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Abstract

This paper examines the problem of how to design incentive-compatible mechanisms in

environments in which the agents�private information evolves stochastically over time and in

which decisions have to be made in each period. The environments we consider are fairly

general in that the agents� types are allowed to evolve in a non-Markov way, decisions are

allowed to a¤ect the type distributions and payo¤s are not restricted to be separable over

time. Our �rst result is the characterization of a dynamic payo¤ formula that describes the

evolution of the agents�equilibrium payo¤s in an incentive-compatible mechanism. The formula

summarizes all local �rst-order conditions taking into account how current information a¤ects

the dynamics of expected payo¤s. The formula generalizes the familiar envelope condition

from static mechanism design: the key di¤erence is that a variation in the current types now

impacts payo¤s in all subsequent periods both directly and through the e¤ect on the distributions

of future types. First, we identify assumptions on the primitive environment that guarantee

that our dynamic payo¤ formula is a necessary condition for incentive compatibility. Next, we

specialize this formula to quasi-linear environments and show how it permits one to establish

a dynamic �revenue-equivalence�result and to construct a formula for dynamic virtual surplus

which is instrumental for the design of optimal mechanisms. We then turn to the characterization

of su¢ cient conditions for incentive compatibility. Lastly, we show how our results can be put to

work in a variety of applications that include the design of pro�t-maximizing dynamic auctions

with AR(k) values and the provision of experience goods.
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1 Introduction

We consider the problem of how to design incentive-compatible mechanisms in a dynamic environ-

ment in which agents receive private information over time and decisions may be made over time.

The model allows for serial correlation of the agents�private information as well as the dependence

of information on past decisions. For example, it covers as special cases such problems as the

allocation of resources to agents whose valuations follow a stochastic process, the procedures for

selling new experience goods whose value is re�ned by the buyers upon consumption, or the design

of multiperiod procurement auctions for bidders whose cost parameters evolve stochastically over

time and may exhibit learning-by-doing e¤ects.

The fundamental di¤erence between dynamic and static mechanism design is that in the former,

an agent has access to a lot more potential deviations. Namely, instead of a simple misrepresentation

of his true type, the agent can make this representation conditional on the information he has

observed in the mechanism, in particular on his past types, his past reports (which need not

have been truthful), and what he inferred about the other agents� types in the course of the

mechanism. Despite the resulting complications, we deliver some general necessary conditions

for incentive compatibility and some su¢ cient conditions, and use them to characterize pro�t-

maximizing mechanisms in several applications.

The cornerstone of our analysis is the derivation of a formula for the derivative of an agent�s

expected payo¤ in an incentive-compatible mechanism with respect to his private information.

Similarly to Mirrlees�s �rst-order approach for static environments (Mirrlees, 1971), our formula

(hereafter referred to as dynamic payo¤ formula) provides an envelope-theorem condition sum-

marizing local incentive compatibility constraints. In contrast to the static model, however, the

derivation of this formula relies on incentive compatibility in all the future periods, not just in one

given period. Furthermore, unlike some of the earlier papers about dynamic mechanism design,

we identify conditions on the primitive environment for which the dynamic payo¤ formula is a

necessary condition for any incentive-compatible mechanism (not just for �well-behaved� ones).

In addition to carrying over the usual static assumptions of �smoothness� of the agent�s payo¤

function in his type and connectedness of the type space (see, e.g., Milgrom and Segal, 2002), the

dynamic setting requires additional assumptions on the stochastic process governing the evolution

of each agent�s information. Intuitively, our dynamic payo¤ formula represents the impact of an

(in�nitesimal) change in the agent�s current type on his equilibrium expected payo¤. This change

can be decomposed into two parts. The �rst one is the familiar e¤ect of the current type on the

agent�s expected utility, as in static mechanism design. The second part captures the indirect e¤ect

of the current type on the expected utility through its impact on the type distributions in each of the

subsequent periods. Note that in general the current type may a¤ect the future type distributions
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directly as well as indirectly through its impact on the type distributions in intermediate periods.

All changes in the type distributions are then evaluated by looking at their ultimate impact on

the agent�s utility, holding constant the agent�s messages to the mechanism (by the usual envelope

theorem logic).

The dynamic payo¤ formula can be established either by iterating backward the local incentive-

compatibility conditions or by using the probability integral transform theorem (see, e.g., Angus,

1994) to represent the agents�types as the result of independent innovations (shocks). While the

two approaches lead to the same formula, the conditions on the primitive environment that validate

this formula as a necessary condition for incentive compatibility are somewhat di¤erent. In this

sense the two approaches are complementary (see also Eso and Szentes, 2007, for a similar approach

in a two-period-one-decision model).

To ease the exposition, in the �rst part of the paper (Section 3) we consider an environment with

a single agent who observes all the relevant history of the mechanism. There we derive the envelope

formula that determines the agent�s equilibrium payo¤ in a incentive-compatible mechanism. In

Section 4 we then show how to adapt the envelope formula to a multi-agent environment. The

key di¤erence between the two settings is that in the latter an agent observes only a part of the

entire history generated by the mechanism: an agent must thus form beliefs about the unobserved

types of the other agents as well as the decisions that the mechanism has induces with these agents.

We show that the derivation for the single-agent case extends to multi-agent mechanisms provided

that the stochastic processes governing the evolution of the agents�types are independent of one

another, except through their e¤ect on the decisions that are observed by the agents. In other

words, we show how the familiar �Independent Types� assumption for static mechanism design

should be properly adjusted to a dynamic setting to guarantee that the agents�equilibrium payo¤s

can still be pinned down by an envelope formula.

For the special case of quasilinear environments, we �rst use the dynamic envelope formula

to establish a dynamic �revenue equivalence theorem� that links the payment rules in any two

Bayesian incentive-compatible mechanisms that implement the same allocation rule. In particular,

if we have a single agent who participates in a deterministic mechanism, this theorem pins down, in

each state, the total payment that is necessary to implement a given allocation rule, up to a scalar

that does not depend on the state. With many agents, or with a stochastic mechanism, the theorem

pins down the expected payments as function of each agent�s type history, where the expectation

is with respect to the other agents�types and/or the stochastic decisions taken by the mechanism.

However, if one requires a strong form of �robustness�� according to which the mechanism must

remain incentive-compatible even if an agent is shown at the very beginning of the game all the

other agents�(future) types� then the theorem again pins down the total payments for each state.
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Next, we use the dynamic envelope formula to express the expected pro�ts in an incentive-

compatible and individually rational mechanism as the expected �virtual surplus,� appropriately

de�ned for the dynamic setting. This derivation uses only the agents�local incentive constraints,

and only the participation constraints of the lowest-types in the initial period. Ignoring all the

other incentive and participation constraints yields a dynamic �Relaxed Program,� which is in

general a dynamic programming problem. In particular, the Relaxed Program gives us a simple

intuition for the optimal distortions introduced by a pro�t-maximizing principal: Since only the

�rst-period participation constraints bind (this is due to the unlimited bonding possibilities in the

quasilinear environment with unbounded transfers), the distortions are created to balance the rent-

extraction versus e¢ ciency trade-o¤, as perceived from the perspective of period one. However,

due to informational linkages in the stochastic type process, the principal will not only distort

the agent�s consumption in period one but also in any subsequent period whenever his type in

period t is informative about the �rst-period type. The informativeness is here measured by an

�information index�that captures all the direct and indirect e¤ects of the �rst-period type on the

type distributions in all subsequent periods.

It turns out that when an agent�s type in period t > 1 hits its highest or lowest possible value, the

informational linkage disappears and the principal implements the e¢ cient level of consumption in

that period (provided that payo¤s are additively time-separable). However, for intermediate types

in period t, the optimal mechanism entails distortions (for example, when types are positively

correlated over time in the sense of First-Order Stochastic Dominance, and the agent�s payo¤s

satisfy the single-crossing property, the optimal mechanism entails downward distortions). Thus,

in contrast to the static model, with a continuous but bounded type space, distortions in each

period t > 1 are never monotonic in the agent�s type. This is also in contrast with the results of

Battaglini (2005) for the case of a Markov process with only two types in each period.

Studying the Relaxed Program is not fully satisfactory unless one also provides su¢ cient con-

ditions for its solution to satisfy all of the remaining incentive and participation constraints. We

are indeed able to provide some such conditions. In particular, we show that in the case where the

agents�types follow a Markov process and their payo¤s are Markovian in their types (so that it

is enough to check one-stage deviations from truthtelling), a su¢ cient condition for an allocation

rule to be implementable is that the partial derivative of the agent�s expected utility with respect

to his current type when he misreports be nondecreasing in the report. One can then use the

dynamic payo¤ formula to calculate this partial derivative� the condition is fairly easy to check.

(Unfortunately, this condition is not necessary for incentive-compatibility� a tight characterization

is evasive because of the multidimensional decision space of the problem.) This su¢ cient condi-

tion also turns useful when checking incentive compatibility is some non-Markov settings that are
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su¢ ciently �separable.�

In some standard settings we can actually state an even simpler su¢ cient condition for incentive

compatibility, which also ensures that incentive compatibility is robust to an agent learning in

advance all of the other agents�types (and therefore to any weaker form of information leakage in

the mechanism). This condition is that the transitions that describe the evolution of the agents�

private information are monotone in the sense of First-Order Dominance, the payo¤s satisfy a single-

crossing property, and the allocation rule is �strongly monotonic�in the sense that the consumption

of a given agent in any period is nondecreasing in each of the agent�s type reports, for any given

pro�le of reports by the other agents.

In Section 5, we apply the general results to a few simple, yet illuminating, applications. The

analysis proves especially simple when the agents�types follow an autoregressive stochastic process

of degree k (AR(k)). If we assume in addition that each agent�s payo¤ is a¢ ne in his types

(but not necessarily in his consumption), then the principal�s Relaxed Program turns out to be

very similar to the expected social surplus maximization program, the only di¤erence being that

the agents� true values in each period are replaced by their corresponding �virtual values.� In

the AR(k) case, the di¤erence between an agent�s true value and his virtual value in period t,

which can be called his �handicap� in period t, is determined by the agent�s �rst-period type,

the hazard rate of the �rst period type�s distribution, and the �impulse response coe¢ cient� of

the AR(k) process.1 Intuitively, the impulse response coe¢ cient determines the informational link

between period t and period 1, while the �rst-period hazard rate captures the importance that the

principal assigns to the trade-o¤ between e¢ ciency and rent-extraction as perceived from period

one�s perspective (just as in the static model). Importantly, since the handicaps depend only on

the �rst-period type reports, the Relaxed Program at any period t � 2 can be solved by running
an e¢ cient (i.e., expected surplus-maximizing) mechanism on the handicapped values. Thus, while

building an e¢ cient mechanism may in general require solving an involved dynamic programming

problem (due to possible intertemporal payo¤ interactions), once a solution is found it can be easily

adapted to obtain a solution to the Relaxed Program. We also use the fact that the solution to the

Relaxed Program looks �quasi-e¢ cient�from period 2 onward to show that it can be implemented

in a mechanism that is incentive compatible from period 2 onward (following truthtelling in period

one). This can be done for example using the �Team Mechanism�payments proposed by Athey

and Segal (2007) to implement e¢ cient allocation rules. As for verifying incentives in period 1, we

have only been able to do it in a few special settings.

We also consider two other applications. The �rst one is the designing of sequential auctions

for environments in which the agents�payo¤s are time-separable while their private types follow an

1The term �handicapped auction�was �rst used in Eso and Szentes (2007).
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AR(k) process. This setting is particularly simple because the Relaxed Program separates across

periods and states and so we do not need to solve a dynamic programming problem. Under the

standard monotone hazard rate assumption on the agents�initial type distribution and the standard

third-derivative assumption on their utility functions, the Relaxed Program is solved by a Strongly

Monotone allocation rule, which then implies that it is implementable in an incentive-compatible

mechanism (and one that is robust to information leakage). The optimal mechanism exhibits some

interesting properties: for example, an agent�s consumption in a given period depends only on his

initial report and his current report, but not on intermediate reports. This can be interpreted as a

scheme where the agents make up-front payments that reduce their future distortions.

The second application is one in which an agent receives a signal about his unknown valuation

for a new good each time he consumes it. The agent�s expected value for the good then follows a

martingale. The solution to the e¢ cient dynamic programming problem in this setting takes the

form of a stopping rule. The solution to the pro�t-maximization problem looks similar, except

that the agent again makes a �rst-period report that determines his up-front payment and his

subsequent handicaps. This optimal mechanism achieves a strictly higher expected pro�t than any

pricing policy, even a history-contingent one.

The rest of the paper is organized as follows. Section 2 discusses the related literature. Section 3

presents the results for the single-agent case. Section 4 extends the analysis to quasi-linear settings

with multiple agents. Section 5 presents a few applications. The Appendix at the end of the

manuscript presents all proofs omitted in the main text.

2 Related Literature2

The last few years have witnessed a fast-growing literature on dynamic mechanism design. A num-

ber of recent papers propose mechanisms for implementing e¢ cient (welfare-maximizing) mecha-

nisms that are the dynamic analogues of static VCG and expected-externality mechanisms (see, for

example, Athey and Segal (2007) and Bergemann and Välimäki (2007), and the references therein).

These papers do not provide a general analysis of incentive compatibility in dynamic setting, but

simply identify some mechanisms that turn out to be incentive-compatible.

Our analysis is more closely related to the pioneering work of Baron and Besanko (1984) on

regulation of a natural monopoly and the more recent paper of Courty and Li (2000) on advance

ticket sales. Both papers consider a two-period model with one agent and use the �rst-order

approach to derive optimal mechanisms. The agent�s types in the two periods are serially correlated

2This section is still very much incomplete. We apologize to those authors who feel that their work should have
been discussed and that we omitted here.
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and this correlation determines the distortions in the optimal mechanism. Courty and Li also

provide some su¢ cient conditions for the allocation rule to be implementable. Our paper builds on

the ideas in these papers but extends the approach to allow for multiple periods, multiple agents,

and for more general speci�cation of the payo¤ and information structure. Contrary to these

early papers, we also provide conditions on the primitive environment that validate the ��rst-order

approach.�

Related is also a more recent paper by Battaglini (2005) who considers a model with one

agent and two types and derives an optimal selling mechanism for a monopolist facing a consumer

whose type follows a Markov process. Our results for a model with continuous types indicate that

many of his predictions seem speci�c to the special setting with only two types. We discuss in

more detail the di¤erences between the results in the two papers in subsection 4.6.3 Gershkov

and Moldovanu (2008a) and Gershkov and Moldovanu (2008b) consider both e¢ cient and pro�t

maximizing mechanisms to allocate a �xed set of objects to buyers that arrive randomly over time.

While the model has multiple agents, they assume that each agent lives only instantaneously. Hence

the problem that each agent faces is actually static. The paper derives a payo¤-equivalence result

which is essentially a static payo¤ equivalence result applied separately to each short-lived agent.

In contrast, we allow the agents to be long-lived.4

Eso and Szentes (2007) consider a two-period model with many agents but with a single decision

in the second period. They propose a di¤erent approach than that in Baron and Besanko (1984)

and Courty and Li (2000) to the characterization of optimal mechanisms. Their approach consists

in using the Probability Integral Transform Theorem to represent an agent�s second-period type as

a function of his �rst-period type and a random shock that is independent of the �rst-period type.

In Section 3.3 we show how the Probability Integral Transform Theorem can be used recursively

in a setting with possibly in�nite periods to describe the entire stochastic process that governs

the evolution of the agents�private information by means of serially independent shocks. We then

show how the independent-shock representation can be used to derive our dynamic payo¤ formula

under a somewhat di¤erent set of assumptions. Eso and Szentes also derive a pro�t-maximizing

auction and coin the term �handicapped auction� to describe it. However, in their two-period

AR(1) setting, it turns out that any incentive-compatible mechanism, not just a pro�t-maximizing

one, can be viewed as a �handicapped auction.�What we �nd more surprising is that under the

special assumptions of an AR(k) type process and a¢ ne payo¤s, then even with many periods

the optimal mechanism remains an �handicapped mechanism.�The distinguishing feature of such

3See also our companion paper Pavan, Segal, and Toikka (2008) for a further discussion.
4Other recent papers that study dynamic pro�t-maximizing mechanisms include Bognar, Borgers, and Meyer-ter

Vehn (2008) and Zhang (2008). The key di¤erence between these papers and ours is that these papers look at
particular issues that can emerge in dynamic environments, such as costly participation, while our abstracts from
some of these issues but instead provides a more general characterization of incentive-compatibility.
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mechanisms is that the allocation in a given period depends only on that period�s reports and the

reports in the �rst period; it is thus independent of the reports in all intermediate periods.5

The paper is also related to a more �macro-ish�literature on dynamic optimal taxation. While

the early literature typically assumes i.i.d. shocks (e.g. Green (1987), Thomas and Worrall (1990),

Atkeson and Lucas (1992)), the more recent literature considers the case of persistent private

information (e.g. Fernandes and Phelan (2000), Golosov, Kocherlakota, and Tsyvinski (2003),

Kocherlakota (2005), Golosov and Tsyvinski (2006), Kapicka (2006), Tchistyi (2006), Biais, Mari-

otti, Plantin, and Rochet (2007), Zhang (2006), Williams (2008)). While our work shares several

modelling assumptions with some of the papers in this literature, its key distinctive aspect is the

general characterization of incentive compatibility as opposed to the features of the optimal mech-

anism in the contest of speci�c applications.6

Dynamic mechanism design is also inherently related to the literature on multidimensional

screening, as noted, e.g., in Rochet and Stole (2003). Indeed, it is the multidimensional nature

of the problem that prevents a complete characterization of all implementable allocation rules.

Nevertheless, there is a sense in which incentive compatibility is much easier to ensure in a dynamic

mechanism than in a static multidimensional mechanism. This is because in a dynamic environment

an agent is asked to report each dimension of his private information before learning the subsequent

dimensions. By implication there are fewer deviations than in the corresponding static environment

in which the agents observe all the dimensions at once. Because of this, the set of allocation

rules that are implementable in a dynamic environment proves to be signi�cantly larger than

the set of allocation rules that are implementable in the corresponding static multidimensional

environment. For example, the pro�t-maximizing dynamic allocation rules we characterize are

typically not implementable if the agents were to observe all of their private information at the

outset of the mechanism.

We also touch here upon the issue of transparency in mechanisms. Calzolari and Pavan (2006a)

and Calzolari and Pavan (2006b) study its role in environments in which downstream actions (e.g.

resale o¤ers in secondary markets, or more generally contract o¤ers in sequential common agency)

are not contractible upstream. Pancs (2007) also studies the role of transparency in environments

where agents take nonenforceable actions such as investment or information acquisition.

5Another key di¤erence between the two papers is that, while Eso and Szentes use their model to study primarily
the e¤ects of the seller�s information disclosures on surplus extraction, here we focus on the characterization of
incentive compatibility in general dynamic mechanisms. For this purpose, it is essential to allow for non-Markov
processes and non-time-separable preferences, and to permit decisions to a¤ect the type distributions.

6Some of the works in this literature limit the analysis to the characterization of local �rst-order conditions (e.g.
the inverse Euler equation) and either leave the dynamics of the optimal mechanism unspeci�ed or they solve it
numerically.
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3 Single-agent case

3.1 General setup

3.1.1 The Environment

We consider an environment with one agent and �nitely many periods, indexed by t = 1; 2; : : : ; T .

In each period t there is a contractible decision yt 2 Yt, whose outcome is observed by the agent.
(In the next section we apply the model to a more general setup where yt is the part of the decision

taken in period t that is observed by the agent.) Each Yt is assumed to be a measurable space with

the sigma-algebra left implicit. The set of all period-t decision histories is denoted Y t �
Qt
�=1 Y� .

7

For the full histories we drop the superscripts so that y is an element of Y � Y T .

Before the period-t decision is taken, the agent receives some private information �t 2 �t � R.
We implicitly endow the set �t with the Borel sigma-algebra. We refer to �t as the agent�s current

type. The set of all possible type histories at period t is then denoted by �t �
Qt
�=1�� . An element

� of � � �T is referred to as the agent�s type.
The distribution of the current type �t may depend on the entire history of types and decisions

(�t�1; yt�1) 2 �t�1 � Y t�1. In particular, we assume that the distribution of �t is governed by a

history-dependent probability measure (�kernel�) Ft
�
�j�t�1; yt�1

�
on �t such that Ft (Aj�) : �t�1�

Y t�1 ! R is measurable for all measurable A � �t.8 Note that the distribution of �t depends only
on variables observed by the agent. We denote the collection of kernels by

F �


Ft : �

t�1 � Y t�1 ! �(�t)
�T
t=1

;

where for any measurable set A, �(A) denotes the set of probability measures on A. We abuse nota-

tion by using Ft(�j�t�1; yt�1) to denote the cumulative distribution function (c.d.f.) corresponding
to the measure Ft(�t�1; yt�1).

The agent is a von Neumann-Morgenstern decision maker whose preferences over lotteries over

�� Y are represented by the expectation of a (measurable) Bernoulli utility function

U : �� Y ! R:

(Although some form of time separability of U is typically assumed in applications, it is not needed

for the general results.)

An often encountered special case in applications is one where private information evolves in a

7By convention, all products of measurable spaces encountered in the text are endowed with the product sigma-
algebra.

8Throughout, we adopt the convention that for any set A, A0 � f?g.
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Markovian fashion, and where the agent�s payo¤ is Markovian in the following sense.

