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Abstract

When there is uncertainty about interest rates (typically due to either illiquidity or defaultability of

zero coupon bonds) the cash-additivity assumption on risk measures becomes problematic. When this

assumption is weakened, to cash-subadditivity for example, the equivalence between convexity and

the diversi�cation principle no longer holds. In fact, this principle only implies (and it is implied by)

quasiconvexity.

For this reason, in this paper quasiconvex risk measures are studied. We provide a dual char-

acterization of quasiconvex cash-subadditive risk measures and we establish necessary and su¢ cient

conditions for their law invariance. As a byproduct, we obtain an alternative characterization of the

actuarial mean value premium principle.

JEL classi�cation: D81

Keywords: Risk Measures, Diversi�cation, Cash-subadditivity, Quasiconvexity, Law-invariance, Mean

Value Premium Principle



1 Introduction

Risk assessment is a fundamental activity for both regulators and agents in �nancial markets. The

problem of a formal de�nition of a risk measure and of the economic and mathematical properties

that it should satisfy has been heating the debate since the seminal papers of Artzner, Delbaen, Eber,

and Heath (1997, 1999) on coherent risk measures.

In the last ten years there has been a �ourishing of methodological proposals, mathematical ex-

tensions, and variations on this topic. The convex monetary risk measures of Föllmer and Schied

(2002, 2004) and Frittelli and Rosazza Gianin (2002) are especially interesting in terms of economic

content and mathematical tractability among the generalizations of coherent risk measures. Moreover,

these measures naturally appear in pricing and hedging problems in incomplete markets, as shown,

for example, by El Karoui and Quenez (1997), Carr, Geman, and Madan (2001), Frittelli and Rosazza

Gianin (2004), Staum (2004), Filipovíc and Kupper (2008), and Jouini, Schachermayer, and Touzi

(2008).

A risk measure is a decreasing function � that to a future risky position X associates the minimal

reserve amount � (X) that should be collected today to cover risk X, from the point of view of a

supervising agency. Decreasing monotonicity is a minimal rationality requirement imposed on the

agency: higher losses require higher reserves.

Convex monetary risk measures have the additional requirement of being convex and cash-additive.1

As pointed out by El Karoui and Ravanelli (2008), cash-additivity fails as soon as there is any form of

uncertainty about interest rates; for example when the risk-free asset is illiquid or inexistent.2 For this

reason, they suggest to replace cash-additivity with cash-subadditivity, and, maintaining convexity,

they provide a representation result for convex cash-subadditive risk measures, together with several

examples arising from applications.

This paper starts from the observation that once cash-additivity is replaced with the economically

sounder assumption of cash-subadditivity, convexity should be replaced by quasiconvexity in order

to maintain the original interpretation in terms of diversi�cation. Although convexity is generally

regarded as the mathematical translation of the fundamental principle �diversi�cation cannot increase

risk,�literally this principle means

�if position X is less risky than Y , so it is any diversi�ed position �X + (1� �)Y with � in (0; 1).�

Using a measure of risk �, this statement translates into

�� (X) � � (Y ) implies � (�X + (1� �)Y ) � � (Y ) for all � in (0; 1),�

which is equivalent to convexity under the cash-additivity assumption, while in general (also under

cash-subadditivity) it only corresponds to quasiconvexity.3

For these reasons, in this paper we study quasiconvex cash-subadditive risk measures. We show in

Theorem 1 that these measures take the form

� (X) = sup
Q2M1;f

R (EQ (�X) ; Q) ; (1)

1See Section 2 for details and formal de�nitions.
2Black (1972) is one of the �rst contributions that casted doubts on liquidity and existence of riskless assets.
3See Proposition 1 and Example 1.
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where M1;f is the set of (�nitely additive) probabilities and R : R�M1;f ! [�1;1] is an upper
semicontinuous quasiconcave function that is increasing and nonexpansive in the �rst component and

such that inft2RR (t; �) is constant. The function R is unique.
Convex monetary risk measures correspond to the separable speci�cation

R (t; Q) = Dt� � (DQ) (2)

for some constant D 2 (0; 1], while convex cash-subadditive risk measures correspond to

R (t; Q) = sup
c2[0;1]

(ct� � (cQ)) ; (3)

where � (�) is the Fenchel conjugate of � (��).
Representation (1) is not only general enough to capture most of the risk measures introduced in

the literature, but it also has a very natural interpretation: R (t;Q) is the reserve amount required

today, under the probabilistic scenario Q, to cover an expected loss t in the future. Since there is

uncertainty about probabilistic scenarios, the supervising agency follows the most cautious approach,

that is, it requires the maximum reserve. The evaluations R (t; Q) keep two factors into account, the

expected loss t and the plausibility of scenario Q, assessed by the supervising agency. As the special

cases (2) and (3) show (see again the discussion in El Karoui and Ravanelli, 2008), the separability

of these two risk factors is lost as soon as risky positions and reserve amounts cannot be expressed in

the same numeraire in an unambiguous way.

It is important to observe that, while the results on convex and cash-subadditive measures build

on classic convex duality, our results build on the quasiconvex monotone duality developed in Cerreia-

Vioglio, Maccheroni, Marinacci, and Montrucchio (2008b). As a result, there is also a substantial

di¤erence between the mathematics that underlies our results and that used in the study of convex

risk measures.

In view of the importance of law-invariance with respect to a given probability measure P , in

Theorem 2 we characterize quasiconvex risk measures that satisfy this property and we show that in

this case the quantile representation

� (X) = sup
Q2M1

R

�Z 1

0

q�X (s) q dQ
dP
(s) ds;Q

�
(4)

holds. This result extends those of Chong and Rice (1971), Kusuoka (2001), Föllmer and Schied

(2004), Dana (2005), Frittelli and Rosazza Gianin (2005), and Leitner (2005) from the domain of

convex analysis to that of quasiconvex analysis.

