CENTRE for ECONOMIC P E R F O R M A N C E

CEP Discussion Paper No 935

June 2009

Trading Partners and Trading Volumes: Implementing the Helpman-Melitz-Rubinstein Model Empirically
 J. M. C. Santos Silva and Silvana Tenreyro

Abstract

Helpman, Melitz, and Rubinstein (2008)-HMR-present a rich theoretical model to study the determinants of bilateral trade flows across countries. The model is then empirically implemented through a two-stage estimation procedure. This note seeks to clarify some econometric aspects of the estimation approach used by HMR and explore the consequences of possible departures from the maintained distributional assumptions.

JEL Classification codes: C13; C50; F10
Keywords: Gravity equation, Heteroskedasticity, Jensen’s inequality

This paper was produced as part of the Centre's Globalisation Programme. The Centre for Economic Performance is financed by the Economic and Social Research Council.

Acknowledgements

We are grateful to Elhanan Helpman, Marc Melitz, and Yona Rubinstein for generously sharing their data. We thank especially Marc Melitz for useful conversations. Santos Silva also gratefully acknowledges partial financial support from Fundação para a Ciência e Tecnologia (FEDER/POCI 2010).

João M. C. Santos-Silva is Professor of Economics at the University of Essex. Silvana Tenreyro is an Associate at the Centre for Economic Performance and Reader in the Economics Department, London School of Economics.

Published by
Centre for Economic Performance
London School of Economics and Political Science
Houghton Street
London WC2A 2AE
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without the prior permission in writing of the publisher nor be issued to the public or circulated in any form other than that in which it is published.

Requests for permission to reproduce any article or part of the Working Paper should be sent to the editor at the above address.
© J. C. M. Santos Silva and S. Tenreyro, submitted 2009

1. Introduction

In a highly insightful and stimulating paper, Helpman, Melitz and Rubinstein (2008), hereinafter HMR, present a theoretical framework to study bilateral trade flows across countries. The model has three appealing features that make it suitable to describe empirical patterns of bilateral trade flows. First, the model can yield asymmetric trade flows between country pairs. Second, it can generate zero trade flows between some countries, as well as zero exports from one country, say j, to a second country i, together with positive exports from country i to country j. Third, it generates a gravity equation for positive trade flows. The model has therefore the potential to explain three prevalent regularities in trade data: The asymmetry in bilateral trade flows between country pairs; the high prevalence of zeroes (in either one or both directions of bilateral trade flows); and the remarkably good fit of the gravity equation.

HMR use their conceptual framework to develop a two-stage estimation procedure that generalizes the empirical gravity equation by taking into account the extensive margin (the decision to export from j to i), and the intensive margin (the volume of exports from j to i, conditional on exporting). The first stage consists of a probit regression that models the probability that country j exports to country i. The second stage is a gravity equation estimated in logarithmic form. This two-stage procedure aims at correcting for two potential problems present in estimations of the gravity equation: The first is a standard selection bias resulting from the need to drop the observations with zero trade when estimating logged gravity models. The second is a bias due to the potential unobserved firm level heterogeneity resulting from an omitted variable that measures the impact of the number of exporting firms (the extensive margin).

Though HMR's model makes a significant step towards a better understanding of the determinants of bilateral trade flows, the proposed two-stage non-linear least squares
estimation procedure has some limitations. In this paper, we seek to clarify and make progress on the two following issues.

First, the approach used by HMR to deal with the selectivity bias is only approximately correct and, consequently, the proposed estimator is not generally consistent for the parameters of interest. Although we argue that the approximation proposed by HMR is likely to be reasonably accurate in many applications, we present an alternative procedure to deal with the selectivity bias which, under the assumptions maintained by HMR, leads to a consistent estimator.

Second, HMR obtain their model under very strong distributional assumptions. Although the authors explore the consequences of relaxing some of them, all the results presented in their paper depend critically on the untested assumption that all random components of the model are homoskedastic. We explore the consequences of possible departures from this assumption and provide empirical evidence on its importance. We conclude that, given the available econometric technology, the presence of heteroskedasticity in trade data precludes the estimation of models that purport to separately identify the effects of the covariates in the intensive and extensive margins.

The remainder of the paper is organized as follows. The next section reconsiders the HMR model, focusing particularly on the sample-selection correction and on the distributional assumptions. Section 3 reappraises the empirical study presented in HMR and, finally, Section 4 concludes the paper.

2. The HMR model

HMR specify a trade equation which can be written as (see equations (6) and (8) in HMR):

$$
M_{i j}=B_{0} \Lambda_{j} X_{i} \tau_{i j}^{1-\varepsilon} \max \left\{\left(\frac{a_{i j}}{a_{L}}\right)^{k-\varepsilon+1}-1,0\right\},
$$

where Λ_{j} denotes a fixed effect for exporter j, X_{i} is a fixed effect for importer $i, a_{i j}$ is a measure of the productivity of the firms exporting from j to i, a_{L} is the lower bound
for $a_{i j}$, and k and ε are parameters. Furthermore, the authors assume that

$$
\tau_{i j}^{\varepsilon-1}=D_{i j}^{\gamma} \exp \left(-u_{i j}\right)
$$

where γ is a parameter, $D_{i j}$ is the distance (and other factors creating trade resistance) between countries i and j, and $u_{i j} \sim \mathcal{N}\left(0, \sigma_{u}^{2}\right)$. Therefore,

$$
\begin{equation*}
M_{i j}=B_{0} \Lambda_{j} X_{i} D_{i j}^{-\gamma} \max \left\{\left(\frac{a_{i j}}{a_{L}}\right)^{k-\varepsilon+1}-1,0\right\} \exp \left(u_{i j}\right) \tag{1}
\end{equation*}
$$

