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Abstract

The analysis of short longitudinal series of circular data may be problematic and to
some extent has not been completely developed. In this paper we present a Bayesian
analysis of a model for such data. The model is based on a radial projection onto the
circle of a particular bivariate normal distribution. Inferences about the parameters of
the model are based on samples from the corresponding joint posterior density which
are obtained using a Metropolis-within-Gibbs scheme after the introduction of suitable
latent variables. The procedure is illustrated both using a simulated data set and a real-
data set previously analyzed in the literature.
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1 Introduction

Several approaches have been proposed for analyzing longitudinal data. For a review the reader
is referred, for example, to Diggle et al. (2002), Fitzmaurice et al. (2004), Hedeker and Gibbons
(2006), and Gelman and Hill (2007). These books all discuss longitudinal models for ‘scalar’ (i.e.
linear) responses as opposed to circular. In contrast, methodological proposals to describe relation-
ships within repeated measurements of circular data are rather limited. This may be due to the
difficulties in working with probability distributions commonly associated with directional data and
to the intrinsic dependency inherent to longitudinal structures.

Circular data are a particular case of directional data. Specifically, circular data represent di-
rections in two dimensions. For a survey the reader is referred to Fisher et al. (1987), Fisher
(1993), Mardia and Jupp (2000), and Jammalamadaka and SenGupta (2001). See also Arnold
and SenGupta (2006) for an overview of the applications of circular data analysis in ecological and
environmental sciences.

From a theoretical point of view, there are three basic approaches to directional statistics, which
may be called the embedding, wrapping and intrinsic approaches; see, Mardia and Jupp (2000).
Consequently, there are several ways of generating probability distributions for circular data. One
relativaly straightforward way is to radially project on the unit circle probability distributions
originally defined on the plane. In the general case, let Y be a ¢-dimensional random vector such
that Pr(Y = 0) = 0. Then U = ||Y||"'Y is a random point on the g-dimensional unit sphere.
Its mean direction is the unit vector n = E(U)/p, where p = ||E(U)||, 0 < p < 1; here E(+)
represents the usual expectation for random vectors, and || - || represents the usual Euclidean norm.
The parameter p is called the mean resultant length and represents a measure of concentration for
directional distributions (see, for example, Mardia and Jupp, 2000, and Presnell et al., 1998).

An important instance is that in which Y has a ¢-variate Normal distribution, N,(-|p@, A), with
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mean vector g = E(Y) and precision matrix A = Var(Y) In this case U is said to have a

g-dimensional projected normal distribution, here denoted by PN(:|u, A). In the circular case,



q = 2, U is a 2-dimensional unit vector, and so it can be alternatively specified by means of a single
angle ©, say. A version of the projected normal linear model for the circular case has been analyzed
using a frequentist approach by Presnell et al. (1998). Nunez-Antonio et al. (2011) present and
discuss a Bayesian analysis of the same model. See also Nufiez-Antonio and Gutiérrez-Pena (2005).

There exists situations involving longitudinal relationships where the response variable is circular.
However, from a theoretical point of view, there seems to be a lack of models that adequately
describe longitudinal structures for circular data, and the procedures currently available to carry
out inferences about these models are rather limited. In fact, there does not seem to be a general
framework for the analysis of longitudinal directional data. Circular data have been studied using
quasi-likelihood methods, such as the generalized estimating equations (GEE) proposed by Liang
and Zeger (1986) to analyze linear data. Specifically, Arts et al. (2000) derive estimating equations
for the parameters of a family of circular distributions with two parameters. In particular, they
exhibit a case for a mixed effects model and obtain asymptotic estimates for parameters involved.
In turn, Arts and Je¢rgensen (2000) have extended GEE methods to deal with Jorgensen’s disper-
sion models (J¢rgensen, 1997ab) and have applied their approach for modeling longitudinal circular
data. Arts and J¢rgensen (2000) also present a simulation study for a model which considers only
the mean direction and a single covariate. They note that in some situations their proposal may
have troubles with convergence, and point out that their method requires a high correlation be-
tween the longitudinal observations or large samples to achieve satisfactory performance. Recently,
Song (2007) has used a generalized linear model approach where the random component belongs to
the family of dispersion models. He suggests penalized pseudo-likelihood and restricted maximum
likelihood estimation to bypass the analytical difficulties arising from the nonlinearity of the corre-
sponding score functions. Nevertheless, in some cases it is not posible to get inferences for all the
parameters involved in the proposed models.