As a byproduct, in Lemma 2 we characterize the risk measures that agree with the actuarial mean

value premium principle (see Rotar, 2007), that is, the measures of the form

� (X) = `�1 (EP (` (�X))) ;

where ` is a strictly increasing and convex loss function. Though in a static setting, this result is

in the spirit of a very recent one of Kupper and Schachermayer (2008) and it builds on the classic

Nagumo-Kolmogorov-de Finetti Theorem.4 Interestingly, Proposition 5 shows that for this class of

functions

R (t; Q) = t� L (�t;Q;P ) ;

where L (�t;Q;P ) is the generalized distance between probability measures induced by `, introduced
by Bellini and Frittelli (2002) in the context of minimax martingale measures (see also Cerreia-Vioglio,

Maccheroni, Marinacci, and Montrucchio, 2008a).
4See, Nagumo (1930), Kolmogorov (1930), de Finetti (1931), as well as Hardy, Littlewood, and Pólya (1934).

2



2 Preliminaries

Let (
;A; P ) be a probability space and L1 (
;A; P ) be the space of bounded random variables.5 Its
topological dual L1 (
;A; P )� is isometrically isomorphic to the space of all bounded �nitely additive
set functions on A that are absolutely continuous with respect to P (e.g., Yosida, 1980, Ch. IV.9).

The positive unit ball of L1 (
;A; P )� is denoted by M1;f (
;A; P ) and coincides with the set
of �nitely additive probabilities that are absolutely continuous with respect to P ; in particular,

M1 (
;A; P ) is the subset of M1;f (
;A; P ) consisting of all its countably additive elements. For
this reason, given X 2 L1 (
;A; P ) and � 2 L1 (
;A; P )�, we indi¤erently write: � (X),

R
Xd�,

or even E� (X) if � 2 M1;f (
;A; P ). The speci�cation of the probability space (
;A; P ) is often
omitted and we just write L1 andM1;f .

Unless otherwise stated, L1 (
;A; P ) is endowed with its norm topology, L1 (
;A; P )� is endowed
with its weak� topology, and its subsets with the relative weak� topology. Product spaces are endowed

with the product topology.

We consider one period of uncertainty f0; Tg. The elements of L1 represent payo¤s at time T of

�nancial positions held at time 0. A risk measure is a decreasing function � : L1 ! [�1;1]. As
anticipated in the introduction, � (X) is interpreted as the minimal reserve amount that should be

collected today to cover future risk X. Decreasing monotonicity is justi�ed by the fact that smaller

losses cannot require greater reserves.

Given a (deterministic) discount factor D 2 (0; 1], the function � is a monetary risk measure if, in
addition, it satis�es:

Cash-additivity � (X �m) = � (X) +Dm for all X 2 L1 and m 2 R.

This condition is interpreted in the following way �if m is subtracted to the future position, the

present capital requirement is augmented by the same discounted amount Dm.�In fact, investing Dm

in a risk-free manner o¤sets the certain future loss m.

Cash-additivity is a controversial assumption, both from a theoretical and practical viewpoint. For,

D is the price of a non-defaultable zero coupon bond available on the market at time 0, with maturity

T and face value 1: existence and liquidity of such an asset is not an innocuous assumption and, as

observed by El Karoui and Ravanelli (2008), any form of uncertainty in interest rates is su¢ cient to

make the cash-additivity assumption too stringent. For example, in case of illiquidity, D may well

depend on the amount m of purchased assets.

These considerations lead to the following relaxed version of cash-additivity, which only takes into

account the time value of money:

Cash-subadditivity � (X �m) � � (X) +m for all X 2 L1 and m 2 R+.

The meaning of this condition is �when m dollars are subtracted to a future position the present

capital requirement cannot be augmented by more than m dollars.�This is a much more compelling

assumption relative to cash-additive since it just relies on the fact that an additional reserve of m

dollars surely covers the additional loss of the same amount.6

As discussed in the introduction, the risk diminishing e¤ect of diversi�cation is usually translated

by:
5Equalities and inequalities among random variables hold almost surely with respect to P .
6Notice that cash-subadditivity is equivalent to require � (X +m) � � (X)�m for all X 2 L1 and all m 2 R+. In

fact, it implies � (X) = � (X +m�m) � � (X +m) +m, and the converse is proved in the same way. In particular,
our de�nition is equivalent to that of El Karoui and Ravanelli (2008).
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Convexity � (�X + (1� �)Y ) � �� (X) + (1� �) � (Y ) for all X;Y 2 L1 and � 2 (0; 1).

But, it actually corresponds to the much weaker:

Quasiconvexity � (�X + (1� �)Y ) � max f� (X) ; � (Y )g for all X;Y 2 L1 and � 2 (0; 1).

The next simple proposition shows that convexity is equivalent to quasiconvexity for monetary risk

measures. Clearly, this is not the case for cash-subadditive risk measures.7 In reading the result, recall

that a function � : L1 ! [�1;1] is nonexpansive if � (Y ) � � (X) + kX � Y k for all X;Y 2 L1.

Proposition 1 Let � be a risk measure.

(a) If � is cash-additive, then it is convex if and only if it is quasiconvex.

(b) � is cash-subadditive if and only if it is nonexpansive.

In both cases, � is either �nite valued or identically �1.

Proof. (a) is essentially known (e.g., Gilboa and Schmeidler, 1989, Lemma 3.3, or Marinacci and
Montrucchio, 2004, Corollary 4.2). Next we prove (b). If � : L1 ! R is nonexpansive, then

� (X �m) � � (X)+1 kX � (X �m)k for all X 2 L1 and allm 2 R+, that is � (X �m) � � (X)+m.
Conversely, for all X;Y 2 L1, X � Y � kX � Y k, then X � kX � Y k � Y , monotonicity and cash-
subadditivity deliver � (Y ) � � (X � kX � Y k) � � (X) + kX � Y k, as wanted. �

Next example shows how the illiquidity of the risk-free asset naturally generates quasiconvex cash-

subadditive risk measures that are neither convex nor cash-additive.

Example 1 Let ; ( C ( L1 be the set of future positions considered acceptable by the supervising

agency, and assume that C is convex and C + L1+ � C. For all m 2 R denote by v (m) the price at
time 0 of m dollars at time T and de�ne, as in Artzner, Delbaen, Eber, and Heath (1999),

�C;v (X) = inf fv (m) : X +m 2 Cg 8X 2 L1:

If v (m) = Dm with D 2 (0; 1], then �C;v is a (�nite valued) convex monetary risk measure.8 The

linearity of v is precisely the assumption that fails when zero coupon bonds with maturity T are illiquid.

