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Abstract

With the advent of Basel II, risk–capital provisions need to also account for operational
risk. The specification of dependence structures and the assessment of their effects
on aggregate risk–capital are still open issues in modeling operational risk. In this
paper, we investigate the potential consequences of adopting the restrictive Basel’s
Loss Distribution Approach (LDA), as compared to strategies that take dependencies
explicitly into account. Drawing on a real–world database, we fit alternative dependence
structures, using parametric copulas and nonparametric tail–dependence coefficients,
and discuss the implications on the estimation of aggregate risk capital.

We find that risk–capital estimates may increase relative to that derived for the
LDA when accounting explicitly for the presence of dependencies. This phenomenon
is not only be due to the (fitted) characteristics of the data, but also arise from the
specific Monte Carlo setup in simulation–based risk–capital analysis.
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1. Introduction

The operational risk of financial institutions has received increasing attention during
recent years, mainly because of new transparency requirements in financial reporting,
but also because of the magnitude of several, highly–publicized operational–loss cases.
For example, only in 2008, the ten largest operational losses exceeded 1.8 billion U.S.
dollars, with a maximum loss of 50 billion from the Madoff fraud, followed by 8.4 billion
losses for Wells Fargo & Co. The magnitude of these losses supports the notion that
a financial institution’s capital requirements for operational losses may well be larger
than those for market risk (de Fontnouvelle et al., 2003). This concern emphasizes
the importance of implementing reliable procedures for estimating appropriate capital
buffers for operational losses.

The Basel committee (Basel Committee on Banking Supervision, 2006) formally
defines operational risk as “the risk of loss resulting from inadequate or failed internal
processes, people and systems or from external events.” Although, since the intro-
duction of the Basel II accord in 2004, operational risk has become a relevant factor
when determining a financial institution’s overall capital requirements, quantifying and
modeling operational risk still poses numerous challenges. One major challenge is to
account for the dependencies among the individual operational–risk components. Ide-
ally, risk–capital assessment takes such dependencies adequately into account, in order
to derive realistic charges for regulatory capital.

The Loss Distribution Approach (LDA), the most popular method within the Basel
II Advanced Measurement Approach for operational risk, abstains from modeling de-
pendencies explicitly. Instead, the aggregate Value–at–Risk (VaR) for operational risk
is obtained by simply adding up the individual VaRs derived for each risk component.
Intuitively, by summing up the individual capital charges one expects to determine a
kind of worst–case capital buffer. However, the non–coherence, specifically, the poten-
tial superadditivity of the VaR measure, as well as particular distributional properties
of operational–loss data may, in fact, have the opposite effect: By departing from the
summation rule and accounting explicitly for dependencies, aggregate risk–capital esti-
mates may increase rather than decrease. The theoretical possibility of this to happen
has been mentioned before (see, for example, Embrechts et al., 2002), but the practical
relevance and potential magnitude, when dealing with real–world operational–loss data,
remains to be investigated.

This gap is the focus of this paper. Drawing on a real–world database of opera-
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tional losses,1 we analyze the dependence structure of monthly aggregate losses using
alternative modeling strategies, namely, parametric copula fitting and nonparametric
tail–dependence estimation. Then, by means of Monte Carlo simulation, we assess the
changes in risk–capital estimates when imposing empirically determined dependence
structures.

Our empirical findings suggest that, when taking dependence structures into ac-
count, risk–capital estimates may be up to 30% higher than those obtained under
the simple summation scheme of the LDA. Therefore, accounting explicitly for depen-
dencies may lead to more realistic, but not necessarily lower estimates for regulatory
capital. The increase may not only be due to the superadditivity problem, but also
arise from computational settings. Specifically, the higher the number of replications in
the Monte–Carlo simulation, the lower the variation of risk–capital estimates. An ex-
cessively high aggregate risk–capital estimate may, therefore, not only be due to strong
dependencies, but also due to an insufficient number of Monte Carlo replications. To
disentangle the effects of these two sources, we compute asymptotic bounds for VaR–
estimates obtained from imposing restrictions on the underlying copula.

The paper is organized as follows. Section 2 briefly discusses the aggregation prob-
lem in multivariate operational–risk modeling. The empirical analysis, based on loss
data collected in the DIPO database, is presented in Section 3. Section 4 explores
how aggregate risk–capital estimation can be affected by the treatment of dependencies
among risk components. Section 5 concludes.

2. Operational Risk and the Aggregation Problem

According to the LDA, an institution’s business operations are classified into—at
least—eight business lines, each being exposed to seven types of loss–events. This gives
rise to 7×8=56 event–type/business–line combinations, as illustrated in Table 1. Given
the heterogeneous nature of these combinations, VaR–calculations require a case–by–
case analysis for each of the 56 risk categories. To obtain the aggregate capital charge,
however, the individual VaRs need to be combined into a single, overall operational

1The data are from the Database Italiano delle Perdite Operative (DIPO) association, a consortium
of 31 Italian banking groups collecting operational–loss data from more than 200 legal entities (see
http://www.dipo-operationalrisk.it).
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VaR–figure, i.e.,

VaRα(L) = VaRα

(
56∑

i=1

Li

)
, (1)

where L =
∑56

i=1 Li ∼ FL refers to aggregate losses; and

VaRα = inf{l ∈ R : Pr[L > l] ≤ 1− α} = inf{l ∈ R : FL(l) ≥ α}
denotes the VaR at confidence level (100× α)% or, in other words, the α% quantile of
the aggregate loss distribution. Clearly, risk–capital estimates derived from (1) will be
affected by dependencies among the 56 risk categories. Therefore, a reliable derivation
of operational–risk capital along the lines of (1) requires the specification of dependence
structures.

Table 1: Business–line/event–type matrix.
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Internal Fraud L1 . . . . . . L8

External Fraud ...
. . .

...
Employment Practices & Workplace Safety

Clients, Products & Business Practices

Damage to Physical Assets ...
. . .