Direct estimation of this equation would require information about $a_{i j}$ and a_{L}, which is typically not available. To overcome this problem, HMR define the latent variable (see equation (10) in HMR)

$$
Z_{i j}=\Gamma_{0} \Xi_{i} \Upsilon_{j} D_{i j}^{-\gamma} \Psi_{i j}^{-\kappa} \exp \left(v_{i j}+u_{i j}\right)=\left(\frac{a_{i j}}{a_{L}}\right)^{\varepsilon-1}
$$

where κ is a parameter, Υ_{j} denotes a fixed effect for exporter j, Ξ_{i} is a fixed effect for importer $i, \Psi_{i j}$ denotes additional country-pair specific fixed trade costs, and $v_{i j} \sim$ $\mathcal{N}\left(0, \sigma_{v}^{2}\right)$. Furthermore, HMR assume that u_{i} and v_{i} are uncorrelated.

The new variable $Z_{i j}$ is not observed. However, positive trade is observed when $Z_{i j}>1$, which leads HMR to propose the following two-step estimation strategy.

Let $T_{i j}$ be a binary indicator defined as $T_{i j}=1\left[M_{i j}>0\right]$. Then, defining $z_{i j}=$ $\ln \left(Z_{i j}\right), \gamma_{0}=\ln \left(\Gamma_{0}\right), \xi_{i}=\ln \left(\Xi_{i}\right), y_{j}=\ln \left(\Upsilon_{j}\right), d_{i j}=\ln \left(D_{i j}\right)$ and $\psi_{i j}=\ln \left(\Psi_{i j}\right)$, we have

$$
\begin{aligned}
\operatorname{Pr}\left(T_{i j}=1\right) & =\operatorname{Pr}\left(z_{i j}>0\right) \\
& =\operatorname{Pr}\left(\gamma_{0}+\xi_{i}+y_{j}-\gamma d_{i j}-\kappa \psi_{i j}>-\left(v_{i j}+u_{i j}\right)\right) .
\end{aligned}
$$

Under the maintained assumptions of normality and homoskedasticity, the unknown parameters can be consistently estimated up to scale using a probit. That is, under these assumptions, it is possible to consistently estimate

$$
Z_{i j}^{*}=\left(\Gamma_{0} \Xi_{i} \Upsilon_{j} D_{i j}^{-\gamma} \Psi_{i j}^{-\kappa}\right)^{\frac{1}{\sigma_{u+v}}},
$$

where σ_{u+v} denotes the standard deviation of $\left(v_{i j}+u_{i j}\right)$. Using this result, it is possible to rewrite (1) as

$$
\begin{equation*}
M_{i j}=T_{i j} B_{0} \Lambda_{j} X_{i} D_{i j}^{-\gamma}\left\{\left[Z_{i j}^{*} \exp \left(\varsigma_{i j}\right)\right]^{\delta}-1\right\} \exp \left(u_{i j}\right) \tag{2}
\end{equation*}
$$

where $\varsigma_{i j}=\frac{v_{i j}+u_{i j}}{\sigma_{u+v}}$ and $\delta=\sigma_{u+v}(k-\varepsilon+1) /(\varepsilon-1)$.
The second step in the HMR procedure is the estimation of the trade equation for the positive observations of $M_{i j}$. To do this, the authors take logs of both sides of (2), leading to

$$
\begin{equation*}
m_{i j}=\beta_{0}+\lambda_{j}+\chi_{i}-\gamma d_{i j}+\ln \left\{\exp \left[\delta\left(z_{i j}^{*}+\varsigma_{i j}\right)\right]-1\right\}+u_{i j}, \tag{3}
\end{equation*}
$$

where, as usual, lower-case letters represent the log of the quantity corresponding to the same upper case letter.

2.1. The selectivity correction

Estimation of (3) has to be performed using only observations with positive values of $M_{i j}$, which originates a sample-selection issue. However, this is not a standard selectivity problem because the equation of interest has two random components, and one of them enters the equation within a non-linear function.

To account for the fact that $E\left[u_{i j} \mid M_{i j}>0\right] \neq 0$, HMR include in the regression equation the Mills ratio from the first step, which (under normality and homoskedasticity) is proportional to $E\left[u_{i j} \mid M_{i j}>0\right]$. This is the correct procedure to account for selectivity in an additive error (see, e.g., Heckman, 1979).