Thus, previous procedures for analyzing longitudinal data for a circular response suffer from
flaws that render them unfeasible to carry out inferences in general situations. These limitations

include troubles for fitting, model comparison and prediction, as well as convergence problems of



the iterative methods utilized, etc. The main goal of this paper is to introduce a Bayesian model
to describe short series of longitudinal data where the response variable is circular. The model
considers linear covariates and is based on a version of the projected bivariate normal model. In
our proposal, each of the two components from model is specified by a mixed-effect linear model.
In addition, we present a Bayesian analysis to build a convenient posterior distribution in order to
carry out joint inferences on the all parameters in the model.

The paper is organized as follows. In the next section we introduce the projected circular longitu-
dinal model, henceforth called the PCL model and describe some of its properties. In Section 3 we
discuss the Bayesian analysis of the model and derive all the full conditionals needed for a Gibbs
sampler. We also show how to generate samples from the corresponding joint posterior density using
a Metropolis-within-Gibbs scheme. In Section 4, we present some illustrative examples. Finally,

Section 5 contains some concluding remarks.

2 The PCL model

2.1 Description of the model

The aim of this work is to introduce a model to describe short series of longitudinal data, where
the response is a circular variable ©, in terms of one or more explanatory variables or covariates
x = (11,...,7,)". Even though the results presented in this study can be extended to other cases,
only linear covariates will be considered here.

To introduce the PCL model we consider a multivariate perspective. Assume that measurements
on each occasion j (j = 1,...,n;) on the ith individual in the study (i = 1,..., N) are arranged in
an; X 1 vector of responses 6; = (6;1, ..., 0:,,)". Thus, we have a design with N individuals and n;
angular observations, ¢;;, on each individual.

A first important step to construct the PCL model is to propose an augmented model via intro-

duction of suitable set of latent variables R;;, in such a way that



Yé cos 0;; i=1,---,N
:Rij X
1 : .
& sin ¢;; j=1---n;

In addition, we propose the following structure for the vector of means
k.
;= v = B/wij + Z'b;,
I
Hij
where
piy = ()8 + (25)'b7,
V ke{l I},
t=1,---, N, and

jzlv"'7ni‘

Here, B = [ﬁl, BH] is the matrix of coefficients of model and Z = [bI, bH]. Note that, in practice,
each of the two components of p;; may depend on different subsets of covariates, in which case the
vectors of coefficients, B’ and B/, may have different dimensions (the same holds for vectors b’ y
b’ ). We emphasize that, in the previous definition, we have a mixed effects model for each of the

two components of the PCL model. In other words,

Y!=XI8"+ Zb! + ¢!,

i
Y = X! 4 zHpl 4 !l

where Yf and Yfl are vectors of dimension n¥, V i = 1,..., N. Thus, the vectors b; represent

subject-specific random effects, usually assumed to be normally distributed with mean vector 0 and

covariance matrix V. From this perspective, it may now be realistic to assume that, given b;, the

components of € are independent. This allow us to set the precision (or covariance) matrices of &

as A = A\I,,, as in the original paper by Laird and Ware (1982). In fact, in our approach we will

use the structure A = I,,, in order to appropriately arrange the construction of the PCL model.
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Recalling the previous discussion, and considering each of the two components k € {I, I} sepa-

rately, the hierarchical definition of the PCL model based on the augmented-data is

e STAGE-1. For each individual 7,

1,---,N,

[

which means that, given 8% y {b;}*,

Yi=XigE+Zf+ef. V=1, N,

where e ~ N,,.(0,I).
e STAGE-2. The vectors 8" and bf are considered independent vectors, V ¢ =1,--- | N, with

bi|Q ~ N,(0,Q%) ¥V i=1,---,N,
g* ~ N, (0, AF).

e STAGE-3.