...
Business Disruption & System Failures

Execution, Delivery & Process Management L49 . . . . . . L56

Rather than following (1), the LDA calculates the total risk capital (TRC) for
operational losses by summing up the individual component–VaRs, i.e.,

TRC =

56∑

i=1

VaRα(Li) , (2)
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with the confidence level set to α = 0.999.

Only when a financial institution fulfills certain qualifying conditions, operational–
risk aggregation may take dependencies explicitly into account. In this case, the crucial
question is: To what extent will an explicit modeling of dependencies, that is, adopting
(1) instead of (2), affect aggregate risk–capital estimates? More specifically, will the
additional effort, when modeling along the lines of (1), not only be compensated by
a better understanding of the institution’s risk exposures, but also by a reduction in
regulatory capital?

If Li and Lj are comonotonic,2 we have (see Embrechts et al., 2003b; McNeil et al.,
2005)

VaRco
α (Li + Lj) = VaRα(Li) + VaRα(Lj) .

For the—in practice widely adopted—family of elliptical distributions and, thus, for the
Gaussian case, comonotonicity translates into perfect positive correlation. In general,
for elliptical distributions we have

VaRα(Li + Lj) ≤ VaRα(Li) + VaRα(Lj) ,

with strict inequality holding in non-degenerate cases. Therefore, the LDA calculation
according to (2) represents a worst–case scenario for aggregate risk. The fact that one
may derive more realistic and practically relevant rather than worst–case and, presum-
ably, higher TRC–estimates provides an incentive for modeling dependencies explicitly.
In fact, several studies, such as Frachot et al. (2001), Chavez-Demoulin et al. (2006) and
Chapelle et al. (2008), point out that the assumption of perfect positive dependence is
an unduly strong and unrealistic restriction and show that modeling dependencies via
empirical correlations can decrease TRC–charges by a factor of about 30%.

Outside the world of elliptical distributions, the presence of dependence structures
may, indeed, increase TRC–charges, given the VaR–measure’s lack of subadditivity
(Artzner et al., 1999); i.e., we may have

VaRα(Li + Lj) > VaRα(Li) + VaRα(Lj) .

2Comonotonicity represents an extreme case of perfect dependence, where one loss category is a

deterministic function of another; i.e., Li = T (Lj) holds almost surely with T being a strictly increasing

function.
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In other words, efforts to reduce TRC–charges by specifying dependencies more appro-
priately may have the opposite effect and increase risk–capital estimates beyond the
level prescribed by Basel’s LDA.3

To quantity the potential of diversification among N risk components, we adopt the
diversification measure

Dα =
VaRα(

∑N
i=1 Li)−

∑N
i=1VaRα(Li)∑N

i=1VaRα(Li)
,

which is similar to that in Embrechts et al. (2009), but expressed in relative terms.
Negative (positive) values of Dα indicate that, compared to simply adding individual
VaRs, risk–capital estimates will decrease (increase) when accounting for dependencies.
Considering only two risk components, i and j, and a 99.9% confidence level, the
measure reduces to

Di,j
.999 =

VaR.999(Li + Lj)− [VaR.999(Li) + VaR.999(Lj)]

VaR.999(Li) + VaR.999(Lj)
.

In the following sections, we investigate whether an explicit modeling of dependen-
cies generally affects aggregate risk–capital estimates, and whether working along the
lines of (1) will save regulatory capital. The latter is of paramount importance, as
there should be an incentive for financial institutions to better understand their risk
structures and, thus, to adopt an explicit modeling approach. If, on the other hand, the
naive, black–box approach (2)—in addition to being less burdensome and less costly—
will tend to produce lower capital–charges, institutions may have an incentive to remain
largely uninformed about the risks they are exposed to.

3. Empirical Analysis

3.1. The Data

Since 2003, the Database Italiano delle Perdite Operative (DIPO) association col-
lects twice a year operational–loss data exceeding a reporting–threshold of 5,000 Euros.
For all participating institutions, the definitions of gross loss, event type and business

3Relationships between superadditivity and properties of the underlying (joint and marginal) dis-

tributions are, for example, discussed in Embrechts et al. (2009).
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line are identical. With 31 members (amounting to 209 different entities) of all sizes,
the DIPO database represents about 75% of the Italian banking system in terms of
gross income and operating costs.

Despite the substantial sample size, it turns out that a number of the 7×8 business–
line/event–type cells are empty, reflecting that no losses have been recorded. For this
reason, we conduct our analysis on a more aggregate level. To do so, we could aggregate
across either the event–type or the business–line dimension. Both approaches can be
found in the literature.4 Which of the two strategies is to be preferred depends on the
objective of the analysis. For management purposes, it appears more reasonable to
analyze business lines separately, in order to assess loss profiles and identify divisions
suffering from negative developments. On the other hand, it seems more natural that
events of the same type, such as fraud or storm losses, follow distributions with similar
characteristics, so that statistical fitting might give better results than when aggre-
gating over business lines. This last argument and the fact that both the number of
events and the loss amounts are distributed more evenly across event types than across
business lines (see Tables 2 and 3) are the reasons why we model along the event–type
dimension in the following.

Empirical operational–risk analyses can be hampered by data features, such as non-
stationarities and seasonalities (Embrechts et al., 2003a), which have to be accounted
for in the modeling process. We do this by choosing an appropriate level of temporal
aggregation, i.e., when deciding on using weekly, monthly or quarterly loss data. Al-
though a weekly aggregation level leaves us with more data points, many of these are,
however, equal to zero; moreover, seasonalities and loss clustering are rather prevalent.
At a monthly frequency, we find that large losses tend to occur around the turn of the
year and that there are clusters of months with many losses and high aggregate losses.
Quarterly aggregation partially eliminates these features, but reduces the number of ob-
servations substantially. To balance the tradeoff between having a large sample size and
working with data that are approximately independent and identically distributed, we
use monthly data—i.e., we aggregate all losses occurring within one calendar month—
which gives rise to 60 observations per event–type.