De�nition 1 The environment is Markov if

1. for all t, and all (�t�1; yt�1) 2 �t�1 � Y t�1, Ft(�j�t�1; yt�1) does not depend on �t�2, and

2. there exists functions


At : �

t � Y t ! R++
�T�1
t=1

and


Bt : �t � Y t ! R

�T
t=1

such that for all

(�; y) 2 �� Y ,

U (�; y) =
TX
t=1

 
t�1Y
�=1

A� (�� ; y
� )

!
Bt
�
�t; y

t
�
: (1)

Condition (1) guarantees that the stochastic process governing the evolution of the agent�s type

is Markov, while Condition (2) ensures that in any given period t, after observing history
�
�t; yt�1

�
,

the agent�s von Neumann-Morgenstern preferences over future lotteries depend on his type history

�t only through the current type �t. In particular, it encompasses the case of additive separable

preferences (At
�
�t; y

t
�
= 1 for all t) as well as the case of multiplicative separable preferences

(Bt
�
�t; y

t
�
= 0 for all t < T ).

3.1.2 Mechanisms

A mechanism in the above environment assigns a set of possible messages to the agent in each

period. The agent sends a message from this set and the mechanism responds with a (possibly

randomized) decision that may depend on the entire history of messages sent up to period t, and

on past decisions. By the Revelation Principle (adapted from Myerson, 1986), for any standard

solution concept, any distribution on �� Y that can be induced as an equilibrium outcome in any

mechanism can be induced as an equilibrium outcome of a �direct mechanism�in which the agent

is asked to report the current type in each period, and in equilibrium he reports truthfully.

Let mt 2 �t denote the agent�s period-t message, and let mt � (m1; : : :mt).

De�nition 2 A direct mechanism is a collection


 �



t : �

t � Y t�1 ! �(Yt)
�T
t=1

such that for all t, and all measurable A � Yt, 
t(Aj�) : �t � Y t�1 ! [0; 1] is measurable.

(The notation 
t(Ajmt; yt�1) stands for the probability of the mechanism generating yt 2 A � Yt

given history (mt; yt�1) 2 �t � Y t�1.)

Given a direct mechanism 
, and a history (�t�1;mt�1; yt�1) 2 �t�1��t�1�Y t�1, the following

sequence of events takes place in each period t:
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1. The agent privately observes his current type �t 2 �t drawn according to Ft
�
�j�t�1; yt�1

�
.

2. The agent sends a message mt 2 �t.

3. The mechanism selects a decision yt 2 Yt according to 
t(�jmt; yt�1).

A (pure) strategy for the agent in a direct mechanism is thus a collection of measurable functions

� �


�t : �

t ��t�1 � Y t�1 ! �t
�T
t=1

:

De�nition 3 A strategy � is truthful if for all t and all ((�t�1; �t);mt�1; yt�1) 2 �t��t�1�Y t�1,

�t((�
t�1; �t);m

t�1; yt�1) = �t:

This de�nition de�nes a unique strategy that requires the agent to report his current type

truthfully following all histories, including non-truthful ones.

In order to describe expected payo¤s, it is convenient to develop some more notation. First we

de�ne histories. For all t = 0; 1; : : : ; T , let

Ht �
�
�t ��t�1 � Y t�1� [ ��t ��t � Y t�1� [ ��t ��t � Y t

�
;

where by convention H0 = f?g, and H1 = �1 [ (�1 ��1)[ (�1 ��1 � Y1). Then Ht is the set of

all histories terminating within period t, and, accordingly, any h 2 Ht is referred to as a period-t

history. We let

H �
T[
t=0

Ht

denote the set of all histories. A history (�s;mt; yu) 2 H is a successor to history (�̂
j
; m̂k; ŷl) 2 H

if (1) (s; t; u) � (j; k; l), and (2) (�j ;mk; yl) = (�̂
j
; m̂k; ŷl). A history h = (�s;mt; yu) 2 H is a

truthful history if �t = mt.

Fix a direct mechanism 
, a strategy �, and a history h 2 H. Let �[
; �]jh denote the (unique)
probability measure on ���� Y� the product space of types, messages, and decisions� induced
by assuming that following history h in mechanism 
, the agent follows strategy � in the future.

More precisely, let h = (�s;mt; yu). Then �[
; �]jh assigns probability one to (~�; ~m; ~y) such that
(~�
s
; ~mt; ~yu) = (�s;mt; yu). Its behavior on ����Y is otherwise induced by the stochastic process

that starts in period s with history h, and whose transitions are determined by the strategy �,

mechanism 
, and kernels F . If h is the null history we then simply write �[
; �]. We also adopt

the convention of omitting � from the arguments of � when � is the truthful strategy. Thus �[
]
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is the ex-ante measure induced by truthtelling while �[
]jh is the measure induced by the truthful
strategy following history h.

Given this notation, we write the agent�s expected payo¤ when following history h he plays

according to strategy � in the future as E�[
;�]jh[U(~�; ~y)].9

For most of the results we use ex-ante rationality as our solution concept. That is, we require

the agent�s strategy to be optimal when evaluated at date zero, before learning �1. In a direct

mechanism this corresponds to ex-ante incentive compatibility de�ned as follows.

De�nition 4 A direct mechanism 
 is ex-ante incentive compatible (ex-ante IC) if for all strategies

�,10

E�[
][U(~�; ~y)] � E�[
;�][U(~�; ~y)]:

This notion of IC is arguably the weakest for a dynamic environment. Thus deriving necessary

conditions for this notion gives the strongest results. However, for certain results it is convenient

to de�ne IC at a given history.

De�nition 5 Given a direct mechanism 
, the agent�s value function is a mapping V 
 : H ! R
such that for all h 2 H,

V 
(h) = sup
�
E�[
;�]jh[U(~�; ~y)]:

De�nition 6 Let h 2 H. A direct mechanism 
 is incentive compatible at history h (IC at h) if

E�[
]jh[U(~�; ~y)] = V 
(h):

In words, 
 is IC at h if truthful reporting in the future maximizes the agent�s expected

continuation payo¤ following history h. This de�nition is �exible in that it allows us to generate

di¤erent notions of IC as special cases by requiring IC at all histories in a particular subset. For

example, ex-ante IC is equivalent to requiring IC only at the null history. Or in a static model (i.e.,

if T = 1), the standard de�nition of interim incentive compatibility obtains by requiring 
 to be IC

at all histories where the agent knows only his type. In a dynamic model a natural alternative is

to require that if the agent has been truthful in the past, he �nds it optimal to continue to report

truthfully. This is obtained by requiring 
 to be IC at all truthful histories.

The Principle of Optimality implies the following lemma.

9Throughout we use �tildes� to denote random variables with the same symbol without the tilde corresponding
to a particular realization.
10Restricting attention to pure strategies is without loss: By the Revelation Principle the agent can be assumed

to follow the truthful pure strategy in equilibrium. As for deviations, a mixed strategy (or a collection of behavioral
strategies) induces a lottery over payo¤s from pure strategies. Thus, if there is a pro�table deviation to a mixed
strategy, then there is also a pro�table deviation to a pure strategy in the support of the mixed strategy.

11



Lemma 1 If 
 is IC at h, then for �[
]jh-almost all successors h0 to h, 
 is IC at h0.

In particular, if 
 is ex-ante IC , then truthtelling is also sequentially optimal at truthful future

histories h with probability one, and the agent�s equilibrium payo¤ at such histories is given by

V 
(h) with probability one. We will sometimes �nd it convenient to focus on such histories, and

they are the only ones that matter for ex-ante expectations.

3.2 Necessary Conditions for IC: Backward-Induction Approach

We now set out to derive a recursive formula for (the derivative of) the agent�s expected payo¤

in an incentive compatible mechanism. This formula extends to dynamic models the standard use

of the envelope theorem in static models to pin down the dependence of the agent�s equilibrium

utility on his true type (see, e.g., Milgrom and Segal, 2002). We begin with a heuristic derivation

of the result. First recall the standard approach with T = 1, which expresses the derivative of the

agent�s equilibrium payo¤ in an IC mechanism with respect to his type as the partial derivative of

his utility function with respect to the true type holding the truthful equilibrium message �xed:

dV 
(�1)

d�1
=

Z
Y1

@U (�1; y1)

@�1
d
1(y1j�1) = E�[
]j�1

24@U
�
~�1; ~y1

�
@�1

35 :
(For the moment we ignore the precise conditions for the argument to be valid).

With T > 1, we may be interested in evaluating the equilibrium payo¤ starting from any

period t. In general, the agent�s continuation utility from truthtelling following a truthful history

h = (�t; �t�1; yt�1) is

E�[
]jh
h
U
�
~�; ~y
�i
=Z

U (�; y) dFT+1
�
�T+1j�T ; yT

�
d
T

�
yT jmT ; yT�1

�
� � � dFt+1

�
�t+1j�t; yt

�
d
t

�
ytjmt; yt�1

�����
m=�

;

where dFT+1(�T+1j�T ; yT ) � 1. Assume for the moment that this expression is su¢ ciently well-

behaved so that the derivatives encountered below exist. Suppose one now replicates the argument

from the static case. That is, consider the agent�s problem of choosing a continuation strategy given

the truthful history (�t; �t�1; yt�1). Assuming that an envelope argument applies, we di¤erentiate

with respect to the agent�s current type �t holding the agent�s truthful future messages �xed. The

current type directly enters the payo¤ in two ways. First, it enters the agent�s utility function

U . This gives the term E�[
]jh[@U(~�; ~y)=@�t]. Second, it enters the kernels F . This gives (after

12



integrating by parts and di¤erentiating within the integral) for each � > t the term

�E�[
]jh
"Z

@F� (�� j~�
��1

; ~y��1)

@�t

@V 
((~�
��1

; �� ); ~�
��1

; ~y��1)

@��
d��

#
:

This suggests that a marginal change in the current type e¤ects the equilibrium payo¤ through

two di¤erent channels. First, it changes the agent�s payo¤ from any allocation. Second, it changes

the distribution of future types in all periods � > t, and hence leads to a change in the period-�

continuation utility captured by the derivative of the value function V 
 evaluated at the appropriate

history.

While the above heuristic derivation isolates the e¤ects of the current type on the agent�s

equilibrium payo¤, it does not address the technical conditions for the derivation to be valid. In fact,

in general the derivatives of the future value function can not be assumed to exist so that the actual

formal argument is more involved. In particular, we do not want to impose any restriction on the

mechanism 
 to guarantee di¤erentiability of the value function. This would clearly be restrictive,

for example, for the purposes of deriving implications for optimal mechanisms. Instead, we seek

to identify properties of the environment that guarantee that the value function is su¢ ciently well

behaved.

Our derivation makes use of the following key assumptions.

Assumption 1 For all t, �t = (�t; �t) � R for some �1 � �t � �t � +1.

Assumption 2 For all t, and all (�t�1; yt�1) 2 �t�1 � Y t�1,
R
j�tjdFt(�tj�t�1; yt�1) < +1.

Assumption 3 For all t, and all (�t�1; yt�1) 2 �t�1 � Y t�1, the c.d.f. Ft(�j�t�1; yt�1) is strictly
increasing on �t.

Assumption 4 For all t, and all (�; y) 2 �� Y , @U(�; y)=@�t exists and is bounded uniformly in
(�; y).

Assumption 5 For all t, all � < t, and all (�t; yt�1) 2 �t � Y t�1, @Ft(�tj�t�1; yt�1)=@�� exists.
Furthermore, for all t, there exists an integrable function Bt : �t ! R+ [ f+1g such that for all
� < t, and all (�t; yt�1) 2 �t � Y t�1,

��@Ft(�tj�t�1; yt�1)=@�� �� � Bt(�t):

Assumption 6 For all t, and all yt�1 2 Y t�1, the probability measure Ft
�
�j�t�1; yt�1

�
is continu-

ous in �t�1 in the total variation metric.11

11See, e.g., Stokey and Lucas (1989) for the de�nition of the total variation metric.
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Assumptions 1 and 4 are familiar from static settings (see, e.g., Milgrom and Segal, 2002).

Note, however, that we do not require that the set of types be bounded. Assumptions 2 and 3

are also typically made in static models. Assumption 2 about the existence of the expectation is

trivially satis�ed if �t is bounded. Assumption 3 is a full support assumption, which is related

to Assumption 1. While Assumption 1 requires that the set �t of all feasible types be connected,

Assumption 3 implies that the set of relevant types is a connected set.12

Assumption 5 requires that the distribution of the current type depend su¢ ciently smoothly on

past types. The motivation for it is essentially the same as for requiring that, even in static settings,

utility depends smoothly on types (i.e., Assumption 4). In a dynamic model the agent�s expected

payo¤ depends on his true type both through the utility function U and the kernels F . For the

expected payo¤ to depend smoothly on types, both U and F need to have this property.13 Since this

assumption does not have an immediate counterpart in the static model, it is instructive to consider

what restrictions it imposes on the stochastic process for �t. In particular, it implies that the partial

derivative of the expected current type with respect to any past type �� , @
@��
E[�tj�t�1; yt�1], exists

and is bounded uniformly in (�t�1; yt�1)� see Lemma A1 in the Appendix.

It turns out that for non-Markov models Assumption 5 by itself does not impose enough reg-

ularity on the dependence of the kernels on past types, and hence we impose also Assumption

6.

We are now ready to state our �rst main result.

Proposition 1 Suppose Assumptions 1-6 hold. (In the Markov case, Assumption 6 can be dis-

pensed with.) If 
 is IC at the truthful history ht�1 �
�
�t�1; �t�1; yt�1

�
, then

V 
(�t; h
t�1) is Lipschitz continuous in �t, and for a.e. �t,

@V 
(�t; h
t�1)

@�t
=

E�[
]j(�t;h
t�1)

"
@U(~�; ~y)

@�t
�

TX
�=t+1

Z
@F� (�� j~�

��1
; ~y��1)

@�t

@V 
((~�
��1

; �� ); ~�
��1

; ~y��1)

@��
d��

#
:

(IC-FOC)

The recursive formula (IC-FOC) pins down how the agent�s equilibrium utility varies as a

function of the current type �t. It is a dynamic generalization of the static envelope theorem

formula sometimes referred to as the �Mirrlees�s trick� (Mirrlees, 1971). (Of course, the static

result obtains as a special case when T = t = 1.) As suggested in the heuristic derivation preceding
12Depending on the notion of IC used, full support may not be needed as long as IC is imposed for all types in

�t. However, without it, the interpretation becomes an issue. For example, consider a static model where �1 = [0; 1]
but where F assigns probability one to the set f0; 1g. Is this a model with a continuous type space in which IC is
imposed for all �1 2 [0; 1], or a model with two types with IC imposed only on �1 2 f0; 1g?
13This presumes the assumptions have to be stated separately for the primitives U and F . A weaker joint (or

�reduced form�) assumption imposing restrictions directly on the expected payo¤ would su¢ ce.
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the result, an in�nitesimal change in the current type has two kinds of e¤ects in a dynamic model.

First, there is a direct e¤ect on the �nal utility from decisions, which is captured by the partial

derivative of U with respect to �t. This is the only e¤ect present in static models. With more

than one period, there is a second, indirect, e¤ect through the impact of the current type on the

distribution of future types. This is captured by the sum within the expectation. The e¤ect of the

current type �t on the distribution of period � type is captured by the partial derivative of F� with

respect to �t. The induced change in utility is evaluated by considering the partial derivative of

the period � value function V� with respect to �� .

Remark 1 We have assumed that the information the agent receives in each period (his current

type) is one-dimensional. If in a given period the agent�s current type were multidimensional, we

could still derive the same necessary condition (IC-FOC) for incentive compatibility by restricting

the agent to observing each dimension of his current type at a time and reporting each dimension

before observing the subsequent ones. (This restriction only reduces the set of possible deviations and

therefore preserves incentive compatibility.) However, incentive compatibility is harder to ensure

when the agent observes several dimensions at once (see Remark 2 for more detail).

3.2.1 Role of the assumptions

To better appreciate the role of the assumptions in Proposition 1, it is useful to consider a few

counterexamples. The �rst one illustrates the role of Assumptions 1 and 3. The other two illustrate

the role of Assumption 5.

Example 1 (Lack of full support) Consider the following simple quasi-linear environment where

T = 2, �1 = (0; 1), �2 = (0; 3), Y1 = ?, y2 = (x; p) 2 Y2 = f0; 1g � R, and

F2(�2j�1) =

8>>>>>>><>>>>>>>:

0 if �2 < 0

(1� �1)�2 if �2 2 [0; 1)
1� �1 if �2 2 [1; 2)
1� �1 + �1(�2 � 2) if �2 2 [2; 3)
1 if �2 � 3

The agent�s payo¤ is U(�; y) = �2x � p. This environment corresponds, for example, to a setting

where the agent is a buyer whose period-1 type represents the probability he assigns to his period-2

valuation for an indivisible object (denoted by �2) being higher than 2. Now consider the following

deterministic mechanism


(�1; �2) =

(
(1; p) if �2 2 [p; 3)
(0; 0) otherwise
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with p 2 [2; 3).14 That is, there is a posted price p in period 2. It is easy to see that this mechanism
is IC at any history. The value function, evaluated at period-one history, is thus V 
(�1) = E[�2j�2 2
[p; 3)] Pr(�2 � pj�1) = p+3

2 �1(3�p). The derivative of this function with respect to �1 depends on p,
which is in contrast with what is predicted by (IC-FOC). The example also illustrates the failure of

the revenue equivalence result for quasi-linear settings documented in the static literature; we will

come back to the relation between this result and Proposition 1 in Section 4.

Example 2 (Discontinuos transitions) Next, consider the same example discussed above but

now assume that �1 = �2 = (0; 1) and that

F2(�2j�1) =

8<:�2 if �1 < 1=2

�22 if �1 � 1=2

Now consider the following deterministic mechanism:


(�1; �2) =

(
(1; p) if �1 2 [:5; 1)
(0; 0) otherwise

with p 2 (1=2; 2=3). That is, there is now a forward contract o¤ered in period 1 at price p for delivery
at period 2. This mechanism is clearly IC at any history. The corresponding value function is

V 
(�1) =

8<:0 if �1 < 1
2

2
3 � p if �1 � 1

2

The value function is thus not Lipschitz continuous in this example and, once again, revenue equiv-

alence fails to obtain.

Example 3 (Lack of equi-Lipschitz continuity) As another example of the role that assump-

tion 5 plays for the result in Proposition 1, consider an environment in which Y1 = (0;+1),
Y2 = ?, �1 = �2 = (0; 1) and where, for any y1; F2(�2j�1; y1) is continuously di¤erentiable in
both �1 and �2 but is not equi-Lipschitz continuous in �1: The agent�s payo¤ is U(�; y) = �2: Then

consider the following mechanism


(�1) = arg max
y12Y1

Z
�2dF2(�2j�1; y1)

By construction, the mechanism is IC at any history. Furthermore, by assumption, for any y1, the

function g(�1; y1) �
R
�2dF2(�2j�1; y1) is continuously di¤erentiable in �1: Following Example 1 in

14 In this example, we are abusing notation by letting 
(x; p) denote the distribution that assigns measure one to
(x; p):
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Milgrom and Segal (2002), one can then �nd transitions F2 such that the derivative of g(�1; y1) with

respect to �1 is not bounded by any integral function which make the value function discontinuous

in �1:

3.2.2 Closed-form expression for expected payo¤ derivative

The recursive formula for the partial derivative of V 
 with respect to current type �t in Proposition

1 can be iterated backwards to get a closed form formula. Although this can in principle be done

under the assumptions of the proposition, a more compact expression obtains if we make the

following additional assumption.

Assumption 7 For all t and all
�
�t�1; yt�1

�
2 �t�1 � Y t�1, the function Ft

�
�j�t�1; yt�1

�
is ab-

solutely continuous and its density satis�es ft
�
�tj�t�1; yt�1

�
> 0 for a.e. �t 2 �t.

The existence of a strictly positive density allows us to write the formula in terms of expectation

operators rather than integrals. Using iterated expectations then yields the following result.

Proposition 2 Suppose Assumptions 1-7 hold. (In the Markov case, Assumption 6 can be dis-

pensed with.) If 
 is IC at the truthful history ht�1 � (�t�1; �t�1; yt�1), then

V 
(�t; h
t�1) is Lipschitz continuous in �t, and for a.e. �t,

@V 
(�t; h
t�1)

@�t
= E�[
]j(�t;h

t�1)

"
TX
�=t

J�t (
~�
�
; ~y��1)

@U(~�; ~y)

@��

#
;

(2)

where J tt (~�
t
; ~yt�1) � 1 and

J�t (�
� ; y��1) �

X
K2N, l2NK+1:
t=l0<:::<lK=�

KY
k=1

I lklk�1(�
lk ; ylk�1) for � > t;

with

Iml (�
m; ym�1) � �@Fm(�mj�

m�1; ym�1)=@�l
fm(�mj�m�1; ym�1)

:

Intuition for (2) is as follows. Iml can be interpreted as the �direct informational index� of

signal �l about signal �m. J�t can be interpreted as �total informational index� of �t about �� .

It incorporates all the ways in which �t can a¤ect �� , both directly and through the intermediate

signals observed by the agent. Note that in calculating J�t each possible chain of e¤ect must

be counted exactly once. For example, in the Markov case, Iml = 0 for l < m � 1, and hence

J�t
�
�� ; y��1

�
=

�Y
k=t+1

Ikk�1(
~�
k
; ~yk�1). More generally, the following example suggests that the total
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informational indices could be viewed as �impulse responses�of the stochastic process for � to an

in�nitesimal change in �t.