Still it remains sensible to assume that v : R! (�1;1] is increasing and v (0) = 0.
Provided v is also upper semicontinuous, we have

�C;v (X) = v (inf fm 2 R : X +m 2 Cg) = v (�C;id (X)) 8X 2 L1;

where id : R! (�1;1] is the identity. Moreover, since �C;id is a convex monetary risk measure,
then for any nonexpansive v that is not convex, �C;v is a quasiconvex cash-subadditive risk measure

that is neither convex nor cash-additive.

Finally, R0 (R�M1;f ) denotes the class of functions R : R�M1;f ! [�1;1] that are upper
semicontinuous, quasiconcave, increasing in the �rst component, with inft2RR (t; Q) = inft2RR (t; Q0)

for all Q;Q0 2 M1;f . Moreover, R1 (R�M1;f ) is the subset of R0 (R�M1;f ) consisting of functions

R that are nonexpansive in the �rst component, that is, R (t0; Q) � R (t; Q) + jt� t0j for all t; t0 2 R
and all Q 2M1;f .

7See Example 1 below.
8See, for example, Föllmer and Schied (2004, Ch. 4).
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3 Representation

We are now ready to state and prove our �rst representation result.

Theorem 1 A function � : L1 ! [�1;1] is a quasiconvex cash-subadditive risk measure if and
only if there exists R 2 R1 (R�M1;f ) such that

� (X) = max
Q2M1;f

R (EQ (�X) ; Q) 8X 2 L1: (5)

The function R 2 R1 (R�M1;f ) for which (5) holds is unique and satis�es

R (t;Q) = inf f� (X) : EQ (�X) = tg 8 (t; Q) 2 R�M1;f : (6)

Recall that � is a quasiconvex cash-subadditive risk measure if and only if it is a quasiconvex and

nonexpansive risk measure. The next lemma characterizes quasiconvex and upper semicontinuous risk

measures.

Lemma 1 A function � : L1 ! [�1;1] is a quasiconvex upper semicontinuous risk measure if and
only if there exists R 2 R0 (R�M1;f ) such that

� (X) = max
Q2M1;f

R (EQ (�X) ; Q) 8X 2 L1: (7)

The function R 2 R0 (R�M1;f ) for which (7) holds is unique and satis�es

R (t;Q) = inf f� (X) : EQ (�X) = tg 8 (t; Q) 2 R�M1;f : (8)

Proof. Notice that L1 is a normed Riesz space with unit I
, M1;f is the positive unit ball of its

topological dual, and �� is a quasiconcave, lower semicontinuous, and monotone increasing function.
The statement then follows from Lemma 8 and Theorem 3 of Cerreia-Vioglio, Maccheroni, Marinacci,

and Montrucchio (2008b). �

Proof of Theorem 1. It only remains to show that � is cash-subadditive if and only if R is

nonexpansive in the �rst component.

Suppose � is cash-subadditive, then, for all (t; Q) 2 R�M1;f and m 2 R+,

R (t+m;Q) = inf f� (X) : EQ (�X) = t+mg = inf f� (X) : EQ (� (X +m)) = tg
= inf f� (Y �m) : EQ (�Y ) = tg � inf f� (Y ) +m : EQ (�Y ) = tg = R (t;Q) +m:

Therefore, for all t; t0 2 R and Q 2M1;f , t0 � t+ jt� t0j and monotonicity of R in the �rst component
imply

R (t0; Q) � R (t+ jt� t0j ; Q) � R (t;Q) + jt� t0j ;

as wanted.

Conversely, if R is nonexpansive in the �rst component, then, for all (t;Q) 2 R�M1;f andm 2 R+,

R (t+m;Q) � R (t; Q) + jt� (t+m)j = R (t; Q) +m:

Moreover, for all X 2 L1, there is Q0 2 M1;f such that � (X �m) = R (EQ0 (� (X �m)) ; Q0).
Therefore,

� (X �m) = R (EQ0 (� (X �m)) ; Q0) = R (EQ0 (�X) +m;Q0) � R (EQ0 (�X) ; Q0) +m
� max

Q2M1;f

R (EQ (�X) ; Q) +m = � (X) +m;

5



as wanted. �

In particular, denoting by � (�) the Fenchel conjugate of � (��), a quasiconvex cash-subadditive
risk measure � is convex if and only if

R (t; Q) = sup
c2[0;1]

(ct� � (cQ)) 8 (t; Q) 2 R�M1;f ;

thus obtaining the result of El Karoui and Ravanelli (2008). Moreover, � is cash-additive if and only

if

R (t; Q) = Dt� � (DQ) 8 (t;Q) 2 R�M1;f ;

which corresponds to the well known characterization of convex monetary risk measures.9

Maintaining the interpretation of R (t; Q) as the reserve amount required today, under the proba-

bilistic scenario Q, to cover an expected loss t in the future, the above relations corroborate the claim

of El Karoui and Ravanelli (2008) that the passage to cash-subadditivity is the most parsimonious

way of taking into account interest rate uncertainty and a supervising agency that is averse to such

uncertainty.

Next proposition shows that, as in the two special cases above, the possibility of replacing �nitely

additive probabilities with countably additive probabilities in the variational representation (5), and

indeed in (7), correspond to the following requirement:

Continuity from below Xn % X implies � (Xn)! � (X) for all Xn; X 2 L1.

Proposition 2 Let � : L1 ! [�1;1] be a quasiconvex upper semicontinuous risk measure. The
following conditions are equivalent:

(i) � is continuous from below;

(ii) R (t; Q) = infL1 � for all (t;Q) 2 R� (M1;f nM1).

In this case,

max
Q2M1;f

R (EQ (�X) ; Q) = max
Q2M1

R (EQ (�X) ; Q) 8X 2 L1: (9)

Proof. Consider the following condition:

(iii) fQ 2M1;f : R (t; Q) � mg � M1 for all m 2 (infL1 �;+1] and all t 2 R.

We show that (i) =) (iii) =) (ii) =) (i).

