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Abstract 
 
This paper proposes an estimation method for persistent and transitory monetary shocks using the 
monetary policy modeling proposed in Andolfatto et al, [Journal of Monetary Economics, 55 
(2008), pp.: 406-422]. The contribution of the paper is threefold: a) to deal with non-Gaussian 
innovations, we consider a convenient reformulation of the state-space representation that enables 
us to use the Kalman filter as an optimal estimation algorithm. Now the state equation allows 
expectations play a significant role in explaining the future time evolution of monetary shocks; b) 
it offers the possibility to perform maximum likelihood estimation for all the parameters involved 
in the monetary policy, and c) as a consequence, we can estimate the conditional probability that a 
regime change has occurred in the current period given an observed monetary shock. Empirical 
evidence on US monetary policy making is provided through the lens of a Taylor rule, suggesting 
that the Fed’s policy was implemented accordingly with the macroeconomic conditions after the 
Great Moderation. The use of the particle filter produces similar quantitative and qualitative 
findings. However, our procedure has much less computational cost.  
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1. Introduction 

State space models are useful for many economic applications. As it is well-

known, under normality, the classical Kalman filter provides the minimum-variance 

estimate of the current state taking into account the most recent signal. This prediction 

is just the conditional expectation. However, under non-linearity and/or non-normality, 

the filtering procedure developed by Kalman (1960) becomes non-optimal. Two 

alternatives has been developed in the literature to deal with this aspect: a) the use of 

first order Taylor series expansion to get linearized equations (transition and/or 

observation) and b) the use of simulations techniques based on sequential estimation of 

conditional densities through lot of replications. The first alternative leads to biased 

estimators (see, for example, Tanizaki, 1995) while the second one generally requires a 

great amount of computational burden. Following the second approach, the path-

breaking paper of Fernández- Villaverde and Rubio-Ramirez (2007) shows how to deal 

with the likelihood-based estimation of non-linear DSGE models with non-normal 

shocks using a sequential Monte-Carlo method (particle filter). This procedure requires 

a great amount of computational burden. 

This paper rethinks about the non-optimality of the Kalman filter. In particular 

we retake the signal extraction problem proposed in Andolfatto et al. (2008). These 

authors propose a state-space modelling with non-gaussian innovations to decompose 

monetary shocks in a Taylor rule into persistent and transitory components. Under their 

framework, the Kalman filter is not fully optimal, because the persistent disturbance in 

the monetary rule is not normally distributed. They perform a number of tests to check 

whether this “quasi-rationality” is quantitatively important in their experiments to reach 

the conclusion that this restriction is not statistically affecting their results. Our paper 

contributes to the literature by showing how to perform an optimal decomposition. In 

particular, we propose an alternative state-space representation to the one used in the 

above-mentioned paper (AHM-representation hereafter). Our reformulation for the 

measurement and transition equations that we will refer as LPR-representation requires 

the use of state-contingent matrices and, in spirit, joins with the growing body of recent 

literature on the role of expectations in monetary policy making. Our procedure has two 

advantages over the use of the standard particle filter considering the AHM-



representation (an adequate estimation procedure in this case): i) lower computational 

cost, and ii) the possibility to estimate the probability that a regime change has occurred in 

the current period conditional on an observed monetary shock. As an alternative to 

calibration, the use of confidence intervals should prove useful for research that 

incorporates such a monetary policy structure into a DSGE model with no analytical 

solution. 

Our estimation procedure is used to provide additional insights on monetary 

policy modelling through the lens of Taylor's rule. As Assenmacher-Wesche (2006) 

points out, empirical studies of reaction functions are confronted with the problem not 

only that the reaction function is a reduced form to present monetary policy making, but 

also that parameter estimates could be unstable, especially when considering long time 

periods. One possibility is to consider that regime changes are due to non-observable 

inflation targeting, with the monetary authority updating the current inflation target in 

response to changes in economic fundamentals. This approach is just the proposal in 

Andolfatto et al. (2008) and is similar in spirit to Sims and Zha (2006), who conclude 

that what changes across regimes are only the variance of the structural disturbances 

and not the coefficients of the policy rule. In a similar way, the recent work of 

Fernández-Villaverde, Guerrón-Quintana and Rubio-Ramírez (2010) consider that 

uncertainty in their DSGE model is due to time-varying volatility of structural shocks. 

Our procedure allows the estimation of the unobserved inflation target. The other 

alternative is the use of Switching Markov techniques to estimate different responses of 

the monetary authority to output gap and inflation depending on the state of the 

economy. 