Example 4 Let �t evolve according to an AR(k) process:

�t =

kX
j=1

�j�t�j + "t,

where �t = 0 for any t � 0; �j 2 R for any j = 1; :::; k, and "t is the realization of the random

variable ~"t distributed according to some c.d.f. Gt with strictly positive density over R, independent
from all ~"s, s 6= t. For convenience, hereafter we let �j � 0 for all j > k. Then

F�
�
�� j���1; y��1

�
= G�

0@�� � kX
j=1

�j���j

1A ;

so that for any � > t,

I�t
�
�� ; y��1

�
� �

@F�
�
�� j���1; y��1

�
=@�t

f� (�� j���1; y��1)
= ���t;

and

J�t
�
�� ; y��1

�
=

X
M2N, l2NM+1:t=l0<:::<lM=�

MY
m=1

�lm�lm�1 :

Thus in this case the total informational index J�t
�
�� ; y��1

�
is simply the �impulse response func-

tion� for the AR(k) process. Note also that here the total informational index is only a function of

t and � but not of (�; y). In the special case of an AR(1) process we have

I�t
�
�� ; y��1

�
=

(
�1 if � = t+ 1

0 otherwise,

which implies that J�t
�
�� ; y��1

�
= (�1)

��t.

3.3 Necessary Conditions for IC: Independent-Shock Approach

In this section, we illustrate an alternative approach to the characterization of the agent�s payo¤

in an incentive-compatible mechanism. This approach is based on the idea that any stochastic

process admits an equivalent representation in which the information the agent receives over time

can be described as a function of �shocks�that are serially independent (see also Eso and Szentes,

2007, for a similar approach in a two-period-one-decision model). This approach complements the
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one illustrated in the previous section in two ways: �rst, it permits us to accommodate the case

T = +1; second, even when restricted to the case T < +1; it permits us to identify a di¤erent
set of assumptions on the primitive environment that guarantee that the agent�s payo¤ in any

incentive-compatible mechanism is pinned down by an envelope condition.

We start by de�ning what we mean when we say that a process admits an independent-shock

representation. Next, we de�ne in what sense this representation is �strategically equivalent�to the

original one and hence can be used as an alternative approach to the characterization of incentive-

compatible mechanisms. We then proceed by showing how the formula for the (derivative of the)

agent�s payo¤ simpli�es when the agent is asked to report the shocks instead of his types and

identify conditions on the agent�s reduced-form payo¤ (i.e. when expressed as a function of the

shocks) that validate this formula. Finally, we conclude by showing that any stochastic process

admits a particular independent-shock representation, which we use to identify conditions for the

primitive environment that guarantee that in the corresponding independent-shock representation

the agent�s reduced-form payo¤ is �well-behaved�in the sense that it satis�es an envelope formula

analogous to the one derived in the previous section. While these conditions di¤er from the ones

identi�ed above, the formula for the derivative of the agent�s payo¤ reduces to the one in the

previous section when expressed in terms of the primitive representation.

De�nition 7 Fix T 2 N [ f+1g and let ~" � (~"t)
T
t=1 denote a collection of random variables

with support E � �Tt=1Et � RT and distribution G and z �


zt : E t � Y t�1 ! �t

�T
t=1

denote

a collection of functions of these variables and of the decisions y. We say that (G; z) is an

independent-shock representation for the stochastic process that corresponds to the kernels F �

Ft : �

t�1 � Y t�1 ! �(�t)
�T
t=1

if

(i) for each t, there exists a probability measure Gt on Et such that G = �Tt=1Gt; and
(ii) for any t, "t�1 2 E t�1 and yt�1 2 Y t�1, the distribution of zt(~"t; yt�1) given yt�1 and ~"t�1 =

"t�1 is the same as the distribution of �t given yt�1 and �t�1 = zt�1("t�1; yt�2) � (z� ("� ; y��1))t�1�=1.

Together, conditions (i) and (ii) say that, for any y, one can think of the agent�s primitive

information � as being generated by the independent �shocks�~".

Note that a more general de�nition of an independent-shock representation allows the distribu-

tions of the shocks G to depend on the decisions y. It is only to ease the exposition that we assume

away such a dependence: it is in fact immediate that all the subsequent results apply also to the

case where G depends on y:

Example 5 Consider the AR(k) process described in 4. In this example, the functions zt do not
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depend on y. They are given by

z1("1) = "1

z2("
2) = �1"1 + "2

z3("
3) = �1(�1"1 + "2) + �2"1 + "3 = (�

2
1 + �2)"1 + �1"2 + "3

:::

zt("
t) =

Pt
j=1

24 X
M2N, l2NM+1:j=l0<:::<lM=t

MY
m=1

�lm�lm�1

35 "j :
Suppose now the agent�s information � is generated by the independent shocks " and let z :

E � Y ! � denote the function de�ned by

z("; y) � (z� ("� ; y��1))T�=1:

Assume further that the agent observes not only � but also the shocks ". The agent�s payo¤ can

then be expressed in terms of the shocks " and the decisions y by the function Û : E � Y ! R
de�ned by

Û("; y) � U(z("; y); y): (3)

Next, consider a (randomized direct) mechanism


̂ �
D

̂t : E t � Y t�1 ! �(Yt)

ET
t=1

;

in which the agent reports the shocks " instead of his primitive payo¤-relevant information �.

For any t any yt�1 2 Y t�1, then let Ĝt(�jzt(~"t; yt�1)) denote the regular conditional probability
distribution of the vector ~"t given the sigma-algebra �(zt(~"t; yt�1)) generated by the random vector

zt(~"t; yt�1).15

The primitive representation (U;F ) is equivalent to the representation (Û ; G; Z) in the following

sense.

Lemma 2 (a) Given any ex-ante IC mechanism 
 for the primitive representation (U;F ), there

exists an ex-ante IC mechanism 
̂ for the corresponding independent-shock representation (Û ; G; z)

such that, for any t, any measurable set A � Yt, and any (�t; yt�1),Z

̂t(Aj"t; yt�1)dĜt("tjzt("t; yt�1) = �t) = 
t(Aj�t; yt�1): (4)

15Such a regular conditional probability distribution here exists since "t 2 Rt. See, e.g., Dudley (2002).
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(b) Given any ex-ante IC mechanism 
̂ for the independent-shock representation (Û ; G; z), there

exists an ex-ante IC mechanism 
 for the primitive representation (U;F ) such that, for any t, any

measurable set A � Yt, and any (�t; yt�1), (4) holds.

Hence any outcome (i.e., any joint distribution over � � Y ) that can be sustained by having

the agent report the payo¤-relevant information � can also be sustained by having him report the

shocks ", and vice versa. Note that Part (a) follows directly from the fact that if the mechanism 


is ex-ante IC, then the mechanism 
̂ de�ned by


̂t(�j"t; yt�1) = 
t(�jzt("t; yt�1); yt�1) 8("t; yt�1) (5)

is also ex-ante IC. This mechanism de facto uses the same information as 
, in the sense that it

depends on " only through z("; y). Part (b) is also trivially satis�ed. It su¢ ces to construct 
 from


̂ using the transformation de�ned in (4). To see that if 
̂ is ex-ante IC, so is 
, it su¢ ces to note

that (i) payo¤s depend on the shocks " only thought z("; y), (ii) 
 induces the same distribution

over � � Y as 
̂, and (iii) any distribution over � � Y that the agent can induce given 
 could

also have been induced given 
̂.

Suppose now that an independent-shock representation exists. (We will show below that this is

always the case.) One can then use this representation as an alternative route to the characterization

of the properties of incentive-compatible mechanisms. In particular, one can treat the shocks as

the agent�s private information and then express the dynamics of the agent�s equilibrium payo¤ in

terms of the (derivative of the) value function with respect to the shocks. To this aim, let

Ĥ �
�
("s;mt; yu) 2 Es � E t � Y u with T � s � t � u � s� 1

	
denote the set of all possible histories in the extensive form corresponding to 
̂. For any ĥ 2 Ĥ, let
�̂[
̂]jĥ denote the (unique) probability measure over E �E �Y induced by assuming that following

history ĥ in the mechanism 
̂, the agent reports truthfully at any subsequent information set.

Finally, let V̂ 
̂(ĥ) denote the agent�s value function in 
̂ evaluated at history ĥ. We then have the

following result.

Proposition 3 Fix t and suppose that Gt is strictly increasing over the interval Et � R, withR
j"tjdGt("t) < 1; and that there exists an At 2 R+ such that, for any ("�t; y) 2 E�t � Y;16 the

function Û((�; "�t); y) : Et ! R is At-Lipschitz continuous and di¤erentiable. Then if 
̂ is IC at

16Throughout, E�t � �� 6=tE� :

21



the truthful history ĥt�1 = ("t�1; "t�1; yt�1),

V̂ 
̂("t; ĥ
t�1) is Lipschitz continuous in "t, and for a.e. "t,

@V̂ 
̂("t; ĥ
t�1)

@"t
= E�̂[
̂]j"t;ĥ

t�1

"
@Û(~"; ~y)

@"t

#
:

(6)

While, when T < +1; the result follows directly from Proposition 2; the proof below is actually
simpler and follows essentially from the same arguments as in a static setting (see, e.g., Milgrom

and Segal, 2002).

Condition (6) thus provides an alternative representation of how the agent�s payo¤ must vary

with the agent�s private information in an IC mechanism. In certain applications (e.g. the AR(k)

example described above), working directly with the reduced-form payo¤ Û may actually facilitate

the characterization of the properties of optimal mechanisms. For the result in Proposition 3 to be

useful, it is however important to understand what properties of the primitive payo¤ function U

and of the functions z guarantee that the agent�s reduced-form payo¤ Û is equi-Lipschitz continuous

and di¤erentiable in each "t. This is what we address next.

To accommodate the possibility that T = +1; we �rst introduce some additional notation. Let
k�k denote a norm on � and then denote by B(�) � f� 2 � : k�k < +1g the set of types whose
norm is �nite.17 Hereafter, we will then assume that the domain of U is B(�)� Y and that, given

the stochastic process that corresponds to the kernels F; � 2 B(�) almost surely. We can then
establish the following result.

Proposition 4 Fix t and suppose that Et is an interval and that there exist scalars K;Qt 2 R+
such that, for any ("�t; y) 2 E�t � Y , the function U(�; y) : B(�) ! R is K�Lipschitz continuous
and (Frechet) di¤erentiable in � (in the appropriate norm) and the function z(�; "�t; y) : Et ! B(�)
is Qt�Lipschitz continuous and (Frechet) di¤erentiable in "t. Then there exists an At 2 R+ such
that, for any ("�t; y) 2 E�t�Y; the function Û((�; "�t); y) : Et ! R is At�Lipschitz continuous and
di¤erentiable and its derivative is given by

@Û("; y)

@"t
=

TX
s=t

@U(z("; y); y)

@�s

@zs("
s; ys�1)

@"t
:

The proof follows directly from the chain rule of Frechet di¤erentiability. Note that, when T is

�nite, then Frechet di¤erentiability reduces to standard multivariate di¤erentiability. In this case,

17When T < +1, the speci�cation of the norm is irrelevant � all norms on � are equivalent. On the contrary,
with T = +1; the speci�cation of the norm is important �properties such as Frechet di¤erentiability and Lipschitz
continuity may hold only with respect to certain norms. Because the selection of a norm is speci�c to the application
under examination, hereafter we leave the description of the norm unspeci�ed. However, we note that, for many
applications, we �nd the following norm convenient: jj�jj� � supt �t�1j�tj, for some � 2 (0; 1):
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a su¢ cient condition for z(�; "�t; y) : Et ! B(�) to be di¤erentiable and equi-Lipschitz continuous
is that each zs((�; "s�t); ys�1) : Et ! �s is di¤erentiable and equi-Lipschitz continuous in "t, t < s:

While the aforementioned conditions are general, they need not be easily checkable, especially

when T = +1: Hereafter, we thus provide some su¢ cient conditions that are stronger but often
satis�ed in applications.

Assumption 8 There exists a collection of functions u �


ut : �

t � Y t ! R
�T
t=1

and a collection of

scalars B � (Bt)Tt=1 with Bt 2 R+ for all t and
PT

t=1Bt < +1 such that: (i) for any (�; y) 2 ��Y ,

U(�; y) =
TX
t=1

ut(�
t; yt) (7)

and (ii) for any t any yt 2 Y t; ut(�; yt) is Bt-Lipschitz continuous and di¤erentiable.

With a �nite horizon, part (i) is always trivially satis�ed and Assumption 8 is equivalent to

assuming that the function U(�; y) is equi-Lipschitz and di¤erentiable (as a multi-variate function)

in �: With an in�nite horizon, assuming that U admits the additive representation of (7) is clearly

not without loss of generality. However, note that such a representation is quite standard in

applications. We then have the following result.

Proposition 5 Suppose that assumptions 1 and 8 hold. Fix t and suppose that Et is an interval
and that for any � � t; there exists a Ct;� 2 R+ such that (a) for all ("��t; y��1) 2 E��t � Y ��1;18

the function z� ((�; "��t); y��1) : Et ! �t is Ct;� -Lipschitz continuous and di¤erentiable, and (b)PT
�=tCt;� < +1: Then the conclusion of Proposition 4 hold.

It is easy to see that the conditions on the functions z assumed in the proposition are satis�ed

for example when � evolves according to an AR(k) process with
���j�� < 1 for all j = 1; :::; k: More

generally, at this point one may wonder which processes admit an independent-shock representation

and which one admit an independent-shock representation for which the corresponding z functions

satisfy the conditions of Proposition 5. We address each of these questions in turn.

First, we show that any process admits a particular independent-shock representation, which

henceforth we refer to as the canonical representation. This representation is derived from the

kernels F as follows. Let ~" denote a (possibly in�nite) vector of independent random variables,

each uniformly distributed over (0; 1). Next, for any t, any " 2 (0; 1), any (�t�1; yt�1); let

F�1t ("j�t�1; yt�1) � inff�t : Ft(�tj�t�1; yt�1) � "g
18E��t � �j2Nnftg;j��E� :
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denote the generalized inverse of the kernel Ft. Now let z : E �Y �! � be the mapping recursively

de�ned by

zt("
t; yt�1) � F�1t ("t j F�11 ("1); F

�1
2 ("2 j F�11 ("1); y1); :::; y

t�1) 8t (8)

Applying the probability integral transform theorem recursively(see, e.g., Angus, 1994), one can

then show that, given any yt�1 2 Y t�1 and any "t�1 2 (0; 1)t�1, the distribution of zt(~"t; yt�1) given
yt�1 and ~"t�1 = "t�1 is the same as the distribution of �t given yt�1 and �t�1 = (F�11 ("1); F

�1
2 ("2 j

F�11 ("1); y1); :::; y
t�1). Hence, any process admits an independent-shock representation in which, for

any t, Gt is simply the uniform distribution over (0; 1) and where the functions zt : E t�Y t�1 ! �t

are the ones de�ned in (8).

Using the canonical representation, one can then identify conditions on the kernels F that

guarantee that the corresponding zt functions, as de�ned in (8), satisfy the properties of Proposition

5.

Assumption 9 For any t � 2 there exists a Dt 2 R+ such that (a) for any " 2 (0; 1) any

yt�1 2 Y t�1; the function F�1t ("j�; yt�1) is Dt�Lipschitz continuous and di¤erentiable, and (b)19

TX
t=2

Dt

26641 + X
l2N:1<l<t

Dl +
X

K2N, l2NK+1:
2�l0<:::<lK�t�1

lKY
l=l0

Dl

3775 < +1:
Assumption 10 For any t � 1; there exists a Mt 2 R+ such that, for any (�t�1; yt�1) 2 �t�1 �
Y t�1; the function F�1t (�j�t�1; yt�1) is Mt�Lipschitz continuous and di¤erentiable.

Together, assumptions 9 and 10 guarantee that the functions zt obtained from the kernels F

using the transformation de�ned in (8) satisfy the properties of Proposition 5 (see the proof of

Proposition 6 in the appendix).

Combining all the conditions on the primitive environment (U;F ) identi�ed above then gives

the following result.

Proposition 6 Suppose assumptions 1, 2, 8, 9 and 10 hold. If 
̂ is IC at the truthful history

ĥt�1 � ("t�1; "t�1; yt�1), then

V 
̂("t; ĥ
t�1) is Lipschitz continuous in "t, and for a.e. "t,

@V 
̂("t; ĥ
t�1)

@"t
= Îtt ("

t; yt�1)

(
E�̂[
̂]j"t;ĥt�1

"
TX
�=t

Ĵ�t (~"
� ; ~y��1)

@U(zT (~"T ; eyT�1); eyT )
@��

#)
;

(9)

19Note that condition (b) is trivially satis�ed when T is �nite.
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where Ĵ tt ("
t; yt�1) � 1 and

Ĵ�t ("
� ; y��1) �

X
K2N, l2NK+1:
t=l0<:::<lK=�

KY
k=1

Î lklk�1 for � > t;

with

Îtt ("
t; yt�1) � @F�1t ("t j F�11 ("1); F

�1
2 ("2 j F�11 ("1); y1); :::; y

t�1)

@"t

and

Îml ("
m; ym�1) � @F�1m ("m j F�11 ("1); F

�1
2 ("2 j F�11 ("1); y1); :::; y

m�1)

@�l
if m > l:

Proposition 6 thus identi�es a new set of conditions for the primitive environment (U;F ) that

guarantee that, in any IC mechanism, the agent�s expected payo¤, when expressed using the canon-

ical representation, satis�es the envelope formula of (6). Comparing the conditions in this propo-

sition with those in Proposition 1, one can see that while the assumptions in Proposition 1 rule

out, for example, an atom at �t = �#t that �shifts�with the past �
t�1 (e.g., fully persistent types),

such a possibility is accommodated by the assumptions in Proposition 6. On the other hand, the

assumptions in Proposition 6 rule out an atom at �t = �#t whose measure grows with �t�1 while

such a possibility is allowed by the assumptions in Proposition 1. The assumptions in the two

propositions are thus not nested and hence describe possibly di¤erent environments.

Also note that the functions Î and Ĵ in Proposition 6 are the analog of the direct and total

information indexes in the primitive representation. The formula in (9) thus provides a useful

alternative closed-form representation for the derivative of the value function that one can use, for

example, when some of the assumptions in Proposition 2 are violated.

Finally note that, while the formula in (9) describes the dynamics of the value function in the

mechanism 
̂ in which the agent reports the shocks " instead of his payo¤-relevant types �; the same

formula also permits one to express the derivative of the value function in the original mechanism


 in which the agent reports � instead of ": To see this, it su¢ ces to proceed as follows. Take any

mechanism 
 for the primitive representation (U;F ) and let 
̂ be the corresponding mechanism

in the independent-shock representation that is obtained from 
 using (5). Because, for any y,

the agent�s payo¤ in 
̂ depends on " only through z("; y), we have that, for any yt�1 and "t the

following identity holds:

V̂ 
̂("t; "t�1; yt�1) = V 
(zt("t; yt�1); zt�1("t�1; yt�2); yt�1): (10)
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Therefore, at any point of di¤erentiability of V̂ 
̂ in "t,

@V̂ 
̂("t; "t�1; yt�1)

@"t
=
@V 
(zt("t; yt�1); zt�1("t�1; yt�2); yt�1)

@�t

@zt("
t; yt�1)

@"t
: (11)

While conditions (10) and (11) hold for all independent-shock representations, when (G; z) is the

canonical representation of F;
@zt("

t; yt�1)

@"t
= Îtt ("

t; yt�1):

Combining (11) with (9), one can then verify that if, in addition to the assumptions in Proposition

6, assumptions 3 and 7 hold, then Îtt ("
t; yt�1) 6= 0 and

Î�t ("
� ; y��1) = I�t (�� j���1; y��1)

��
��=z� ("� ;y��1)

and Ĵ�t ("
� ; y��1) = J�t (z

� ("� ; y��1); y��1):

The following is then an immediate implication of the aforementioned results.

Proposition 7 Suppose the primitive environment (U;F ) satis�es assumptions 1, 2, 3, 7, 8, 9,

and 10. Then the conclusions of Proposition 2 hold.

Note that assumptions 1, 2, 3 and 7 are also present in Proposition 2. Assumption 8 is stronger

than assumption 4. On the other hand, assumptions 5 and 6 are not implied by assumptions 9 and

10. The two propositions thus identify di¤erent sets of necessary conditions for the validity of the

dynamic payo¤ formula given in (2).

3.4 Su¢ cient conditions for IC

While formula (2) summarizes local (�rst-order) incentive constraints, it does not imply the satis-

faction of all (global) incentive constraints. In this section we formulate some su¢ cient conditions

for incentive compatibility. These conditions generalize the well-known monotonicity condition,

which together with the �rst-order condition characterizes incentive-compatible mechanisms in the

static model with a one-dimensional type space. The static characterization cannot be extended to

the dynamic model, which could be viewed as an instance of a multidimensional mechanism design

problem, for which the characterization of IC mechanisms is more di¢ cult (see, e.g., Rochet and

Stole, 2003). More precisely, there are two sources of di¢ culty in ensuring incentive compatibility

of a dynamic mechanism: (a) in general one needs to consider multiperiod deviations, since once the

agent lies in one period, his optimal continuation strategy may require lying in subsequent periods

as well; 20 and (b) even if one focuses on single-period deviations, in which the agent misrepresents

20 It is possible to ensure that truthtelling is optimal even after deviations by allowing the agent to re-report his
complete history �t in each period t, possibly contradicting his earlier reports. This is the version of the revelation
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his current one-dimensional type, the decisions assigned by the mechanism from that period onward

form a multidimensional decision space.