Dealing with the effect of the sample-selection on $\varsigma_{i j}$ is less standard. HMR approach this problem in a way that is akin to the ad-hoc method used by Greene (1994) to address the sample selection problem in count data models. In particular, HMR suggest replacing $\varsigma_{i j}$ with its expectation conditional on $M_{i j}>0$, which is again the Mills ratio from the first step. That is, denoting the Mills ratio by $\eta_{i j}=\phi\left(z_{i j}^{*}\right) / \Phi\left(z_{i j}^{*}\right)$, the second step of HMR's procedure is the estimation of (see equation (14) in HMR)

$$
\begin{equation*}
m_{i j}=\beta_{0}+\lambda_{j}+\chi_{i}-\gamma d_{i j}+\ln \left\{\exp \left[\delta\left(z_{i j}^{*}+\eta_{i j}\right)\right]-1\right\}+\beta_{u \eta} \eta_{i j}+e_{i j}, \tag{4}
\end{equation*}
$$

where $\beta_{u \eta}$ is a parameter. Of course, in practice, $z_{i j}^{*}$ and $\eta_{i j}$ have to be replaced by $\hat{z}_{i j}^{*}$ and $\hat{\eta}_{i j}$, their estimates obtained from the first-stage probit regression.

It is easy to see that this approach to correct the effect of the sample selection on $\varsigma_{i j}$ is generally inappropriate (see, e.g., Terza, 1998). Indeed, for any non-linear
function $f(\cdot)$, Jensen's inequality implies that replacing $\varsigma_{i j}$ in $f\left(\varsigma_{i j}\right)$ by its expectation conditional on $M_{i j}>0, f\left[E\left(\varsigma_{i j} \mid M_{i j}>0\right)\right]=f\left(\eta_{i j}\right)$, does not lead to a consistent estimate of $E\left[f\left(\varsigma_{i j}\right) \mid M_{i j}>0\right]$. Therefore, $f\left(\hat{\eta}_{i j}\right)$ is not a consistent estimator of $E\left[f\left(\varsigma_{i j}\right) \mid M_{i j}>0\right]$ and, consequently, the proposed estimation method will generally be inconsistent for all the parameters of interest.

Although estimation of (4) should be viewed as being based on an approximation to the conditional expectation of $\ln \left\{\exp \left[\delta\left(z_{i j}^{*}+\eta_{i j}\right)\right]-1\right\}$, it is interesting to notice that this approximation is likely to be reasonably accurate in many practical situations. To see this, notice that

$$
\begin{equation*}
\ln \left\{\exp \left[\delta\left(z_{i j}^{*}+\varsigma_{i j}\right)\right]-1\right\}=\ln \left\{\exp \left[\delta\left(z_{i j}^{*}+\phi\left(z_{i j}^{*}\right) / \Phi\left(z_{i j}^{*}\right)+\omega_{i j}\right)\right]-1\right\}, \tag{5}
\end{equation*}
$$

where $\omega_{i j}$ is just the deviation of $\varsigma_{i j}$ form its conditional mean $\eta_{i j}=\phi\left(z_{i j}^{*}\right) / \Phi\left(z_{i j}^{*}\right)$. The approximation used by HMR consists in ignoring $\omega_{i j}$, which would be innocuous if the function was linear in this random term because, in that case, $\omega_{i j}$ would just be added to the error of the equation. However, it is clear that for a wide range of values of $z_{i j}^{*}$ and reasonable values of $\delta,(5)$ is approximately linear in $\omega_{i j}$. Therefore, in practice, the approximation used by HMR is likely to be reasonable, especially because positive values of $M_{i j}$ tend to be associated with large values of $z_{i j}^{*}$, which are the ones for which the approximation is better.

However accurate, under the assumptions maintained by HMR, this approximation is not needed. Indeed, and for $M_{i j}>0$, it is possible to write

$$
\begin{aligned}
M_{i j} & =B_{0} \Lambda_{j} X_{i} D_{i j}^{-\gamma}\left\{\left[Z_{i j}^{* \delta} \exp \left(\delta \varsigma_{i j}\right)\right]-1\right\} \exp \left(u_{i j}\right) \\
& =B_{0} \Lambda_{j} X_{i} D_{i j}^{-\gamma} Z_{i j}^{* \delta} \exp \left(\nu_{i j}\right)-B_{0} \Lambda_{j} X_{i} D_{i j}^{-\gamma} \exp \left(u_{i j}\right),
\end{aligned}
$$

where $\nu_{i j}=\delta \varsigma_{i j}+u_{i j}=\mathcal{N}\left(0, \delta^{2}+\sigma_{u}^{2}+\frac{2 \delta \sigma_{u}^{2}}{\sigma_{u+v}}\right)$. Then, using the results in van de Ven and van Praag (1981) on the moments of log-normal random variables under incidental truncation,

$$
\begin{aligned}
E\left[M_{i j} \mid \Lambda_{j}, X_{i}, D_{i j}, Z_{i j}^{*}, T_{i j}=1\right]=B_{0} \Lambda_{j} X_{i} D_{i j}^{-\gamma} & {\left[Z_{i j}^{* \delta} \exp \left(\frac{\sigma_{\nu}^{2}}{2}\right) \Phi\left(z_{i j}^{*}+\rho_{\varsigma \nu} \sigma_{\nu}\right)\right.} \\
& \left.-\exp \left(\frac{\sigma_{u}^{2}}{2}\right) \Phi\left(z_{i j}^{*}+\rho_{\varsigma u} \sigma_{u}\right)\right] / \Phi\left(z_{i j}^{*}\right),
\end{aligned}
$$