4Moscadelli (2004), for example, groups by business line and El-Gamal et al. (2006) by event type.
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Table 2: Distribution across event types. Period: Jan 2003 - Dec 2007.

Event type % of events Total loss (in %)

1 Internal Fraud 2.56 17.60

2 External Fraud 37.01 19.37

3 Employment Practices & Workplace Safety 5.93 6.87

4 Clients, Products & Business Practices 28.69 37.31

5 Damage to Physical Assets 2.65 1.34

6 Business Disruption & System Failures 1.16 1.12

7 Execution, Delivery & Process Management 21.97 16.39

Table 3: Distribution across business lines. Period: Jan 2003 - Dec 2007.

Business line % of events Total loss (in %)

1 Corporate Finance 0.14 0.17

2 Trading & Sales 5.08 11.51

3 Retail Banking 62.46 45.25

4 Commercial Banking 7.61 23.64

5 Payment & Settlement 0.69 0.42

6 Agency Services 0.62 0.85

7 Asset Management 0.68 0.59

8 Retail Brokerage 22.73 17.57
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3.2. Correlation

The most common approach to capturing dependence structures is to estimate lin-

ear (Pearson) correlations. Linear correlation estimates for all seven event types are

reported in Table 4. The upper, right triangle in Table 4 displays estimates from the

full sample, January 2003 – December 2007, the lower, left part those obtained from the

subperiod January 2003 – April 2006. Looking at the full–sample estimates first, we

observe that correlations may vary substantially across event–type combinations. Com-

bination (2;5) (External Fraud; Damage to Physical Assets), for example, shows little

correlation, whereas Combination (3;4) (Employment Practices & Workplace Safety;

Clients, Products & Business Practices) exhibits stronger correlation with ρ = 0.528.5

This suggests that event–type–specific characteristics need to be allowed for when as-

sessing dependence patterns in operational–risk data.

In the following, we will restrict our attention to event–type Combinations (2;5)

and (3;4), as they cover a range of possible dependence structures. This does not imply

that our conclusions are specific to these combinations. They may rather cover the

wide spectrum of loss–data characteristics encountered in practice.

Turning to the correlation estimates from the smaller subsample and comparing up-

per and lower triangles in Table 4, we observe that some correlation estimates are rather

unstable—in financial risk analysis, a widely observed deficiency of linear correlation

estimates. This instability is illustrated in Figure 1, showing scatter plots of aggregate

losses for the two event–type combinations (upper and lower panels) and the two sample

sizes (left and right panels). The presence of one or two extreme observations, encircled

in the full–sample plot (left panel), or their absence in the subsample (right panel)

explains the variation in the correlation estimates. An even more drastic change in the

linear correlation estimates results from elimination of the most extreme observation in

5This finding is in line with intuition. Event–types 3 and 4 are both affected by management

practices, whereas External Fraud and Damage to Physical Assets tend to be attributable to a broad

range of causes.
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Table 4: Estimated linear (Pearson) correlations for full–sample period 01/2003–

12/2007 (upper triangle) and subsample 01/2003–04/2006 (lower triangle)

ET 1 ET 2 ET 3 ET 4 ET 5 ET 6 ET 7

ET 1 1 0.045 0.221 0.046 0.010 0.085 0.223

ET 2 0.062 1 0.162 0.161 0.026 -0.066 0.052

ET 3 0.126 0.283 1 0.528 0.295 0.182 0.443

ET 4 -0.028 0.242 0.588 1 0.143 0.063 0.201

ET 5 -0.012 -0.114 0.290 0.177 1 -0.046 -0.050

ET 6 0.030 -0.039 0.151 0.012 -0.053 1 0.065

ET 7 0.155 0.063 0.365 0.202 -0.104 0.045 1

the smaller sample for Combination (3;4), causing the correlation estimate to decrease

from 0.588 to 0.323.

Table 5: Estimated Kendall rank correlations for full–sample period 01/2003–12/2007

(upper triangle) and subsample 01/2003–04/2006 (lower triangle).

ET 1 ET 2 ET 3 ET 4 ET 5 ET 6 ET 7

ET 1 1 0.135 0.248 0.214 0.142 0.105 0.190

ET 2 0.097 1 0.148 0.211 0.005 -0.024 0.111

ET 3 0.064 0.192 1 0.510 0.260 0.207 0.183

ET 4 0.049 0.218 0.451 1 0.307 0.313 0.072

ET 5 0.046 -0.005 0.162 0.356 1 0.052 -0.033

ET 6 0.041 0.097 0.151 0.280 0.051 1 0.172

ET 7 0.133 0.082 0.090 -0.044 -0.139 0.139 1

In view of the volatility of our Pearson–correlation estimates, rank–based correla-

tions may be preferable, as they tend to yield more robust estimates. They are derived

from ranked observations and, thus, are less affected by extremes. Tables 5 and 6, con-

structed in the same way as Table 4, report estimates for Kendall’s τ and Spearman’s

ρ, respectively. The estimates for these statistics reveal that not only the size–based
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Figure 1: Scatter plots of aggregate losses for event–type Combinations (2;5) (top) and

(3;4) (bottom) for the full sample (left) and the subsample (right).

but also the rank–based correlation estimates are quite unstable.

These findings suggest that, in the context of operational losses, both linear and

rank correlations tend to be inappropriate measures of dependence. One reason for this

can be due to the fact that—just like Pearson’s correlation—rank correlations are still

too rigid to handle complex dependence structures. The copula approach, discussed

next, offers more flexibility in that regard.
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Table 6: Estimated Spearman rank correlations for full–sample period 01/2003–

12/2007 (upper triangle) and subsample 01/2003–04/2006 (lower triangle).

