi)(1−αi)Titk
αi
it

¶ωj

.

Use (39) :
pit
pxt

=

(1− 1/μx)Txtkαx−αiit

zQ
j=m

£
α
αj
j (1− αj)

1−αj¤ωj
(1− 1/μi)Titααx

i (1− αi)
1−αx . (53)

(1− 1/μx) ≡
zQ

j=m

¡
1− 1/μj

¢ωj , Txt ≡
zQ

j=m

T
ωj
jt .

Use (46)&(48) :
Rt

pxt
= Txt (1− 1/μx) kαx−1t Ψt

1−αx
zQ

j=m

£
α
αj
j (1− αj)

1−αj¤ωj . (54)

Market clearing for consumption goods: pitTitk
αi
it nit = ωipctct =⇒ nit =

ωipctct
pitTitk

αi
it

.

Use (48)&(53) : ni =
ct/qt
Txtk

αx
t

µ
1− 1/μi
1− 1/μx

¶
ωi (1− αi)

Ψt

zQ
j=m

£
α
αj
j (1− αj)

1−αj¤ωj ; i = 1, .m− 1 (55)

Similarly, use market clearing for investment goods, (53) and (48),

njt =
xt

Txtk
αx
t

µ
1− 1/μj
1− 1/μx

¶
ωj (1− αj)

Ψt

zQ
j=m

£
α
αj
j (1− αj)

1−αj¤ωj ; j = m, ..z. (56)

Balanced Growth Path

Proof of Proposition 1. We look for a balanced growth path (BGP) such that x, k and
c are growing at constant rates. Household’s (22) and (23) require x/k and c/ (qk) to be
constants. Define ket = ktT

−1/(1−αx)
xt . Let gx ≡ xt+1/xt for all variables x. Note when ni and

li are constants, (48) implies Ψ is constant, so (48) implies kit/kt is constant. Using (28),

1

β

µ
ct+1
ct

¶θ

=
u0 (ct)

βu0 (ct+1)
= gqtGt+1, (57)

so gc is constant if gq and G are constants. Using (54), G is constant if and only if ke is
constant, i.e. gkt = γ

1/(1−αx)
xt . It follows from (55) and (56) that both ni are constants ∀i.
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Substituting (3) into (21) and (24): xt =
zQ

j=m

µ
Tjtk

αj
jt njt

ωj

¶ωj

and ct =
m−1Q
i=1

³
Titk

αi
it njt
ωj

´ωj
. Using

(48) and (50), gx = γxg
αx
k , together with (51), gc = γcg

αc
k = gqγxg

αx
x . Given gk = γ

1/(1−αx)
x ,

both x/k and c/ (qk) are constants when gk and gq are constants. But gk is constant if γj
are constants ∀j = m, .z. Lemma (1) implies (10) holds for ∀j = m, .z, using (50),

γx =
zQ

i=m

γωii =
zQ

i=m

(gNg
ηi
k )

ωiψi
1−ρi =

zQ
i=m

³
gN
³
γ
ηi/(1−αx)
x

´´ωiψi
1−ρi , which implies (30) and γx in

Proposition 1. It follows from (51) that gq is constant if and only if γc is constant, i.e. γi are
constants ∀i = 1, ..m − 1. Given ni, gk and γi are constants, (52) and (40) imply χit+1/χit

and nit/lit are constants ∀i, so li are constants ∀i.

Corollary 1 Let y =
P pit

pct
yit. Along BGP, c/y, real interest rate and R&D spending to

GDP ratio are constants. Moreover,

gq = γcγ
αc−1
1−αx
x ; gc = γcγ

αc
1−αx
x ; γc = gΥN ; Υ ≡

m−1P
i=1

µ
ηiΦ

1− αx
+ 1

¶
ωiψi

1− ρi
. (58)

Proof. GivenG and gq are constants, it follows from (29) that real interest rate r is constant.
Using (53) and (48), GDP per head:

zP
i=1

pitYit
Nt

= pxt
zP

i=1

(1− 1/μx)Txtkαxit ni
zQ

j=m

£
α
αj
j (1− αj)