where $\rho_{\varsigma \nu}$ and $\rho_{\varsigma u}$ denote the correlations between $\varsigma_{i j}$ and $\nu_{i j}$ and $u_{i j}$, respectively.
Noting that $\sigma_{\nu}^{2}=\delta^{2}+\sigma_{u}^{2}+\frac{2 \delta \sigma_{u}^{2}}{\sigma_{u+v}}, \rho_{\varsigma \nu}=\left(\delta+\frac{\sigma_{u}^{2}}{\sigma_{u+v}}\right) / \sigma_{\nu}$, and $\rho_{\varsigma u}=\sigma_{u}^{2} /\left(\sigma_{u} \sigma_{u+v}\right)$, it is finally possible to obtain

$$
\begin{equation*}
E\left[M_{i j} \mid \Lambda_{j}, X_{i}, D_{i j}, Z_{i j}^{*}, T_{i j}=1\right]=B_{0} \Lambda_{j} X_{i} D_{i j}^{-\gamma} S\left(z_{i j}^{*}, \delta, r\right) \exp \left(\sigma_{u}^{2} / 2\right), \tag{6}
\end{equation*}
$$

where $S\left(z_{i j}^{*}, \delta, r\right)=\left[\exp \left(\delta^{2} / 2+\delta r+\delta z_{i j}^{*}\right) \Phi\left(z_{i j}^{*}+\delta+r\right)-\Phi\left(z_{i j}^{*}+r\right)\right] / \Phi\left(z_{i j}^{*}\right)$ and $r=\sigma_{u}^{2} / \sqrt{\sigma_{u}^{2}+\sigma_{v}^{2}}$. Naturally, B_{0} and σ_{u}^{2} are not separately identified. ${ }^{1}$

Even if the maintained distributional assumptions are valid, the (multiplicative) errors of the model defined by (6) will have conditional expectation equal to one, but are not independent of the regressors because of the selectivity correction. Therefore, (6) should be estimated as a multiplicative model, for example using a pseudo-maximum likelihood estimator, as suggested by Santos Silva and Tenreyro (2006). ${ }^{2}$

2.2 Distributional assumptions

The main results in HMR are obtained under the assumption that $v_{i j}$ and $u_{i j}$ are independent, homoskedastic and jointly normal. To check the robustness of the results obtained with their two-stages procedure, HMR also estimate less parametric specifications, but all the results presented by HMR are based on the assumption that $v_{i j}$ and $u_{i j}$ are homoskedastic. Heteroskedasticity is often viewed as a minor problem in that, under very general conditions, it does not affect the consistency of the OLS estimator. However, in the model proposed by HMR the situation is very different.

[^0]Because, as pointed out by Santos Silva and Tenreyro (2006), heteroskedasticity is pervasive in trade data, it is important to explore the consequences of departures from this assumption.

A first consequence of the presence of heteroskedasticity is that the selectivity corrections used in (4) and (6) are no longer valid. Estimation of linear sample selection models which are robust to non-normality and heteroskedasticity has been studied by Chen and Khan (2003). ${ }^{3}$ However, due to the large number of regressors typically used, implementation of these methods with trade data is far from trivial. In the case of the HMR model, these difficulties are compounded by the fact that $\varsigma_{i j}$ enters the model non-linearly. Therefore, an estimator of the HMR model that is robust to incidental distributional assumptions is not currently available, and may even not be possible to obtain at all.

Another, perhaps more important, consequence of heteroskedasticity in $v_{i j}$ and $u_{i j}$ is that the functional form of (2) directly depends on the homoskedasticity assumption. Indeed, δ is a function of σ_{v} and σ_{u} and it is clear that if either of the random components of the model is heteroskedastic, δ will be a function of the regressors, which will then enter the model in a much more complex form. This sensitivity to the homoskedasticity assumption, which is independent of the particular estimation method used, has the potential to introduce severe misspecification in both (4) and (6), making consistent estimation of the parameters of interest not generally possible. Of course, one may be tempted to tackle this problem by specifying σ_{v} and σ_{u} as functions of the regressors, but this approach is foiled by the fact that economic theory provides no guidance on the possible heteroskedasticity patterns.

Given the potential impact of heteroskedasticity on the estimation results, it is important to check for its presence and to gauge its potential impact. Since δ is proportional to the standard deviation of the error in the first-stage, the assumption that δ is independent of the regressors can be tested by testing for heteroskedasticity in the probit.

[^1]As described in Godfrey (1988), tests for heteroskedasticity in the probit model can be performed as simple tests for omitted variables of the form $\hat{z}_{i j}^{*} w_{i j}$, where $w_{i j}$ denotes the set of variables suspected of causing heteroskedasticity. Therefore, by analogy with the popular two-degrees-of-freedom special case of White's test for heteroskedasticity (see Wooldridge, 2002, p. 127), one can test for heteroskedasticity in the first-stage probit by checking for the joint significance of the additional regressors $\hat{z}_{i j}^{* 2}$ and $\hat{z}_{i j}^{* 3}$.

In the specific case of the probit, this particular heteroskedasticity test, which is analogous to a two-degrees-of-freedom RESET test (Ramsey, 1969), is also particularly interesting in that it can be interpreted as a normality test (see Newey, 1985). Therefore, this simple test provides a direct check for the validity of the main distributional assumptions required for consistent estimation of the model of interest.

Because heteroskedasticity also impacts on the functional form of (4) and (6), it is important to check whether the specification of these models is reasonably adequate. Although it is certainly possible to develop more specific tests, a simple way to gauge the adequacy of these models is the following.