(i) implies (iii). Let t 2 R, m 2 (infL1 �;+1], and Q0 2 fQ 2M1;f : R (t; Q) � mg. Since
m > infL1 �, there exist X 2 L1 such that � (X) < m and x � X in R such that � (x) � � (X) < m.
If En & ; in A, then x � kIEn % x in L1 for each k > 0. Continuity from below guarantees that

there exists Nk 2 N such that for all n � Nk

m > � (x� kIEn) = max
Q2M1;f

R (EQ (kIEn � x) ; Q) = max
Q2M1;f

R (kQ (En)� x;Q) :

If kQ0 (En0)� x � t for some n0 � Nk, since R is increasing, it follows that

max
Q2M1;f

R (kQ (En0)� x;Q) � R (kQ0 (En0)� x;Q0) � R (t;Q0) � m;

9For more details on the relations between convex duality and quasiconvex monotone duality, see Cerreia-Vioglio,
Maccheroni, Marinacci, and Montrucchio (2008b).
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which is absurd. Then kQ0 (En)� x < t for all n � Nk, hence

Q0 (En) <
x+ t

k
8n � Nk;

thus limn!1Q
0 (En) � k�1 (x+ t). Since this is the case for each k > 0, then limn!1Q

0 (En) = 0

and Q0 2M1.

(iii) implies (ii). Clearly, for all (t; Q) 2 R�M1;f , R (t;Q) = inf f� (X) : EQ (�X) = tg � infL1 �.
If, per contra, there exists (t0; Q0) 2 R� (M1;f nM1) such that R (t0; Q0) > infL1 �, then, setting

m0 = R (t0; Q0), by (iii) it follows that

Q0 2 fQ 2M1;f : R (t0; Q) � m0g � M1;

a contradiction.

(ii) implies (i). Let fXngn�1 be a sequence in L1 such that Xn % X0 2 L1. For each n � 0,

de�ne n :M1;f ! [�1;+1] by

n (Q) = R (EQ (�Xn) ; Q) 8Q 2 R�M1;f :

Each n is weak* upper semicontinuous, and the sequence fng is decreasing. If Q 2 M1, then

EQ (�Xn) & EQ (�X0), by the Levi Monotone Converge Theorem, and so, since R (�; Q) is upper
semicontinuous and increasing on R, limn!1R (EQ (�Xn) ; Q) = R (EQ (�X0) ; Q); else if Q =2 M1,

then R (EQ (�Xn) ; Q) = infL1 � for all n � 0. Conclude that �n pointwise converges (and so
�-converges, see, e.g., Dal Maso, 1993, Rem. 5.5) to �0. By Theorem 7.4 of Dal Maso (1993),

minQ2M1;f
�n (Q)! minQ2M1;f

�0 (Q), that is �� (Xn)! �� (X0).

Finally, we show that (ii) implies (9). If X 2 arg infL1 �, then for all Q 2M1;f , by Lemma 1,

� (X) � R (EQ (�X) ; Q) = inf f� (Y ) : EQ (�Y ) = EQ (�X)g � inf
L1
� = � (X) :

Therefore the maximum in (7) is attained at each Q inM1;f , thus at each Q inM1. Else if � (X) >

infL1 �, by (ii), the maximum in (7) cannot be attained onM1;f nM1, thus it is attained onM1. �

3.1 Remarks on Continuity

First notice that continuity from below implies norm upper semicontinuity for a risk measure �.

Proposition 3 A risk measure � is continuous from below (resp., above) if and only if it is upper

(resp., lower) semicontinuous with respect to bounded pointwise convergence.

Proof. Let Xn be a bounded sequence in L1 that pointwise converges to X. Set Yn = infk�nXk for

all n 2 N. Then Xn � Yn % X, and monotonicity and continuity from below deliver

lim supn � (Xn) � limn � (Yn) = � (X) :

Conversely, if Xn % X, then monotonicity of � delivers � (X) � lim infn � (Xn), while upper semicon-
tinuity with respect to bounded pointwise convergence delivers lim supn � (Xn) � � (X). �

Moreover, continuity from below and norm lower semicontinuity imply continuity with respect to

bounded pointwise convergence, provided � is quasiconvex. Formally:

Proposition 4 Let � : L1 ! [�1;1] be a quasiconvex risk measure. The following conditions are
equivalent:

7



(i) � is continuous from below and norm lower semicontinuous;

(ii) � is continuous with respect to bounded pointwise convergence.

Proof. Clearly, (ii) and Proposition 3 deliver (i). By Proposition 3, to prove the converse it is su¢ cient
to show that � is continuous from above. Let Xn & X. By monotonicity, � (Xn) is increasing and

limn � (Xn) � � (X). Assume, per contra, strict inequality holds. Then fXngn2N is contained in
f� < cg for some c < � (X). The assumptions on � guarantee that f� � cg is not empty, convex, norm
closed, and

f� � cg �
\
i2I
[Qi � bi] ;

where f(bi; Qi) : i 2 Ig = f(b;Q) 2 R�M1 : [Q � b] � f� � cgg. As to the converse inclusion, let Y =2
f� � cg. By a Separating Hyperplane Theorem, there exist b 2 R, " > 0, and Q 2 L1 (
;A; P )� nf0g
such that

f� � cg � [Q � b] and Y 2 [Q < b� "] :

Monotonicity allows to assume Q 2 M1;f .10 If Q =2 M1, then R (t; Q) = infL1 � � � (X1) < c for all
t 2 R. For t = �b+ ", this implies

c > R (�b+ ";Q) = inf f� (Z) : EQ (Z) = b� "g :

Then � (Z 0) < c for some Z 0 2 [Q = b� "], which is absurd since f� � cg � [Q � b]. Summing up,
if Y =2 f� � cg there are b 2 R and Q 2 M1 such that [Q � b] � f� � cg and Y =2 [Q � b]. Thus,

f� � cgc �
 \
i2I
[Qi � bi]

!c
.