QF ~ Wi(vk,Bk), vk > gk

where ¢* is dimension of vector bF. In this parametrization F(2%) = o*(B*)~!

2.2 Longitudinal structures obtained from the PCL model

The PCL model is flexible enough to describe a variety of longitudinal patterns for short series.
Figure 1 exhibits some of these behaviors. It can be seen that the PCL model is able to reproduce
the structures of random intercept, random slope and random intercept-slope of a standard mixed
effects model. Furthermore, the model can also produce more general dependence patterns such as

that presented in the lower right panel of Figure 1.
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Figure 1: Some longitudinal patterns for circular data produced by the PCL model.

3 Inference via MCMC

Our approach is based on the introduction of suitable latent variables R;; to define an augmented
joint distribution for the data conditional on the matrices B y b. This joint distribution is con-
structed in such a way as to ensure that we can simulate from all the posterior conditional densities
required for a Gibbs sampler. It should be noted for each ij—th observation, Stage-1 of PCL model

can be seen as

f(yz] = TU(COS@, sin 0)t| /61, ﬁlja {bi}la {bi}ll7 mz‘lja mzljla zina ZinI) = NQ(yij |,'l’ij7 I)



In this way, if we introduce the latent variables R;; defined on (0, c0) through the transformation
Yij = Rij (COS @ij7 Sin@i]’)t,

then the joint density of (O, Ri;), denoted by fe,; r,,)(0ij, i), can be obtained by letting R; =
|Y ;|| and then transforming to polar coordinates. It follows that ©;; has a projected normal

distribution with density function given by

1 ~1 ijH
f(Olpi, I) = geXP{THMinZ} [T+ W®<”;j“ij) ] Lo,20(0i5) 1r2(pes;)
¥ k%]
where
P TR R AL i=1 N,
ij = - .
:uzljl (wzljl)tﬁll + (Zz[jl)tbill J = 17 T,

and vj; = (cos0;j,sin 0;;). Here, ¢(-) and ®(-) denote the probability density function and cumula-
tive distribution function (respectively) of the standard normal distribution.

Once we have completed (augmented) the observed data, via the introduction of the latent vari-
ables R;;, in order to set up the Gibbs sampler for the PCL model we must specify the corresponding

conditional densities. These are described next.

3.1 Full conditional densities

Let D,, = {(r11,011), -, (rnn;, Onn;)} be a set of observations from the PCL model. Omiting the
superscript k& for notational convenience, the posterior conditional densities for the paramaters and

latent variables of each of the components k € {I, I} are given by

N
f(ﬁHbz}?QaDn) = NP(IB|C_1ZX26170)
=1
f(bi|B,Q,D,) = N,b|D;'Z'e;,D;) Vi=1,---,N.

N
[(Q{b}, Dp) = Wi(v+N,B+Y bbl),

=1



where

C = YV XX+ A
e, = Y,—2Zb,
D, = Z'Z;+Q,
e. =Y,—X,3.

We note that the R;; are conditionally independent given the ©;;. Thus, the full conditional

densities of R;; are given, up to a constant of proportionality, by

1
f(rij{0i5}, B, bi) o< i eXP{—§ [ — 2 () i) }-
Clearly, it is not difficult to sample from f(8|{b;},Q, D,,), f(b;|3,Q, D,,) and f(Q|{b;}, D,,). On
the other hand, we can generate R;; from f(r;]0;;, p;;) and in this way draw a random matrix R
from f(R|{0;;},B,b;). This last step is carried out via a Metropolis-Hastings algorithm.
We can now use all the previous full conditionals in a Gibbs sampler to get a sample from the

joint posterior density
F(8",8" {6}, {6}, @, Q" R| {6;}). (3.1)