1−αj¤ωj
(1− 1/μi)ααx

i (1− αi)
1−αx

= pxtktTxtk
αx−1
t

zP
i=1

ni (1− 1/μx)
zQ

j=m

£
α
αj
j (1− αj)

1−αj¤ωj
(1− 1/μi)Ψ (1− αi)

, (59)

so y/c is constant given Txtk
αx−1
t and c/ (qk) are constants. Using (41) and (39),

zP
i=1

(Liwt +QiR) = NtRt
kt
Ψ

zP
i=1

li
1− ηi

,

Given constant Rt/pxt and (59), the R&D spending to GDP ratio is constant. For (58), γc
follows from substituting (10) and gk = gN

Φ/(1−αx) into (50). Given gk = γ
1/(1−αx)
x , gc and gq

follow from (51) and constant c/ (qk).

Proposition 3 Along the BGP, the non-negativity constraints on li and ni do not bind and

the transversality conditions for Ti and k are satisfied if g
(1+ ηiΦ

1−αx )
ψi
1−ρi

N ≥ 1, κi < 1, ∀i and
β <

©
g−1N , β̄

ª
, where β̄ ≡ (1/gN)1+(1−θ)(

αcΦ
1−αx+Υ) and Υ is defined in (58).

Proof of Proposition 3. First note that βgN < 1 is required for the household maximiza-
tion to be well-defined. The transversality conditions (TVC) are: lim

t→∞
ζtkt+1 = lim

t→∞
χitTit+1 =

0, ∀i. χit and ζt are the corresponding shadow values. Using (35),

χiTit
χit−1Tit−1

=
γx
G
gαxk gN = γxg

αx
k gNβgqg

−θ
c = βgNg

1−θ
c , (60)
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where it uses (57), gk = γ
1/(1−αx)
x and constant c/ (qk). Using (58),

lim
t→∞

χitTit+1 = χi0Ti0 lim
t→∞

µ
βg

1+(1−θ)( αcΦ
1−αx+Υ)

N

¶t

. So TVC for Ti holds if β < β̄. The shadow

price for k is the discounted marginal utility, ζt = (βgN)
t
³
pxt
pct

´
u0 (ct) = (βgN)

t qtc
−θ
t , con-

stant c
qk
implies ζtkt

ζt−1kt−1
= βgNg

1−θ
c , so TVC for k holds when TVC for Ti in (60) holds.

Finally, from (1), li > 0 ⇔ γi > 1, so (10) implies g
(1+ ηiΦ

1−αx )
ψi
1−ρi

N ≥ 1. From (60),
χit/χit+1

γi
= χitTit

χit+1Tit+1
=
¡
βgNg

1−θ
c

¢−1
> 1, for β < β̄. So from (40), a sufficient condition

for ni/li > 0 (so ni > 0) is κi < 1.
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Figure 1 — Productivity growth, average patent citations and capital shares

in research, by industry. Citations are the average backwards citations, the

number of patents cited by a patent in the given industry. Productivity is

measured using rate of decline of quality-adjusted prices relative to the

consumption and services deflator. Sources — NBER patent citation database,

Cummins and Violante (2002), Bureau of Economic Analysis, National

Science Foundation.
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Figure 2 — Cross-industry correlation between ψi and productivity

growth γi in the model, for different parameterizations. The correlation

between patent citations CITi and ρi is assumed to be one, and ρi is

distributed between the upper and lower bounds depicted in the graph.

The upper left half of the graph is blank because the upper bound is

necessarily higher than the lower bound. The same holds in Figures 2− 5.
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Figure 3 — Cross-industry correlation between R&D intensity in the

model and the data, for different parameterizations. The correlation

between patent citations CITi and ρi is assumed to be one, and ρi is

distributed between the upper and lower bounds depicted in the graph.
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Figure 4 — Total R&D intensity in the capital sector of the model economy

divided by the same statistic in the data, for different parameterizations. A

value of one indicates that R&D intensity in the model is double that in the

data. The correlation between patent citations CITi and ρi is assumed to be one,

and ρi is distributed between the upper and lower bounds depicted in the graph.
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Figure 5 — Cross-industry correlation between R&D intensity and γi in

the model, for different parameterizations. The correlation between

patent citations CITi and ρi is assumed to be one, and ρi is

distributed between the upper and lower bounds depicted in the graph.
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Variable αx gy gq γx gN
Value 0.3 1.022 1.0517−1 1.0518 1.012

Table 1 — Calibrated aggregate values (see text).