Finally, fXngn2N � f� � cg implies EQi
(Xn) � bi for all n 2 N and i 2 I. By the Monotone

Convergence Theorem, EQi
(X) � bi for all i 2 I, then � (X) � c which contradicts c < � (X). �

4 Law-invariance

In this section we consider a continuous from below quasiconvex risk measure

� (X) = max
Q2M1

R (EQ (�X) ; Q) 8X 2 L1:

In the study of law-invariance it is useful to consider some important stochastic orders. The convex

order %cx is de�ned on L1 by

X %cx Y if and only if EP (� (X)) � EP (� (Y ))

for all convex � : R ! R. The increasing convex order %icx and second order stochastic dominance
%ssd are de�ned analogously by replacing convex functions with increasing convex functions and
increasing concave functions, respectively. Notice that X %icx Y if and only if �X -ssd �Y and that
the three preorders share the same symmetric part �, which is the identical distribution with respect
to P relation.11

As widely discussed in the literature (see, e.g., the classic Rothschild and Stiglitz, 1970, and

Marshall and Olkin 1979), X %cx Y intuitively means that the values of X are more dispersed than

10 If Z 2 L1+ then X1+nZ 2 f� � cg for all n 2 N, and Q (X1)+nQ (Z) � b delivers Q (Z) � 0. Then Q is a non-zero
positive linear functional, and if Q =2 M1;f it is su¢ cient to normalize it.
11See Chong (1974) for this fact and for altenative characterizations of these orders.
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those of Y , while X %ssd Y is the standard formalization of the statement �X is less risky than Y ,�

provided P is the unanimously accepted model for uncertainty.

The convex order naturally induces a relation onM1 by

Q %cx Q0 if and only if
dQ

dP
%cx

dQ0

dP
:

The intuition is the same: the probability masses dQ (!) are more scattered with respect to dP (!)

than the masses dQ0 (!).

An extended real valued function  de�ned on a subset of L1 is law-invariant (or rearrangement

invariant) if and only if

X � Y implies  (X) =  (Y ) ;

while  is Schur concave if and only if

X %cx Y implies  (X) �  (Y ) :

Finally,  preserves second order stochastic dominance if and only if

X %ssd Y implies  (X) �  (Y ) :

Clearly the latter property is desirable for a risk measure, under the assumption that all the agents

agree on P . If X is recognized to be less risky than Y , it is di¢ cult for the supervising agency to

require a higher reserve amount for X than for Y .

Theorem 2 Let � be a quasiconvex and continuous from below risk measure. The following conditions
are equivalent:

(i) � preserves second order stochastic dominance;

(ii) R (t; �) is Shur concave onM1 for all t 2 R.

In this case,

� (X) = max
Q2M1

R

�Z 1

0

q�X (s) q dQ
dP
(s) ds;Q

�
8X 2 L1 (10)

and

R (t; Q) = inf

�
� (Y ) :

Z 1

0

q dQ
dP
(s) qY (1� s) ds = �t

�
8 (t;Q) 2 R�M1: (11)

Moreover, if (
;A; P ) is adequate, then (i) and (ii) are equivalent to:

(iii) � is law-invariant;

(iv) R (t; �) is rearrangement invariant onM1 for all t 2 R.

Recall that qZ denotes any quantile of Z 2 L1 (see, e.g., Föllmer and Schied, 2004), and a

probability space is adequate if and only if it is either �nite and endowed with the uniform probability

or non-atomic. We used the term �rearrangement invariant�rather than the equivalent �law-invariant�

in (iv) since it gives a better intuition of what happens in the �nite case: R (t; Q) = R (t; Q � �) for
all permutations � of 
 and all (t; Q) 2 R�M1.

Proof. The proof heavily relies on the theory of rearrangement invariant Banach spaces developed
by Luxemburg (1967) and Chong and Rice (1971). For convenience, the latter reference is denoted

from now on by CR. Following its notation, if X is measurable, set

�X (s) � inf fx 2 R : P (f! 2 
 : X (!) > xg) � sg
= inf fx 2 R : FX (x) � 1� sg � F�1X (1� s) � q�X (1� s)

9



for all s 2 [0; 1].

Step 1. If Y 2 L1 and Q 2M1, then

fEQ0 (Y ) :M1 3 Q0 -cx Qg =
�Z 1

0

�Y (s) � dQ
dP
(1� s) ds;

Z 1

0

�Y (s) � dQ
dP
(s) ds

�
: (12)

Moreover, if (
;A; P ) is adequate, then

Z 1

0

�Y (s) � dQ
dP
(1� s) ds = min fEQ0 (Y ) :M1 3 Q0 � Qg and (13)Z 1

0

�Y (s) � dQ
dP
(s) ds = max fEQ0 (Y ) :M1 3 Q0 � Qg : (14)

Proof of Step 1. [CR 13.4] and [CR 13.8] guarantee that, if Y and X belong to the set M (
;A; P ) of
measurable functions and �jY j�jXj 2 L1 ([0; 1]), then�Z

Y X 0dP :M (
;A; P ) 3 X 0 -cx X
�
=

�Z 1

0

�Y (s) �X (1� s) ds;
Z 1

0

�Y (s) �X (s) ds

�
:

Moreover, if (
;A; P ) is adequate, thenZ 1

0

�Y (s) �X (1� s) ds = min
�Z

Y X 0dP :M (
;A; P ) 3 X 0 � X
�
andZ 1

0

�Y (s) �X (s) ds = max

�Z
Y X 0dP :M (
;A; P ) 3 X 0 � X

�
.

The condition �jY j�jXj 2 L1 ([0; 1]) is implied by �jY j 2 Lp ([0; 1]) and �jXj 2 Lq ([0; 1]), where
either p =1 and q = 1 or p = 1 and q =1, which is equivalent to Y 2 Lp (
) and X 2 Lq (
) [CR
4.3]. In this case,

fX 0 2M (
;A; P ) : X 0 -cx Xg = fX 0 2 Lq : X 0 -cx Xg :

In fact, X 2 Lq and X 0 -cx X imply X 0 2 Lq [CR 10.2]. Therefore, if Y 2 Lp (
) and X 2 Lq (
),
then �Z

Y X 0dP : Lq 3 X 0 -cx X
�
=

�Z 1

0

�Y (s) �X (1� s) ds;
Z 1

0

�Y (s) �X (s) ds

�
: (15)

Moreover, if (
;A; P ) is adequate, thenZ 1

0

�Y (s) �X (1� s) ds = min
�Z

Y X 0dP : Lq 3 X 0 � X
�
and (16)Z 1

0

�Y (s) �X (s) ds = max

�Z
Y X 0dP : Lq 3 X 0 � X

�
. (17)