The paper provides empirical evidence for the US using quarterly data covering 

the period 1980–2011 (first quarter). We find that the evidence of a regime change in 

US monetary policy making during the period 1984 to 1999 is weak. However, after the 

Great Moderation, September eleven, the recession that started in March 2001 and the 

subprime crisis are three events clearly affecting inflation targets in terms of the long-

term the nominal anchor. These regime shifts are matched with those suggested by the 

Switching Markov techniques. However, this approach also reveals two additional 

regime changes during the nineties that are not supported from an inflation flexible 

targeting point of view. We also compare empirical findings based on our estimation 

procedure with the results we obtain using the particle filter considering the AHM-

representation. The point estimates of all the parameters involved are statistically the 



same. Moreover, Monte Carlo simulations reveal that a) the probability distribution of 

the discrepancy between the current inflation target and its long-term mean is 

statistically the same in most of cases (83%) and b) the median of mean squared errors 

to predict theoretical values of the “inflation gap” is lower when using our estimation 

procedure. 

The rest of the paper is organized as follows: The next section summarizes the 

specification of the Taylor rule and the monetary policy scheme for monetary 

innovations proposed in Andolfatto et al. (2008). Section III describes the reformulation 

of the state-space representation proposed and demonstrates that is equivalent in terms 

of conditional mean and variance. Section IV presents empirical evidence for the US, 

together with the comparison of empirical findings based on our estimation procedure 

with the results we obtain using either the particle filter or the Switching Markov 

approach. Finally, section V summarizes and provides concluding remarks.  

 

2. The Taylor rule and the monetary setting 

Following Andolfatto et al. (2008), let us consider the following Taylor rule:  

 1(1 ) ( )t t t t t t t ti r y y i uρ π α π π β ρ⎡ ⎤∗ ∗ ∗ ∗⎛ ⎞
⎢ ⎥⎜ ⎟ −⎝ ⎠⎣ ⎦

= − + + − + − + + ,  (1) 

where r∗  is the equilibrium real rate, tπ
∗  denotes the inflation target, t ty y∗−  is the 

output gap, ρ  is the parameter accounting for monetary policy inertia and tu  represents 

the monetary shocks, which can be interpreted as errors underlying the central bank’s 

control over the policy instrument. Also, it is assumed that the imperfect control of the 

monetary policy rule expressed in (1) as a reaction to time-varying economic 

environment does not lead to persistent errors. Therefore, the time evolution of this 

shock can be represented as follows:  

 2
1 1 10 1 (0 )t t t t eu u e e Nφ φ σ+ + += + , ,< << , , .�  (2) 

A second disturbance to monetary policy is considered. This noise represents the 

change in the proper rate of inflation the central bank should pursue as a consequence of 

changes in the economic outlook. We express these shifts with the variable t tz π π∗ ∗≡ − , 

so that tz  represents the deviation of the current target ( tπ
∗ ) from its long term (time-

invariant) mean π ∗ . It is expected that these shifts will exhibit significant duration: 
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where 2
1 (0 )t gg N σ+ ,� .  

Combining the definition of tz  with equation (1), the Taylor rule can be 

rearranged as follows:  

               1(1 ) ( ) (1 )(1 )  ,
t
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ε
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144424443

 (4) 

where monetary shock tε  is a combination of both persistent ( (1 )(1 ) tzρ α− − ) and 

transitory ( tu ) components.  

Assuming that agents consider the above monetary rule as a plausible 

representation scheme for monetary policy making, they need to learn about the 

decisions of the central bank in two ways: a) they should solve a signal extraction 

problem to break down the aggregate shock into the permanent and the transitory 

components, and b) they should act as econometricians in order to estimate parameters 

φ , 2
eσ , 2

gσ  and p .  

3. State-space representation and maximum likelihood 

estimation 

As in Andolfatto et al. (2008), we consider that agents face the signal extraction 

problem concerning tz  and tu  based on the observation of the time evolution of the 

monetary supply. To deal with this aspect, these authors propose the following state-

space representation, which will be called AHM-representation:  
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where the observable signal is the OLS estimate of the error term in the reaction 

function (equation 4). 

As pointed out by Andolffato et al. (2008) the use of the Kalman filter is not 

fully optimal because tz  is a mixture of a Bernoulli process and a Gaussian noise. To 

overcome the absence of non-normality let us consider an alternative formulation of the 



time evolution of tz  that requires a state-space representation with state-contingent 

matrices in the state equation1, that explicitly incorporates the crucial role of economic 

agents' expectations in learning about monetary policy-making. This alternative 

formulation is as follows:  
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where: 
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Proposition 1: If 

1 1
   

t tS Sandϖ δ
+ +

 are defined as in (7), the dynamics of tz  is 

observationally equivalent to (3) from the perspective of conditional mean. 

Proof. From (5), we have that 

    
1 11 1 1t tt t S t t S tz z E z gϕ ϖ δ
+ ++ + += + + ,        (8) 

and, therefore, the conditional expectation of 1tz +  is: 
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1 1

1 1

1 1

1 1 1 1

1 1 1
1 0

                 

.
1 (1 )

t t

t t

t t

t S t t S t t

t S t S t t
S S

z E z g z

z z g z
p p

ϕ ϖ δ

ϕϕ ϖ δ
ϖ ϖ

+ +

+ +

+ +

= + = +

= = +
= =

+ + = ⇒

+ + =
− − −  

This equation holds when: 
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1 An alternative solution to deal with non-normality is the implementation of the particle filter, which we 
will use in our robustness exercise in a section bellow. 