ET 1 ET 2 ET 3 ET 4 ET 5 ET 6 ET 7

ET 1 1 0.197 0.343 0.312 0.223 0.152 0.293

ET 2 0.157 1 0.202 0.293 0.001 -0.029 0.153

ET 3 0.057 0.276 1 0.695 0.385 0.320 0.257

ET 4 0.071 0.301 0.633 1 0.433 0.451 0.109

ET 5 0.096 -0.002 0.258 0.494 1 0.079 -0.043

ET 6 0.062 0.146 0.236 0.411 0.088 1 0.272

ET 7 0.191 0.112 0.125 -0.045 -0.202 0.226 1

3.3. Copulas

The copula approach provides a framework for handling more complex forms of de-

pendence than conventional Pearson correlation, which restricts dependencies between

two random variables to proportional variations that hold globally over the range of

the data. Copulas offer more flexibility by allowing dependence patterns to vary as loss

levels change.6

Given n loss types, L1, . . . , Ln, with joint distribution function F (·, . . . , ·) and marginals

F1, . . . , Fn, a copula function, C(·, . . . , ·), “couples” the marginal distributions via Sklar

(1959)

Pr[L1 ≤ �1, . . . , Ln ≤ �n] = F (�1, . . . , �n) = C(F1(�1), . . . , Fn(�n)) . (3)

A copula function captures the entire dependence structure between losses L1, . . . , Ln,

while being invariant under strictly increasing transformations of the marginals. This is

a clear advantage over the Pearson correlation coefficient, which is affected by changes

in the marginal distributions. The explicit representation of the copula function,

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F

−1
n (un)) ,

6For a general introduction to copulas, see Nelsen (1999) and Cherubini et al. (2004).
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with u1, . . . , un ∼ Unif(0, 1), shows how to “extract” a copula from the joint dis-

tribution function, F (·, . . . , ·). Copulas may also be applied to survival functions,

F̄ (�) = Pr[L > �] = 1− F (�). For the joint survival function

F̄ (�1, �2) = Pr[L1 > �1, L2 > �2] = 1− F1(�1)− F2(�2) + F (�1, �2) ,

we obtain a relationship analogous to (3), i.e.,

F̄ (�1, �2) = C̄
(
F̄1(�1), F̄2(�2)

)
,

where

C̄(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2) (4)

is the survival copula for L1 and L2.

In our analyses, we consider copula families that are commonly used in practice.

They include the Gaussian copula

CΦ(u1, . . . , un) = Φn(Φ
−1(u1), . . . ,Φ

−1(un); ρ) ,

where Φn(·) denotes the multivariate cumulative distribution function (cdf) of the stan-

dard normal distribution with correlation matrix ρ; and Φ is the univariate standard

normal cdf. Another elliptic copula we consider is the Student–t copula

CΨ(u1, . . . , un) = Ψn(Ψ
−1(u1), . . . ,Ψ

−1(un); ρ, ν) ,

which is implied by the multivariate Student-t distribution with correlation matrix ρ

and degrees–of–freedom parameter ν.

Archimedean copulas are alternatives to elliptic copulas. Below, we consider Gumbel

and Clayton copulas, given by

CG(u1, . . . , un) = exp

⎧
⎨
⎩−

(
n∑

i=1

(− ln(ui))
α

)1/α
⎫
⎬
⎭ , α > 1
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and

CC(u1, . . . , un) =

(
n∑

i=1

u−γ
i − n+ 1

)−1/γ

, γ > 0,

respectively.

The dependence structures implied by these copulas are illustrated in Figure 2,

showing 5,000 random draws from bivariate copulas. Although, in all cases in Figure

2, Kendall’s τ is set to τ = 0.6, the resulting joint behavior of the components differs

greatly across the copula types. This is mainly due to the copulas’ tail behavior or,

more specifically, the nature of their tail–dependence—a property that cannot be cap-

tured by a correlation measure.

�i

� j

�i

� j

�i

� j

�i

� j

�i

� j
Gaussian Student-t Gumbel Clayton Clayton Survival

Figure 2: Dependence structures associated with different copula functions.

The coefficient of upper–tail dependence, denoted by λU , characterizes the joint

behavior of the operational losses as the loss level, t, rises and is given by

λU = lim
t→1−

Pr[Fi(�i) > t|Fj(�j) > t] .

It can also be expressed in terms of the copula of L1 and L2 via

λU = lim
t→1−

1− 2t+ C(t, t)

1− t
. (5)

The Gaussian copula implies a tail–dependence coefficient of zero. The Student–t

copula is characterized by tail dependence in both the upper and the lower tail; i.e., the
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data cluster symmetrically in the extremes of the distribution. Archimedean copulas

allow for asymmetric dependence structures, with the Gumbel copula exhibiting upper–

tail and the Clayton copula lower–tail dependence.

Table 7: Copulas and coefficients of upper–tail dependence.

Copula Θ λU

Gaussian ρ 0

Student-t (ρ, ν) 2− 2Ψn

(√
ν
√
1−ρ√
1+ρ

; ρ, ν
)

Gumbel α 2− 21/α

Gumbel Survival αS 0

Clayton γ 0

Clayton Survival γS 2−1/γS

When modeling operational losses, only upper–tail dependence is of relevance. To

still use copulas exhibiting only lower–tail dependence, we “flip” the copula via (4), to

obtain the corresponding survival copula, which represents the “mirror image” of the

original copula. For example, in the case of the Clayton copula, we obtain the Clayton

survival copula, which exhibits upper–tail dependence, as shown in the far right scatter

plot in Figure 2. The relationships between copula parameters, denoted by Θ, and the

upper–tail–dependence coefficients are summarized in Table 7.

