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Abstract

We define an algebro-topological concept of essential map and we use it to prove several
results in the theory of general equilibrium and Nash equilibrium refinement.
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1 Introduction

We use some tools of algebraic topology to give a unified treatment of several results on stable

sets and the existence of general equilibria.

1.1 Definition and elementary properties of essential sets

Let (M,0M) and (T, 0T) be compact manifolds with boundary of dimension m and ¢ respec-
tively.

Let 71 and 7y be the projections (M,0M) x (T,0T) — (T,0T) and (M,0M) x (T,0T) —
(M, 0M) respectively.

All homology coeflicients will be assumed to be in a field of characteristic zero.

It is assumed that the manifolds are oriented, (,; will denote the orientation class of (M, OM).
To avoid trivial pathologies we assume that all spaces are CW complexes ( or ANR or suban-

alytic or your favourite “nice” space).

Definition 1.1 A closed subset n C (M,0M) x (T,0T) is called essential if the induced map
on cohomology
HY(T,9T) — H'(n)
18 1njective.
1.2 Families of solutions of equations and fixed point sets are essential

A parameterized family of maps is a continuous map f : T'x M — N, the space T functions
as parameter space. For t € T, by f; we mean the restriction of f to {t} x M. We consider
the set

n:={(t,m)|f(t,m) =no}

of points that map onto ng under f.
Theorem 1.2 Let f : TxM — N be a parameterized family of maps such that m = n. Further

assume that ng ¢ f(OM) for allt € T. If deg f # 0, then the projection map 7 : 1 — T is

essential.

Proof. Let @ be a generator of H™(N, N — ng). Denote f*(a) € H™
a. Let a also denote the class a as an element of H™(T x M,T x OM

(T x M, T x M —n) by
). Let p € H,(M,0M)
be the oriented class. Given x € H*(T) consider the map x + (a U n*x) \ g1, where U is the

cupproduct, and \ is the slant product. We have

(aUre)\p=(a®2)\ p=(a\p) Uz = (deg /) - .
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So, if deg f # 0, the map x — 7*x is injective when restricted to supp(a), and hence also

injective on 7. [ |

For a parameterized family of functions f: T x M — M, let

1= A{(t,m)[f(t,m) =m}
be the set of fixed points of f. Denote for each t € T the Lefschetz number of f; by L(f;).

Theorem 1.3 Let f: T x M — M be a parameterized family of maps, and assume that there
exists an L(f) # 0 such that L(f;) = L for allt € T. Then the projection map w:n — T is

essential.

Proof. Let A € Hy(M x M, M x OM) and I" € H,(M x M,0M x M) be the images of y €
Hy,(M,0M) under the homomorphisms induced by the maps m +— (m,m) and m — (m, f(m))
respectively. Let d € H¥(M x M,0M x M) and g € H*(M x M, M x OM) be their Poincaré
duals. The Lefschetz number is, by definition, L(f) = (d U g, x u), where {-,-) denotes the

algebraic duality operator between cohomology and homology.

Writed = 1®d € H¥(Tx M x M,TxdOM x M) and g = 1®g € H*(T'x M x M, T x M x OM).
Note that dU g has support near n C T x M — T x M x M where the second inclusion is the

diagonal.

As before consider the map A that assigns to an element x € H*(T) the element A(z) :=
7*(zUdUg)/u® p. As before we that A(x) = L(f)z. So, the map 7* is injective from H*(T)
into H*(N.) where N, is any neighborhood of 7. This implies that it is injective in Cech

cohomology. [ |

2 Existence of Stable Sets

A KM perturbation of the game I' = (N, u) is a vector n = (1,);en where n; = (1,(8:))s;es; 18
a vector of non-negative numbers 7,(s;). In the n-perturbed game I'(n) each player i is forced
to play each pure strategy s; with probability at least n;(s;). The set of KM perturbations is
denoted by K. By E we denote the set of pairs (1,0) in I x ¥ for which the mixed strategy
profile o is a Nash equilibrium of the game I'(n).