If, in addition, X is a probability density (p.d.) and X 0 -cx X, then X 0 � 0 [CR 10.2] and E (X 0) =

E (X) = 1, that is X 0 is a probability density. Finally, if Y 2 L1 and Q 2M1, then

fEQ0 (Y ) :M1 3 Q0 -cx Qg =
�Z

Y X 0dP : X 0 is a p.d. and X 0 -cx
dQ

dP

�
=

�Z
Y X 0dP : L1 3 X 0 -cx

dQ

dP

�
=

�Z 1

0

�Y (s) � dQ
dP
(1� s) ds;

Z 1

0

�Y (s) � dQ
dP
(s) ds

�
:

10



Moreover, if (
;A; P ) is adequate, thenZ 1

0

�Y (s) � dQ
dP
(s) ds = max

�Z
Y X 0dP : L1 3 X 0 � dQ

dP

�
= max

�Z
Y X 0dP : X 0 is a p.d. and X 0 � dQ

dP

�
= max fEQ0 (Y ) :M1 3 Q0 � Qg :

The formula for the minimum is proved in the same way. �

The next step is essentially due to Hardy:

Step 2. Let p =1 and q = 1 or viceversa, X;X 0 2 Lp and Y 2 Lq.

(a) X -cx X 0 implies
R 1
0
�X (s) �Y (s) ds �

R 1
0
�X0 (s) �Y (s) ds.

(b) X -cx X 0 implies
R 1
0
�X (s) �Y (1� s) ds �

R 1
0
�X0 (s) �Y (1� s) ds.

(c) X -icx X 0 and Y � 0 implies
R 1
0
�X (s) �Y (s) ds �

R 1
0
�X0 (s) �Y (s) ds.

Proof of Step 2. X;X 0 2 Lp and Y 2 Lq is equivalent to �X ; �X0 2 Lp ([0; 1]) and �Y 2 Lq ([0; 1])
[CR 4.3]. In particular, �X�Y ; �X0�Y 2 L1 ([0; 1]). Also notice that f (s) 2 Lq ([0; 1]) if and only if
f (1� s) 2 Lq ([0; 1]), and Z 1

0

f (s) ds =

Z 1

0

f (1� s) ds:

(a) (resp., (b)) If X -cx X 0, then
R w
0
�X (s) ds �

R w
0
�X0 (s) ds for all w 2 [0; 1] and

R 1
0
�X (s) ds =R 1

0
�X0 (s) ds, since �Y (s) is decreasing (resp., �Y (1� s) is increasing), then

R 1
0
�X (s) �Y (s) ds �R 1

0
�X0 (s) �Y (s) ds (resp.,

R 1
0
�X (s) �Y (1� s) ds �

R 1
0
�X0 (s) �Y (1� s) ds) [CR 9.1].

(c) If X -icx X 0 and Y � 0, then
R w
0
�X (s) ds �

R w
0
�X0 (s) ds for all w 2 [0; 1] and �Y is decreasing

and non-negative [CR 2.8], then
R 1
0
�X (s) �Y (s) ds �

R 1
0
�X0 (s) �Y (s) ds [CR 9.1]. �

Step 3. If either R (t; �) is Shur concave on M1 for all t 2 R, or (
;A; P ) is adequate and R (t; �) is
rearrangement invariant onM1 for all t 2 R, then

� (X) = max
Q2M1

R

�Z 1

0

��X (s) � dQ
dP
(s) ds;Q

�
8X 2 L1: (18)

Proof of Step 3. Let X 2 L1. Then, EQ (�X) �
R 1
0
��X (s) �dQ=dP (s) ds for all Q 2 M1, by (12),

thus monotonicity of R in the �rst component implies

� (X) = max
Q2M1

R (EQ (�X) ; Q) � sup
Q2M1

R

�Z 1

0

��X (s) � dQ
dP
(s) ds;Q

�
:

Conversely, for any Q 2 M1, by (12) there exists Q0 -cx Q (resp., by (14) there exists Q0 � Q) such
that Z 1

0

��X (s) � dQ
dP
(s) ds = EQ0 (�X) :

Thus,

R

�Z 1

0

��X (s) �dQ=dP (s) ds;Q

�
= R (EQ0 (�X) ; Q) � R (EQ0 (�X) ; Q0) � � (X)

by Shur concavity (resp., rearrangement invariance). Therefore,

sup
Q2M1

R

�Z 1

0

��X (s) � dQ
dP
(s) ds;Q

�
� � (X)

11



and the supremum is attained. �

Step 4. (ii) implies (i) and (10), also (iv) implies (i) provided (
;A; P ) is adequate.

Proof of Step 4. By Step 3, (ii) guarantees that (18) holds, and the same is true for (iv) if (
;A; P )
is adequate. But (18) is equivalent to (10) since �Y (s) = q

�
Y (1� s) for s 2 [0; 1].

Moreover, X %ssd Y if and only if �X -icx �Y . Thus, Step 2.c implies
R 1
0
��X (s) �dQ=dP (s) ds �R 1

0
��Y (s) �dQ=dP (s) ds for all Q 2M1, and monotonicity of R allows to conclude that

� (X) = max
Q2M1

R

�Z 1

0

��X (s) � dQ
dP
(s) ds;Q

�
� max

Q2M1

R

�Z 1

0

��Y (s) � dQ
dP
(s) ds;Q

�
= � (Y ) :

Therefore, � preserves second order stochastic dominance and, in particular, it is law-invariant. �

Step 5. If either � preserves second order stochastic dominance or (
;A; P ) is adequate and � is
law-invariant, then, for all (t; Q) 2 R�M1,

R (t;Q) = inf

�
� (Y ) :

Z 1

0

� dQ
dP
(s) �Y (1� s) ds � �t

�
= inf

�
� (Y ) :

Z 1

0

� dQ
dP
(s) �Y (1� s) ds = �t

�
:

(19)

Proof of Step 5. Notice that if � preserves second order stochastic dominance, then it is Shur convex,

that is, X -cx Y implies � (X) � � (Y ). Let � be Shur convex (resp. law-invariant). First observe

that

R (t;Q) = inf f� (X) : EQ (�X) � tg = inf f� (X) : EQ (X) � �tg

for all (t; Q) 2 R�M1.12 Since � is Shur convex (resp., rearrangement invariant), then

inf f� (X) : EQ (X) � �tg = inf f� (Y ) : there exists X -cx Y such that EQ (X) � �tg
(resp. = inf f� (Y ) : there exists X �cx Y such that EQ (X) � �tg ),

but,

inf f� (Y ) : EQ (X) � �t for some X -cx Y g = inf
�
� (Y ) : min

�Z
dQ

dP
XdP : L1 3 X -cx Y

�
� �t

�
(resp., inf f� (Y ) : EQ (X) � �t for some X � Y g = inf

�
� (Y ) : min

�Z
dQ

dP
XdP : L1 3 X � Y

�
� �t

�
).