While these problems make it hard to have a general characterization of incentive compatibility,

we can still formulate su¢ cient conditions for IC that prove useful in a number of applications.

Problem (a) is sidestepped by focusing on environments in which we can assure that truthtelling

is an optimal continuation strategy even following deviations, and so incentive compatibility can

be assured by checking one-period deviations. (While this focus is quite restrictive, it includes all

Markov environments, as well as some other interesting cases� see for example the application to

sequential auctions with AR(k) values considered in subsection 5.2). Problem (b) is sidestepped

by formulating a monotonicity condition that, while not necessary for IC, is su¢ cient and is easy

to check in applications.

Proposition 8 Suppose the environment satis�es either the assumptions of Proposition 2 or those

of Proposition 7. Fix any period t and for any period-t history h, let

D
 (h) � E�[
]jh
"

TX
�=t

J�t (
~�
�
; ~y��1)

@U(~�; ~y)

@��

#
:

Suppose that for any truthful history
�
�t�1; �t�1; yt�1

�
,

(i) E�[
]j((�t�1;�t);�t�1;yt�1)[U(~�; ~y)] is Lipschitz continuous in �t, and for a.e. �t,

d

d�t
E�[
]j((�

t�1;�t);�t�1;yt�1)[U(~�; ~y)] = D

�
(�t�1; �t); (�

t�1; �t); y
t�1� :

(ii) For any mt, for a.e. �t,

�
D


�
(�t�1; �t); (�

t�1; �t); y
t�1��D


�
(�t�1; �t); (�

t�1;mt); y
t�1�� � (�t �mt) � 0;

(iii) 
 is IC at any (possibly non-truthful) period t+ 1 history.

Then 
 is IC at any truthful period-t history.

Propositions 2 and 7 imply that condition (i) in Proposition 8 is a necessary condition for

the mechanism to be IC at all truthful period-t histories (Recall that this means that the agent�s

value function at these histories coincides with the expected equilibrium payo¤). The addition of

conditions (ii) and (iii) is then su¢ cient (but in general not necessary) for IC at all truthful period-

t histories� The proof is based on a lemma in the appendix that extends to a dynamic setting a

principle proposed by Doepke and Townsend (2006). While this approach would allow us to restrict attention to
one-stage deviations from truthtelling, the deviations in each period would now be multidimensional, and contingent
on possibly inconsistent reporting histories, so it is not clear that this approach would simplify the characterization
of the su¢ cient conditions.
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result by Garcia, 2005 for static mechanism design with one-dimensional type and multidimensional

decisions.

The assumption that the mechanism is IC at all period t + 1 histories, including non-truthful

ones, is rather strong, but it can be satis�ed in some applications. As one prominent example, in

a Markov setting, the history �t of the agent�s true types does not a¤ect his incentives in period

t + 1 after �t+1 is observed. Thus, any mechanism that is IC at all truthful period t + 1 histories

must also be IC at all period t+ 1 histories. In this case, the Proposition can be iterated starting

from period T + 1 moving backward to establish IC in all periods and at all histories.

4 Multi-agent quasilinear case

We now introduce multiple agents. The multi-agent model we consider features three important

assumptions: (1) the environment is quasilinear (i.e., the decision taken in each period can be

decomposed into an allocation and a vector of monetary payments and the agents�preferences are

quasilinear in the payments), (2) the type distributions are independent of past monetary payments

(but they may still depend on past allocations), and (3) types are independent across agents. After

setting up the model we show how from the perspective of an individual agent, the model reduces

to the single-agent case studied in the previous section.

4.1 Quasilinear environment

There are N agents indexed by i = 1; : : : ; N . In each period t = 1; : : : ; T; each agent i is shown

a nonmonetary �allocation� xit 2 Xit (where Xit is a measurable space), and asked to make a

payment pit 2 R. The set of feasible joint allocation decisions in period t is Xt �
QN
i=1Xit.21 ;22

Each agent i observes his own allocations xit but not the others�allocations x�i;t: The observ-

ability of xit should be thought of as a technological restriction: A mechanism can reveal more

information to agent i in period t than xit, but it cannot conceal xit. As for the payments, because

none of the results hinges on the speci�c information the agents receive about p, we leave the

description of the information the agents receive about p unspeci�ed.

As in the single-agent case, histories are denoted using the superscript notation. For example,�
xt; pt

�
is an element of Xt � RNt, where Xt �

Qt
�=1X� and X �

QT
�=1X� .

In each period t, each agent i privately observes his current type �it 2 �it � R. The current
type pro�le is then denoted by �t � (�1t; : : : ; �Nt) 2 �t �

Q
i�it. The distribution of the type

21For example, we can have Xt = fxt 2 RN+ :
P
i xit � �xtg when the decision is the allocation of a private good

among agents, or Xt =
�
xt 2 RN+ : x1t = x2t = ::: = xNt

	
when the decision is the provision of a public good.

22This formulation does not explicitly allow for decisions that are not observed by any agent at the time they are
made; however, such decisions can easily be accomodated by introducing a �ctitious agent observing them.
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pro�le � 2 � �
QT
t=1�t is described in the following de�nition.

We omit superscripts for full histories, with the exception of xTi � (xi1;:::; xiT ), pTi � (pi1;:::; piT ),
and �Ti � (�i1;:::; �iT ) (and the sets they are elements of). This is to avoid confusion between, e.g.,
xt � (x1t; :::; xNt) and xi � (xi1; :::; xiT ).

Agent i�s payo¤ function is denoted by Ui : ��X � RT ! R.
We then de�ne a quasi-linear environment as follows.

De�nition 8 The environment is quasilinear if the following hold:

1. There is a sequence of decisions (x; p) 2 X � RNT , where x =
�
xT1 ; : : : ; x

T
N

�
is an allocation,

p is a vector of payments, and for all i, xTi is the minimal information about x received by

agent i.

2. The distribution of the type pro�le � is governed by the kernels


Ft : �

t�1 �Xt�1 ! �(�t)
�T
t=1
.

3. For all i, the payo¤ function of each agent i, Ui : � � X � RT ! R, takes the quasilinear
form

Ui(�; x; p
T
i ) = ui(�; x)�

TX
t=1

pit

for some measurable ui : ��X ! R.

Note that part 2 restricts the distribution of � to be independent of the payments. As for part

3, note that for the sake of generality we allow agent i�s utility to depend on things he does not

observe, namely xT�i and �
T
�i.

23

De�nition 9 Types are Independent if for all t, and all
�
�t�1; xt�1

�
2 �t�1 �Xt�1,

Ft(�j�t�1; xt�1) =
NY
i=1

Fit(�j�t�1i ; xt�1i );

where for all i, Fit(�j�t�1i ; xt�1i ) is a probability measure on �it.

This de�nition is the proper extension of the Independent-Type assumption of static mechanism

design to the dynamic settings considered here; it permits us to extend such static results as revenue-

equivalence and the virtual surplus representation of expected pro�ts. Note that the de�nition can

23Some readers may feel that an agent must always be able to observe his own �nal payo¤ (indeed, this was the
case in our model in Section 3). This can still be compatible with an interdependent-value model in which agent i
observes xT�i and �

T
�i at the end of period T and is unable to report them to the mechanism. If we instead allowed

the agent to report his observed �nal payo¤ in an interdependent-value model to the mechanism, as in Mezzetti
(2004), we would e¤ectively convert the model to one with correlated private observations, allowing for full surplus
extraction.
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be broken up into three parts: (i) Conditional on any history (�t�1; xt�1), period-t types are

independent across agents. (ii) The distribution of agent i�s period-t type, Fit(�j�t�1i ; xt�1i ), does

not depend on the other agents�past types (except possibly indirectly through the decision history

xt�1i observed by agent i). (iii) The distribution Fit(�j�t�1i ; xt�1i ) also does not depend on the history

of decisions xt�1�i that the agent has not observed. It is easy to see that if the assumptions (i) or

(ii) are not satis�ed, then a mechanism similar to the one proposed by Cremer and McLean (1988)

could be used to extract the agents�information rents. It turns out that a similar extraction of rents

is possible if assumption (iii) is not satis�ed by using a randomized mechanism� see the discussion

after Proposition 9 below.

Throughout this section we will maintain the assumptions that the environment is quasilinear

and that types are independent. To highlight the role of the other assumptions, we will then

dispense with such quali�cation in the subsequent results.

4.2 Multi-agent mechanisms

For most of the analysis we will focus on the Bayesian Nash Equilibria (BNE) of mechanisms

designed for the environment described above. As discussed for the single-agent case, this solu-

tion concept imposes the weakest form of rationality on the agents�behavior and thus yields the

strongest necessary conditions for incentive compatibility. The su¢ cient conditions we o¤er, will

however ensure implementation with a stronger solution concept such as (weak) Perfect Bayesian

Equilibrium.

By the revelation principle (adapted from Myerson, 1986), it is without loss of generality to

restrict attention to Bayesian incentive compatible �direct mechanisms� (de�ned more precisely

below) where (1) in each period each agent con�dentially reports his current type �it to the mecha-

nism, and (2) the mechanism reports no information back to the agents (i.e., each agent i observes

only (�Ti ; x
T
i ) plus whatever is assumed observable about the payments).

24 The proof for (1) is the

familiar one. As for (2), suppose there exists an incentive-compatible direct mechanism where more

information is revealed to the agents than what described in (2). Concealing this additional informa-

tion would then amount to pooling di¤erent incentive-compatibility constraints resulting in a new

IC mechanism that implements the same outcomes (i.e., the same distribution over ��X �RNT ).
When exploring the implications of incentive compatibility, it is also convenient to assume

that all payments take place at the very end. This is actually without loss of generality. In fact,

because postponing payments amounts to hiding information, for any IC mechanism in which some

payments are made (and possibly observed) in each period, there exists another IC mechanism in

24 In our environment there are no actions to be privately chosen by the agents. If the agents were also to choose
hidden actions, then a direct mechanism would also send the agents recommendations for the hidden actions.
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which all payments are postponed to the end which induces the same distribution over ��X and,

for all �, it induces the same total payments.

For notational simplicity hereafter we restrict attention to deterministic mechanisms. This

entails no loss since randomizations could always be generated by introducing a �ctitious agent

whose type is publicly observed. We will also formulate su¢ cient conditions under which such

randomizations will not be useful.

De�nition 10 A deterministic direct mechanism is a pair h�;  i, where � =


�t : �

t ! Xt

�T
t=1

is

an allocation rule, and  : �! RN is a (total) payment scheme.

A deterministic direct mechanism h�;  i de�nes the following sequence in each period t, following
a history �t�1 of type observations and a history mt�1 =

�
mt�1
1 ; : : : ;mt�1

N

�
of type reports by the

agents:

1. Each agent i privately observes his current type �it 2 �it drawn from Fit(�j�t�1i ; �t�1i (mt�1)).

2. Each agent i sends a con�dential message mit 2 �it to the mechanism.

3. The mechanism implements the decision �t
�
mt
�
.

4. Each agent i observes �it
�
mt
�
.

After period T , the mechanism also implements the payments  
�
mT
�
.

A mechanism induces an extensive form game between the agents. A (pure) strategy for agent

i is a complete contingent plan

�i �


�it : �

t
i ��t�1i �Xt�1

i ! �it
�T
t=1

:

Truthful strategies are de�ned as in the single-agent case.

If all agents play truthful strategies, a deterministic allocation rule � induces a stochastic

process on the agents�types � described by the kernels Ft(�j�t�1; �t�1(�t�1)). We let �[�] denote
the resulting probability measure on �. Similarly, if all agents but i are playing truthful strategies,

while agent i follows a strategy �i, this induces a stochastic process on
�
�;mT

i

�
2 ���Ti , which is

described by the kernels F , allocation rule �, and strategy �i. We let �i[�; �i] denote the resulting

probability measure on � � �Ti . Equipped with this notation, we can de�ne ex-ante incentive
compatibility of a mechanism as follows.

De�nition 11 A deterministic direct mechanism h�;  i is ex-ante Bayesian Incentive Compatible
(ex-ante BIC) if for all i and all �i,

E�[�][ui(~�; �(~�))�  i(~�)] � E�i[�;�i][ui(~�; �( ~mT
i ;
~�
T
�i))�  i( ~mT

i ;
~�
T
�i)]:
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That is, a mechanism is ex-ante BIC if the truthful strategies form a Bayesian Nash Equilibrium

of the game induced by the mechanism.

4.3 Mapping the multi-agent into the single-agent case

We now show that, from the perspective of each agent, the environment described above can be

mapped into the single-agent model of Section 3. To see this, �x an arbitrary agent i. Given any

deterministic mechanism h�;  i, when all agents other than i (henceforth denoted by �i) are playing
truthful strategies, agent i e¤ectively faces a randomized mechanism where the randomizations are

due to the uncertainty that agent i faces about the other agents� types. Over the course of the

mechanism, agent i only observes (�Ti ;m
T
i ; x

T
i ). However, the mechanism depends on the other

agents� types �T�i through their equilibrium messages; furthermore, agent i�s utility may depend

directly on �T�i and x
T
�i. Thus evaluating the optimality of i�s strategy requires keeping track of his

beliefs about �T�i conditional on the observed history.

Formally the problem faced by agent i can be mapped into the single-agent model considered in

the previous section as follows. For all t < T , let Yit = Xit, and let YiT = XiT �XT
�i ��T�i. Also,

let Yi;T+1 = R. That is, in periods t < T the decision yit = xit consists of the part of the allocation

observed by agent i. In period T , the decision yiT also shows the agent the rest of the variables

a¤ecting his utility (i.e., the part of the allocation xT�i unobservable to him and the other agents�

types �T�i). Then in period T + 1, which is introduced just as a convenient modelling device, the

agent observes his payment pTi :

Agent i�s type �Ti evolves according to the kernels Fi =


Fit : �

t�1
i �Xt�1

i ! �(�it)
�T
t=1

=

Fit : �

t�1
i � Y t�1

i ! �(�it)
�T
t=1
, where the equality is by de�nition of Yit. There is no type in

period T + 1 (formally, �i;T+1 can be taken to be an arbitrary singleton).

In the single-agent setup, agent i�s payo¤ is de�ned over �Ti � Y T+1
i , where Y T+1

i =
QT+1
t=1 Yit.

However, by construction �Ti � Y T+1
i is simply a reordering of � �X � R� the domain of agent

i�s payo¤ in the multi-agent environment. To highlight this connection, we abuse notation and

continue to use Ui with its arguments appropriately reordered.

Agent i faces a randomized mechanism 
i = 
i[�;  ] �



it : �

t
i � Y t�1

i ! �(Yit)
�T+1
t=1

con-

structed as follows. We �rst construct inductively a consistent family of regular conditional

probability distributions (rcpd) that represent the evolution of agent i�s beliefs about �T�i con-

ditional on observable allocations and his own messages.25 Fix t < T . Suppose that a rcpd

���1(�j���1i (m��1
i ; ~�

��1
�i )) on �

��1
�i exists for all m��1

i , and all periods � � t. (The conditioning

here is on the random variable ���1i (m��1
i ; ~�

��1
�i ) taking values in Y

��1
i .) Note that the assump-

tion holds vacuously for t = 1. For all mt
i, the rcpd �t�1(�j�t�1i (mt�1

i ; ~�
t�1
�i )) and the kernels

25See, e.g., Dudley (2002) for the de�nition of a regular conditional probability distributions.
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F�i;t(�j�t�1�i ; �
t�1
�i (m

t�1
i ; �t�1�i )) induce a probability measure on �

t
�i. Since �t�i � RN�1, there

exists a rcpd of ~�
t
�i given �(�

t
i(m

t
i;
~�
t
�i)), where �(�

t
i(m

t
i;
~�
t
�i)) denotes the sigma-algebra gener-

ated by the random variable �ti(m
t
i;
~�
t
�i) (see, e.g., Theorem 10.2.2 in Dudley, 2002). We de�ne

�t(�j�ti(mt
i;
~�
t
�i)) to be this rcpd. Consistency of the family follows by construction. At t = T the

decision yiT reveals to the agent �T�i, and hence his beliefs are degenerate in periods T and T + 1.

Let t < T and �x a history (mt
i; y

t�1
i ). Then for any measurable A � Yit, the probability that

yit 2 A is


it(Ajmt
i; y

t�1
i ) �Z

f�t�i2�t�i:�it(mti;�t�i)2Ag
dF�i;t(��i;tj�t�1�i ; �

t�1
�i (m

t�1
i ; �t�1�i ))d�t�1

�
�t�1�i j�

t�1
i (mt�1

i ; ~�
t�1
�i ) = yt�1i

�
:

The measure 
it(�jmT
i ; y

T�1
i ) is de�ned analogously except that the integral is over the set

�
�T�i 2 �T�i :

�
�i(m

T
i ; �

T
�i); �

T
�i(m

T
i ; �

T
�i); �

T
�i
�
2 A

	
:

Finally, 
i;T+1(�jmT
i ; (x

T
i ; x

T
�i; �

T
�i)) is de�ned to be a point mass at  (m

T
i ; �

T
�i). This de�nes the

randomized direct mechanism 
i = 
i[�;  ].

Thus, from the perspective of agent i, there is a decision yit in each period t, his type �it

evolves according to kernels Fi, utility is given by Ui, and he is facing a randomized direct

mechanism 
i. This is the setup considered in the single-agent part. In particular, let Hi ��
(�si ;m

t
i; y

u
i ) : s � t � u � s� 1

	
denote the set of agent i�s private histories. Then a strategy �i

and a private history hi 2 Hi induce a probability measure �i[
i; �i]jhi on �Ti ��Ti �Y T+1
i . Since


i is derived from the multi-agent mechanism h�;  i, we abuse notation and write �i[h�;  i ; �i]jhi
to emphasize the connection to the original mechanism. For the truthful strategy and the null

history the measure is then denoted �i[�;  ]jhi and �i[h�;  i ; �i], respectively. The agent�s payo¤
from truthtelling following history hi is thus E�i[�; ]jhi [Ui(~�i; ~yi)] = E�i[�; ]jhi [Ui(~�; ~x; ~pTi )], where
the equality is by de�nition of yi. We can then de�ne the value function V


i[�; ]
i : Hi ! R and

incentive compatibility at a private history hi analogously to the single-agent case.

It will be convenient to let �Ti [�]jhi denote the marginal of �i[�;  ]jhi on �Ti ��Ti � Y T
i given

private history hi. Thus, �Ti [�]jhi is a process on types, messages, and nonmonetary allocations,
but not on the payments (which by our convention are only made in period T +1). The role of this

notation is to highlight the fact that the stochastic process over everything but the payments in the

quasilinear environment is determined by the allocation rule � and independently of the payment

rule  . Since the payment scheme  is a deterministic function of the messages (which under

�Ti [�]jhi are truthful), we can use �Ti [�]jhi to write agent i�s payo¤ as E�
T
i [�]jhi [ui(~�; ~x) +  i(~�)].
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4.4 Revenue equivalence

Suppose the assumptions in Proposition 1, or alternatively those in Proposition 6, hold for any i.

We then have that in any mechanism that is IC for agent i at a truthful private history ht�1i =�
�t�1i ; �t�1i ; xt�1i

�
(resp. ĥt�1i ), the derivative of the value function with respect to �it (resp. "it)

does not depend on the payment scheme. Under the assumptions of Proposition 1, this can be seen

by iterating (IC-FOC) backward starting from t = T . Under the assumptions of Proposition 6 this

can be seen directly from (9).

In a quasi-linear environment, the aforementioned propositions thus imply that, in any ex-

ante BIC mechanism, the value function of each agent i at almost every truthful private history

hti =
�
�it; h

t�1
i

�
; t � 1, is pinned down by the allocation rule � up to a constant ki(ht�1i ) that may

depend on ht�1i , but not on �it: This in turn implies that the �innovation�26

E�[�][ i(~�)j~�it; ~ht�1i ]� E�[�][ i(~�)j~ht�1i ]

in the expected transfer of each agent i due to his own type �it is the same in any two ex-ante BIC

deterministic mechanisms h�;  i and
D
�;  ̂

E
implementing the same allocation rule.

Using the law of iterated expectations, one can also get rid of the dependence of the constant

ki(h
t�1
i ) on the history ht�1i . To see this, suppose there is a single agent i and assume, for simplicity,

that there are only two periods. Now consider any two ex-ante IC deterministic mechanisms h�;  i
and

D
�;  ̂

E
implementing the same allocation rule �. Then in period two, for any truthful history

h1i = (�i1; �i1; �(�i1)), there exists a scalar �i(h
1
i ) = Ki(�i1) such that, for any �i2, V 
i[�; ]

�
�i2; h

1
i

�
�

V 
i[�; ̂]
�
�i2; h

1
i

�
= Ki(�i1). A similar result also applies to period one: there exists a scalar Ki such

that, for each �i1, V 
i[�; ] (�i1)�V 
i[�; ̂] (�i1) = Ki. Because V 
i[�; ] (�i1)�V 
i[�; ̂] (�i1) is simply
the expectation of V 
i[�; ]

�
�i2; h

1
i

�
� V 
i[�; ̂]

�
�i2; h

1
i

�
, we then have that Ki(�i1) = Ki for all �i1:

Clearly, the same result extends to any T: Furthermore, because the value function coincides with

the equilibrium payo¤ with probability one and because the latter is simply the di¤erence between

the expectation of u(~�
T
; �(~�

T
)) and the expectation of  (~�

T
), we have that the entire payment

scheme  is uniquely determined by the allocation rule � up to a scalar.