For ¢ > 0 we use the following notation. A KM perturbation 7 is of size ¢ when ||7]|e < €.
By K. we denote the set of KM perturbations n € K of size €. Let 0K, be the set of KM

perturbations 1 € K. for which there is a player ¢ € N and a pure strategy s; € 5; with
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n;(si) € {0,e}. For aset T C E, we write T for the set of pairs (n,0) € T for which 7 is of size
e. By 0T. we denote the vertical boundary of T, the set of pairs (n,0) € T. with n € 9K..

Let 7 : L x ¥ — K be the orthogonal projection map that assigns 1 to the pair (n,0) € K x .

A closed set T' C F is a germ if for every sufficiently small size € > 0,
(1) T. \ OT: is connected,
(2) T. equals the closure of T \ 97T, and
(3) the map 7 : (T.,0T.) — (K., 0K.) is essential.
A closed set S C X is stable if there exists a germ T' C E with
S ={oe€X|0,0) eT}.
Theorem 2.1 Fvery finite game in strategic form has a stable set.

Proof.  Take a finite game in strategic form I' = (N, u). Define the map f: K x X — X as

follows. For o € X, define 7;(0) = (1:(0)(s:))s;es; by, for each s; € S;,
ri(0)(si) = ui(o]si) — ui(0).
For (7],0) € K x 27 define 91(7770) = (gi(naU)(Si))SieSi by

9i(n,0)(s:) = max{o(s;) +ri(0)(si), 1;}-

.1 1
g = —-max
2 ieN |Sl| ’

so that the strategy space of the perturbed game T'(n) is of full dimension for each KM per-

Define €* > 0 by

turbation n of size *.
Claim. Suppose 7 is of size ¢* and ¢ is feasible for . Then >, ¢ g:i(n,0)(si) > 0.

Define

o alno)s)
fi(n,0)(si) Zsiesi gi(7770')(8i).

Claim. The function f : K x ¥ — X satisfies the conditions of Theorem 1.3.
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3 On Monetary Equilibria

In the next application, we extend the canonical general equilibrium model with monetary
exchange of Dreéze and Polemarchakis (2001), a model that is compatible with Chapter 2 of
Woodford (2003) and can be viewed as the general equilibrium extension of that model. We

extend it to deal with the case of general initial endowments of money.

Consider a private ownership monetary economy & = (7, (X", <" el nh uh, Hh)heH, r). Such

an economy consists of H individuals and one central bank.

There is an event tree 7 with the set of date-events S as nodes. The cardinality of S is S.
The set S is partitioned into subsets Sy, ..., S, where S; are the date-events at date ¢. The
set of successors of date-event s; is denoted by s;, a subset of S;,1. The unique predecessor
of s; is denoted by s;, an element of S;_;. Date t represents the starting point of period ¢.
Period ¢ ends at date t + 1 and is interpreted as the time interval separating a node from its
successor, i.e. a time interval of unspecified length between date ¢ and date ¢t + 1 during which
transactions take place. We will refer to date-events s; and periods s; to distinguish between

points and intervals of time.

At date-event s; there is trade in L commodities and |s;"| one-period Arrow securities.! An
Arrow security for date-event s;y1 pays one nominal unit if and only if date-event s;; occurs.

Because of the availability of Arrow securities, markets are sequentially complete.

For notational convenience we introduce at each terminal date-event s € St an elementary
security that pays one unit of money at the end of that date-event. We therefore extend the
date-event tree by a set of states Spy1 with the same cardinality as Sy and use labels sp41 to

denote the date-events in Sr41. Every date-event in Sy has exactly one successor in Sp41.

Commodity prices at date-event s, are denoted p;, and belong to RY. For s, € (SUSr41)\{0},

the Arrow security for date-event s; is traded at date-event s; at price gs, .