In the spirit of Cosslett (1991), HMR partially relax the distributional assumptions used to obtain (4) by estimating models of the form

$$
\begin{equation*}
m_{i j}=\lambda_{j}+\chi_{i}-\gamma d_{i j}+\sum_{s=1}^{Q} \alpha_{s} 1\left[q_{s-1}<z_{i j}^{*}<q_{s}\right]+e_{i j}^{*}, \tag{7}
\end{equation*}
$$

where $\alpha_{1}, \ldots, \alpha_{Q}$ are parameters and $q_{0}=-\infty$ and $q_{Q}=\infty$. A similar generalization of (6) is possible, leading to

$$
\begin{equation*}
M_{i j}=\exp \left(\lambda_{j}+\chi_{i}-\gamma d_{i j}+\sum_{s=1}^{Q} \alpha_{s} 1\left[q_{s-1}<z_{i j}^{*}<q_{s}\right]\right)+\zeta_{i j} . \tag{8}
\end{equation*}
$$

Although these models are more flexible than their fully parametric counterparts, they still assume that $\left\{\left[Z_{i j}^{*} \exp \left(\varsigma_{i j}\right)\right]^{\delta}-1\right\}$ depends on the regressors only through $z_{i j}^{*}$; that is, both (7) and (8) assume that δ is constant. To check for departures from this assumption one can check for the significance of interactions between the indicator variables and functions of the other regressors.

A simple way of doing this is again to perform a RESET-type test for the significance of additional variables constructed as powers of the estimated linear indexes $\lambda_{j}+$
$\chi_{i}-\gamma d_{i j}+\sum_{s=1}^{Q} \alpha_{s} 1\left[q_{s-1}<\rho_{i j}<q_{s}\right]$. Although in this case there is no particularly competing reason to check for the significance of squares and cubes of the estimated indexes, by analogy with what is done for the probit, we will also use two-degrees-offreedom RESET tests to check the validity of (7) and (8).

3. A reappraisal of the HMR study

In this section we reconsider the study presented in HMR, comparing and contrasting the results obtained with different estimators of their theoretical model for bilateral trade flows and exploring the consequences of possible violations of the homoskedasticity assumption. In order to maintain comparability with the results in HMR, we use exactly the same data and the same set of regressors used in the original study, and do not attempt to improve upon the specification of the factors creating trade resistance. ${ }^{4}$ HMR provide details on the data and its sources.

3.1 Baseline results

The baseline results presented by HMR use data on trade flows in 1986, for a subsample of countries for which information on regulation costs of firm entry is available. These cost variables provide the exclusion restrictions used to help in the identification of the models that allow the regressors to have different effects on the extensive and intensive margins.

Table 1 displays some of the results presented in HMR, together with new results obtained using different estimators. The estimators considered are as follows: Probit is the first stage estimator used for all the estimators that distinguish between the effects on the two margins, the results are identical to those reported in HMR; OLS corresponds to the benchmark results reported in HMR; NLS is the HMR second stage non-linear least squares estimator based on (4); ${ }^{5}$ A-Bins is the more general

[^2]semi-parametric estimator used by HMR and is defined by (7); GPML corresponds to the estimation of (6), in the multiplicative form, using gamma-pseudo maximum likelihood; ${ }^{6}$ and, finally, M-Bins are the results of estimating (8), also in the multiplicative form using gamma-pseudo maximum likelihood.

As noted in Section 2, the NLS estimator proposed by HMR is based on a selectivity correction which is only approximately valid. Therefore, it is interesting to compare its results with those obtained using (6), which are labeled GPML in Table 1. At least for this particular example, the results in Table 1 suggest that, as argued before, the approximation implicitly used by HMR is reasonably accurate. Indeed, the estimates obtained with NLS and GPML are generally reasonably close. The major difference is, perhaps, that with GPML, FTA has a sizable and significant coefficient, which is not the case with NLS. A second difference is that GPML leads to an estimate of the distance elasticity that is about ten percent smaller that the one obtained with the NLS estimator based on the approximate selectivity correction.

It is important to notice that the results presented here under the label GPML correspond to the estimation of (6) under the assumption that the variance of the errors is quadratic in the mean, which is comparable to the assumption made when estimating models in the logged form, as is the case with NLS and A-Bins. Estimation of GPML using different methods, like the Poisson pseudo-maximum likelihood (which assumes that the variance of the errors is proportional to the mean), leads to substantially different results. ${ }^{7}$ Given that both estimators are consistent under the same set of assumptions, this instability is worrisome and may indicate misspecification of the model. This point is pursued next.

As it was pointed out in Section 2, all the estimators based on the HMR model for trade flows assume that both $u_{i j}$ and $v_{i j}$ are homoskedastic. This assumption is quite 2008, p. 462, fn. 31). In the data set used by HMR, $\hat{z}_{i j}^{*}$ reaches values above 11. Baranga (2008) independently noted the importance of this censoring.
${ }^{6}$ The objective function that is minimized in the GPML estimation has the form $\left(-M_{i j} / \mu_{i j}\right)-$ $\ln \left(\mu_{i j}\right)$, where $\mu_{i j}$ denotes the conditional mean specified by the model.
${ }^{7}$ These results are not reported here in the interest of brevity, but are available on request.