Now, with probability 1-p, 1 0tS + = , and, from (3), 1 1t tz g+ += ; therefore, 

substituting in (8), 
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 This equation holds when: 
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Equations in (10) and (11) define a system for the variables{ }1 11 0,
t tS Sϖ ϖ
+ += = , with 

the following solution: 

    
1 11 0

1 ;
t tS Sp p
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+ += =

−
= = − .�  

Note that the representation that we propose is a function of the parameterϕ . 

Next, we prove that there is a unique value of ϕ  in terms of probability p that yields the 

same conditional variance as in (3) for the tz  process. 

Proposition 2: If 1 / 2pϕ = − , then the LPR-representation yields the same conditional 

variance as in (3) for the tz .process. 

Proof: In accordance with equation (3), the conditional variance of zt is as follows: 
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Using our representation we have: 
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       (13) 

Substituting 1 / 2pϕ = −  into equation (13), is straightforward to get expression in 

(12).�  

Our state-space formulation, which is characterized by having Gaussian 



innovations, is: 
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and 
1 1
  and  

t tS Sϖ δ
+ +

 are defined as in (7).  

Equations (14) and (15) define a state-space system (see Hamilton (1994), 

chapter 13), where (14) is the state equation and (15) is the observation equation.  

For each of the two relevant histories, tS k=  ( 0, 1k = ), the equations for the 

Kalman filter are2: 
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Next, we describe how to get the log-likelihood function to be maximized with 

respect to the parameters 2 2
g epφ σ σ, , , : 

Step 1: Computing the density functions for each history: 

The conditional density function of t̂ε  to ( )1 1 2 1ˆ ˆ ˆ, ,...,t tY ε ε ε− −
′≡  is: 
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Step 2: Computing the marginal density function of t̂ε  conditional to 1tY − :   
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2 In Appendix 1 we derive the equations for the Kalman filter using our state-space representation. 



Step 3: Computing and maximizing the log-likelihood function of ε̂ :  
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Once the parameters have been estimated, the probability of a regime change in 

the current period conditional on a given shock can be estimated as follows: 
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where θ̂  denotes the vector of estimated parameters. 

4. Empirical evidence 

In this section we provide empirical evidence on monetary policy making for the 

US. Using quarterly data from the EcoWin Economic & Financial database, we collect 

information on interest rates, inflation and GDP for the sample period covering 

1980:Q1-2011:Q1. We estimate the output gap by subtracting a non-linear trend from 

real GDP using the Hoddrick-Prescott filter. Figure 1 depicts the time evolution for 

inflation, output-gap and interest rates. Colours highlight the time periods 

corresponding to the tenure of the three chairmen of the Fed involved in the sample: 

Volcker (green), Greenspan (yellow) and Bernanke (orange). 

 

Figure 1: Time series for Inflation, Output-Gap abd Interest Rate for US economy. 
 

A least square regression of the following Taylor rule:  
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yields the following parameter estimates (standard deviations in brackets):  
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where [ ]0 1 2 3 , , ,β β β β ′=β , and , 1, 2ig i∇ =  denotes the gradient of the function 

( ),  1, 2ig i =� . 

Consistent with previous empirical research, a significant point estimate of the 

lagged policy rate is detected, suggesting very slow partial adjustment in US monetary 

policy making. Also, the estimated response for the “inflation gap” is consistent with 

the Taylor principle, that is, the nominal interest rate raises more than point-for-point 

when inflation exceeds the target inflation rate3. 

As for the nature of regime switching detected from the estimated monetary 

shocks, the maximization of the likelihood function yields the following point estimates 

(standard deviations are in brackets): [ ]ˆ 0 8626 0 0247p = . . , [ ]0 4416 0 1024ˆ gσ = . . , 

[ ]0 0030 0 0004ˆ eσ = . .  and [ ]ˆ 0 5636 0 0962φ = . . . These parameters are the estimated 

probability of regime change (1 p− ), the estimated volatility of permanent and 

transitory shocks ( 2
eσ  and 2

gσ , respectively) and the AR(1) parameter that corresponds 

to the time evolution of the transitory shock (φ ). The unconditional probability of 

regime change for the US is around 13%, which implies a mean duration of shifts of 

around seven quarters. Also, as expected, the volatility of the shocks in the two regimes 

differs significantly. In particular, the volatility of transitory shocks is clearly lower than 

that of corresponding to permanent shocks. Moreover, the estimated coefficient φ  is 

positive, statistically significant at the 1% significance level and clearly lower than one, 

                                                 
3 It is well known that 1α >  is a sufficient condition for equilibrium determinacy in the context of DSGE 
models (see for example, Woodford, 2003 or Galí, 2008). 



a finding that is consistent with the assumptions made. 