At the beginning of each date-event s;, the central bank sets the interest rate rg,. The central

bank supplies money balances as demanded by the households. For 7 € [t,t + 1], aggregate
b

s, (1), a non-negative quantity. Households obtain

money balances issued by the bank at 7 are m
a bank loan as a counterpart to money borrowed. Aggregate bank loans at time 7, bg, (7),

are by definition equal to aggregate money balances issued at 7, m?t (7). Aggregate money

1'We have in mind that there is a complete set of security markets at every date-event, but without loss of
generality we can restrict attention to the case where only one-period securities are traded.
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/. - mbt (7)dr, and also equal aggregate bond holdings in

; : b _
balances in period s; equal mg, = | __, m;

period sy, b, = :;1 bS,(1)d7. At the end of period s;, the bank is entitled to r,,bS, monetary
units of interests payments, and makes profits, seignorage, equal to 05, = rs,bg,. We use ~ to
indicate end-of-period values. The central bank issues the entire seignorage as dividends to its

shareholders at the end of the period. Household h receives Ohﬁgt at the end of period s;.

A standard no-arbitrage argument implies that at equilibrium the sum of the prices of the Arrow
securities must be equal to 1/(1 + r,,). At no-arbitrage prices asset demand is indeterminate
as any household is indifferent between holding one unit less of the bank loan and one unit
more of every Arrow security. To lift this indeterminacy, we will set beginning-of-period bank

loan equal to zero for every household.

At the beginning of a date-event s; € S, household & has wealth given by the initial endowment
h

St

h

St

of money n! , returns from investments in elementary securities in the previous period, 7
minus the bank loan at the end of the previous period, 13’;7. Since the beginning-of-period bank
loan has been normalized to zero, this bank loan equals, net expenditures on commodities in
the previous period plus interest payments minus dividends received,

o' =p (ah —eh )y b P

St St St St St 8¢ St

where b = ft_F1 b"_(7)dr is the bank loan of household A in period s; and " = @"¢_.
St = St ) St St
Although m® (7) = b¢,(7) is a non-negative quantity, for some households h it may be the case

that bgt (1) < 0, in particular for those household with negative excess demands in period s;.

Household h invests its wealth in Arrow securities UZHN where s;41 € s;. The no-arbitrage

constraint specifies

~ 1
Z Tserr = 7,
St

st1€87
Under this condition, uniform holdings of Arrow securities are perfect substitutes for bank
loans, and household demands are indeterminate. Since we have lifted this indeterminacy by
setting beginning-of-period bank loans equal to zero for every household we have implicitly

imposed that the household invests its entire wealth in elementary securities.

Household h faces the following sequence of budget constraints

~ h _ h
251683' s,Ms;, = Mgy
~ h _ h h ih
Zsprlesj' qSt+1775,,+1 = TNy, + Ns, — bst_’ St € S \ {0}7
— h ih
0 = Msrir — V= 5 s741 € Sr41,

T+1
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and the accounting identities

ih o~ (h h B =h
bit = p;t(xst —eg)+rs, by —0), s €S,
mg, = bst, st €S.

The correspondence p” : RY% x X" — RS defines the transaction technology of household A.
It assigns to each non-negative price system p and consumption bundle " a set of vectors of
amounts of money withdrawn at periods s; € S that are needed to carry out purchases and

sales involved in consumption 2" at prices p.

A household takes prices (p, §), interest rates 7, and dividends ©" as given and chooses a maxi-

mal element (2", ", m") for <", the preference relation of household h defined on X", subject

h

to the constraints imposed by the consumption set, 2" € X", the transaction technology,

m” € p(p,x"), the sequence of budget constraints

~ h _ h
Xzsles;r s1Ms; = TNy
~ h _ . h ho N N h “h
Zst+1 esj' q5t+1 nst+1 - nst + nst pst_ (msz es;) Tst_ ms; + ’US; 9 St E S \ {0}7
0 = nh —p- (2. —e )—r_ h o 4ol S € Sriq.
an“ pST+1 ( ST41 5T+1) STi1 Spyg ST+1’ T+l T+1

The budget set B"(p, q,7") consists of all tuples (x",n", m") satisfying the restrictions speci-

fied above.