Table 1: Baseline results (Costs excluded)

	Probit	OLS	NLS	A-Bins	GPML	M-Bins
Variables	$T_{i j}$	$m_{i j}$				
Log distance	-0.584	-1.167	-0.990	-0.789	-0.888	-0.786
	(0.043)	(0.040)	(0.039)	(0.088)	(0.037)	(0.076)
Land border	-0.230	0.627	0.723	0.863	0.837	0.896
	(0.183)	(0.165)	(0.161)	(0.170)	(0.137)	(0.140)
Island	-0.454	-0.553	-0.402	-0.197	-0.513	-0.402
	(0.200)	(0.269)	(0.259)	(0.258)	(0.215)	(0.215)
Landlock	-0.145	-0.432	-0.393	-0.353	-0.282	-0.228
	(0.135)	(0.189)	(0.185)	(0.187)	(0.170)	(0.167)
Legal	0.135	0.535	0.482	0.418	0.501	0.447
	(0.052)	(0.064)	(0.063)	(0.065)	(0.050)	(0.052)
Language	0.287	0.147	0.068	-0.036	0.011	-0.047
	(0.061)	(0.075)	(0.074)	(0.083)	(0.050)	(0.071)
Colonial ties	-0.026	0.909	0.892	0.838	0.835	0.846
	(0.353)	(0.158)	(0.150)	(0.153)	(0.150)	(0.155)
Currency union	0.743	1.534	1.308	1.107	1.347	1.313
	(0.182)	(0.334)	(0.324)	(0.346)	(0.303)	(0.309)
FTA	2.681	0.976	0.385	0.065	0.599	0.363
	(0.524)	(0.247)	(0.224)	(0.348)	(0.205)	(0.306)
Religion	0.385	0.281	0.191	0.100	-0.016	-0.073
	(0.093)	(0.120)	(0.118)	(0.128)	(0.096)	(0.102)
R. costs	-0.291	-0.146	-	-	-	-
	(0.095)	(0.100)	-	-	-	-
R. costs (D\&P)	-0.163	-0.216	-	-	-	-
	(0.080)	(0.124)	-	-	-	-
RESET (p-value)	0.000	0.000	-	0.000	-	0.000
Sample size	12198	6602	6602	6602	6602	6602

important in that, if it does not hold, at least δ will be a function of the regressors and therefore all the models considered (and whose results are displayed in Table 1) willmisrepresent the effects of the covariates, leading to inconsistent estimators. Therefore, it is important to use appropriate tests to check for the correct specification of the functional form of all the models whose results are reported in Table 1.

The penultimate row of Table 1 presents the p-values for the two-degrees-of-freedom RESET-type tests described in Section 2 for all the models based on a linear index. ${ }^{8}$ The p-value of the RESET test for the probit model reveals clear signs of misspecification, casting doubts over the validity of the results obtained with the two-stage estimators. These doubts are confirmed by the results of the specification test for the A-Bins and MBins models. ${ }^{9}$ Therefore, there are reasons to suspect that all the models considered are misspecified, which precludes any meaningful interpretation of the displayed estimates.

To give some idea of the magnitude and relevance of this misspecification, we note that when the powers of the linear index are added to the specification of A-Bins and M-Bins, the coefficient on log distance changes by a factor of 2 . Of course, no particular significance can be attributed to the coefficient on log distance in these auxiliary regressions, but these results illustrate the sensitivity of the results to the particular functional form that is assumed.

3.2. Alternative excluded variables

In order to check the robustness of their findings, HMR also present estimation results when the variable Religion provides the exclusion restriction used to help in the identification of the two-stage estimators. This also permits the use of a much larger sample

[^3]as now it is possible to use the observations for which information on costs are not available.

Table 2 reports the estimation results using the larger sample and using Religion as the excluded variable. The estimators whose results are displayed in Table 2 are the same as in Table 1.

As for the baseline case, we again find that the results for the NLS and GPML estimators are reasonably close, which supports our conjecture that the approximation used by HMR is reasonably accurate in typical applications. Notwithstanding, we notice again some sizable differences for the effects of log distance and FTA.

More importantly, we again find that all models badly fail the RESET test, which again casts serious doubts on the possibility of obtaining any meaningful insight from the reported results.

Overall, as in HMR, we find that the results with this alternative exclusion restriction and larger sample fully confirm the baseline estimates. Unfortunately, in both cases, the results are not particularly encouraging about the possibility of consistently estimating the parameters in the model for trade flows proposed by HMR.

4. Concluding remarks

In this note we discuss some econometric aspects of the implementation of the model for bilateral trade flows between countries proposed by Helpman, Melitz and Rubinstein (2008).

In particular, we argue that while the selectivity correction used by HMR is only approximately valid, the approximation is likely to be reasonably accurate in many empirical studies. The results reported in Section 3 support this conjecture in that the estimates obtained with the two-step method proposed by HMR are generally close to the ones obtained with the appropriate selectivity correction developed in Section 2.