Figure 2 depicts the time evolution for the probability of regime change 

conditional to a given monetary shock, as well as the permanent component of the 

monetary shock, that is, the deviation of the current inflation target from its long-term 

mean ( | 1ˆt tz − ).  

Figure 2. Monetary policy with time-varying inflation target during the Volcker-Greenspan-Bernanke 

period. 

Our empirical findings show an extremely high probability of regime change at 

the beginning of the eighties. This is consistent with historical monetary policy making 

in the US4: in the period following the Great Inflation, Fed operating procedures were 

modified. On October 1979, targeting of non-borrowed reserves directly replaced Fed 

funds rate targeting, but after the meeting of the Federal Open Market Committee in 

October 1982, the Fed abandoned non-borrowed targeting and concluded that short-run 

control of monetary aggregates was less strict than interest control. After the Great 

Moderation, the probability of regime change approaches unity in March and December 

2001. On 26 November 2001 the National Bureau of Economic Research announced 

that the US economy had been in recession since 1 March 2001. However, as 

Mostaghimi (2004) notes, there was some speculation that even though US monetary 

authorities had anticipated the severity of the problems in the US economy in 2000, they 
                                                 
4See Orphanides (2003) for a detailed analysis of US monetary policy and the usefulness of the Taylor-
rule framework to interpret it. 



hesitated to act promptly because of the prolonged US presidential election process. 

Another probable regime change detected is immediately after the unexpected shock of 

9/11 event, which undoubtedly accelerated the decline in consumer confidence first 

noted in August 2001. After the terrorist attack, the Fed took up the challenge of 

maintaining and managing countercyclical policy in a stable price environment. To face 

the crisis, target federal funds rates was lowered quickly, and US monetary policy was 

easy during the period 2002 to 2006. 

It is also observed two potential regime changes in the first quarter of 2008 and 

2009, which are both related to the subprime mortgage crisis. The initial signals for the 

crisis in financial markets can be dated in June-July 2007 (problems at the Bear Stearns 

hedge fund); next, economic growth weakened and the recession officially started in 

December 2007. In March 2008 Bear Stearns collapsed, while Lehman Brothers 

followed in September 2008. By late 2008, nominal interest rates were close to the zero 

bound, but financial markets were not responding as expected. The Fed took additional 

measures. On march 18, 2009 the press release made by the Fed stated: “to provide 

greater support to mortgage lending and housing markets, the Committee decided today 

to increase the size of the Federal Reserve’s balance sheet further by purchasing up to 

an additional $750 billion of agency mortgage-backed securities, bringing its total 

purchases of these securities to up to $1.25 trillion this year, and to increase its 

purchases of agency debt this year by up to $100 billion to a total of up to $200 billion. 

Moreover, to help improve conditions in private credit markets, the Committee decided 

to purchase up to $300 billion of longer-term Treasury securities over the next six 

months”. 

As to the estimates of “inflation gap” we can observe in Figure 2 that, after the 

Great Moderation, the regime changes detected in monetary policy making are matched 

with substantial updates in the current inflation target. It is also remarkable that our 

empirical evidence suggests that, during the period 1994-2000, the monetary policy 

implemented by the Federal Reserve was, in general, based on short-run inflation 

targets below the long-term target. This path for flexible inflation targeting is consistent 

with no accommodative monetary policy, in line with the Fed’s policy during this 

period.  

The economic environment at the beginning of the past decade was sharply 

affected by the terrorist attack of September 11, 2001. During the period covering 1999-



2001 our estimates reveal two significant updates of inflation target, in the fourth 

quarter of 1999 and 2001, respectively. This two “regime shifts” are motivated not only 

by geopolitical uncertainties derived from the terrorist attack, but also by the weak 

recovery of US economy after the moderate recession between March and November 

2001. For the period 2001-2004, the estimated discrepancy between the current inflation 

target and the long-term inflation target is, on average, positive, revealing that inflation 

did not appear as a serious concern in the short-run for the Federal Open Market 

Committee during this period. Therefore, the maximum sustainable employment arises 

now as the only relevant goal in this period.  

Both aspects explain the aggressive response of the Fed in 2002 and 2003. As 

pointed out by Bernanke (2010), the discrepancy between the actual federal funds rates 

and the values implied by the Taylor rule during this time period is the most commonly 

cited evidence that monetary policy was too easy in order to prevent further bubbles in 

financial markets. However, our empirical findings suggest that the Fed managed the 

federal fund rates in accordance with short and long-run inflation targets. Furthermore, 

we can observe that the period 2004-2006 is characterized by negative differences 

between current inflation targets and the long-term inflation target. This suggests that, 

as a difference with the previous period (2001-2004), the Fed should now face the 

classical trade-off between employment and inflation in monetary policy making. And 

to prevent for inflationary pressures that might cause US economic growth, especially 

encouraged by the aggressive response of the Fed after 2001, just in June 2004 the 

Federal Market Committee began to raise the target rate, reaching 5.25% in June 2006. 