Values for ωi and αi are reported in the Appendix.

Capital good sector log γi ηi
ψi
1−ρi

CITi

Computers and office equipment 0.228 0.32 6.53 7.43
Communication equipment 0.145 0.35 3.90 5.85
Aircraft 0.148 0.46 3.28 3.64
Instruments and photocopiers 0.095 0.31 2.78 6.39
Fabricated metal products 0.049 0.26 1.62 3.62
Autos and trucks 0.060 0.20 2.28 4.32
Elec. trans. dist. and ind. app. 0.040 0.32 1.16 4.54
Other durables 0.018 0.23 0.64 4.07
Ships and boats 0.047 0.36 1.24 3.36
Electrical equipment, n.e.c. 0.028 0.22 1.02 4.75
Machinery 0.034 0.37 0.88 4.19
Mining and oilfield machinery 0.028 0.37 0.72 1.09
Furniture and fixtures 0.023 0.30 0.70 4.37
Structures 0.018 0.22 0.64 4.92

Table 2 — TFP growth rates and industry parameters. γi is based on the quality-

adjusted relative price of capital from Cummins and Violante (2002). The capital

share of R&D spending is ηi. Values of ψi/ (1− ρi) are computed using equation

(34) . CITi is the average number of backwards citations by patents in industry i.

36



Capital good sector Model Data ψi
Computers and office equipment 0.220 0.250 0.50
Communication equipment 0.131 0.205 0.30
Aircraft 0.197 0.071 0.26
Instruments and photocopiers 0.139 0.158 0.21
Fabricated metal products 0.073 0.026 0.13
Autos and trucks 0.117 0.014 0.18
Elec. trans. dist. and ind. app. 0.043 0.043 0.09
Other durables 0.016 0.024 0.05
Ships and boats 0.048 0.022 0.10
Electrical equipment, n.e.c. 0.032 0.042 0.08
Machinery 0.028 0.096 0.07
Mining and oilfield machinery 0.023 0.048 0.06
Furniture and fixtures 0.022 0.006 0.05
Structures 0.014 0.000 0.05
TOTAL 0.057 0.057 −
Table 3 — R&D intensity in the model and in the data. Values of ρi and

ψi are those that maximize the correlation between R&D in the model

and the data — specifically, ρ̄ and ρ equal 0.94. The column

"Data" represents R&D spending at the median firm in Compustat,

adjusted as described in the text. The third column represents the

values of ψi used to compute R&D intensity in the model

Table 4 — Patent citation matrix derived from the NBER patent citation database. We focus on

14 durable goods sectors to match between our patent citation data and the data we use to

calibrate the model. "Other" indicates all industries other than these 14.
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Capital good sector ωi αi 1/μi Ai

Computers and office equipment 0.049 0.24 0.55 0.16
Communication equipment 0.057 0.40 0.52 0.16
Aircraft 0.016 0.18 0.18 0.19
Instruments and photocopiers 0.042 0.35 0.20 0.17
Fabricated metal products 0.020 0.30 0.12 0.21
Autos and trucks 0.116 0.20 0.07 0.19
Elec. trans. dist. and ind. app. 0.028 0.40 0.18 0.16
Other durables 0.077 0.35 0.10 0.19
Ships and boats 0.007 0.18 0.21 0.16
Electrical equipment, n.e.c. 0.003 0.40 0.18 0.22
Machinery 0.203 0.26 0.24 0.18
Mining and oilfield machinery 0.009 0.26 0.20 0.34
Furniture and fixtures 0.028 0.26 0.06 0.13
Structures 0.346 0.32 0.17 0.12

Table A — Parameters used in calibrating industry R&D

intensity in the model economy.
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