Definition 3.1 A competitive equilibrium for the monetary economy (T, (X", <", e nl uh, 9h)h€H7 T)

is a tuple (p*,q*,x*,n*,m*) such that

(a) dividends satisfy

>k C — *C

vy = Titht, s¢ €S,
~kh M *C

vyt o= 00y, s €S,

(b) the no-arbitrage conditions hold,

~ 1
Z qst+1 = 1 + r 9 St S S,
St

Stp1€87
(c) for each h, (x*",n*" m*") is <h-mazimal on B"(p*,q*,v*"),
(d) commodity markets clear, >, x*" =", e,
(e) Arrow security markets clear, >, n*" =0,

f) banks supply money demanded, m*P = m*".
h
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On top of A1-A3, we make the following assumptions.
A4 Aggregate monetary endowments are zero: », n" =0.

A5 For every h, pu”, is lower hemi-continuous and closed, is convex-valued, for every p € RiL
there exists (2, m") € X" x fRi such that 2" < e and m” € p"(p,2"), monetary
needs are not positively affected by commodities with zero prices: if m" € u”(p, z") and
z" € X" satisfies T" > 2" while p,,; = 0 for a’cgtl > x?ﬁl implies m" € u”(p,z"), monetary
needs are bounded: there are continuous functions n”,n" : R x X" — RS such that

m" € p"(p,z") implies m" > n"(p,2") and (min{m” 7" (p,2")}),,cs € p"(p,z").

A6 Only the bank can create money: if z € [], X" satisfies >, 2" = Y, e and, for some
p e R3L, for h € H, m" € ph(p,2"), then 3, m" > 0.

A7 The bank is owned by the households: for every h, 6" > 0, and Y oheH 0" =1.
Notice that A5 implies A3.

A natural assumption, but not needed for equilibrium existence, is that u" be 0-homogeneous.

A8 m" € p(p, z") implies, for every 5; € S, for every ¢ > 0, m" € p(p, ), where 721 = cmé‘t

and mi}t = mgta St 74‘ St and ﬁgt = Cﬁgt and pst = ﬁsta St 7é S¢.
Spot prices of Arrow securities, gs,, s; € (S U Sr41) \ {0}, define present-value prices gs,,
st € (SUSr41)\ {0} of units of money at date-events in S U Sy41 by setting

qSO - /]\:7 . . (1)
Qsi = qoy(s)) X" X sy_y(sy) X Tsy» St € (SUST41) \ {0},

where s, (s;) denotes the unique predecessor of s; at date 7 < t.

The sequence of budget constraints of household h can be consolidated into a single present-

value constraint. Indeed,

Z qSt Z ZjStJrl ngt+1

5t€S si41€85

=nl+ > g0l +nl - Py (zh —em) - T mg; + O??)

St St
51€8\{s0}
§ h ~ h h h ~h
+ qST“(nST“ ps;+1(x35+1 e$;+1> T5;+1m3;+1 + US;H)’
ST4+1€ST 41

or equivalently, after cancelling the n-terms which appear on both sides with identical multi-

plicands, and rearranging terms, we obtain

—~ h h h ~ h ~h
Z qst (pS::Es; + Ts;ms;) = Z (Is,,nst + Z qSt (ps; 65: + Us;).
StE(SUST+1)\{0} s €S StE(SUST+1)\{O}
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Since Estesj gs, = 1/(1+rs,), we find

Ps, h As,T's, h h Ps, h ds, ~h
E — ——m = E n e v , 2
<1+7~st St+1+rst ) (qsﬁ Sf+1+r8t Sf+1+rs,, ) 2)
st€S st€S

where, by definition, ps, = ¢s,Ps,, st € S. The set Q) of strictly positive state prices that do

not admit arbitrage equals

_ S+5S _ s
Q - {q € ]R-i--i- T|q$0 - 17 vst € S? Z Asip1 = 1+;st }

St+1 Gs:r

Given (p, q,o") € RJSFL x QxR household h chooses a maximal element (x", m") with 2" € X"

and m" € p"((ps, /s, )s,es, x") subject to the constraint (2).