In 2008 and 2009 two clear changes in inflation targeting are detected, in a similar way 

as described for 1999 and 2000. After 2008, the estimated departures of current inflation 

targets are positive, on average, suggesting that employment becomes again the key 

short-run objective for the Fed. We can conclude that our empirical evidence on flexible 

inflation targeting suggests that US monetary policy was implemented accordingly with 

the macroeconomic conditions after the Great Moderation. 

4.1. Alternative approaches 

As previously showed, our estimation procedure is based on a convenient 

reformulation of the state-space model representation that allows us the optimal use of 

the Kalman filter to estimate not only the conditional probability of regime change, but 

also the non-observable departures of the current inflation target from its long-term 



mean. This relevant information could be also estimated, but not jointly, using 

Switching Markov techniques and the standard particle filter. The first procedure 

enables researchers to estimate probabilities of regime change, while the particle filter 

allows estimating inflation departures. The next two subsections show why our 

estimation procedure should be an interesting alternative to the combined use of these 

two techniques, at least for the US. 

 

4.1.1 Swicthing Markov 

We now check whether our estimation procedure produce similar empirical 

findings to those using a Taylor rule with time-varying parameters. It is widely accepted 

that well designed monetary policy should smooth cyclical fluctuations in prices and 

employment, thereby improving overall economic stability and investor confidence. 

Usually, when economic growth is lower than expected, accommodative monetary 

policy can stimulate aggregate demand to encourage employment. Likewise, when 

inflationary pressures arise as a consequence of systematic and intensive economic 

growth, a restrictive monetary policy can restore the ability of the central bank to 

achieve the inflation target. 

In accordance with this principle, we consider the following specification of the 

Taylor rule:  

                           2
0 1 1 2 3 0

t t t t tt S S t S t S t t t t Si c c i c c y y u u Nπ σ⎛ ⎞∗⎛ ⎞
⎜ ⎟⎜ ⎟, , − , , ⎝ ⎠ ⎝ ⎠

= + + + − + , ,� , (11) 

where tS  ( )1 2tS = ,  denotes the state of the economy at date t , and 
tj Sc ,  ( 0,1 2 3)j = , ,  

and 2
tSσ  are changing parameters depending on the regime of the economy. Specifically, 

we assume that tS  evolves according a two state first-order Markov process with the 

following transition probabilities:  

 11 11

22 22

1
1

p p
P

p p

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

−
=

−
, 

where ( )1ij t tp p S j S i−= = | = . 

Table 1 presents the maximum likelihood parameter estimates (standard 

deviations in brackets) under both regimes:  

 

 



 0 tSc ,   1 tSc ,   2 tSc ,   3 tSc ,   2
tSσ    

tSα  
tSβ    

1tS =   .0027 

[.0008] 

.8989 

[.0149]  

.0560 

[.0373] 

.1802 

[.0309] 

.0026 

[.0003]  

.5536 

[.3793] 

1.7824 

[.3413]  

2tS =   .0002 

[.0048] 

.7742 

[.1003]  

.3359 

[.1633] 

.0446 

[.1228] 

.0128 

[.0017] 

1.4877 

[.3914] 

.1975 

[.5757] 
Table 1. Parameters estimated of the Taylor Rule using Switching Markov.   

 

As for the transition probabilities we obtain 11 9272 [ 0262]p = . .  and 

22 8491[ 0599]p = . . . Two regimes are clearly identified. In state 1, the Fed's Response is 

only significant to economic growth, while in state 2 the response of the monetary 

authority is caused by inflation departures from the target. It is also remarkable that 

state 2 is characterized by an extremely higher volatility of monetary shocks. This 

reveals that when US economy is experiencing inflationary pressures with weak 

economic growth, monetary policy is subject to higher uncertainty, as it currently takes 

place as a consequence of price shocks from raw materials. 

Figure 3 depicts the probability of the first regime (accommodative monetary 

policy) conditional on the past history of the economy. 

 

Figure 3. Regime switching probabilities using the LPR-representation and the Switching Markov, 

respectively. 

 



After the Great Moderation, the time evolution of these probabilities basically 

replicates the pattern that we previously showed using our estimation procedure under 

flexible inflation targeting. However, the Switching Markov technique detect two 

probably regime-changes that are not suggested by our approach. This likely reflects 

that the Fed changed substantially the federal fund rate without significant updating of 

inflation target.  

Let us make a brief summary of what happened. The Fed raised the discount rate 

from 5.5 percent to 6 percent in September 1987, after Alan Greenspan replaced Paul 

Volcker as Fed Chairman. However, the stock market crash in October 1987 prevented 

the Fed for additional tightening. By the spring of 1988 the Fed felt it was room to 

tighten monetary policy and increased the funds rate from the 6 to nearly 10 percent in 

March 1989. During this time period, core CPI inflation was running at about 4.5 

percent. The outcome of this aggressive policy was that Real GDP growth slowed from 

about 4 percent in 1988 to 2.5 percent in 1989. Then, the Fed reduced the funds rate to 

around 7 percent by late 1990, but core CPI inflation was running at 5.3 percent. In 

sum, while tight monetary policy was implemented during 1987-1990 the credibility for 

low inflation was not restored. The other regime change suggested by Switching 

Markov is just related to the preventive campaign against inflation developed in 1994. 