More importantly, he have emphasized that consistent estimation of the parameters in the model proposed by HMR is only possible under the assumption that all random components of the model are homoskedastic. This dependence on the homoskedasticity

Table 2: Alternative excluded variables (Religion excluded)

	Probit	OLS	NLS	A-Bins	GPML	M-Bins
Variables	$T_{i j}$	$m_{i j}$				
Log distance	-0.660	-1.176	-1.026	-0.623	-0.919	-0.642
	(0.029)	(0.031)	(0.030)	(0.076)	(0.027)	(0.063)
Land border	-0.382	0.458	0.580	0.924	0.698	0.879
	(0.129)	(0.147)	(0.142)	(0.150)	(0.124)	(0.122)
Island	0.345	-0.391	-0.318	-0.074	-0.115	0.068
	(0.082)	(0.121)	(0.117)	(0.121)	(0.101)	(0.104)
Landlock	0.181	-0.561	-0.522	-0.439	-0.524	-0.449
	(0.114)	(0.188)	(0.183)	(0.186)	(0.177)	(0.175)
Legal	0.096	0.486	0.445	0.345	0.452	0.388
	(0.034)	(0.050)	(0.049)	(0.050)	(0.040)	(0.041)
Language	0.284	0.176	0.132	-0.062	0.105	-0.038
	(0.042)	(0.061)	(0.059)	(0.068)	(0.053)	(0.059)
Colonial ties	0.325	1.299	1.192	0.929	1.240	1.042
	(0.305)	(0.120)	(0.117)	(0.119)	(0.111)	(0.111)
Currency union	0.492	1.364	1.250	0.960	1.349	1.167
	(0.143)	(0.255)	(0.253)	(0.270)	(0.252)	(0.254)
FTA	1.985	0.759	0.398	-0.091	0.844	0.327
	(0.315)	(0.222)	(0.206)	(0.210)	(0.172)	(0.163)
Religion	0.261	0.102	-	-	-	-
	(0.063)	(0.096)	-	-	-	-
RESET (p-value)	0.000	0.000	-	0.000	-	0.000
Sample size	24649	24649	11146	11146	11146	11146

assumption is the most important drawback of the HMR model, and contrasts with more standard models for trade (e.g., Anderson and van Wincoop, 2003), which can be made robust to the presence of heteroskedasticity.

Considering its importance, we discuss possible tests to check for departures from this assumption and use them to assess the specification of the models estimated by HMR. The results reported in Section 3 provide overwhelming evidence that, no matter how we account for selectivity, all estimators based on the HMR model for bilateral trade flows are misspecified. This, of course, casts doubts on the validity of any inference drawn upon these results.

In conclusion, it seems that the assumptions needed for the estimation of the HMR model for trade flows are too strong to make it practical. In particular, the presence of heteroskedasticity in trade data seems to preclude the estimation of any model that purports to identify the effects of the covariates in the intensive and extensive margins, at least with the current econometric technology.

References

Anderson, J. and E. van Wincoop (2003), "Gravity with Gravitas: A Solution to the Border Puzzle," American Economic Review, 93, 170-192.

Baranga, T. (2008). "How Empirically Important are Zero Trade Flows and Firm-level Heterogeneity when Estimating Gravity Equations?" mimeo, Harvard University: http://www.people.fas.harvard.edu/~baranga/HMRcrit040908.pdf.

Chen, S. and Khan, S. (2003), "Root-n consistent estimation of heteroskedastic sample selection models," Econometric Theory, 19, 1040-1064.

Cosslett, S.R. (1991), "Semiparametric estimation of a regression model with sample selectivity," in Nonparametric and Semiparametric Methods in Econometrics and Statistics, ed. Barnett, W.A., Powell, J. and Tauchen, G., 175-197, Cambridge: Cambridge University Press.

Godfrey, L.G. (1988). Misspecification Tests in Econometrics. Cambridge: Cambridge University Press.

Greene, W. (1994), Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models, Working Paper No. EC-94-10, Department of Economics, Stern School of Business, New York University.

Heckman, J.J. (1979), "Sample Selection Bias as a Specification Error," Econometrica, 47, 153-161.

Helpman, E., Melitz, M. and Rubinstein, Y. (2008), "Estimating trade flows: Trading partners and trading volumes," Quarterly Journal of Economics, 123, 441-487.

Newey, W. (1985), "Maximum Likelihood Specification Testing and Conditional Moments Tests," Econometrica, 53, 1047-1070.

Ramsey, J.B. (1969), "Tests for Specification Errors in Classical Linear Least Squares Regression Analysis," Journal of the Royal Statistical Society B, 31, 350-371.

Santos Silva, J.M.C. and Tenreyro, S. (2006), "The log of gravity," The Review of Economics and Statistics, 88, 641-658.

Terza, J. (1998), "Estimating count data models with endogenous switching: Sample selection and endogenous treatment effects," Journal of Econometrics, 84, 129154.
van de Ven, W.P. and van Praag, B.M. (1981), "Risk aversion of deductibles in private health insurance: Application of an adjusted Tobit model to family health care expenditures," in Health, Economics and Health Economics, ed. van der Gaag, J. and Perlman, M., 125-148, Amsterdam: North Holland.

Wooldridge, J.M. (2002). Econometric Analysis of Cross Section and Panel Data, Cambridge, MA: MIT Press.