Next, consider a setting with multiple agents. Provided that types are independent, then the

total payment that each agent i expects to make to the mechanism as a function his period-one

type is uniquely determined by the allocation rule � up to a scalar Ki that does not depend on �i1.

This is the famous "revenue equivalence" result extensively documented in static environments.

More generally, one can show that the same result extends to any arbitrary period t � 1 provided
that the following condition holds.

26Given a mechanism h�;  i ; E�[�][ i(~�)j~hti] denotes the expectation of  i(~�) conditional on the random variable
~hti, where, as usual, conditional expectations are interpreted as Radon-Nikodym derivatives.
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Assumption 11 (DNOT) Decisions do Not A¤ect Types: For all i = 1; :::; N , t = 2; :::; T ,

�t�1i 2 �t�1i ; the distribution Fit
�
�j�t�1i ; xt�1i

�
does not depend on xt�1i .

We then have the following result.

Proposition 9 Suppose that, for each i = 1; :::; N , the assumptions of either Proposition 1, or

those of Proposition 9, hold. Consider any two ex-ante BIC deterministic mechanisms h�;  i andD
�;  ̂

E
implementing the same allocation rule �.

(i) Then for all i, there exists a Ki 2 R such that

E�[�][ i(~�) j ~�i1]� E�[�]j[ ̂i(~�) j ~�i1] = Ki: (12)

(ii) If, in addition, assumption DNOT holds (with N = 1; assumption DNOT can be dispensed

with), then, for all i and any t; s,

E�[ i(~�) j ~�
t
i]� E�[ ̂i(~�) j ~�

t
i] = E�[ i(~�) j ~�

s
i ]� E�[ ̂i(~�) j ~�

s
i ]: (13)

The value of Proposition 9 is twofold: (a) it sheds light on certain real-world institutions (for

example, it can be used to establish revenue-equivalence across di¤erent dynamic auctions formats);

(b) it facilitates the characterization of pro�t-maximizing mechanisms by permitting one to express

the principal�s expected payo¤ as expected virtual surplus, as illustrated below. Both (a) and

(b) use the result of Proposition 9 only for t = 1: However, the property that, when decisions do

not a¤ect types, the di¤erence in expected payments remains constant over time in the sense of

condition (13) also turns useful in certain applications.

Note also that the result in Proposition 9 can be sharpened by considering a stronger solution

concept. Suppose one is interested in mechanisms with the property that each agent �nds it

optimal to report truthfully even after being shown at the beginning of the game, before learning

his period-one type, the entire pro�le of the other agents� types �T�i. Then a simple iterated

expectation argument similar to the one sketched above implies that, for each agent i, payments

are uniquely determined not only in expectation but for each state (�Ti ; �
T
�i): given any pair of

ex-ante BIC deterministic mechanisms h�;  i and
D
�;  ̂

E
implementing the same allocation rule,

for any i there exists a scalar Ki(�
T
�i) such that  i(�

T
i ; �

T
�i)� ̂i(�Ti ; �T�i) = Ki(�

T
�i) for any �

T
�i: (We

provide su¢ cient conditions for the resulting mechanism to satisfy this robustness to information

leakage in Corollary 1 below.)

Lastly, note that a key assumption in Proposition 9 is that types are independent. As mentioned

above, this assumption has two parts: First, it requires that, given (�t�1; xt�1), current types are

independent across agents; Second it requires that the distribution of each agent i�s current type
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�it depends only on objects observable to agent i, that is, on (�t�1i ; xt�1i ). The importance of the

�rst part for revenue equivalence is well understood. The arguments are the same as in static

environments (see, e.g., Cremer and McLean, 1988). The importance of the second part may be

less obvious. To see it, suppose for simplicity there are only two periods and assume that the

distribution of �i2 depends not only on �i1; xi1 but also on a variable x�i;1 that is not directly

observed by agent i but which is observed by the principal (or by whoever runs the mechanism).

Depending on the application, one may think of x�i;1 as the amount of R&D commissioned to a

research lab (the principal) by competitive clients (the other agents); alternatively, one may think

of x�i;1 as the unobservable quality of a product supplied by the principal to buyer i. If x�i;1 is

known to the principal but not to agent i and if it is correlated with �i2, then the principal can

extract all the private information that agent i possesses about �i2 for free (the arguments here are

once again the same as in the case of correlated types). This clearly precludes revenue equivalence.

4.5 Dynamic virtual surplus and optimal mechanisms

In a static setting, the envelope formula permits one to calculate the agents� information rents,

providing a useful tool for designing optimal mechanisms. We show here how this approach extends

to a dynamic setting. We start by showing how the dynamic payo¤ formula derived in Section 3

permits one to compute expected rents and then show how the latter can be used to derive optimal

mechanisms.

Suppose that, in addition to the N agents, there is a �principal�(referred to as �agent 0�) who

designs the mechanism and whose payo¤ takes the quasilinear form

U0(�; x; p) = u0(x; �) +
NX
i=1

pi

for some measurable function u0 : ��X ! R. As standard in the literature, we assume that the
principal designs the mechanism and then makes a take-it-or-leave-it o¤er to the agents in period

one after each agent has observed his �rst-period type.27 We then restrict the principal to o¤er a

mechanism that is accepted in equilibrium by all agents with probability one. Hereafter, we will

refer to any such mechanism as an Individually-Rational Bayesian-Incentive-Compatible (IR-BIC)

mechanism.

The requirement that all agents accept the mechanism gives rise to participation constraints in

period 1. In addition, agents might have the ability to quit the mechanism at later stages, which

may give rise to participation constraints in subsequent periods. However, the principal can always

27 If the principal could approach the agents at the ex-ante stage, before they learn their private information, she
could extract all the surplus and hence she would implement an e¢ cient allocation rule.
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relax all the participation constraints after the initial acceptance decision by asking each agent to

post a bond when accepting the mechanism; this bond is forfeited if the agent quits the mechanism,

else is returned to the agent after period T .28 Thus, we can restrict attention to the participation

constraints that each agent faces at the moment he is being o¤ered the mechanism. This constraint

requires that each agent�s expected payo¤ in the mechanism upon observing his �rst-period type

be at least as high as the payo¤ the agent obtains by refusing to participate in the mechanism (i.e.

his reservation payo¤). For simplicity, we assume that reservation payo¤s are equal to zero for all

agents and all types. The participation constraints can then be written as

V 
i[�; ](�i1) � 0 for all i, almost all �i1 2 �i1: (14)

The principal�s problem thus consists in choosing an ex-ante BIC mechanism h�;  i that maxi-
mizes her expected payo¤ among those that satisfy the agents�period-1 participation constraints.

While this problem appears quite complicated, it can be simpli�ed by �rst setting up a �Relaxed

Program�that contains only a subset of the constraints, and then providing conditions for a solution

to the Relaxed Program to satisfy all of the constraints. In particular, the Relaxed Program

replaces all the incentive-compatibility constraints with the local incentive-compatibility conditions

embodied in the period-1 dynamic payo¤ formula derived in Section 3. Speci�cally, assuming for

simplicity that the distributions satisfy Assumption 7, according to Proposition 2, ex-ante IC for

agent i implies that

V 
i[�; ](�i1) is Lipschitz continuous, and for a.e. �i1,

@V 
i[�; ](�i1)

@�i1
= E�

T
i [�]j�i1

"
TX
�=1

J�i1(
~�
�
i ; ~x

��1
i )

@ui(~�; ~x)

@�i�

#
:

(15)

The requirement that h�;  i is ex-ante BIC then implies that, for each i = 1; ::::; N , agent i�s ex-
ante equilibrium expected payo¤ coincides with the expectation of his value function. Condition

(15) can then be used to calculate the agents� expected information rents. Letting �i1(�i1) �
fi1(�i1)=(1�Fi1(�i1)) denote the hazard rate of the distribution Fi1 and integrating by parts, then
28The possibility of bonding relies on the following assumptions: (a) unrestricted monetary transfers (in particular,

unlimited liability); (b) quasilinear utilities (which rules out any bene�t from consumption smoothing); and (c)
continuation utilities in the mechanism being bounded from below and continuation utilities from quitting being
bounded from above. If these assumptions are not satis�ed, one has to consider participation constraints in all
periods, which makes the analysis considerably harder. For an application without bonding, see, for example, Pavan,
Segal, and Toikka (2008).
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gives

E�[�][Ui(~�; �(~�);  i(~�))] = E�[�][V 
i[�; ](~�i1)] (16)

= E�[�]
"

1

�i1(
~�i1)

TX
�=1

J�i1(
~�
�
i ; �

��1
i (~�

��1
))
@ui(~�; �(~�))

@�i�

#
+ V 
i[�; ](�i1):

As for the participation constraints, the Relaxed Program considers only those for the lowest types

�i1:

V 
i[�; ](�i1) � 0 (17)

Finally, the relaxed program treats the functions V 
i[�; ](�i1) in (16) and (17) as control variables

that can be chosen independently from (�;  ). Formally, the Relaxed Program can thus be stated

as follows.

Pr :

8<: max
�; ;(V 
i[�; ](�i1))

N
i=1

E�[�][U0(~�; �(~�);  (~�))]

s.t., for all i = 1; :::; N; (16) and (17) hold

Substituting (16) into the principal�s payo¤ then gives the following result.

Lemma 3 Suppose that, for each i = 1; :::; N , the assumptions of either Proposition 2 or Proposi-

tion 7 hold, and �i1 > �1. Then the principal�s expected payo¤ in any IR-BIC mechanism h�;  i
equals

E�[�][U0(~�; �(~�);  (~�))] =

E�[�]
"
NX
i=0

ui(~�; �(~�))�
NX
i=1

1

�i1(
~�i1)

TX
t=1

J ti1(
~�; �(~�))

@ui(~�; �(~�))

@�it

#

�
NX
i=1

V 
i[�; ](�i1):

In what follows we will refer to the expression

E�[�]
"
NX
i=0

ui(~�; �(~�))�
NX
i=1

1

�i1(
~�i1)

TX
t=1

J ti1(
~�; �(~�))

@ui(~�; �(~�))

@�it

#
; (18)

as the �expected dynamic virtual surplus.� It is then immediate that a necessary and a su¢ cient

condition for (�;  ; (V 
i[�; ](�i1))
N
i=1) to solve the Relaxed Program is that the allocation rule �

maximizes the expected dynamic virtual surplus, that the participation constraints of the lowest
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period-1 types bind, i.e.

V 
i[�; ](�i1) = 0 for all i; (19)

and that the payment function  satis�es (16). Clearly, if the solution to the relaxed program

satis�es all the incentive and participation constraints, then it also solves the �Full Program�

that consists in maximizing the principal�s ex-ante expected payo¤ among all mechanisms that are

IR-BIC. We then have the following result.

Proposition 10 Suppose that, for each i = 1; :::; N , the assumptions of either Proposition 2 or

Proposition 7 hold, and �i1 > �1. Suppose there exists an IR-BIC mechanism h�;  i such that
the allocation rule � maximizes the �expected dynamic virtual surplus� (18), the lowest types�par-

ticipation constraints (19) bind, and all the participation constraints (14) are satis�ed. Then the

following are true:

(i) the mechanism h�;  i solves the Full Program;
(ii) in any mechanism that solves the Full Program, the allocation rule must maximize the

expected dynamic virtual surplus (18);

(iii) the principal�s expected payo¤ cannot be increased using randomized mechanisms.

Proof. Parts (i) and (ii) follow directly from Lemma 3. As for part (iii), note that, from the

perspective of each single agent, a randomized mechanism is equivalent to a mechanism that condi-

tions on the types of some �ctitious agent N + 1. The characterization of the necessary conditions

for incentive compatibility in a stochastic mechanism thus parallels that for deterministic ones.

Because the principal�s payo¤ under a stochastic mechanisms can always be expressed as a convex

combination of her payo¤s under di¤erent deterministic mechanisms, it is then immediate that

stochastic mechanisms cannot raise the principal�s expected payo¤. (This point was made in static

mechanism design by Strausz, 2006).

Of course, Proposition 10 is only useful if one can indeed ensure that a solution to the Relaxed

Program satis�es all the incentive and participation constraints. We will give some su¢ cient con-

ditions for this in subsection 4.7. Below we �rst focus on the Relaxed Program and characterize

the distortions in the optimal allocation rule relative to the e¢ cient one.

4.6 Distortions

To begin with, we consider a special class of environments in which the expected virtual surplus

(18) can be maximized separately for all periods and states without the need to solve a dynamic

programming problem. This occurs when, in addition to assumption DNOT, the following property

holds.
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Assumption 12 (USEP) Utilities Time-Separable in Decisions: For all i = 0; :::; N , ui (x; �) =PT
t=1 uit (�t; xt).

Recall that, under assumption DNOT, the stochastic process � over � is exogenous and does not

depend on the mechanism. If in addition USEP holds, the Relaxed Program is solved by requiring

that for all periods t, for ��almost all �t,

�t
�
�t
�
2 arg max

xt2Xt

"
NX
i=0

uit (�t; xt)�
NX
i=1

1

�i1 (�i1)
J ti1
�
�ti
� @uit (�t; xt)

@�it

#
(20)

It is then easy to compare an allocation rule that satis�es (20) with an e¢ cient allocation rule

��, where, by de�nition, for all periods t and ��almost all �t the latter is such that

��t
�
�t
�
2 arg max

xt2Xt

"
NX
i=0

uit (�t; xt)

#
: (21)

For simplicity, focus on the case of a single agent: N = 1. First, note that when �1t is bounded

and either �1t = �1t or �1t = �1t, then by construction the information index J t11
�
�t1
�
= 0, and so

it is optimal to set �t
�
�t1
�
= ��t

�
�t1
�
. Intuitively, when only period-1 participation constraints are

relevant, the principal distorts the decisions only to reduce the agent�s period-1 information rents.

With time-separable utilities, distorting the allocations in period t is then useful only to the extent

that the type in period t is informationally linked to the type in period one. When the agent�s

type in period t coincides with either the highest or the lowest possible type for that period, the

informational link disappears, in which case there is no reason to distort the period-t decision. (In

a Markov model, in which J t11
�
�t1
�
= �t�1�=1I

�+1
1�

�
��+11

�
, following �1t = �1t or �1t = �1t distortions

then vanish also in all subsequent periods, since the informational link with period 1 is severed).

It is interesting to contrast this �nding with the conclusions of Battaglini (2005), who studies a

single-agent model satisfying USEP and DNOT in which the agent�s type space in each period has

only two elements and where the evolution of the agent�s type is governed by a Markov process.

In his model, from the moment the agent�s type turns out to be high then the optimal mechanism

entails no distortions in all subsequent periods (this result is referred to as Generalized No Distortion

at the Top, or GNDT). Furthermore, the distortions that the agent experiences when his type

remains low are monotonically decreasing in time and vanish in the limit as T !1 (this result is

referred to as Vanishing Distortions at the Bottom, or VDB). As the analysis above suggests, while

the result of GNDT is quite robust in models satisfying DNOT and USEP, the result of VDB need

not be. In particular, distortions need not be monotonic neither in type nor in time and should
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not be expected to vanish in the long-run.29 On the other hand, for intermediate values of �1t,

distortions are determined by the interaction between the information index, J�it
�
��i ; x

��1
i

�
; and

the partial derivative of the �ow utility uit (�t; xt) with respect to �it: For example, suppose that,

in addition to the aforementioned assumptions, the following holds.

Assumption 13 (FOSD) First-Order Stochastic Dominance: For all i = 1; :::; N , all t = 2; :::; T ,

all �it 2 �it;and all xt�1i 2 Xt�1
i ; the function Fit

�
�itj�; xt�1i

�
is nonincreasing in �t�1it .

Note that FOSD implies that the total informational indexes are nonnegative, i.e. J�it
�
��i ; x

t�1
i

�
�

0; comparing the Relaxed Program (20) with the E¢ cient Program (21), one can then see that in

the Relaxed Program the principal distorts xt to reduce the partial derivative @uit (�t; xt) =@�it. In

the standard case in which xt is one-dimensional and the agent�s utility uit (�t; xt) has the standard

single-crossing property, this partial derivative is reduced by reducing xt. Thus, the solution to the

Relaxed Program involves downward distortions in all periods t > 1 for intermediate types (and in

period t = 1 for all but the highest type). Intuitively, FOSD means that the type in each period

t > 1 is positively informationally linked to the period-1 type. Then, under the single-crossing

property, a downward distortion in the period�t allocation, by reducing the agent�s information
rent in period t, then also reduces his information rent in period 1, thus raising the principal�s

expected payo¤.

This result of downward distortions can be extended to settings that do not satisfy assumption

USEP and that have many agents, under the following generalization of the single-crossing property.

Assumption 14 (SCP) Single Crossing Property: for each t, Xt is a lattice and for each i =

1; :::; N , ui (�; x) has increasing di¤erences in (�i; x) :

The assumption that Xt is a lattice is reasonable with one agent. With many agents, it is

reasonable, say, if xt describes the provision of public goods, but it need not hold if xt is the

allocation of a private good (see footnote 21 above for both examples). The lattice structure on

each Xt induces a product lattice structure on the set X of all (measurable) decision rules.

Proposition 11 Suppose that, for each i = 1; :::; N , the assumptions of either Proposition 2 or

Proposition 7 hold, and �i1 > �1. Let X 0 � X denote the set of decision rules solving the Relaxed

Program and X � � X denote the set of decision rules maximizing expected total surplus. Suppose

that, for all i = 0; :::; N , assumptions DNOT, FOSD, and SCP hold, and in addition,

(i) ui (�; x) is supermodular in x,

(ii) @ui(�;x)
@�it

is submodular in x, for all t:

Then X 0 � X � in the strong set order.
29We refer the reader to our companion paper, Pavan, Segal, and Toikka (2008), for a further discussion of the

dynamics of distortions in pro�t-maximizing mechanisms.
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Proof. De�ne g : X � f�1; 0g ! R as

g (�; z) � E�
"
NX
i=0

ui(~�; �(~�)) + z

NX
i=1

1

�i1(
~�i1)

TX
t=1

J ti1(
~�i)

@ui(~�; �(~�))

@�it

#
:

Then g (�; 0) is the expected total surplus and g (�;�1) is the expected virtual surplus. (Assumption
DNOT ensures that the stochastic process � [�] doesn�t depend on � and that J ti1 (�i; xi) does not

depend on xi, which is re�ected in the formula.) The assumption of FOSD ensures that J ti1
�
~�i

�
� 0.

Together with SCP, this ensures that g has increasing di¤erences in (�; z). Together with (i) and

(ii), this ensures that g is supermodular in �. The result then follows from Topkis�s Theorem (see,

e.g., Topkis, 1998).

The result means that if �0 solves the relaxed problem and �� is e¢ cient, then the decision

rule
�
�0 _ ��

�
t
(�) = �0t (�)_��t (�) is e¢ cient and the decision rule

�
�0 ^ ��

�
t
(�) = �0t (�)^��t (�)

solves the relaxed problem. In particular, if �0 and �� are de�ned uniquely with probability one,

then �0 (�) � �� (�) with probability one.

Note that condition (ii) in Proposition 11 is a 3rd-derivative assumption. Also note that (i) and

(ii) hold trivially when each Xt is a chain (e.g., Xt � R) and USEP holds.

4.7 Su¢ ciency and Robustness

We now turn to su¢ cient conditions for incentive compatibility. As anticipated in the introduction,

a complete characterization is evasive because of the multidimensional decision space of the problem.

Hereafter, we propose some su¢ cient conditions for a solution to the Relaxed Program to satisfy

all of the incentive and participation constraints that we believe can help in applications.

First we provide su¢ cient conditions for the participation constraints of all types above the

lowest type to be redundant.

Proposition 12 Suppose that, for each i = 1; :::; N , the assumptions of either Proposition 2 or

Proposition 7 hold, and that �i1 > �1. In addition, suppose that ui (�; x) is increasing in each
�it and that assumption FOSD holds. Then any mechanism h�;  i satisfying the lowest types�
participation constraints (19) and the dynamic payo¤ formula (15) for period one for all i; satis�es

all the participation constraints (14).

Proof. Under the assumptions in the proposition, J ti1 (�; � (�)) � 0 and @ui (�; x) =@�it � 0; hence,
by (15), V 
i[�; ] (�i1) is nondecreasing in �i1.

Next, consider incentive constraints. In what follows we provide conditions ensuring not only

that a mechanism is ex-ante Bayesian incentive-compatible, but that it is also incentive compatible
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at all histories on the equilibrium path. That is, the value function of each agent i at any of his

truthful private history hi coincides with his equilibrium expected payo¤:

V 
i[�; ] (hi) = E�i[�; ]jhi [ui(~�; ~x)� ~pi]:

This stronger version of incentive-compatibility thus guarantees that the allocation rule � is imple-

mentable also under a stronger solution concept such as weak Perfect Bayesian Equilibrium.