The Fed began to raise the federal funds rate in February 1994, and after seven updates 

reached the 6 percent by February 1995. In spite of the policy tightening, real GDP 

grew by 4 percent in 1994, and again, the Fed’s credibility for low inflation was far 

from conclusive5. Only after 1996, bond rates reveal that the mission to contain inflation 

was accomplished. 

4.1.2. The Particle Filter 

We now explore the empirical results based on the use of the particle filter. 

Appendix 2 describes the implementation of the particle filter to our particular 

estimation problem and the next table shows the estimated parameters using the 

standard particle filter6 with the AHM-representation and the Kalman filter with the 

LPR- representation. 

 

                                                 
5 It should be also remembered that in 1994 the Fed started to announce its current intended federal funds 
rate target just after each meeting of the Federal Open Market Committee. 
6 The results are based 1,000 replications. Empirical estimates are robust to the use of 2,000 and 3,000 
replications. 



 p̂  φ̂  ˆ gσ  ˆeσ  

Kalman filter, 

(LPR-representation),  
0.8626 

(0.0247) 

0.5636 

(0.0962) 

0.4416 

(0.1024) 

0.0030 

(0.0004) 
Particle Filter 

(AHM-representation), 
0.8656 

(0.0131) 

0.5613 

(0.0096) 

0.4573 

(0.0392) 

0.0031 

(0.0001) 
Table 2. Estimates of structural parameters using the Particle Filter with the AHM-representation and 

the Kalman Filter with the LPR-representation, respectively. 

 

 It is readily apparent that parameter estimates using a sequential Monte Carlo 

filter are statistically equal to those obtained under our LPR-representation. For each 

estimation procedure, the confidence interval at conventional significance levels 

contains the point estimate obtained with the alternative approach. However, the particle 

filter exhibits higher accuracy, although with a remarkable computational cost. The 

interest of the particle filter is the possibility of implementing the decomposition of 

monetary shocks using a flexible targeting point of view. Figure 4 shows the time 

evolution of the estimated “inflation gap” using both procedures.  

 

Figure 4. Deviation estimated of the current inflation target from its long-term mean 

 

Interestingly enough, the time evolution of | 1ˆt tz −  is quite similar under both 

methodologies. To statistically assess whether both procedures lead to the same 

probability distribution of the “inflation gap” we perform a Monte Carlo simulation in 



order not only to test null hypothesis of equality between the two distributions but also 

to compute the Mean Squared Error in forecasting theoretical tz values7. In particular, 

we proceed as follows: considering a sample size equal to 125 (the same number of 

observations as in the data sample), we simulated { }125
1 1 1 1 1
, , , ,t t t t t t

N e z u ε+ + + + =
 with initial 

conditions 0 0 0z u= = . Using these simulated time series we generate shocks { }125

1t t
ε

=
 in 

accordance with equation (6). Now we consider the estimated parameters using the 

Kalman filter with the LPR-representation to generate theoretical values of tz . After 

that, we make simulation exercises for shocks to generate conditional estimates of 

tz either using the Particle Filter for AHM-representation or the Kalman Filter for the 

LPR-representation. Let us denote each of these time series as { }125

| 1 2
ˆPF

t t t
z − =

and { }125

| 1 2
ˆKF

t t t
z − =

, 

respectively. We can now perform a Kolmogorov-Smirnov test for the null hypothesis 

of equality of distributions between { }125

| 1 2
ˆPF

t t t
z − =

and { }125

| 1 2
ˆKF

t t t
z − =

at the 5% significance level. 

The percentage of rejections with 1,000 replications is about 17%, neither so high nor 

negligible, as expected from the visual inspection of Figure 4. 

However, as to the mean squared error to fit the theoretical “inflation gap”, we 

obtain the following median values: 

 ( )PFMSE  ( )KFMSE  

Median(MSE) 0.0260 0.0132 
Table 4. Testing the fit of each methodology: 

125( ) ( ) 2
| 12

1 ˆ( ) , ,
124

j j
t t tt

MSE z z j PF KF−=

⎛ ⎞= − ≡⎜ ⎟
⎝ ⎠

∑   

Therefore, our simulation experiment shows that our estimation procedure has a 

better predictive ability to forecast the discrepancy between the short and long-run 

inflation targets. 