CENTRE FOR ECONOMIC PERFORMANCE

 Recent Discussion Papers

 Recent Discussion Papers}

934	Christian Morrisson Fabrice Murtin	The Century of Education
933	João M. C. Santos-Silva Silvana Tenreyro	Further Simulation Evidence on the Performance of the Poisson Pseudo-Maximum Likelihood Estimator
932	João M. C. Santos-Silva Silvana Tenreyro	On the Existence of the Maximum Likelihood Estimates for Poisson Regressioin
931	Richard Freeman John Van Reenen	What If Congress Doubled R\&D Spending on the Physical Sciences?
930	Hector Calvo-Pardo Caroline Freund Emanuel Ornelas	The ASEAN Free Trade Agreement: Impact on Trade Flows and External Trade Barriers
929	Dan Anderberg Arnaud Chevalier Jonathan Wadsworth	Anatomy of a Health Scare: Education, Income and the MMR Controversy in the UK
928	Christos Genakos Mario Pagliero	Risk Taking and Performance in Multistage Tournaments: Evidence from Weightlifting Competitions
927	Nick Bloom Luis Garicano Raffaella Sadun John Van Reenen	The Distinct Effects of Information Technology and Communication Technology on Firm Organization
926	Reyn van Ewijk	Long-term health effects on the next generation of Ramadan fasting during pregnancy
925	Stephen J. Redding	The Empirics of New Economic Geography
924	Rafael Gomez Alex Bryson Tobias Kretschmer Paul Willman	Employee Voice and Private Sector Workplace Outcomes in Britain, 1980-2004
923	Bianca De Paoli	Monetary Policy Under Alterative Asset Market Structures: the Case of a Small Open Economy
922	L. Rachel Ngai Silvana Tenreyro	Hot and Cold Seasons in the Housing Market
921	Kosuke Aoki Gianluca Benigno Nobuhiro Kiyotaki	Capital Flows and Asset Prices

920	Alex Bryson John Forth Patrice Laroche	Unions and Workplace Performance in Britain and France
919	David Marsden Simone Moriconi	'The Value of Rude Health': Employees’ Well Being, Absence and Workplace Performance
918	Richard Layard Guy Mayraz Stephen Nickell	Does Relative Income Matter? Are the Critics Right?
917	Ralf Martin Laure B. de Preux Ulrich J. Wagner	The Impacts of the Climate Change Levy on Business: Evidence from Microdata
916	Paul-Antoine Chevalier Rémy Lecat Nicholas Oulton	Convergence of Firm-Level Productivity, Globalisation, Information Technology and Competition: Evidence from France
915	Ghazala Azmat Nagore Iriberri	The Importance of Relative Performance Feedback Information: Evidence from a Natural Experiment using High School Students
914	L Rachel Ngai Robert M. Samaniego	Accounting for Research and Productivity Growth Across Industries
913	Francesco Caselli Tom Cunningham	Leader Behavior and the Natural Resource Curse
912	Marco Manacorda Edward Miguel Andrea Vigorito	Government Transfers and Political Support
911	Philippe Aghion John Van Reenen Luigi Zingales	Innovation and Institutional Ownership
910	Fabian Waldinger	Peer Effects in Science - Evidence from the Dismissal of Scientists in Nazi Germany
909	Tomer Blumkin Yossi Hadar Eran Yashiv	The Macroeconomic Role of Unemployment Compensation
908	Natalie Chen Dennis Novy	International Trade Integration: A Disaggregated Approach
907	Dongshu Ou	To Leave or Not to Leave? A Regression Discontinuity Analysis of the Impact of Failing the High School Exit Exam
The Centre for Economic Performance Publications Unit Tel 02079557284 Fax 02079557595 Email info@cep.lse.ac.uk Web site http://cep.lse.ac.uk		

[^0]: ${ }^{1}$ It is interesting to notice that, integrating out $T_{i j}$, it is possible to obtain

 $$
 E\left[M_{i j} \mid \Lambda_{j}, X_{i}, D_{i j}, Z_{i j}^{*}\right]=B_{0} \Lambda_{j} X_{i} D_{i j}^{-\gamma} S^{*}\left(z_{i j}^{*}, \delta, r\right) \exp \left(\sigma_{u}^{2} / 2\right),
 $$

 where $S^{*}\left(z_{i j}^{*}, \delta, r\right)=\exp \left(\delta^{2} / 2+\delta r+\delta z_{i j}^{*}\right) \Phi\left(z_{i j}^{*}+\delta+r\right)-\Phi\left(z_{i j}^{*}+r\right)$. Therefore, the parameters of interest can be estimated using either this expression or (6). Here, as in HMR, we focus on the estimation of the second stage using only the observations with positive trade.
 ${ }^{2}$ Recall that, when the errors of the model are not statistically independent of the regressors, estimation of the logged form of the model does not generally lead to consistent estimates of the parameters of interest because the mean of $m_{i j}$ depends both on the log of the mean of $M_{i j}$ and on its higher order moments. For details, see Santos Silva and Tenreyro (2006).

[^1]: ${ }^{3}$ The Chen and Khan (2003) estimator allows for the presence of unspecified heteroskedasticity, but imposes restrictions on the way higher order moments depend on the regressors.

[^2]: ${ }^{4}$ See Baranga (2008) for a detailed investigation on the quality of the data set used by HMR.
 ${ }^{5}$ The results presented here differ from the ones reported in the original paper because, unlike HMR, we do not right-censor $\hat{z}_{i j}^{*}$ at $\Phi^{-1}(0.9999999) \approx 5.2$ (see Helpman, Melitz and Rubinstein,

[^3]: ${ }^{8}$ Recall that low p-values mean rejection of the null hypothesis that the models are correctly specified.
 ${ }^{9}$ RESET-type tests can also certainly be performed for the NLS and HMR estimators, although that is non-standard because they are not based on linear indices. In any case, RESET tests for NLS and HMR would be somewhat redundant because their generalizations, A-Bins and M-Bins, are clearly rejected.