Depending on how the marginal distributions are treated, there are different ways of

estimating copulas with maximum likelihood.7 Below, we do not estimate any paramet-

ric marginal distributions, but rather use empirical densities as inputs to the likelihood

function.8 The rationale for this is that we do not want to influence the estimation of

7An overview of different approaches to copula estimation can be found in Cherubini et al. (2004).
8To be precise, we use a rescaled version of the cdf, which divides by n + 1, in order to avoid

problems as ui approaches unity; see Genest et al. (1995).
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the dependence structure by a parametric restrictions on the marginals.

Table 8: Maximum–likelihood estimation for alternative parametric copulas for event–

type Combination (2;5).

Θ̂ λ̂U −�(Θ̂) AIC BIC p–value A2 p–value A4

01/2003–12/2007

Gaussian -0.015 0.000 -0.005 1.989 8.178 0.640 0.619

Student-t 3.86 0.095 -0.945 0.110 6.299 0.798 0.606

Gumbel 1.015 0.020 -0.016 1.969 8.157 0.790 0.769

Gumbel Survival 1.000 0.000 0.000 2.000 8.189 0.697 0.743

Clayton 0.023 0.000 -0.009 1.982 8.171 0.792 0.775

Clayton Survival 0.002 0.000 -0.000 2.000 8.189 0.692 0.628

01/2003–04/2006

Gaussian -0.014 0.000 -0.003 1.994 7.372 0.7053 0.599

Student-t 7.51 0.027 -0.092 1.817 7.194 0.7592 0.645

Gumbel 1.00 0.000 0.000 2.001 7.378 0.6254 0.613

Gumbel Survival 1.01 0.000 -0.001 1.998 7.376 0.6943 0.670

Clayton 0.081 0.000 -0.068 1.864 7.242 0.8581 0.849

Clayton Survival 0.000 0.000 0.000 2.000 7.378 0.6583 0.648

The estimation results for the event–type Pair (2;5) are reported in Table 8. The

upper (lower) part of Table 8 states the results for the full (first two thirds of the) sam-

ple. The first column shows the parameter estimates obtained by the semiparametric

maximum–likelihood procedure. For the Gaussian copula, the estimated correlations

are ρ̂ = −0.015, for the full sample, and ρ̂ = −0.014, for the shorter sample. These are

16



more stable estimates than those for the Pearson correlation (see Table 4). The second

column reports the coefficients for upper–tail dependence as implied by the copula esti-

mates and the relations reported in Table 7. Of the three copulas capable of capturing

upper–tail dependence, only the Student-t yields a somewhat sizable value; the Gumbel

suggests little and the Clayton survival no tail dependence.

The subsequent columns in Table 8 assess the goodness of fit: the negative log–

likelihood (Column 3), followed by two information or model–selection criteria, the

AIC and BIC.9 Both the AIC and BIC favor the Student-t copula for the full and

the small sample, though their values are quite close for the small sample. The final

two columns present p–values from two goodness–of–fit tests, which, according to the

simulation studies by Berg (2009), seem to perform well: the A2–test of Genest and

Rémillard (2008) and the A4–test (Genest et al., 2006). Both tests are based on the

distances between the empirical and the fitted copulas which enter a Cramer–van–Mises

statistic.10 None of the p–values derived from the bootstrap procedures allows us to

reject any of the copulas under consideration.

Table 9 presents the estimation results for Combination (3;4). Here, for both sam-

ples, the AIC and BIC select copulas exhibiting substantial tail dependence, but the

favored copula–type varies with the sample (the Student–t, with ν̂ = 0.40, for the full

and the Gumbel, with α̂ = 0.56, for the partial sample). However, the values obtained

for the information criteria are quite close. As with Pair (2;5), based on the goodness–

9The Akaike (AIC) and Bayesian Information Criteria (BIC) are given by

AIC = −2 ln(�(Θ̂)) + 2q

BIC = −2 ln(�(Θ̂)) + q ln(T )

where q refers to the number of estimated parameters and T denotes the sample size. The model

associated with the lowest criterion value is favored by the data under investigation.
10We use the same numbers of replications as Berg (2009), namely, 10,000 for the parametric boot-

strap and an additional 2,500 replications in the double bootstrap.
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Table 9: Maximum–likelihood estimation results for alternative parametric copulas for

event–type Combination (3;4).

Θ̂ λ̂U −�(Θ̂) AIC BIC p–value A2 p–value A4

01/2003–12/2007

Gaussian 0.719 0.000 -19.489 -36.977 -30.789 0.912 0.920

Student-t 6.618 0.402 -19.971 -37.941 -31.752 0.961 0.935

Gumbel 1.954 0.574 -18.386 -34.772 -28.583 0.285 0.499

Gumbel Survival 1.986 0.000 -19.443 -36.885 -30.696 0.859 0.828

Clayton 1.522 0.000 -17.065 -32.129 -25.940 0.103 0.228

Clayton Survival 1.398 0.609 -15.150 -28.300 -22.111 0.010 0.048

01/2003–04/2006

Gaussian 0.682 0.000 -10.593 -19.1864 -13.809 0.8452 0.9071

Student-t 5.865 0.390 -11.023 -20.0453 -14.668 0.9181 0.8362

Gumbel 1.910 0.562 -11.315 -20.6297 -15.252 0.6134 0.7293

Gumbel Survival 1.795 0.000 -9.630 -17.2595 -11.882 0.5594 0.8561

Clayton 1.193 0.000 -8.341 -14.6819 -9.304 0.0909 0.3117

Clayton Survival 1.494 0.629 -10.017 -18.0344 -12.657 0.1978 0.3357

of–fit tests, (with the exception of the Clayton survival copula for the full sample) it

is not possible to reject any of the copulas entertained. Overall, however, we obtain

superior fits for event–type Pair (3;4) than for Pair (2;5).