 

5. Conclusions 

This paper proposes an estimation procedure to decompose monetary shocks 

                                                 
7 The Mean Square Error computed is ( )2

| 11
ˆ(1/ ) ( )T

t t tt
T z z −=

−∑ , where tz  is the theoretical value of  

inflation-target and | 1ˆt tz −  is the estimated value either using either the Kalman-filter with the LPR-
representation or the Particle-Filter considering the AHM-representation. 



into permanent and transitory components using an inertial Taylor rule and the 

monetary innovations scheme proposed in Andolfatto et al. (2008). The contribution of 

the paper is threefold: a) under our state-space representation, the Kalman filter 

becomes fully optimal as the signal extraction mechanism because all the relevant 

noises are Gaussian; b) we provide a direct way to the exact maximum likelihood 

estimation of the parameters involved in the time evolution of persistent and transitory 

monetary shocks, and c) in each time period we provide the probability that a regime 

change has occurred in the current period conditional on an observed monetary shock. 

Researchers interested in the macroeconomic learning literature could take advantages 

of our estimation procedure in order to incorporate the monetary signal extraction 

problem proposed into a DSGE model. 

Empirical evidence on US historical monetary policy making through the lens of 

a Taylor rule is provided using quarterly data during the period 1980:Q1-2011-Q1. 

Consistent with previous findings, the evidence for a regime change in the inflation 

target during the nineties is extremely weak. However, September eleven, the recession 

that started in March 2001 and the subprime crisis were significant events that affected 

US monetary policy making in the last decade. The use of a Taylor rule with time-

varying responses to output gap and deviations from the inflation target suggests the 

same regime changes after the Great Moderation.  

We compare our findings based on a flexible targeting point of view with those 

suggested by the estimation of a Taylor rule with time-varying responses to output gap 

using Switching Markov. The evidence found suggests that during the nineties there has 

been though two regime changes in US monetary policy making in terms of the most 

relevant objective (unemployment-inflation trade-off). However, during this period, the 

Fed's inflation targeting was not significantly updated. 

Finally, we use Monte Carlo exercises to compare the time evolution of the 

inflation gap that we estimate using our procedure with the estimates based on the use 

of the standard particle filter considering the state-space representation proposed in 

Andolfatto et al. (2008). Simulation exercises reveal that the percentage of rejection at 

conventional significance levels for the null hypothesis of equality of distribution is 

about 17%. Though this percentage is not particularly high, our procedure leads to 

lower mean squared error to forecast theoretical levels of inflation gap. 
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Appendix 1 

This appendix describes how to get equations for the Kalman filter using our 

state-space representation with Gaussian innovations. 

 Following Hamilton (1994), we consider the following state-space system: 

 
{ {{ {{ {{1 1 1

1 1 1 1

t t t t t
r r r r r rr r r r

F B E Uξ ξ ξ υ+ + +
× × ×× × × ×

= + + ,  (A.1) 
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1 1 1

t t t
n rn r n

H wε ξ
×× × ×

′= + ,  (A.2) 

with 

     
,   for  
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    (A.3) 

 
,   for  

( )
0,   otherwise.t

R t
E w wτ

τ=⎧′ = ⎨
⎩

    (A.4) 

 We assume that { }1 2, ,..., Ty y y  are observable variables and that, B, U, H, Q and 

R are known with certainty. 

 The Kalman Filter calculates the forecasts 1|t̂ tξ +  recursively, and, associated with 

each of these forecasts, the Kalman Filter computes the Mean Squared Error matrix: 

1| 1 1| 1 1|
ˆ ˆ( )( ) 't t t t t t t tP E ξ ξ ξ ξ+ + + + +

⎡ ⎤≡ − −⎣ ⎦ . The recursion begins with 1|0ξ̂  and we assume that 

1|0
ˆ ( ) 0tEξ ξ= = . In a similar way, ( )( )1|0 ( ) ( ) 't t t tP E E Eξ ξ ξ ξ≡ − −⎡ ⎤⎣ ⎦ . We also assume 

that eigenvalues of F are all inside the unit circle, that is, the process for tξ  is 

covariance-stationary. Thus, P1|0 can be computed as follows:  
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 The forecasting of ty  is as follows: 

| 1 1 1 | 1
ˆˆ ( | ) ( | ) ,  t t t t t t t ty E y H E Hξ ξ− − − −′ ′≡ = =Y Y where ( )1 1 1, ,...,t t ty y y− −

′′ ′ ′=Y . 



 The associated Mean Squared Error is: 

   | 1 | 1 | 1ˆ ˆ( )( ) 't t t t t t t tE y y y y H P H R− − −′⎡ ⎤− − = +⎣ ⎦ . 

Next we update tξ  taking into account the information set available at time t as 

follows: 
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with Mean Squared Error: 
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 Next, we forecast 1tξ +  given the current set of available information as follows: 

 1| 1 1 1 | 1|
ˆ ˆ ˆˆ ˆ ˆ ˆ( | ) ( | ) ( ( ) | ) ( | )
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 where, given that 1tυ + and tw  are Gaussian, we use that 1| 1
ˆ ( )t t t tEξ ξ+ += . 