Intuition: Counting equations and unknowns, we have SL — 1 independent market clearing
equations for commodities, in SL—14 S unknowns, the SL prices ps,;, the S7—1 independent
prices gs,. Indeed, there are S 4 St prices ¢s,, ¢s, = 1 by definition, and S no-arbitrage
constraints, which leaves us with S7 — 1 independent prices gs,. One therefore expects a set of

equilibria with dimension St.

Definition 3.2 Let n C T x M be a set of equilibria. Then n is essential with respect to T if

the projection map 7 :n — T s essential.

We will show that the set of monetary equilibria is essential in the price index and in state
prices, where the price index is simply defined as the sum of all nominal prices. In terms of
notation, we therefore now write an equilibrium as a tuple (p, ¢, z, n,m, I(p), ¢(q)), where I(p)

is determined by the formula

I(@ = Z ﬁstl

(se,1)ESXL
and ¢(q) by (1).

Let Q. = {q € Q|Vs; € S, qs, > €} be the set of state prices where each state price is at least
equal to e. Clearly, if € is taken sufficiently small, the set Q. is non-empty and has dimension

St — 1. Fix such an ¢ for the remainder of this section.

Since e” belongs to the interior of X" and Q. is compact, there is a lowerbound I such that
for all p € Ris with I(p) > I for any household h, its budget set has a non-empty interior
whenever seignorage ©" is non-negative. Fix such a lowerbound I as well as some I > I. Let P
be the set of prices p such that I < I(p) < I and let E be the set of monetary equilibria with

state prices in (). and commodity prices in P.
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Theorem 3.3 Let the monetary economy (T, (Xh',jh,eh,nh,uh,ﬁh)hen,r) satisfy A1-A7.
Then the set E is essential with respect to Q. x [L, .

Proof. By a standard proof, following Debreu (1959), the set of attainable allocations of
commodities, i.e. the set of z € [[, X" such }_, z" =", €", is compact. Let B be such that,
for every h, 2" < B1%%. We compactify the economy by replacing consumption sets X" by
)?h, the subset of elements of X" for which 2" < B115. We define M" = [m", m"], where, for
st €8,

= min _ nl (p,2") and M), = max _ 7nl (p,a"),

—S8 —~
' (pah)ePxXh (P,ah)ePx Xh

and replace transactions technology " by ﬂh, defined by
i (B, a") = (2" N M.
Given (p,q,9") € P x Q x RES, household h chooses a maximal element (2", m") with 2" €
hand m" € 1 (p7 2") subject to the constraint (2). We denote the set of maximizers by
5h(1'07q,17 )-
A standard proof, which follows Debreu (1959) since the constraint (2) is equivalent to the

usual budget constraint, shows that o is upper hemi-continuous on P X ) X Ris .

At any s; € S, in equilibrium the bank will issue a non-negative amount of money that is
bounded above by m?, =Y, ., m".
We define the aggregate excess demand correspondence ¢ : P X Q) X [O,Wb] — RLS x RS by
CBgmP) =Y 6"(B,q,0"(ml,)s,es) — Y €
hEH hEH
Let Z be a compact, convex set containing ¢(P x Q x [0,7"]). We define the simplex A = {d €

RE | > s, iesxr A1 = 1} We define the correspondence

LI X Q-xAXZ—AxZ

by
¢'(2) x $*(I,q,d,m"),
where
olz)={deA|d-z2>d -z Vde A}
and

¢*(1,q,d,m") = ((Id,q,m").
Debreu’s proof applies in this case to show that fixed points correspond to equilibria, it is then

easy to show that that the set of equilibria is essential. [ |
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