Unfortunately, direct implementation of the previous MCMC scheme will typically lead to a slow-
mixing chain and potential convergence problems. This is due in part to the structure of the
mixed effects models within each component of the projected normal distribution and to the high
dimension of the hierarchical model. In the particular case of mixed effects models for longitudinal
scalar data, several methods have been proposed in the literature in order to improve the efficiency
of MCMC methods. See, for example, Gelfand et al. (1995), Vines et al. (1996), Gilks and Roberts
(1996), Gelfand y Sahu (1999), Chib and Carlin (1999). Here, we employe a method proposed by
Chib and Carlin (1999) to simulate the fixed effects 3 and all random effects b; in a single block
within each component of the PCL model.

Specifically, our algorithm to sample from the posterior distribution of all the parameters of the

PCL models is the following.



e For each component k, k € {I,11},

1. Sample 8" and {b} from f(8", {b;}*|Q', Q' D,) = f(B*, {b;}*|2*, D,,) by sampling
1.1 B" from f(B"|Q, @, D,) = f(B*2°, Dy).
1.2 b} from f(b|", 8,91, Q", Dp) = [(b[|8", 9", Dn),
foreacht=1,..., N.

2. Sample QF from f(Q*38", 8", {b;}!, {b;}!!, D,) = f(QF|{b;}*, D,,).

e Sample R;; from f(r;|8", 8", {b;}', {b;}/1, @', Q" {6;;})
foreacht=1,...,Nand each j =1,... n;

e Repeat until convergence is achieved.

In 1.1 above, the conditional densities of 3%, k € {I,II}, are given by

f(:Bk|Qk7Dn) = Npk(ﬁk|ug>Ag)v

where
ph o= (AL (XD(VHTYT ),
AL = (AP S XDV XD,
see, for example, Chib and Carlin (1999).
The previous algorithm with blocking improves the mixing of the chain, and thus its convergence,

especially when the blocking is applied separately to each component of the PCL model.

4 Examples

We used the R language and environment (R Development Core Team, 2011) to simulate the data

set for Example 1, and to carry out all of the proposed analyses in this section.
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Example 1. In this example, a longitudinal sample of size N = 60 was simulated. This sample
represents five repeated measurements on each of N = 60 individuals. The data was obtained using

the next specification of the PCL model:

Y{|ﬂ17 ~ N5<XiIIBIJI)7
YZII| 16117 {bi}ll ~ N5(‘Xi11/811 + ZZ'IIbiIIrI)) 1= ]-7 e a607
where
100 200
B = . Bl = ,
—4 —10
bl ~ Ny(0,0Q') i=1,---,60
with
(QH>_1 _ 0.0001 0
0 5
and
Time
1 0
1 1
X =x1"T=7/= : i=1,---,60.
1 2
1 3
1 4

Figure 2 shows the corresponding data set. For the analysis of these data, we used a vague prior
distribution with A’ = 0 = A =0, v! = v/l =2 and B! = B! = Diag(0.001,0.001).

The resulting component-wise marginal distributions for the vectors 3’ and B! are presented in
Figure 3. Likewise, the marginal distributions for the components of the covariance matrix (£'/)~!
are shown in Figure 4; that is, for the elements of the matrix
Q1)1 = ()" ofs

oz (03)"
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Figure 2: Longitudinal circular data from the PCL model.
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Figure 3: Posterior densities of the elements of B and B! for Example 1.

In addition, the 95% posterior credible intervals for the main parameters of PCL model are pre-
sented in Table 1. It can be seen that the proposed methodology yields appropriate inferences for
all parameters involved. Particularly, note that the true value of each of the parameters is well

inside the highest posterior density region of the corresponding posterior density.
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,61 ,BII (QI[)—l
(98.872, 119.515) | (198.826, 240.078) | ( 0.0000, 0.445)
(-8.404 ,-0.920 ) | (-18.399, -3.643 ) | ( 2.358, 6.318 )

- ; (-0.681, 1.519 )

Table 1: 95% posterior credibility intervals for the parameters of the PCL model (Example 1).