 Rearranging the above equation we have 

     1
1| |

ˆ ˆ( )t t t tI B Fξ ξ−
+ = − .     (A.7) 

Substituting (A.5) into (A.7): 

 1 1
1| | 1 | 1

ˆ ˆ ˆ( ) ( ) ( )t t t t t t t tI B F I B F K y Hξ ξ ξ− −
+ − −′= − + − − ,    (A.8) 

where 

   1
| 1 | 1( )t t t t tK P H H P H R −
− −′= +      (A.9) 

Taking into account not only that 1 1 1( )t t t t tF B E Uξ ξ ξ υ+ + += + + , but also that 

1 1| | 1|
ˆ ˆ ˆ( )t t t t t t t tE F Bξ ξ ξ ξ+ + += = + , we obtain the expression for the forecasting error: 

1 1| | 1
ˆ ˆ

t t t t t tF Uξ ξ ξ υ+ + +− = + .  

Thus, the Mean Squared Error associated to 1|t̂ tξ +  can be obtained as follows: 

 1| | 1 | 1 |
ˆ ˆ( )( )t t t t t t t t t tP E F U F U F P F Qξ υ ξ υ+ + +

⎡ ⎤′ ′= + + = +⎣ ⎦
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 Substituting (A.6) into (A.8): 

  1| | 1 | 1t t t t t t tP F P F F K H P F Q+ − −′ ′ ′= − + % .               (A.11) 

Summarizing, given 1|0 1|0
ˆ  and  Pξ , the Kalman Filter computes recursively 

1| 1|
ˆ   and  t t t tPξ + +  using the equations (A.8), (A.9) and (A.11). 

 

Appendix 2 

In this appendix, we describe how to evaluate the likelihood function of 

monetary innovations using a Sequential Monte Carlo Filter (Fernández-Villaverde and 

Rubio-Ramírez (2004)) when the AHM-representation is considered. 

 The Andolfatto et al. (2008) specification is:  

    1 1t t tz p z N+ += +                (A.12) 

    (1 )(1 )t t tz uε ρ α= − − +               (A.13) 
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 The particle filter is an alternative to overcome non-normality. Assuming that 

0 0z = , we proceed as follows: 

Step 1: Evaluate the probability of | 1ˆt tu − : 

i) We draw a random sample of size I =1000 from the uniform distribution 

in (0,1) and from a Normal distribution with zero mean and 2
gσ  variance. 

We call each observation of these two initial samples as 
,1 ,1 2(0,1),  and  (0, )i i

gU U x N σ� �  for i=1,…,I.. Now, we use these two 

samples to generate a new sample the we denote 1|0,iN  as follows: 
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Where 1-p  is the probability of a regime change. We use the I values of 
1|0,iN  to generate an additional sample of I values that we denote 1|0,iz  as 

follows: 

  1|0, 1|0, 1|0,
0 , 1,..., .i i iz pz N N i I= + = =  



ii) Next, we use the estimated value for the first element of the noise vector 

tε , that we denote as 1̂ε , to generate a random sample for the innovation 

tu  as follows: 

  1|0, 1|0,
1̂ (1 )(1 ) , 1,...,i iu z i Iε ρ α= − − − = . 

iii) We evaluate the relative weight for each observation 1|0,iu : 
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that is, the marginal distribution of AR(1) process for the first 

observation. 

iv) We update the initial sample 1|0,iz  by performing a weighted sampling 

with replacement in accordance with the above-mentioned weights. 

v) As in ii), we draw I samples from a uniform probability distribution 
(U(0,1)) and from a Normal probability distribution (N(0, 2

gσ )). We call 

each of these samples: ,2 ,2 2(0,1), (0, )i i
gU U x N σ� �   for i=1,…,I. Now, 

we use these values to generate I values of 2|1,iN  as follows: 
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  We use the I values of 2|1,iN  to generate the I values of 2|1,iz  using (A.12): 
    2|1, 1, 2|1, , 1,..., .i i iz pz N i I= + =  

vi) Next, we use the observation 2ε  and each of the I values of 2|1,iz  obtained 
in ii) to find I values of 2|1,iu : 

    2|1, 2|1,
2 (1 )(1 ) , 1,...,i iu z i Iε ρ α= − − − = . 

vii) We evaluate the relative probability of each of the I values de 2|1,iu : 
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that is, the distribution u2 conditional to 1u  of a AR(1) process for the 

second observation. In particular, ( )2|1, 1|0, 1|0, 2 | , , 1,..., .i i i
eu u N u i Iφ σ =�  

viii) Go to v) and proceed as in steps vi)-vii) and iterate until the end of the 
sample. 

  

Step 2: Using the Law of the Large Numbers: 
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Once the conditional probabilities for monetary innovations are computed, we can 

evaluate the likelihood function as: 
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where T denotes the sample size. 

Step 3: We maximize the likelihood with respect to the parameters φ , 2
eσ , 2

gσ  and p. 