Figure 3 illustrates the fit of the copulas by comparing contour plots of empirical

and fitted copulas. The left (right) panel is based on the full (partial) sample. Whereas

for Pair (2;5) (upper part) all fitted copula contours are close, they vary for (3;4) (lower
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Figure 3: Contour plots of empirical and fitted copulas; Pairs (2;5) (top panel) and (3;4)

(bottom panel), full sample (left panel) and partial sample (right panel).

part). This is in line with having no indication of tail dependence for Pair (2;5). The

losses in Event–types 3 and 4 do, however, exhibit upper–tail dependence, so that cop-

ulas, which are capable of capturing this, fit substantially better.

The challenges of parametric copula estimation in small samples are evident from

the kinks in the empirical copulas that are caused by only a few observations. When

reducing the sample size, we observe noticeable differences in the empirical copulas, an
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indication that also the copula estimates are unstable.

3.4. Nonparametric Tail Dependence

Rather than fitting parametric copulas, we can model tail dependence nonparamet-

rically by replacing the parametric copula in (5) by its empirical counterpart. Here,

alternative strategies can be considered. As pointed out in Coles et al. (1999), tail

dependence not only implies that λ̂U > 0, but also that

χ̄ = lim
t→1−

2 ln(1− t)

ln(C̃(t, t))
− 1 = 1 . (6)

where C̃(t, t) = Pr[U1 > t, U2 > t]. As summarized in Table 10, both of these properties

can be used to identify the joint tail behavior.

Table 10: Identification of tail behavior.

Tail Independence Tail Dependence

λU 0 (0,1]

χ̄ [-1,1] 1

For λU = 0, there is asymptotic tail independence, irrespective of the value χ̄

assumes. Asymptotic dependence, however, requires both λU > 0 and χ̄ = 1. If asymp-

totic tail independence holds, the value of χ̄ can still be informative. Rather than taking,

in (6), the limit as t → 1, lower confidence levels may be considered. Dependencies at

levels t < 1—a property we refer to as quantile dependence—could be present, even if

there is no asymptotic tail dependence. Since VaR–estimates are quantile–estimates,

quantile dependence is especially relevant for risk–management applications. Given

that more observations are available for less extreme confidence levels, nonparametric

estimation of quantile dependence via λU and χ̄ could—from an empirical viewpoint—

be a more reliable option.
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Rewriting (5) as

λU = lim
t→1−

(
2− 1− C(t, t)

1− t

)
= lim

t→1−
λU(t) , (7)

quantity λU(t) conveys information about quantile dependence (see Joe et al., 1992).

Alternatively, (7) can be expressed as

λU = lim
t→1−

(
2− ln(C(t, t))

ln(t)

)
= lim

t→1−
χ(t) , (8)

giving rise to a second quantity, χ(t), which can be evaluated for different levels of t

(Coles et al., 1999). Finally, in (6), χ̄ can be written as

χ̄ = lim
t→1−

2 ln(1− t)

ln(C̃(t, t))
− 1 = lim

t→1−
χ̄(t) . (9)

When replacing C(t, t) in (7)–(9) by its empirical counterpart, we obtain estimators

λ̂U(t), χ̂(t) and ̂̄χ(t) for different levels of t. The first two quantities indicate the pres-

ence of asymptotic tail dependence, if they converge towards a value above zero as t

increases. At the same time, however, ̂̄χ(t) needs to converges to one; otherwise, there

is tail independence. In case of tail independence, ̂̄χ(t) may still provide an indication

of the presence of quantile dependence.

Figure 4 shows the results for the nonparametric estimation of quantities λ̂U(t), χ̂(t)

and ̂̄χ(t). For Combination (2;5) (upper panel), there is no evidence for tail dependence

as all three estimates do not converge to a positive level as t increases. Moreover, ̂̄χ(t)
is close to zero over the entire range of t, suggesting also the absence of quantile depen-

dence. The results for Combination (3;4) (lower panel) differ. Although λ̂U(t) and χ̂(t)

drop towards zero for t > 0.75, ̂̄χ(t) is clearly positive over a wide range of t, indicating

the presence of quantile dependence.

Regarding the choice of the level of t, we are faced with the well–known bias–

efficiency tradeoff. Only for high t–levels do we obtain information about the tail

behavior. As we include more observations away from the tail, estimates become more
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Figure 4: Nonparametric determination of tail dependence for Pairs (2;5) (top panel)

and (3;4) (bottom panel), full sample (left panel) and partial sample (right

panel).

and more biased. On the other hand, as t approaches unity, tail estimates become

increasingly inefficient, given the limited number of observations, so that inference on

tail dependence from estimates λ̂U(t) and χ̂(t) with, say, t ≥ 0.9 could be questionable.

We, therefore, advocate the combined use of alternative approaches to assess depen-

dence properties, rather than relying on one single approach. In our investigation, the

results from both parametric copula fitting and the nonparametric analysis suggest tail

dependence for Pair (3;4) but not for (2;5).

One lesson from our analysis of two event–type pairs is that we cannot impose a
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universal assumption on the joint tail behavior of operational–risk losses across event

types. Instead, case–specific empirical analyses, taking the heterogeneity of the event

types into account, are required for reliable risk assessment.

4. Effects on Risk Capital

4.1. Range of Risk–capital Estimates

Under the LDA, the aggregate risk–capital estimate for all operational–risk com-

ponents is obtained from (2) by summing up all individual component–VaRs. This

oversimplification should produce only a coarse proxy for an institution’s appropriate

capital charge. The crucial question is whether or not the resulting estimate provides a

reasonable upper bound. Unfortunately, there is no guarantee for this to be the case. If

operational losses are characterized by superadditivity, the standard LDA will induce

a downward bias in risk–capital estimates.

To address this question, we simulate VaR.999–values for the event–type Pairs (2;5)

and (3;4), making different dependency assumptions and varying the number of Monte

Carlo replications. For all simulations, we use the copula–parameter values obtained

by maximum likelihood estimation. To avoid distortions resulting from alternative as-

sumptions about the marginal distributions, lognormal distributions are fitted to the

loss data and used to simulate the marginal distributions.