By (15) and (16), for all (t; Q) 2 R�M1,

R (t;Q) = inf

�
� (Y ) :

Z 1

0

� dQ
dP
(s) �Y (1� s) ds � �t

�
� inf

�
� (Y ) :

Z 1

0

� dQ
dP
(s) �Y (1� s) ds = �t

�
:

Finally, assume per contra that R (t; Q) < inf
n
� (Y ) :

R 1
0
�dQ=dP (s) �Y (1� s) ds = �t

o
for some

(t;Q) 2 R�M1. This implies the existence of Z 2 L1 for which
R 1
0
�dQ=dP (s) �Z (1� s) ds � �t

and

� (Z) < inf

�
� (Y ) :

Z 1

0

� dQ
dP
(s) �Y (1� s) ds = �t

�
:

Since �Z+m = �Z +m for all m 2 R, thenZ 1

0

� dQ
dP
(s) �Z+m (1� s) ds =

Z 1

0

� dQ
dP
(s) �Z (1� s) ds+m:

12Clearly, R (t; Q) � inf
�
� (Y ) : EQ (�Y ) � t

	
. Conversely, assume per contra that R (t; Q) >

inf
�
� (Y ) : EQ (�Y ) � t

	
for some (t; Q) 2 R�M1. This implies the existence of Z 2 L1 for which EQ (�Z) � t

and � (Z) < R (t; Q). Set m = EQ (�Z) � t � 0, then Z +m � Z, EQ (� (Z +m)) = t and R (t; Q) � � (Z +m) �
� (Z) < R (t; Q), a contradiction. The second equality is trivial.
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Choose m � 0 so that Z 1

0

� dQ
dP
(s) �Z+m (1� s) ds = �t;

then Z +m � Z, and � (Z +m) � � (Z) < inf
n
� (Y ) :

R 1
0
�dQ=dP (s) �Y (1� s) ds = �t

o
, a contradic-

tion. �

Step 6. (i) implies (ii) and (11), also (iii) implies (ii) provided (
;A; P ) is adequate.

Proof of Step 6. By Step 5, (i) guarantees that (19) holds, and the same is true for (iii) if (
;A; P )
is adequate. But, the second part of (19) is equivalent to (11) since �Y (s) = q

�
Y (1� s) for s 2 [0; 1].

While the �rst part, together with Step 2.b, yields the following chain of implications

Q -cx Q0 =)
Z 1

0

� dQ
dP
(s) �Y (1� s) ds �

Z 1

0

� dQ0
dP

(s) �Y (1� s) ds for all Y 2 L1

=)
�
Y :

Z 1

0

� dQ
dP
(s) �Y (1� s) ds � �t

�
�
�
Y :

Z 1

0

� dQ0
dP

(s) �Y (1� s) ds � �t
�

8t 2 R

=) R (t; Q) � R (t; Q0) 8t 2 R:

Hence, R (t; �) is Shur concave for all t 2 R. �

Finally, Steps 4 and 6 guarantee that (i)()(ii), and in this case (10) and (11) hold. Moreover, if
(
;A; P ) is adequate, the same steps deliver (iv)=)(i)=)(iii) and (iii)=)(ii)=)(iv). �

Theorem 2 considers law-invariant quasiconvex risk measures that are upper semicontinuous with

respect to bounded pointwise convergence (see Proposition 3). Jouini, Schachermayer, and Touzi

(2006) show that law-invariant convex monetary risk measures are automatically lower semicontinuous

with respect to bounded pointwise convergence, provided (
;A; P ) is standard. Whether this remains
true for quasiconvex risk measures is left for future research (but see Proposition 4).

4.1 Mean Value Premium Principle

We conclude by studying an interesting class of law-invariant quasiconvex risk measures that are

continuous from below, that is, those of the form

� (X) = `�1 (EP (` (�X))) 8X 2 L1; (20)

where ` is a strictly increasing and convex loss function. The characterization of these measures is a

version of the classic Nagumo-Kolmogorov-de Finetti Theorem and relies on two additional properties:

Constancy � (m) = �m for all m 2 R.

Conditional consistency Let A 2 A and X;Y; Z 2 L1,

� (XIA) > � (Y IA)() � (XIA + ZIAc) > � (Y IA + ZIAc) :

The latter property is inspired by Savage (1954)�s �sure thing principle�and clearly hints at dynamic

consistency (see, e.g., Ghirardato, 2002). The seminal paper of Ellsberg (1961) shows how this as-

sumption is non-controversial only if agents think that P is a reliable model of the uncertainty they

face.13

13See, e.g., Maccheroni, Marinacci, and Rustichini (2006) for a recent discussion of this issue.
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Lemma 2 Let (
;A; P ) be a non-atomic probability space. A law-invariant risk measure � satis�es

constancy, conditional consistency, and continuity with respect to bounded pointwise convergence if

and only if there exists a strictly increasing and continuous ` : R! R such that

� (X) = `�1 (EP (` (�X))) 8X 2 L1:

The function ` is unique up to strictly increasing a¢ ne transformations, and it is convex if and only

if � is quasiconvex.

Proof. Su¢ ciency is trivial. Necessity reduces to check that the function M : D1 ! R de�ned for
each distribution with bounded support F = FX by

M (F ) = �� (X)

satis�es the assumptions of the Nagumo-Kolmogorov-de Finetti Theorem.

For the sake of completeness we include such check. Let [a; b] be any closed interval in the real line

and D (a; b) be the set of all simple probability distributions supported in [a; b]. The Dirac distribution
concentrated in x is denoted by Dx.