Example 2. For this illustration we use the proposed PCL model to analyze a real data set concerning
the orientation of sandhoppers (talitrus saltators) escaping towards the sea in order to avoid the
risk of high dehydratation. It is believed that sandhoppers will escape towards the sea, taking a
course known as the theoretical escape direction.

Borgioli et al. (1999) and D’Elia et al. (2001) reported a longitudinal study whose aim was
to help understand the escaping mechanism of sandhoppers. In this study, 65 sandhoppers were

released sequentially on five occasions. Each of their escape directions was recorded, along with
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Figure 4: Posterior densities of the elements of (Q')~' for Example 1.
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other covariates. The covariates included wind speed, azimuth direction for the sun (Sun), and
eye measurements, which were used to construct an eye asymmetry index (Eye). The wind speeds
were split into four categories (OS for offshore, LSE for longshore-east, LSW for longshore-west and
Onshore), with Onshore taken as the reference category. Figure 5 shows the 65 short time series of

angular responses, the escape directions.

100 150 200 250 300 350

Figure 5: Longitudinal plot of escape directions (in degrees) for sandhoppers over five consecutive

releases.

The main objective, as in Borgioli et al. (1999), D’Elia et al. (2001), and Song (2007), is to
examine which covariates would significantly affect the escape direction of sandhoppers. D’Elia et
al. (2001) and Song (2007) employed a generalized linear model approach and considered a von
Mises distribution for the random component. Nevertheless, none of them offered inferences for all
the parameters involved.

To analyze the sandhoppers data, here we consider a PCL model formulated as

pl = B+ B{Sun+ BjEye + BOS + BiLSW + BILSE + BiTime (4.1)
pll = B+ Bl Sun+ B Eye + B'OS + B LSW + Bi'LSE + B Time + by
i=1,--,65.

We used a vague prior distribution with A? =0, A/Y =0, v!! =2 and B! = 0.001. Figures 6 and

14
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Figure 6: Posterior distributions for the parameters of component I (sandhoppers data).

7 show the posterior distribution of all the parameters for components I and 11, respectively. In
addition, Table 2 presents the corresponding 95% credibility intervals for each component of the
PCL model.

This analysis suggests that {Sun} and {Eye, OS, LSW} are not relevant for p! and pu'!; respec-
tively. Moreover, the inclusion of the random effects is necessary, as the variance parameter (o)

is significantly different from zero.
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5 Concluding remarks

In this paper, we have introduced the PCL model, based on a projected normal distribution, for
analyzing short longitudinal series of circular data. Although the PCL model assumes a conditional
independence structure on each of its components, it is quite flexible and can describe several
distinct longitudinal patterns. It may also provide the basis for the analysis of long (time) series of

circular data. Furthermore, unlike currently available analyses of models for longitudinal circular
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Figure 7: Posterior distributions for the parameters of component II (sandhoppers data).
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Component 1 Component I

Bo (-1.7041 , -0.2797) | (3.5300 , 6.4445)
f1(Sun) | (-0.0069 , 0.0002) | (-0.0326 , -0.0167)
Bo(Eye) | (0.5108 , 3.1228 ) | (-0.2894 , 6.1439)
B5(0S) | (-4.0097 , -1.6492) | (-0.5842 , 2.4310)
Ba(LSW) | (1.2645 , 2.2534) | (-0.6257 , 1.5565)
Bs(LSE) | (0.6042 , 1.6781) | (0.9985 , 3.4888)
Be(Time) | (-0.2260 , -0.0277) | (-0.3420 , -0.1565)
o? - ( 0.9825 , 2.4505 )

Table 2: 95% credible intervals for the parameters of the PCL model (sandhoppers data,).

data, our proposal can be implemented by means of a relatively simple Gibbs sampler and can
produce inferences on a variety of quantities of interest, including those related with alternative
parametrizations or with prediction. An extension of this work to the analysis of time series of

circular data is currently being investigated.
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