As discussed in Section 2, quantity

Di,j
.999 =

VaR.999(Li + Lj)− [VaR.999(Li) + VaR.999(Lj)]

VaR.999(Li) + VaR.999(Lj)

evaluates the relative difference in risk capital when accounting for dependencies as

opposed to naive summation. A positive (negative) value of Di,j
.999 indicates that the

risk–capital estimate from the explicit approach increases (decreases) relative to Basel’s

LDA.
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In the simulations, we use two extreme dependence assumptions as alternatives to

LDA’s comonotonicity assumption, namely, the Gaussian copula and, as a “worst–case

scenario,” the copula—among the ones considered—yielding the highest tail depen-

dence coefficient for the respective event–type combination.

Figure 5 shows the results for the Gaussian copula. The differences between the two

event–type combinations are evident. Considering, first, the results for 10,000 replica-

tions, we find for Combination (2;5), which is characterized by a negative correlation

estimate, that risk–capital estimates always decrease; and a risk–capital reduction of

almost 30% can be possible. However, for Combination (3;4), with a correlation esti-

mate of about ρ̂ ≈ 0.7, the Gaussian–copula assumption may easily lead to an increase

in the risk–capital. Although the interquartile range is entirely below zero, so that a

decrease is to be expected in most cases, the estimates from the explicit approach may

exceed Basel’s LDA estimates by more than 20%.

As the number of replications increases, the boxplots narrow and the variation of the

risk–capital estimates becomes less dramatic. For 50,000 replications, the possible range

for Combination (2;5) lies between -19% and -25%; for 100,000, this range becomes

somewhat tighter and lies between -19% and -23%. In line with this, for Combination

(3;4) we observe that the higher the number of replications, the smaller the portion of

cases where risk–capital estimates increase. With 100,000 replications, the maximum

increase in risk–capital shrinks to about +3%.

Figure 6 shows the result for the “worst–case copula,” which turns out to be the

Student–t (implying a tail–dependence coefficient of λU = 0.095) for Pair (2;5) and

the Clayton survival (λU = 0.629) for (3;4). Compared to the Gaussian case in Figure

5, the “worst–case” assumption results in an upward shift of all boxplots. Hence, the

presence of tail dependence leads to more cases where risk–capital increases. In case

of low tail dependence, as in Pair (2;5), risk–capital still decreases, however, for all
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Figure 5: Range of simulated risk capital changes with Gaussian copula.

replications. Higher tail dependence, as in Pair (3;4), may increase risk–capital by up

to 6% (100,000 replications).
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Figure 6: Range of simulated risk capital changes with “worst–case copula.”

The observed increases in risk–capital estimates, when modeling dependencies ex-

plicitly rather than summing up, may have two sources: (i) superadditivity affecting
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the aggregate VaR measure, and (ii) the number of replications specified in the Monte

Carlo setup. In the next subsection we try to disentangle these two effects.

4.2. Bounds on Risk–capital Estimates

As just discussed, it may not be clear to what extent variations in simulation–based

assessments of aggregate risk–capital are due to subadditivity problems or to the par-

ticular simulation setup. To address this question, we derive a theoretical worst–case

bound, so that any exceedances of that bound are due to the simulation setup.11

Copula are always bounded by the so–called Fréchet–Höffding bounds (Fréchet,

1951; Höffding, 1940)

max(u1 + . . .+ un − n + 1, 0)︸ ︷︷ ︸
C�(u)

≤ C(u) ≤ min(u)︸ ︷︷ ︸
Cu(u)

. (10)

By imposing restrictions on the underlying copula, tighter bounds can be established.

Given copula C, with lower bound C0 ≤ C, the upper bound refers to its dual,

Cd(u1, u2) = u1 + u2 − C(u1, u2). Assuming C0 ≤ C and Cd ≤ Cd
1 , we obtain the

bounds

F−1
min(α) = inf

C0(u1,...,un)=α

(
F−1
1 (u1) + · · ·+ F−1

n (un)
)
, (11a)

F−1
max(α) = sup

Cd
1 (u1,...,un)=α

(
F−1
1 (u1) + · · ·+ F−1

n (un)
)
. (11b)

For the two–dimensional case, C ≥ C0 implies that Cd ≤ Cd
0 and we can take C0 = C1.

The more restrictive the assumptions on the copula bounds are, the tighter the VaR–

bounds. In our analysis, we consider the three, increasingly restrictive, cases:

1. C0 = C1 = C�: We do not use any restriction on the dependence structure and

thus use the lower Fréchet bound, C�;

2. C0 = C1 = uiuj: We assume that C ≥ uiuj; i.e., we have positive quadrant

dependence (PQD);

11The issue of VaR–bounds has, for example, been addressed in Makarov (1981), Frank et al. (1987),

and, more recently, in Embrechts and Puccetti (2006).
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3. C0 = C γ̂S
CS, C̄1 = C γ̂

C : We take the Clayton survival copula as lower bound, using

the parameter values estimated from the DIPO data. For the upper bound in

(11b), we exploit the fact that C0 = C1, implying that the survival copula of C1

must be the Clayton. We, thus, use the parameter estimate γ̂ as the upper bound.
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Figure 7: Relative variations in simulated risk capital and theoretical bounds based on

a Gaussian copula.

Figures 7 and 8 show again the boxplots presented in Figures 5 and 6, respectively,

but now together with the theoretical bounds for the changes in risk–capital under the

three assumptions on the copula dependence structures reported above. The boxplots in

the left graph in Figures 7 and 8 are for Combinations (2;5) and (3;4) for Brc=10,000.

The theoretical bounds are indicated by a triangle when C0 = C1 = C� (Case 1), a

circle when C0 = C1 = uiuj (Case 2) and square when C0 = C γ̂S
CS, C̄1 = C γ̂

C (Case 3).

The center and right graphs in Figures 7 and 8 plot the boxplots for Brc=50,000 and

Brc=100,000, respectively.
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Figure 8: Relative variations in simulated risk capital and theoretical bounds based on

a “worst–case copula.”