First observe that, for any given allocation rule �, one can construct payment schemes  such

that the resulting utility that each agent obtains in equilibrium (i.e., under truthtelling by all agents)

satis�es all the necessary conditions of (15): i.e., at any truthful history hi;t�1 =
�
�t�1i ; �t�1i ; xt�1i

�
,

�it(�it; hi;t�1) � E�i[�; ]j(�it;hi;t�1)
h
ui(~�; ~x)� ~pi

i
is Lipschitz continuous in �it, and for a.e. �it,

@�it(�it; hi;t�1)

@�it
= E�

T
i [�]j(�it;hi;t�1)

24 TX
�=t

J�it

�
~�
�
i ; ~x

��1
i

� @ui �~�; ~x�
@�i�

35 :
(22)

(Recall that �Ti [�]jhi denotes the probability distribution on �T ��Ti �X induced by the allocation

rule � when all agents other than i play truthful strategies, agent i�s private history is hi, and agent

i reports truthfully in the future.) To construct these payments, for all i, all (�ti; x
t�1
i ) 2 �ti�Xt�1

i ,

and all mit 2 �it, let

D
[�]
i (�

t
i; (�

t�1
i ;mit); x

t�1
i ) � E�Ti [�]j(�ti;(�

t�1
i ;mit);x

t�1
i )

"
TX
�=t

J�it(
~�
�
i ; ~x

�
i )
@ui(~�; ~x)

@�i�

#
: (23)

This function measures how agent i�s expected payo¤ in period t changes with �it when the agent

reported truthfully at all preceding periods, he sends a (possibly untruthful) message mit in period

t and then reports truthfully at all subsequent periods. We then have the following result.

Lemma 4 Suppose that, for each i = 1; :::; N , the assumptions of either Proposition 2 or Propo-

sition 7 hold. Let h�;  i be any deterministic direct mechanism. Fix a period t. Consider the
payment scheme  ̂ obtained from h�;  i by setting for all i and all � 2 �,

 ̂i (�) =  i (�) + �i
�
�ti; �

t�1
i (�t�1)

�
, where

�i
�
�ti; x

t�1
i

�
� E�

T
i [�]j(�

t
i;�

t
i;x

t�1
i )

h
ui(~�; ~x)�  i

�
~�
�i
�
Z �it

�̂it

D
[�]
i

��
�t�1i ; z

�
;
�
�t�1i ; z

�
; xt�1i

�
dz

where �̂it is any arbitrary value in [�it; �it]; with �̂it > �it if �it = �1: Then for all i, and for
all truthful private histories hi;t�1 = (�t�1i ; �t�1i ; xt�1i ) 2 Hi;t�1, in period t the mechanism

D
�;  ̂

E
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satis�es condition (22).

Proof. By construction, for all truthful private histories hi;t�1 = (�t�1i ; �t�1i ; xt�1i );

E�i[�; ̂]j(�it;hi;t�1)[ui(~�; ~x)� ~pi] = E�
T
i [�]j(�

t
i;�

t
i;x

t�1
i )[ui(~�; ~x)�  i(~�)]

�E�Ti [�]j(�ti;�ti;x
t�1
i )

h
�i(�

t
i; �

t�1
i (~�

t�1
))
i

=

Z �it

�̂it

D
[�]
i ((�

t�1
i ; z); (�t�1i ; z); xt�1i )dz;

The �rst equality follows from the fact that hi;t�1 is truthful and the fact that �Ti [�] corresponds to

the distribution over �T ��Ti �X under truthtelling (by all agents). The second equality follows

directly from the de�nition of �i
�
�ti; x

t�1
i

�
. Note that the function D[�]

��
�t�1i ; �

�
;
�
�t�1i ; �

�
; xt�1i

�
is measurable and bounded and therefore integrable. Thus the mechanism

D
�;  ̂

E
satis�es (22) in

period t.

Note that the construction achieves the satisfaction of condition (22) in period t by adding to

the original payment scheme  i (�) a payment term that depends only on reports up to period t; by

implication, this construction does not a¤ect the agents�incentives in subsequent periods. Thus,

for any given allocation rule �, iterating the construction of the payments backward from period

T to period one yields a mechanism that, in any period, after any truthful history hi;t�1 satis�es

condition (22) for all i.

Now, using the payments constructed in Lemma 4, we provide a su¢ cient condition for the

allocation rule � to be implementable, which is obtained by specializing Proposition 8 to quasilinear

environments.

Proposition 13 Suppose that, for each i = 1; :::; N , the assumptions of either Proposition 2 or

Proposition 7 hold. Suppose the mechanism h�;  i is IC at any (possibly non-truthful) period t+ 1
private history. If for all i, all (�ti; x

t�1
i ),

D
[�]
i (�

t
i; (�

t�1
i ;mit); x

t�1
i ) is nondecreasing in mit;

then there exists a payment rule  ̂ such that the mechanism
D
�;  ̂

E
is IC at (i) any truthful period

t private history, and (b) at any (possibly non-truthful) period t+ 1 private history.

Proof. Let  ̂ be the payment rule that is obtained from h�;  i using the construction indicated in
the proof of Lemma 4. By construction,  ̂ preserves the agents�incentives at all period t+1 histories.

Hence the mechanism
D
�;  ̂

E
satis�es condition (iii) of Proposition 8. The payment scheme  ̂ also

ensures that, after any truthful private history hi;t�1 =
�
�t�1i ; �t�1i ; xt�1i

�
; the mechanism

D
�;  ̂

E
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satis�es condition (22) in period t. This establishes condition (i) of Proposition 8 for period t. The

assumption that D[�]
i (�

t
i; (�

t�1
i ;mit); x

t�1
i ) is nondecreasing in mit then implies that condition (ii)

of Proposition 8 is also veri�ed. The result then follows from Proposition 8.

To understand this result intuitively, �x a truthful history
�
�t�1i ; �t�1i ; xt�1i

�
, and let 	t (�it;mit)

denote agent i�s expected utility at this history as a function of his new type �it and his new report

mit. One can think ofmit as a one-dimensional �allocation�chosen by agent i in period t. Note that

@	t (�it;mit) =@�it = D
[�]
i (�

t
i; (�

t�1
i ;mit); x

t�1
i ); because the mechanism h�;  i is IC at any (possibly

non-truthful) period t+ 1 history, this follows from the dynamic payo¤ formula (2) applied to the

modi�ed mechanism in which agent i�s report of �it is ignored and replaced with the message mit. If

this expression is nondecreasing inmit, then	t has the single-crossing property (formally, increasing

di¤erences). By standard static one-dimensional screening arguments, the monotonic �allocation

rule�mit (�it) = �it is then implementable (using payments constructed from the dynamic payo¤

formula using the construction in Lemma 4).

The proposition cannot in general be iterated backward, since it assumes IC at all period t+ 1

histories but derives IC only at truthful period t histories. This re�ects a fundamental problem with

ensuring incentives in dynamic mechanisms: once an agent has lied once, he may �nd it optimal to

continue lying, and it is hard to characterize his continuation strategy. However, the proposition

can still be applied to some interesting special cases. In particular, in a Markov environment, an

agent�s true past types are irrelevant for incentives given his current type. This implies that IC at

truthful histories implies IC at all histories. Then the proposition can be rolled backward to show

that the mechanism is IC at all histories. This result also implies that truthful strategies, together

with the beliefs over the other agents� types constructed from the mechanism h�;  i as rcpd as
indicated in subsection 4.3, form a weak PBE of the mechanism.

The result in Proposition 13 may also turn useful in certain non-Markov environments, as

illustrated in subsection 5.2 below.

The monotonicity of D[�]
i (�

t
i; (�

t�1
i ;mit); x

t�1
i ) in mit can be interpreted as a weak monotonicity

condition of the allocation rule �: This is reminiscent of familiar results from static mechanism

design. In particular, when ui satis�es the SCP and N = T = 1; the result in the proposition

coincides with the familiar monotonicity condition that �(mi1) be nondecreasing in mi1: However,

while in those environments, this condition is also necessary, this is not necessarily the case in

the more general environments considered here. To see this, continue to assume that N = 1; but

suppose now that T = 2. For simplicity, assume that there is no new information arriving in period

two so that j�2j = 1: Then let

u(�; x1; x2) = g(�)x1 + f(�)x2 + h(�)x1x2 �
1

2
x21 �

1

2
x22;
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where, to ease the notation, we dropped all subscripts referring to agent i = 1. The functions f; g;

and h are real-valued functions satisfying the following conditions, for all � 2 � :

1. f(�); g(�); h(�) < 0 with g(�) + h(�)f(�) � 0 and f(�) + h(�)g(�) � 0

2. jh(�)j < 1

3. g0(�); f 0(�); h0(�) > 0

4. f 0(�) + h0(�)g(�) + h(�)g0(�) < 0:

Now assume X1 = X2 = R+ and notice that conditions 1-4 above guarantee that u(�; x1; x2)
satis�es the SCP and that, for any �; u(�; �) is quasiconcave and maximized at

�1(�) =
1

1� h(�)2 [g(�) + h(�)f(�)] and �2(�) =
1

1� h(�)2 [f(�) + h(�)g(�)]: (24)

It is then immediate that the allocation rule �(�) = (�1(�); �2(�)) is implementable. Next note that,
in this example, weak monotonicity is equivalent to requiring that the function

D[�](�;m) = g0(�)�1(m) + f
0(�)�2(m) + h

0(�)�1(m)�2(m)

be nondecreasing in m: It is then easy to see that there exist functions f; g and h such that

the corresponding allocation rule �(�) as de�ned in (24) fails this condition, thus illustrating the
non-necessity of weak monotonicity.

Finally note that Proposition 13 can also be used to analyze the e¤ects of disclosing information

to the agents in the course of the mechanism in addition to the minimal one, as captured by xit. Such

disclosure can be captured formally by introducing a measurable space Xd
it of possible disclosures

to agent i in period t, and then considering the extended set X̂it = Xit�Xd
it, so that x̂it =

�
xit; x

d
it

�
.

While the payo¤ and the stochastic process describing the evolution of agent i�s type continues to

depend on x̂it only through xit, the role of xdit is to capture the additional information that the

mechanism discloses to agent i about the other agents�reports (and hence about the decisions x�it).

The result in Proposition 13 can then be extended to this environment by rede�ning D[�]
i so that

the expectation in (23) is now made conditional on x̂it =
�
xit; x

d
it

�
instead of just xit. Clearly, the

monotonicity condition in the proposition is harder to satisfy when more information is disclosed,

but it may still be possible.

In particular, we can formulate a simple condition on the allocation rule that ensures robustness

to an extreme form of disclosure. Namely, suppose that each agent i somehow learns at the

beginning of period t (i.e. before sending his period-t report) all the other agents�types ��i (note

that this includes past, current and future ones). Formally, this can be captured through a disclosure

46



xdit = ��i. We then say that the mechanism is Other-Ex-Post IC (OEP-IC) if truthtelling remains

an optimal strategy in this mechanism at any history. It turns out that some allocation rules can

be implemented in an OEP-IC mechanism, under some additional assumptions.

Assumption 15 (PDPD) Payo¤s Depend on Private Decisions: for each i = 1; :::; N; ui (�; x)

depends on x only through xi .

Corollary 1 Suppose that, for each i = 1; :::; N , the assumption of either Proposition 2 or Propo-

sition 7 hold. Suppose in addition that assumptions DNOT, FOSD, SCP and PDPD hold and that

the mechanism h�;  i is OEP-IC at any (possibly non-truthful) period t+ 1 private history. If for
all i and all � � t,

�i� (�
� ) is nondecreasing in (�it; : : : ; �i� ) for all �t�1i ; ���i; (25)

then there exists a payment rule  ̂ such that the mechanism
D
�;  ̂

E
is OEP-IC at (i) any truthful

period t private history, and (ii) at any (possibly non-truthful) period t+ 1 private history.

Proof. Under assumption DNOT, the stochastic process � [�] over � does not depend on the

allocation rule � and hence can be written as �. Furthermore, because types are independent, then

� is the product of each individual agent i�s stochastic process over �Ti , which henceforth we denote

by �i. For any �ti; we then denote by �ij�ti the distribution over �Ti given �ti:
The payment rule  ̂ is obtained by adapting the construction of Lemma 4 to the situation where

agent i has observed ��i and faces a stochastic process �i over his own types (which is essentially

a single-agent situation):

 ̂i (�) =  i (�) + �i
�
�ti; ��i

�
, where

�i
�
�ti; ��i

�
= E�ij�

t
i

h
ui(~�i; ��i; �

�
~�i; ��i

�
)�  i

�
~�i; ��i

�i
�
Z �it

�̂it

D
[�]
i

�
(�t�1i ; z); (�t�1i ; z); ��i

�
dz;

where �̂it is any arbitrary value in [�it; �it]; with �̂it > �it if �it = �1; and where

D
[�]
i (�

t
i; (�

t�1
i ;mit); ��i) � E�ij�

t
i

"
TX
�=t

J�it(
~�
�
i )
@ui((~�i; ��i); �((mit; ~�i;�t); ��i))

@�i�

#
:

Note that, under assumption DNOT, J�it (�; xi) does not depend on xi. By FOSD, J
�
it (�) � 0. By

SCP, PDPD, and (25), @ui (�; � ((mit; �i;�t) ; ��i)) =@�i� is nondecreasing in mit for all ��i. This

implies that D[�]
i (�

t
i; (�

t�1
i ;mit); ��i) is nondecreasing in mit for all �ti and all ��i. The result then

follows from Proposition 13 applied to this setting.
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For example, in a Markov environment, backward iteration of the Corollary implies that under

its assumptions, any allocation rule that is �strongly monotone�in the sense that each �it
�
�ti; �

t
�i
�
is

nondecreasing in �ti for any given �
t
�i (which Matthews and Moore (1987) call �attribute monotonic-

ity�) is implementable in an OEP-IC mechanism, and therefore in an BIC mechanism under any

possible information disclosure. While it should be clear from Proposition 13 that strong monotonic-

ity is not necessary for implementability, it is particularly easy to check it in applications and it

does ensure nice robustness to any kind of information disclosure in the mechanism. Subsections

5.1.2 and 5.2 provide examples of applications where the pro�t-maximizing allocation rule turns

out to be strongly monotone.

Remark 2 At this point, the reader may wonder whether we could also ensure robustness to an

agent observing his own future types from the outset. This is not likely. Indeed, if agent i observes

all of his types from the outset, his IC would be characterized as in a multidimensional screening

problem. It is well known that incentives are harder to ensure in this setting. For example, in

the special case with a single agent with linear utility u (�; x) =
TX
t=1

�txt, a necessary condition for

implementability of allocation rule � is the �Law of Supply�

TX
t=1

�
�t
�
�0
�
� �t (�)

� �
�0t � �t

�
� 0 for all �0; � 2 �:

Because the pro�t-maximizing allocation rules derived in applications typically fail to satisfy this

condition, one cannot obtain robustness to the agents�observations of their own future types �for

free.� Thus, while some authors have drawn analogies between dynamic mechanism design and

static multidimensional mechanism design problems (see, e.g., Courty and Li, 2000 and Rochet

and Stole, 2003), here we highlight an important di¤erence: signi�cantly more allocation rules are

implementable in a dynamic setting in which the agents learn (and report) the dimensions of their

types sequentially over time than in a static setting in which they observe (and report) all dimensions

at once.

Remark 3 The reader may also wonder whether there are simple conditions on the payo¤s and the

kernels that ensure that the allocation rule solving the Relaxed Program 18 is strongly monotone.

Unfortunately, any such conditions would have to be restrictive. Indeed, recall from Subsection 4.6

that in a separable environment (i.e. under USEP) at any period t > 1, the distortion in xit is

determined by the information index J ti1(�
t
i) which need not be monotonic in �it; in particular, when

�it is bounded, the distortion is zero at both �it = �it and �it = �it and downward at intermediate

�it. Thus, because of this nonmonotonic downward distortion, we can have �it
�
�it; �

t�1
i ; �t�i

�
<

�
�
�it; �

t�1
i ; �t�i

�
for some �it > �it. Indeed, it is to ensure that the solution to the Relaxed Program
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is implementable that Eso and Szentes (2007) make their Assumption 1 that amounts to requiring

that J2i1(�i1; �i2) is nondecreasing in �i2. However, note that with a bounded type space �i2, this

assumption can be satis�ed only when the information index is identically zero so that �i1 and �i2

are independent. In the applications below we will consider AR(k) processes with unbounded type

spaces in which case the information indices are constant� this helps ensuring strong monotonicity

of the solution to the Relaxed Program.

5 Applications

We now show how the results in the previous sections can be put to work by examining a few

applications where the agents�types evolve according to linear AR(k) processes. First, we consider a

class of problems in which the optimal mechanism takes the form of a quasi-e¢ cient, or handicapped,

mechanism where distortions depend only on the agents��rst period types. Next, we consider

environments where payo¤s separate over time as it is often assumed in applications.

5.1 Handicapped mechanisms

Consider an environment where in each period the set of feasible allocations is Xt � RN+1. The
utility to each agent i = 1; : : : ; N (gross of payments) is

ui (�; x) =
TX
t=1

�itxit � ci (x) ; (26)

where ci : R(N+1)T ! R can be interpreted an intertemporal cost function. The principal�s (gross)
payo¤ is u0 (�; x) = v0(x). Note that the cost functions ci and the principal�s payo¤ v0 need

not be time-separable; this permits us to accommodate dynamic aspects such as intertemporal

capacity constraints, habit formation, and learning-by-doing. The private information of each

agent i = 1; : : : ; N is assumed to evolve according to a linear AR(k) process, as in Example 4. The

total information indices J ti1 (�; x) are thus independent of (�; x) and coincide with the �impulse

response functions� J ti1 for the AR(k) process. We assume that the support of the �rst period

innovation "i1 (and hence that of �i1) is bounded from below.

In this environment, the expected dynamic virtual surplus takes the form

E�
"
v0

�
�(~�)

�
+

NX
i=1

"
TX
t=1

�
~�it�it(

~�
t
)� J ti1��1i1 (~�i1)�it(~�

t
)
�
� ci

�
�(~�)

�##
:

Note that the latter coincides with the expected total surplus in a model where the (gross) payo¤
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to each agent i is ui(�; x) and where the (gross) payo¤ to the principal is

v̂0(�; x) � v0(x)�
NX
i=1

TX
t=1

J ti1�
�1
i1 (�i1)xit:

This implies that the solution to the Relaxed Program can be obtained by solving an e¢ ciency-

maximization program where the principal has an extra marginal cost J ti1�
�1
i1 (�i1) of allocating a

unit to agent i in period t. In general, this program can be a fairly complex dynamic programming

problem. However, in many applications, its solution can be readily found using existing methods.

What is important to us is the following observation. Assuming the period-one types are reported

truthfully, then any allocation rule that maximizes the expected dynamic virtual can be sustained

through an �Handicapped� e¢ cient mechanism. In period 1 each agent i sends a message mi1

determining his handicaps J ti1�
�1
i1 (mi1). The game that starts in period two then corresponds to

a private-value environment where each agent i�s payo¤, for i = 1; :::; N; is as in (26), whereas

agent 0�s payo¤ (i.e. the principal�s) is v̂0(�; x): Because the decisions that are implemented are the

e¢ cient decisions for this environment and because this virtual environment is a private-value one,

incentives at any period t � 2 can be provided using for example the �Team payments� (Athey

and Segal, 2007) de�ned, for all �; by

 i(�) =
X
j 6=i

uj(�; �(�));

for all i = 1; ::::n, where j 6= i includes also j = 0: We then have the following result (the proof

follows directly from the arguments above).30

Proposition 14 In the environment with AR(k) types described above, any allocation rule that

maximizes the expected dynamic virtual surplus can be implemented in a mechanism that satis�es

IC at all truthful histories in periods t � 2.

Incentives in the �rst period must be checked application-by-application.31 For example,

incentive-compatibility in period one can be easily guaranteed if the costs ci are identically equal

to zero for all i and if v0(x) is time-separable� the environment then becomes a special case of the

class considered in the next subsection.
30What is important for the result in the next proposition is that (i) the payo¤ of each agent i depends only on

�i and that the derivatives of ui with respect to each �it are independent of �i; (ii) that the principal�s payo¤ is
independent of �; and that (iii) the total information indexes are independent of �:
31 In period 1; the model where the principal has payo¤ v̂0(�; x) is one with interdependent values since v̂0(�; x)

depends on the agents�true period-1 types through the hazard rates �i1(�i1). Hence, the implementability of a virtu-
ally e¢ cient allocation rule cannot be guaranteed directly by using Team payments, for the latter induce truthtelling
only with private values.
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5.1.1 Selling once

An example of a non-time-separable environment where incentive-compatibility can be guaranteed

also in period one is the following. Let N = 1, Xt = f0; 1g for t = 1; : : : ; T , and c1 � 0. The agent�s
type �t evolves according to an AR(1) process with coe¢ cient � 2 (0; 1).32 The �rst period type is
distributed on �1 := (�1; �1) according to a c.d.f. F1 with density f1(�) strictly positive on �1 and

hazard rate �1(�1) nondecreasing in �1. The principal�s (gross) payo¤ is given by

v0(x) =

(
�
PT

t=1 cxt if
PT

t=1 xt � 1,
�1 if

PT
t=1 xt > 1.