Constancy guarantees that:

Step 1. For all x 2 [a; b], M (Dx) = x.

Step 2. If F;G 2 D (a; b), F � G, and F 6= G, then M (F ) <M (G).

Proof of Step 2. Since (
;A; P ) is non-atomic there are two simple measurable functions X � Y

such that F = FX and G = FY . By monotonicity of �, M (F ) � M (G). Assume per contra that

M (F ) = M (G), that is � (X) = � (Y ). If X = Y , then F = G, which is absurd. Thus (again by

non-atomicity) there exist n 2 N, A1 2 A with P (A1) = 1=n, and x; y 2 R such that

X (!) < x < y < Y (!) 8! 2 A1:

Therefore,

X � xIA1 +XIAc
1
� yIA1 +XIAc

1
� Y:

By monotonicity of �,

�
�
xIA1 +XIAc

1

�
= �

�
yIA1 +XIAc

1

�
;

and so, by conditional consistency,

� (xIA1
) = � (yIA1

) :

Let A2; :::; An be such that fAigni=1 form a partition of 
 with P (Ai) = 1=n for all i. By law-invariance

� (xIAi) = � (yIAi) 8i = 1; :::; n:

Repeated application of conditional consistency then delivers

� (xI
) = � (xIA1
+ xIA2

+ xIA3
+ :::+ xIAn

) = � (yIA1
+ xIA2

+ xIA3
+ :::+ xIAn

)

= � (yIA1
+ yIA2

+ xIA3
+ :::+ xIAn

) = ::: = � (yI
) ;

which is absurd by constancy. �

Step 3. If F;G;H 2 D (a; b), � 2 (0; 1), andM (F ) =M (G), thenM (�F + (1� �)H) =M (�G+ (1� �)H).

Proof of Step 3. For every � 2 [0; 1], since (
;A; P ) is non-atomic, there are X;Y; Z 2 L1 and

A = A� 2 A that are independent and such that F = FX , G = FY , H = FZ , and P (A) = � (see, e.g.,
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Billingsley, 1995, Theorem 5.3). Independence guarantees that FW IA+W 0IAc = �FW + (1� �)FW 0 if

W;W 0 2 fX;Y; Zg.
If � = 1=2, then FW IA+W 0IAc = 2

�1FW + 2�1FW 0 = 2�1FW 0 + 2�1FW = FW 0IA+W IAc . Assume,

per contra, M
�
2�1F + 2�1H

�
6= M

�
2�1G+ 2�1H

�
, then � (XIA + ZIAc) ? � (Y IA + ZIAc), by

conditional consistency and law-invariance

� (X) = � (XIA +XIAc) ? � (Y IA +XIAc) = � (XIA + Y IAc) ? � (Y IA + Y IAc) = � (Y ) ;

which contradicts M (F ) = M (G). Thus the statement is true for � = 2�1. Induction guarantees

that it is true for any dyadic rational. Continuity with respect to bounded pointwise convergence of �

and the Skorohod Theorem (see, e.g., Billingsley, 1995, Theorem 25.6) guarantee that the statement

is true for any �. �

Let [a; b] = [�n; n]. The Nagumo-Kolmogorov-de Finetti Theorem guarantees that for all n 2 N
there exists a unique strictly increasing function �n : [�n; n] ! R such that �n (0) = 0 = �n (1) � 1
and

M (F ) = ��1n

�Z
R
�n (x) dF (x)

�
8F 2 D (�n; n) :

De�ne � (x) = �n (x) if jxj � n to obtain M (F ) = ��1
�R
R � (x) dF (x)

�
for each simple probability

distribution. Then,

� (X) = ���1 (EP (� (X)))

for all simple and measurable X : 
! R. Continuity with respect to bounded pointwise convergence
yields the result for ` (�) = �� (��).
Finally, if � is quasiconvex, Theorem 2 guarantees that � preserves second order stochastic domi-

nance. Hence ` is convex. The converse is trivial. �

Our �nal result builds on Rockafellar (1971) and explicitly evaluates R for risk measures that

admit an expected loss representation.

Proposition 5 If ` : R ! R is a strictly increasing convex function and � (X) = `�1 (EP (` (�X)))
for all X 2 L1, then

R (t; Q) = `�1
�
max
x�0

�
xt� EP

�
`�
�
x
dQ

dP

����
8 (t; Q) 2 R�M1:

Observe that this amounts to say that R (t;Q) = t�L (�t;Q;P ), where L (w;Q;P ) is the general-
ized distance between probability measures considered by Bellini and Frittelli (2002) and corresponding

to an initial endowment w and a utility �` (��).

Proof. Observe that ` (R) is an open half line (l;1), with l = infx2R ` (x). Then `�1 can be

extended to an extended-valued continuous and monotone function from [�1;1] to [�1;1] by
setting `�1 (x) = �1 if x < l and `�1 (1) =1. For all (t; Q) 2 R�M1,

R (t; Q) = inf
�
`�1 (EP (` (�X))) : EQ (�X) = t

	
= `�1 (inf fEP (` (�X)) : EQ (�X) = tg) :

Set � (�) = �` (��). Then

inf fEP (` (�X)) : EQ (�X) = tg = inf f�EP (�` (�X)) : EQ (�X) = tg
= � sup fEP (� (X)) : EQ (X) = �tg :
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But, the function � (X) = EP (� (X)) for all X 2 L1 is concave, continuous, and monotone. Then,

it follows immediately from Lemma 19 of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio

(2008b) and Corollary 2A of Rockafellar (1971) that

sup fEP (� (X)) : EQ (X) = �tg = min
x�0

[x (�t)� �� (xQ)] = min
x�0

�
x (�t)� EP

�
��
�
x
dQ

dP

���
:

Thus,

R (t; Q) = ���1
�
min
x�0

�
x (�t)� EP

�
��
�
x
dQ

dP

����
= `�1

�
max
x�0

�
xt� EP

�
`�
�
x
dQ

dP

����
;

as wanted. �

5 A Final Remark

For mathematical convenience we considered risk measures de�ned on L1 (
;A; P ). A parallel analy-
sis can be carried out in any function space with unit,14 like for example the space B (
;A) of bounded
and measurable functions and the space Cb (
) of bounded and continuous functions (provided 
 is a

topological space).
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