For analyses with smaller numbers of replications, the bounds in correspondence of

no restriction on the dependence can be used to determine whether changes in risk–

capital are due to distributional properties of the data or due to the Monte-Carlo setup.

In fact, as the figures show, for 10,000 replications, a large part of the boxplots exceeds

such theoretical bounds. Hence, the number of simulations is insufficient to get reliable

estimates of risk-capital, given that the theoretical bounds for no restriction on the

dependence should never be exceeded. As expected, when the number of replications

increases, larger portions of the estimates lie inside such bounds until all the estimates

are within them.

The use of such bounds can become even more effective to compute risk capital

estimates the stronger and more realistic the dependence assumption is. In fact, the

bounds get tighter as assumptions on dependence get stronger. Hence, the uncertainty

related to the domain of variation of the risk capital estimates decreases and risk cap-

ital estimates become more accurate. On the contrary, when no information on the

dependence structure is available, if only the bounds computed in correspondence of

the dependence assumptions are exceeded by some of the capital estimates, we cannot

28



determine if the Monte–Carlo setup is adequate or not.

Finally, we also notice that for none of the two event–type pairs are the bounds

entirely above or below zero, so that we cannot rule out either an increase or a decrease

in aggregate risk–capital estimates. The superadditivity problem is therefore still an

issue, even when the Monte-Carlo setup is adequate, and aggregate risk–capital esti-

mates may still increase rather than decrease when modeling dependencies.

Summing up, considering bounds on risk–capital estimates can provide relevant in-

formation in order to determine if the number of simulations is sufficient to get valid

risk-capital estimates and therefore disentangle the superadditivity effect from the sim-

ulation setup. Moreover, the more information on the dependence structure is provided,

the smaller the dispersion of the estimates, reducing the uncertainty in the estimates,

and possibly, providing more realistic risk–capital estimates that can adequately cover

future operational risk losses.

5. Conclusions

Drawing on a real–world database of operational–loss events in the Italian banking

industry, we examined different strategies to modeling operational–risk dependencies

and assessed their effects on aggregate risk–capital estimates based on 99.9%–VaR.

The focus was on two different event–type combinations, representing typical situations

when modeling dependence among operational–risk components. One combination was

characterized by a lack of (or presence of only weak) dependence, the other by extremal

(i.e., tail or quantile) dependence. Despite concentrating only on two cases, it is to be

expected that our results will resemble those for other combinations of event types and

business lines.

With respect to dependencies among different event types, we confirmed the widely

observed phenomenon that linear correlations are unstable and mainly driven by a few

extreme loss–events. Rank correlations offer an alternative, but they do not necessarily
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display more stability in capturing comovements in monthly loss data. To go beyond

the concept of correlation, alternative methods to modeling extremal dependence were

considered. Specifically, we employed parametric copula and nonparametric approaches.

Next, we evaluated implications on the estimation of aggregate risk–capital, when

modeling dependencies explicitly rather than using Basel’s Loss Distribution Approach,

which simply adds up the estimates for the individual risk components. We were in-

terested in the question of whether an explicit modeling of dependencies will—as has

been frequently suggested—result in lower aggregate risk–capital estimates. Or can

tail dependence lead to larger estimates than the LDA? As our results demonstrate,

in the presence of tail dependence, this can, indeed, be the case for Gaussian–copula

structures. Therefore, identifying the presence of extremal dependence is of paramount

importance when aggregating VaR–based risk estimates. Neglecting tail dependence

and restricting one’s view to linear correlation may lead to a substantial underestima-

tion of risk and, thus, may have serious practical implications for financial institutions.

In addition to the purely distributional aspects, another important finding of this

study is that for simulation–based VaR–assessment, as is common in practice, the speci-

fied number of simulation runs can strongly affect risk–capital calculations. It has to be

made sure that the number of runs is sufficiently large to avoid a—potentially severe—

overestimation of risk. The increases in aggregate VaR we observed have two sources:

the VaR–measure’s lack of subadditivity and the simulation setup. To disentangle the

two effects, we considered theoretical, worst–case VaR bounds as a way of controlling

the large variation of the estimates and improving the stability of the estimates.

Finally, it should be kept in mind that the determination of operational–risk capi-

tal is typically hampered by the limited sample sizes encountered in practice and the

explicit focus on extremely small tail probabilities, which are are associated with “once–

in–thousand–years–events.” Hence, results from either nonparametric or parametric–

copula approaches have to be taken with appropriate caution. Nevertheless, two general

recommendations follow from our analysis. First, serious efforts should be undertaken
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towards improving the empirical database for operational–risk losses; and, second, a

combination of modeling strategies should be employed in order to obtain a more com-

plete and reliable picture of dependence structures and their consequences for aggregate

risk–capital calculations.
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Höffding, W., 1940. Masstabinvariante Korrelationstheorie. Schriften des Mathematis-

chen Instituts und des Instituts für Angewandte Mathematik der Universität Berlin

5, 179–233.

Joe, H., Smith, R.L., Weissman, I., 1992. Bivariate Threshold Methods for Extremes.

Journal of the Royal Statistical Society, Series B 54, 171–183.

Makarov, G., 1981. Estimates for the Distribution Function of a Sum of Two Random

Variables When the Marginal Distributions are Fixed. Theory of Probability and Its

Applications 26, 803–806.

McNeil, A., Frey, R., Embrechts, P., 2005. Quantitative Risk Management: Concepts,

Techniques and Tools. Princeton Series in Finance, Princeton University Press.

Moscadelli, M., 2004. The modelling of operational risk: experience with the analysis

of the data collected by the Basel Committee. Discussion Paper 517. Banca d’Italia.

Nelsen, R.B., 1999. An Introduction to Copulas. volume 139 of Lecture Notes in Statis-

tics. Springer, New York.

33
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