The interpretation is that the principal is a seller who has one unit of a good and must decide when

to sell it to a buyer whose valuation evolves over time. The dynamic virtual surplus then takes the

form

E�
"

TX
t=1

�t(
~�)[~�t � �t�1��11 (~�1)] + v0(�(~�))

#
:

De�nition 12 An allocation rule � is a handicapped cut-o¤ rule if there exist a constant z1 2
cl�1, and nonincreasing functions zt : �1 ! R[f�1;+1g, t = 2; : : : ; T , such that for all � 2 �,

�1(�) =

(
1 if �1 � z1,

0 if �1 < z1,

and for t > 1,

�t(�) =

(
1 if �t � zt(�1) and

Pt�1
�=1 �� (�) = 0,

0 otherwise.

Note that handicapped cut-o¤ rules are not strongly monotone. Nevertheless, such rules are

implementable.

Proposition 15 Consider the environment described above. Any handicapped cut-o¤ rule � is

implementable in a mechanism that is IC at all histories. Furthermore, there exists a handicapped

cuto¤ rule that solves the relaxed problem.

The implementability of handicapped cut-o¤ rules follows directly from the result in Proposition

13. It is in fact easy to see that, under these rules

D[�](�t; (�t�1;mt)) = E�j�
t

"
TX
�=t

���t�� (�
t�1;mt; ~�t+1; : : : ; ~�� )

#
32Because there is no risk of confusion, in this example we simplify notation by dropping the subscripts i = 1 from

all variables.
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is nondecreasing in mt : note a higher message in period t either has no e¤ect on the allocation

of the good, or it anticipates the time at which the good is sold thus increasing D[�]: Together

with the fact that the environment is Markov this property then implies that one can construct

payments that induce the agent to report truthfully at all histories. The following payment schemes

implement handicapped cut-o¤ rules. The buyer is o¤ered a menu of contracts, indexed by �1:

Each contract entails an up-front payment P (�1) together with an additional payment, to be paid

at the time the good is sold, equal to pt = c + �t�1��11 (�1): The buyer then chooses when to

buy, knowing that multiple sales are not permitted. Equivalently, the buyer can be allowed to

purchase multiple times by charging him a total payment (in addition to the up-front one) equal

to
PT

t=1 xt[�
t�1��11 (�1)] + v0(x). The up-front payment is then computed using Lemma 4.

Next, consider the optimality of handicapped cut-o¤ rules. Notice that, in this environment,

the e¢ cient rule� i.e. the policy �� that maximizes total surplus E�
hPT

t=1 �t(
~�)~�t + v0(�(~�))

i
� is

a cut-o¤ policy with cuto¤s fz�t gTt=1 determined recursively by the indi¤erence conditions z�t � c =
E�jz�t

h
v�t+1(

~�t+1)
i
; where33

v�t+1(�t+1) � max
n
�t+1 � c; E�j�t+1

h
v�t+2(~�t+2)

io
denotes the value of not selling in period t, conditional on not having sold in past periods. That

the policy that solves the relaxed program is also a cut-o¤ rule with cuto¤s depending only on �1

is then immediate given the structure of the dynamic virtual surplus. The cuto¤s in the optimal

mechanism are determined as in the e¢ cient rule by augmenting the principal�s cost in each period

t by the handicap �t�1��11 (�1):

5.1.2 Learning through consumption

Another example of an environment in which the optimal mechanism takes the form of an hand-

icapped mechanism and in which incentive-compatibility can be guaranteed also in period one is

the following. A seller faces a buyer who learns his valuation over time through consumption. This

situation arises for example in the market for new experience goods (such as prescription drugs)

and in expert services (such as a chiropractor�s service). In each period t = 1; : : : ; T a single seller

can produce an (indivisible) service at cost c. There is a single buyer whose valuation for the service

is v.

Neither the buyer nor the seller knows v. The buyer�s prior belief is that v � N
�
�1;

1
�

�
, where

�1 is the mean and � the precision (i.e., the inverse of the variance). The seller knows that the

buyer�s prior belief is Normal with precision � but does not know the mean �1 of the buyer�s prior

33With an abuse of notation, here we denote by �jz�t the probability measure over �t+1 given that �t = z�t :
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belief. The seller believes that �1 is distributed on [�1; ��1) according to some absolutely continuous

c.d.f. F1 with F 01 > 0. We assume that the hazard rate �1 (�1) of F1 is nondecreasing. If the buyer

consumes the service in period t (i.e., if xt = 1), he then receives a signal st = v+ "t, "t � N(0; 1� ),

where � is the precision of the signal. The noises "t are i.i.d. and independent of v. If the buyer does

not consume in period t, he does not receive any new information about v.34 Using the properties of

the Normal distribution, the evolution of the buyer�s beliefs can be expressed recursively as follows

(see, e.g., DeGroot, 2004). For any xt, let


xt

 �Pt

�=1 x� denote the number of times the buyer

consumed the service in periods 1; : : : ; t. The buyer�s posterior belief about v at the beginning of

period t = 1; : : : ; T is then Normal with mean

�t �
��1 + �

P
j2f� :�<t^x�=1g sj

�+ kxt�1k�

and precision �t = � +


xt�1

�: Depending on whether the buyer consumed or not the good in

period t�1, we then have two cases. If xt�1 = 0, then �t = �t�1 and �t = �t�1: If instead xt�1 = 1,

then

�t =
��1 + �

P
j2f� :�<t�1^x�=1g sj + �st�1

�+ kxt�1k� =
�t�1�t�1 + �st�1

�t�1 + �

and �t = �t�1 + � = �+


xt�1

�; where �t�1 = �+



xt�2

�: Note that �t is a weighted average
of the period t � 1 posterior �t�1 and the period t � 1 signal st�1. Thus, before the signal st�1 is
realized, we have that

�tj(�t�1; xt�2; xt�1 = 1) � N

�
�t�1;

�

(�+ kxt�1k�)(�+ kxt�2k�)

�
;

and

�tj(�t�1; xt�2; xt�1 = 0) = �t�1:

These expressions de�ne Markov kernels Ft(�j�t�1; xt�1), where the sequence of past allocations
determines the precision.

Now, assume that payo¤s are quasilinear and take the form of
P

t(pt � xtct) for the seller andP
t(xt�t � pt) for the buyer, where xt 2 f0; 1g = Xt.

We �rst show that in terms of payo¤s it is without loss to restrict attention to a subclass of

allocation rules.

De�nition 13 An allocation rule � is a stopping rule if, for all t, all s > t and all � 2 �,

�t(�
t) = 0 implies �s(�

s) = 0. The set of stopping rules is denoted X S.

34See also Nazerzadeh, Saberi, and Vohra (2008) for a similar environment.
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Lemma 5 Consider the learning environment described above. If h�;  i is an ex-ante IC mech-

anism, then there exists an ex-ante IC mechanism
D
�̂;  ̂

E
such that �̂ is a stopping rule and the

expected payo¤s of both the buyer and the seller under
D
�̂;  ̂

E
are the same as under h�;  i.

The lemma is similar to the well-known result that in a two-armed bandit problem with one safe

arm the optimal strategy is a stopping rule. Given this result, in what follows we restrict attention

to stopping rules. Then the only relevant period-t histories are the ones in which the agent has

consumed in all the preceding periods. Thus we can replace


xt

 in all the formulas above by t. In

particular, before stopping, we have that

�t+1j�t � N

�
�t;

�

(�+ t�)[�+ (t� 1)�]

�
:

Denoting the standard deviation of the period t + 1 posterior by �t+1 �
p
�[(� + t�)(� + (t �

1)�]�1=2 we can then express the kernels as Ft+1(�t+1j�t; xt) = �
�
�t+1��t
�t+1

�
, where � is the c.d.f.

of the standard normal distribution. Thus, before stopping, the model satis�es the assumptions of

Proposition 2 and the direct information index between any two adjacent periods is simply

It+1t (�t+1) = �
@Ft+1

�
�t+1j�t; xt

�
=@�t

ft+1(�t+1j�t; xt)
= �

@�
�
�t+1��t
�t+1

�
=@�t

1
�t+1

�
�
�t+1��t
�t+1

� = 1;

where � is the density of the standard normal distribution. Since the model is Markovian, I�t � 0
for � > t + 1. Hence, before stopping, we have J�t � 1 for all � and t. The maximization of the

dynamic virtual surplus then takes the form

max
�2XS

E�[�]
"

TX
t=1

�t(
~�
t
)

�
~�t � c�

1

�1 (�1)

�#
;

where the maximization is over the set of stopping rules X S .

This problem cannot be solved by pointwise maximization because it is a stopping problem.

Instead, we proceed by backward induction. While it is di¢ cult to get a close-form solution for the

optimal allocation rule, it is possible to characterize it partially and get a clean comparison to the

e¢ cient allocation rule.

De�nition 14 A stopping rule � 2 X S is a cuto¤ rule if for all t and all �t�1, �t(�
t�1; �t) is

nondecreasing in �t. The cuto¤s are given by zt(�t�1) � inf
�
�t 2 �t : �t(�t�1; �t) = 1

	
.

Proposition 16 Consider the learning environment described above. The following are true:
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(1) The e¢ cient allocation rule �� is a cuto¤ rule where for all t and all �t�1, the cuto¤

z�t (�
t�1) � z�t is independent of �

t�1 and nondecreasing in t.

(2) The allocation rule that solves the Relaxed Program is a cuto¤ rule � where for all t and all

�t�1, the cuto¤ zt(�t�1) � zt(�1) is independent of �t�1�1 , nondecreasing in t, and nonincreasing in

�1.

(3) For all t and all �1, zt(�1) � z�t . In particular, together with (4) this implies that a pro�t

maximizing monopoly experiments less than what is socially desirable.

(4) Both the allocation rule that solves the Relaxed Program � and the e¢ cient rule �� are

implementable.

That the pro�t-maximizing cuto¤s are increasing in t is due to the fact that the option value

of learning is decreasing in the number of times the service has been provided. First, the impact

of each new signal on the buyer�s posterior belief declines with the number of signals received in

the past. Second, as the remaining horizon gets shorter, the seller will reap the bene�ts from high

valuations in fewer periods.

Perhaps more interestingly, the cuto¤s in the pro�t-maximizing allocation rule depend on the

buyer�s �rst-period type. This implies that the optimal selling mechanism cannot be implemented

with a sequence of prices. Actually, even history-dependent prices fail to implement the optimal

mechanism. In fact, what is essential is to condition the prices not on the purchase history xt�1 but

on the �rst period type �1. This can be done by o¤ering the buyer a menu of contracts, where each

contract corresponds to a di¤erent price path. Because the optimal cuto¤s are increasing in time,

so are the prices in each path. To build demand, the monopolist thus optimally o¤ers �introductory

rates,�or �discounts,�that expire after the service has been provided for a few periods.

5.2 Time-Separable Environments

We now consider environments in which the agents�types continue to follow an AR(k) process as

in Example 4, but where payo¤s separate over time. The set of possible decisions in each period t

is Xt � RN+1. Each agent i (with the principal as agent 0) has an utility function of the form

ui (�; x) =
TX
t=1

uit(�it; xit);

with the principal�s types �0t being common knowledge. As in the previous subsection, the support

of the �rst period types is assumed to be bounded from below.

This model can �t many applications including sequential auctions, procurement, and regula-

tion.
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Proposition 17 Consider the separable environment with AR(k) types described above. Suppose

the assumptions of Proposition 2 hold for each agent i = 1; : : : ; N . Suppose further that for all i =

0; :::; N and all periods t, the following are true: (1) the periodic utility function uit has increasing

di¤erences in (�it; xit); (2) the coe¢ cient �it of the AR(k) process is nonnegative; (3) the �rst-period

hazard rate �i1 (�i1) is nondecreasing; and (4) the partial derivative
@uit(�it;xit)

@�it
is nonnegative and

submodular in (�it; xit). Then an allocation rule � can be part of a pro�t-maximizing mechanism if

and only if, for all t, and �-almost all �t,

�t(�
t) 2 argmax

xt

(
u0t(�0t; x0t) +

NX
i=1

�
uit(�it; xit)�

J ti1
�i1 (�i1)

@uit(�it; xit)

@�it

�)
: (27)

Furthermore, � can be implemented in a mechanism that is OEP-IC at any history using payments

constructed as follows. For any agent i = 1; :::; n and all �,

 i(�) =  i1(�i1; �
T
�i) +

TX
t=2

 it(�1; �t); (28)

where for all t � 2,

 it(�1; �t) � uit(�it; �it(�1; �t))�
Z �it

�it

@uit(r; �it(�1; (r; ��i;t)))

@�it
dr; (29)

and35

 i1(�i1; �
T
�i) � E�ij�i1

"
ui((~�

T
i ; �

T
�i); �(~�

T
i ; �

T
�i))�

TX
t=2

 it(�1; (
~�it; ��i;t))

#
(30)

�
Z �i1

�i1

E�ijr
"

TX
�=1

J�i1
@ui(~�i; �i((r;

~�i;�1); �
T
�i))

@�i�

#
dr:

The result in Proposition 17 follows essentially from Corollary 1 by observing that in this

environment incentives separate over time. By inspecting (27) one can in fact see that the allocation

rule that maximizes the expected dynamic virtual surplus has the property that in each period t

the allocation �t(�
t) depends only on the current reports �t and on the agents�period-1 reports �1.

This in turn is a consequence of the following assumptions: (i) preferences are separable over time

(USEP), (ii) decisions do not a¤ect types (DNOT), and (iii) informational indexes J ti� do not depend

on the realized types, as it is the case with AR(k) processes. The problem that each agent i faces at

any period t � 2 when he must choose which report to send then becomes a static problem (despite
35Recall that the notation �ij�ti denotes the unique probability measure on �Ti that corresponds to the stochastic

process that starts in period one with �i1 and whose transitions are given by the kernels of the AR(k) process.
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the informational channel that links types together over time). However, the fact that incentives

separate over time alone does not guarantee implementability. As it is known from the literature

on static mechanism design, one also needs �enough monotonicity�in the allocation rule �t(�1; �t)

with respect to the reports of own types. Assumptions (1), (2) and (4) in the proposition (which

imply SCP, FOSD, and PDPD) guarantee that each �it(�1; �t) is monotone in �it. Constructing

payments that induce the agents to report truthfully at any period t � 2; even after they observe
the other agents�types36, is then particularly simple. It su¢ ces to have each agent i pay in each

period t � 2 a transfer  it(�1; �t) that, given (�1; ��it); coincides with the payment type �it would
made in a static mechanism implementing the monotone allocation rule �it(�; �1; ��it), as indicated
in (29).

As for period one, in general providing incentives at t = 1 is di¢ cult. However, note that as-

sumptions (1)-(4) in the proposition guarantee that the allocation rule that maximizes the dynamic

virtual surplus is strongly monotone in the sense of Corollary 1. Following the same steps as in

the proof of Corollary 1, one can then add to the payments  it(�1; �t)� which for convenience can

be assumed to be made in each of the corresponding periods� a �nal payment of  i1(�i1; �
T
�i) to

be made in period T; after all other agents� types �T�i have been revealed. When the payments

 i1(�i1; �
T
�i) are as in (30) then incentives for truthtelling are guaranteed also in period one.

Finally consider possible implementations of the pro�t-maximizing rule. First, note that in

the linear case (i.e., when uit(�it; xit) = �itxit) the implementation is particularly simple. Suppose

there is no allocation in the �rst period and assume the agents do not observe the other agents�

types (both assumptions simplify the discussion but are not essential for the argument). In period

one, each agent i chooses from a menu of �handicaps� (J ti1�
�1
i1 (�i1))

T
t=1, indexed by �i1: Then in

each period t � 2, a �handicapped�VCG mechanism is played with transfers as in (29). Lastly,

in period T + 1, each agent is asked to make a �nal payment of  i1(�i1; ~�
T
�i) (Eso and Szentes

(2007) derive this result in the special case of a two-period model with allocation only in the second

period.) This logic extends to nonlinear payo¤s in the sense that in the �rst period the agents still

choose from a menu of future plans (indexed by the �rst period type). In the subsequent periods

the distortions now generally depend also on the current reports through the partial derivatives
@uit(�it;xit)

@�it
. However intermediate reports (i.e., reports in periods 2; : : : ; t � 1) remain irrelevant

both for the period-t allocation and for the period-t payments.

36 In fact, due to time-separability, in periods t � 2 the mechanism is truly ex post IC in that it is robust also to
the possibility that aech agent i observes his own future types.
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Appendices

A Statement and proof of Lemma A.1

Lemma A.1. Assume the environment satis�es Assumption 2. Then Assumption 5 implies that

for any t; and any � < t

9B < +1 :

���� @@�� E[�tj�t�1; yt�1]
���� � B 8(�t�1; yt�1):

Proof of Lemma A.1. Assumption 5 implies that

���� @@��
Z
�tdFt(�tj�t�1; yt�1)

���� =
����� lim�0�!��

R
�td[Ft(�tj�t�1�� ; �

0
� ; y

t�1)� Ft(�tj�t�1�� ; �� ; y
t�1)]

�0� � ��

�����
=

������ lim
�0�!��

Z
Ft(�tj�t�1�� ; �

0
� ; y

t�1)� Ft(�tj�t�1�� ; �� ; y
t�1)

�0� � ��
d�t

�����
=

�����Z @Ft(�tj�t�1; yt�1)
@��

d�t

���� ;
The second inequality follows by Lemma 6 below. The last equality follows by the dominated

convergence theorem since the integrand is bounded for all �t by the integrable function Bt(�t).

Furthermore, �����Z @Ft(�tj�t�1; yt�1)
@��

d�t

���� � Z B(�t)d�t;

from which the claim follows by taking B �
R
B(�t)d�t:

B Proof of Proposition 1

Two kinds of period-t histories appear frequently in the proof. Those including the message mt but

excluding the realization of yt, and those including the current type �t but excluding the message

mt. For expositional clarity we introduce notation to distinguish the value functions associated

with these two types of histories. For the �rst kind, we let 	t
�
�t;mt; yt�1

�
� V 
(�t;mt; yt�1)

denote the the supremum continuation expected utility. For the second kind, we continue to use the

value function V 
 but in order to clarify notation further we drop the superscript 
 and add a time

subscript. Thus we write Vt(�t;mt�1; yt�1) � V 
(�t;mt�1; yt�1). Also, it is convenient to introduce

period T+1 as a notional device and then let 	T+1
�
�T+1;mT+1; y

�
= VT+1

�
�T+1;m; y

�
= U (�; y).
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Note that by de�nition

	t
�
�t;mt; yt�1

�
=

Z
Vt+1

�
�t+1;mt; yt

�
dFt+1

�
�t+1j�t; yt

�
d
t

�
ytjmt; yt�1

�
; (31)

Vt+1
�
�t+1;mt; yt

�
= sup

mt+1
	t+1

�
�t+1;

�
mt;mt+1

�
; yt
�
:

The proof proceeds in a series of Lemmas.

Lemma 6 For any Lipschitz function G : �t ! R,Z
G(�t)dFt(�tj�t�1; yt�1)�

Z
G(�t)dFt(�tj�t�1; yt�1)

= �
Z
G0(�t)

�
Ft(�tj�t�1; yt�1)� Ft(�tj�t�1; yt�1)

�
d�t;

where all the integrals exist.

Proof. First note that the �rst two integrals exist, since letting M be the Lipschitz constant for

G, and picking any �̂t 2 �t, we can write jG (�t)j �
���G��̂t���� + M

����̂t��� + M j�tj, and all terms
have expectations with respect to the probability distribution dFt

�
�tj�t�1; yt�1

�
, the last term by

Assumption 2. Thus, we can use integration by parts to writeZ
G (�t)dFt

�
�tj�t�1; yt�1

�
�
Z
G (�t) dFt

�
�tj�t�1; yt�1

�
=

Z
G(�t)d

�
Ft
�
�tj�t�1; yt�1

�
� Ft

�
�tj�t�1; yt�1

��
= �

Z
G0 (�t)

�
Ft
�
�tj�t�1; yt�1

�
� Ft

�
�tj�t�1; yt�1

��
d�t

+
�
G (�t)

�
Ft
�
�tj�t�1; yt�1

�
� Ft

�
�tj�t�1; yt�1

����t=�t
�t=�t

:

When both �t and �t are �nite, we have Ft
�
�tj�t�1; yt�1

�
= Ft

�
�tj�t�1; yt�1

�
= 1 and Ft

�
�tj�t; yt�1

�
=

Ft
�
�tj�t�1; yt�1

�
= 0, and the Lemma follows. If �t = �1, then as �t ! �1,

��G(�t) �Ft ��tj�t�1; yt�1�� Ft ��tj�t�1; yt�1�� ��
� (jG(�̂t)j+M j�̂tj)

��Ft(�tj�t�1; yt�1)� Ft(�tj�t�1; yt�1)��
+M j�tj

�
Ft
�
�tj�t�1; yt�1

�
+ Ft

�
�tj�t�1; yt�1

��
�
�
jG(�̂t)j+M j�̂tj

� ��Ft ��tj�t�1; yt�1�� Ft ��tj�t�1; yt�1���
+M

�Z
z��t

jzj dFt
�
zj�t�1; yt�1

�
+

Z
z��t

jzj dFt
�
zj�t�1; yt�1

��
! 0
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by Assumptions 2 and 5. Similarly, if �t = +1; then as �t ! +1,

��G(�t) �Ft ��tj�t�1; yt�1�� Ft ��tj�t�1; yt�1�� ��
�
�
jG(�̂t)j+M j�̂tj

�
jFt
�
�tj�t�1; yt�1

�
� Ft

�
�tj�t�1; yt�1

�
j

+M j�tj
��
1� Ft

�
�tj�t�1; yt�1

��
+
�
1� Ft

�
�tj�t�1; yt�1

���
�
�
jG(�̂t)j+M j�̂tj

� ��Ft ��tj�t�1; yt�1�� Ft ��tj�t�1; yt�1���
+M

�Z
z��t

jzjdFt
�
zj�t�1; yt�1

�
+

Z
z��t

jzj dFt
�
zj�t�1; yt�1

��
! 0

by Assumptions 2 and 5.

For any function G : �! R, let

@�G (�)

@�t
= lim sup

�0t"�t

G
�
�0t; ��t

�
�G (�)

�0t � �t
and

@+G (�)

@�t
= lim inf

�0t#�t

G
�
�0t; ��t

�
�G (�)

�0t � �t
:

The following Lemma is similar to Theorem 1 of Milgrom and Segal (2002) and Theorem 1 of Ely

(2001).

Lemma 7 In an ex ante IC mechanism 
, for any integers 1 � t � � and for �[
]-almost all

histories
�
�� ; ���1; y��1

�
,

@�V�
�
�� ; ���1; y��1

�
@�t

�
@�� 	�

�
�� ; �� ; y��1

�
@�t

and
@+V�

�
�� ; ���1; y��1

�
@�t

�
@+	�

�
�� ; �� ; y��1

�
@�t

:

Proof. By ex ante IC we have for �[
]-almost all histories
�
�� ; ���1; y��1

�
,

V�
�
�� ; ���1; y��1

�
= 	�

�
�� ; �� ; y��1

�
.

By de�nition of V� and 	� , we have for all
�
�� ; ���1; y��1

�
and all �0t,

V�
��
�0t; �

�
�t
�
; ���1; y��1

�
� 	�

��
�0t; �

�
�t
�
; �� ; y��1

�
:

Combining the two we have for �[
]-almost all histories
�
�� ; ���1; y��1

�
and all �0t,

V�
��
�0t; �

�
�t
�
; ���1; y��1

�
� V�

�
�� ; ���1; y��1

�
� 	�

��
�0t; �

�
�t
�
; �� ; y��1

�
�	�

�
�� ; �� ; y��1

�
.

Taking �0t > �t, dividing by �0t � �t, and then taking liminf as �0t # �t yields the second inequality
in the lemma. Taking �0t < �t, dividing by �0t � �t, and then taking limsup as �0t " �t yields the �rst
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inequality in the lemma.

The next two lemmas don�t rely on IC.

Lemma 8 For each t, 	t
�
�t;mt; yt

�
and Vt

�
�t;mt�1; yt

�
are equi-Lipschitz continuous in �t �

i.e., there exists M such that for all �t; �t;mt; yt,

��	t ��t;mt; yt
�
�	t

�
�t;mt; yt

��� �M


�t � �t

 ;��Vt ��t;mt�1; yt

�
� Vt

�
�t;mt�1; yt

��� �M


�t � �t

 :

Proof. By backward induction on t. 	T+1
�
�T+1;mT+1; yT

�
= U

�
�T ; yT

�
is equi-Lipschitz con-

tinuous in �T by Assumption 4. Now we show that for any t, if 	t
�
�t;mt; yt�1

�
is equi-Lipschitz

continuous in �t, then Vt
�
�t;mt�1; yt�1

�
and 	t�1

�
�t�1;mt�1; yt�2

�
are equi-Lipschitz continuous

in �t and �t�1, respectively.

Indeed, suppose 	t
�
�t;mt; yt�1

�
is equi-Lipschitz continuous in �t with a constant M . Then

��Vt(�t;mt�1; yt�1)� Vt(�t;mt�1; yt�1)
�� � sup

mt

��	t(�t; (mt�1;mt); y
t�1)�	t(�t; (mt�1;mt); y

t�1)
��

� M


�t � �t

 ;

and so Vt is also equi-Lipschitz continuous in �t. But then, using (31),

��	t�1 ��t�1;mt�1; yt�2
�
�	t�1

�
�t�1;mt�1; yt�2

���
� sup

yt�1

����Z Vt
��
�t�1; �t

�
;mt�1; yt�1

�
dFt

�
�tj�t�1; yt�1

�
�
Z
Vt
��
�t�1; �t

�
;mt�1; yt�1

�
dFt

�
�tj�t�1; yt�1

�����
� sup

yt�1

����Z �Vt ���t�1; �t� ;mt�1; yt�1
�
� Vt

��
�t�1; �t

�
;mt�1; yt�1

��
dFt

�
�tj�t�1; yt�1

�����
+ sup
yt�1

����Z Vt
�
�t;mt�1; yt�1

�
dFt

�
�tj�t�1; yt�1

�
�
Z
Vt
�
�t;mt�1; yt�1

�
dFt

�
�tj�t�1; yt�1

�����
� sup

yt�1

Z ��Vt ���t�1; �t� ;mt�1; yt�1
�
� Vt

��
�t�1; �t

�
;mt�1; yt�1

��� dFt ��tj�t�1; yt�1�
+ sup
yt�1

Z ��Ft ��tj�t�1; yt�1�� Ft ��tj�t�1; yt�1���
�����@Vt

�
�t;mt�1; yt�1

�
@�t

����� d�t
�M



�t�1 � �t�1

�1 + Z Bt (�t) d�t

�
,

where we used Lemma 6 and Assumption 5. This shows that 	t�1 is equi-Lipschitz continuous in

�t�1.
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Lemma 9 For any integers � ; t such that 1 � t < � � T , and any
�
���1;m��1; y��2

�
;

@�	��1
�
���1;m��1; y��2

�
@�t

�
Z
@�V�

�
�� ;m��1; y��1

�
@�t

dF�
�
�� j���1; y��1

�
d
��1

�
y��1jm��1; y��2

�
(32)

�
Z
@V�

�
�� ;m��1; y��1

�
@��

@F�
�
�� j���1; y��1

�
@�t

d��d
��1
�
y��1jm��1; y��2

�
;

@+	��1
�
���1;m��1; y��2

�
@�t

�
Z
@+V�

�
�� ;m��1; y��1

�
@�t

dF�
�
�� j���1; y��1

�
d
��1

�
y��1jm��1; y��2

�
(33)

�
Z
@V�

�
�� ;m��1; y��1

�
@��

@F�
�
�� j���1; y��1

�
@�t

d��d
��1
�
y��1jm��1; y��2

�
:

Proof. Using (31), write for any �0t 6= �t

	��1
��
�0t; �

��1
�t
�
;m��1; y��2

�
�	��1

�
���1;m��1; y��2

�
�0t � �t

=

Z
V�
��
�0t; �

�
�t
�
;m��1; y��1

�
� V�

�
�� ;m��1; y��1

�
�0t � �t

dF�
�
�� j���1; y��1

�
d
��1

�
y��1jm��1; y��2

�
(34)

+

Z
V�
�
�� ;m��1; y��1

�
d

"
F�
�
�� j
�
�0t; �

��1
�t
�
; y��1

�
� F�

�
�� j���1; y��1

�
�0t � �t

#
d
��1

�
y��1jm��1; y��2

�
(35)

+

Z
V�
��
�0t; �

�
�t
�
;m��1; y��1

�
� V�

�
�� ;m��1; y��1

�
�0t � �t

d
�
F�
�
�� j
�
�0t; �

��1
�t
�
; y��1

�
� F�

�
�� j���1; y��1

��
�

(36)

d
��1
�
y��1jm��1; y��2

�
:

We examine separately the behavior of each of the three integrals as �0t ! �t:

� (36): Note that for any y��1;

Z
V�
��
�0t; �

�
�t
�
;m��1; y��1

�
� V�

�
�� ;m��1; y��1

�
�0t � �t

d
�
F�
�
�� j
�
�0t; �

��1
�t
�
; y��1

�
� F�

�
�� j���1; y��1

��
! 0 as �0t ! �t;

since the integrand is bounded by Lemma 8, and the total variation of the measure

d
�
F�
�
�� j
�
�0t; �

��1
�t
�
; y��1

�
� F�

�
�� j���1; y��1

��
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converges to zero by Assumption 6. Thus, (36) is bounded in absolute value by a term that

converges to zero as �0t ! �t:

(Note that in the Markov case, V�
��
�0t; �

�
�t
�
;m��1; y��1

�
�V�

�
�� ;m��1; y��1

�
= Ut

�
�0t; y

t
�
�

Ut
�
�t; y

t
�
does not depend on �� so (36) equals zero without imposing Assumption 6.)

� (35): Using Lemma 8 and Lemma 6 it can be expressed as

�
Z
F�
�
�� j���1�t ; �

0
t; y

��1�� F� ��� j���1; y��1�
�0t � �t

@V�
�
�� ;m��1; y��1

�
@��

d��d
��1
�
y��1jm��1; y��2

�
:

Using in addition Assumption 5, the Dominated Convergence Theorem establishes that as

�0t ! �t, the integral converges to the 2nd integral in (33) and (32).

� (34) Taking its limsup as �0t " �t and using Fatou�s Lemma,37 we see that the limsup is
bounded above by the 1st integral in (32). Thus, we obtain (32). Similarly, taking the liminf

of (34) as �0t # �t and using Fatou�s Lemma, we see that the liminf of this term is bounded

below by the 1st integral in (33), so we obtain (33).

Now combining the inequalities in Lemma 9 for m� = �� and the inequalities in Lemma 7 we

obtain for �[
]-almost all histories
�
���1; ���2; y��2

�
,

@�V��1
�
���1; ���2; y��2

�
@�t

�
Z
@�V�

�
�� ; ���1; y��1

�
@�t

dF�
�
�� j���1; y��1

�
d
��1

�
y��1j���1; y��2

�
�
Z
@V�

�
�� ; ���1; y��1

�
@��

@F�
�
�� j���1; y��1

�
@�t

d��d
��1
�
y��1j���1; y��2

�
;

@+V��1
�
���1; ���2; y��2

�
@�t

�
Z
@+V�

�
�� ; ���1; y��1

�
@�t

dF�
�
�� j���1; y��1

�
d
��1

�
y��1j���1; y��2

�
�
Z
@V�

�
�� ; ���1; y��1

�
@��

@F�
�
�� j���1; y��1

�
@�t

d��d
��1
�
y��1j���1; y��2

�
:

Furthermore, we have by de�nition of VT+1,

@�VT+1
�
�T+1; �T ; yT

�
@�t

=
@+VT+1

�
�T+1; �T ; yT

�
@�t

=
@VT+1

�
�T+1; �T ; yT

�
@�t

=
@U
�
�T ; yT

�
@�t

:

So iterating the above inequalities forward for � = t + 1; t + 2; :::; T + 1 yields for �[
]-almost all�
�t; �t�1; yt�1

�
the double inequality

37Note that even though the integrand need not be nonnegative, it is bounded in absolute value by the lipschitz
constantM . Thus, in general we may have to add and subtractM from the integrand before applying Fatou�s lemma.
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@�Vt
�
�t; �t�1; yt�1

�
@�t

�

E�[
]j(�
t;�t�1;yt�1)

24@U
�
~�
T
; ~yT
�

@�t
�

TX
�=t+1

Z @V�

��
~�
��1

; ��

�
; ~�
��1

; ~y��1
�

@��

@F�

�
�� j~�

��1
; ~y��1

�
@�t

d��

35
�
@+Vt

�
�t; �t�1; yt�1

�
@�t

:

To complete the proof of the proposition, recall that by de�nition,

Vt
�
�t; �t�1; yt�1

�
= V 


�
�t; �t�1; yt�1

�
:

So by Lemma 8 V 

�
�t; �t�1; yt�1

�
is Lipschitz continuous in �t for all

�
�t�1; �t�1; yt�1

�
. Thus, given

any
�
�t�1; �t�1; yt�1

�
, the partial derivative

@V 
(�t;�t�1;yt�1)
@�t

exists for almost every �t. Whenever

it does, it equals to both ends of the above double inequality and so (IC-FOC) obtains.

C Other Proofs Omitted in the Main Text

Proof of Proposition 2. We proceed by backward induction. For t = T the claim follows

immediately from Proposition 1. Suppose now that it holds for all � > t for some t 2 f1; : : : ; T � 1g.
We will show that it holds also for t. Using iterated expectations and the induction hypothesis,

(IC-FOC) can be written as

@V 

�
�t; h

t�1�
@�t

= E�[
]j(�t;h
t�1)

"
@U(~�; ~y)

@�t
+

TX
�=t+1

I�t

�
~�
�
; ~y��1

� @V 
(~�� ; ~���1; ~y��1)
@��

#

= E�[
]j(�t;h
t�1)

24@U(~�; ~y)
@�t

+
TX

�=t+1

I�t

�
~�
�
; ~y��1

� TX
s=�

Js�

�
~�
s
; ~ys�1

� @U �~�; ~y�
@�s

35
= E�[
]j(�t;h

t�1)

24 TX
�=t

J�t

�
~�
�
; ~y��1

� @U �~�; ~y�
@��

35 ;
where the last equality follows by the de�nition of J�t

�
~�
�
; ~y��1

�
.

Proof of Proposition 3.

Fix the history ĥt�1 and consider the auxiliary problem which consists of letting the agent

optimize his period-t report mt given history ĥt�1 and the period-t shock "t and then being forced
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to tell the truth at any subsequent period. Because 
̂ is IC at the truthful history ĥt�1,

V̂ 
̂("t; ĥ
t�1) = sup

mt2Et
E�[
̂]jmt;"t;ĥ

t�1
h
Û(~"; ~y)

i
a.s.

The key is that, because of the independence of the shocks, the restriction of the measure �[
̂]jmt; "t; ĥ
t�1

on future shocks, current and future reports, and current and future decisions, i.e. on Et+1 � � �
ET � Et � � � ET � Yt � � � YT , does not depend on the true shock "t:38 Formally, let P (mt; ĥ

t�1)

denote such restriction and �"t;ĥt�1 denote the Dirac measure at ("t; ĥ
t�1) over past and current

shocks, past reports, and past decisions, i.e. over E1 � � � Et � E1 � � � Et�1 � Y1 � � � Yt�1: Then

the measure �[
̂]jmt; "t; ĥ
t�1 on E � E � Y can be decomposed as

�[
̂]jmt; "t; ĥ
t�1 = �"t;ĥt�1 � P (mt; ĥ

t�1):

By implication,

E�[
̂]jmt;"t;ĥ
t�1
h
Û(~"; ~y)

i
= EP (mt;ĥ

t�1)
h
Û("t;~"t+1; ::;~"T ; y

t�1; ~yt; ::; ~yT )
i
:

Now, because for any ("�t; y) 2 E�t � Y the function Û(�; "�t; y) is At-Lipschitz continuous, we
have that, for any "t; "0t 2 Et any ("�t; y) 2 E�t � Y;����� Û(("t; "�t); y)� Û(("0t; "�t); y)"t � "0t

����� � At:

On the other hand, because P (mt; ĥ
t�1) is a probability measure, EP (mt;ĥt�1) [At] = At. Hence by

the Lebesgue dominated convergence theorem,

lim
"0t!"t

EP (mt;ĥt�1)
h
Û("t�1; "t;~"t+1; :;~"T ; y

t�1; ~yt; :; ~yT )
i
�EP (mt;ĥt�1)

h
Û("t�1; "0t;~"t+1; :;~"T ; y

t�1; ~yt; :; ~yT )
i

"t � "0t

= lim
"0t!"t

EP (mt;ĥ
t�1)

"
Û("t�1; "t;~"t+1; :;~"T ; y

t�1; ~yt; ::; ~yT )� Û("t�1; "0t;~"t+1; :;~"T ; yt�1; ~yt; :; ~yT )
"t � "0t

#

= EP (mt;ĥ
t�1)

"
lim
"0t!"t

Û("t�1; "t;~"t+1; :;~"T ; y
t�1; ~yt; :; ~yT )� Û("t�1; "0t;~"t+1; :;~"T ; yt�1; ~yt; :; ~yT )

"t � "0t

#

= EP (mt;ĥ
t�1)

"
@Û("t�1; "t;~"t+1; :;~"T ; y

t�1; ~yt; :; ~yT )

@"t

#
2 [�At; At];

which implies that the objective function in the auxiliary problem is At-Lipschitz continuous and

38To be precise, it also does not depend on the true shocks experienced prior to period t; that is, it depends on the
history ĥt�1 = ("t�1; "t�1; yt�1) only through the reported shocks and the past decisions.
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di¤erentiable in "t.

The result then follows from the same arguments that establish Theorem 2 in Milgrom and

Segal (2002):39 the function V̂ 
̂(�; ĥt�1) is Lipschitz continuous; furthermore, because Gt is strictly
increasing and because 
̂ is IC at ĥt�1; then mt = "t achieves the supremum for almost every "t

which implies that

@V̂ 
̂("t; ĥ
t�1)

@"t
= EP ("t;ĥ

t�1)

"
@Û("t�1; "t;~"t+1; :;~"T ; y

t�1; ~yt; :; ~yT )

@"t

#

= E�̂[
̂]j"t;ĥ
t�1

"
@Û(~"; ~y)

@"t

#
a.e. "t:

Proof of Proposition 5. For any � and any ("� ; y� ) 2 E� � Y � ; let

û� ("
� ; y� ) � u� (z

� ("� ; y��1); y� );

so that

Û("; y) � U(z("; y); y) =
TX
�=1

û� ("
� ; y� ):

The result follows from combining the two lemmas below.

Lemma 10 Fix t: Suppose that, for any � � t; there exists a Dt;� 2 R+ such that (a) for

all ("��t; y
� ) 2 E��t � Y � ; the function û� (�; "��t; y� ) is Dt;� -Lipschitz and di¤erentiable, and (b)PT

�=tDt;� < +1. Then there exists an At 2 R+ such that, for any ("�t; y) 2 E�t�Y; the function
Û((�; "�t); y) is At-Lipschitz continuous and di¤erentiable with

@Û(("t; "�t); y)

@"t
=

TX
�=t

@û� ("
� ; y� )

@"t
:

39Theorem 2 in Milgrom and Segal (2002) establishes only that the value function is absolutely continuous; this
is because that theorem assumes that the payo¤ is di¤erentiable with an integrable bound instead of di¤erentiable
and equi-Lipschitz continuous. It is however immediate to see that the same arguments that establish Theorem 2 in
Milgrom and Segal also establish that the value function is equi-Lipschitz continuous under the stronger assumptions
considered here.
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Proof of the Lemma. Under the assumptions of the Lemma we have that

lim
"0t!"t

Û(("t; "�t; y)� Û(("0t; "�t); y)
"t � "0t

= lim
"0t!"t

TX
�=t

û� (("t; "
�
�t); y

� )� û� (("0t; "��t); y� )
"t � "0t

=
TX
�=t

lim
"0t!"t

û� (("t; "
�
�t); y

� )� û� (("0t; "��t); y� )
"t � "0t

=
TX
�=t

@û� (("t; "
�
�t); y

� )

@"t

where the second equality is by the Lebesgue dominated convergence theorem, since, for any

("�t; y) 2 E�t � Y; any "t; "0t 2 Et;

TX
�=t

���� û� (("t; "��t); y� )� û� (("0t; "��t); y� )"t � "0t

���� � TX
�=t

Dt;� < +1:

�

Lemma 11 Suppose the assumptions in Proposition 5 hold. Then for all � � t there exists Dt;� 2
R+ such that (a) for all ("��t; y� ) 2 E��t � Y � , û� ((�; "��t); y� ) : Et ! R is Dt;� -Lipschitz continuous

and di¤erentiable with

@û� (("t; "
�
�t); y

� )

@"t
=

�X
l=t

@u� (z
� ("� ; y��1); y� )

@�l

@zl("
l; yl�1)

@"t
;

and (b)
PT

�=tDt;� < +1.

Proof of the Lemma. Fix ("��t; y
� ) 2 E��t � Y � and let z� ((�; "��t); y��1) : Et ! R denote the

vector-valued function de�ned by

z� (("t; "
�
�t); y

��1) =
�
zs("

s; ys�1)
��
s=1

8"t 2 Et

Because each component function zs is di¤erentiable in "t so is z� ((�; "��t); y��1). The function
û� ((�; "��t); y� ) : Et ! R de�ned by

û� (("t; "
�
�t); y

� ) � u� (z
� (("t; "

�
�t); y

��1); y� ) 8"t 2 Et

is thus the composition of two di¤erentiable functions and hence, by the chain rule, it is itself
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di¤erentiable and its derivative satis�es the formula in the statement of the lemma. Furthermore,����@û� (("t; "��t); y� )@"t

���� � �X
l=t

����@u� (z� ("� ; y��1); y� )@�l

���� ����@zl("l; yl�1)@"t

����
� B�

�X
l=t

Ct;l � B�

TX
l=t

Ct;l:

Thus û� ((�; "��t); y� ) is Lipschitz continuous with constant Dt;� = B�
PT

l=tCt;l. Finally we have

TX
�=t

Dt;� =

TX
�=t

B�

TX
l=t

Ct;l < +1:

�

Proof of Proposition 6. Because of the result in Proposition 5, it su¢ ces to prove that assump-

tions 9 and 10 guarantee that the functions z obtained from the kernels F using the transformation

de�ned in (8) satisfy the properties of Proposition 5.

Using (8), �rst note that when assumptions 9 and 10 hold, then for any t; � ; � � t; any

("��t; y
��1) 2 E��t � Y ��1; the function z� ((�; "��t); y��1) : Et ! �t de�ned by

z� (("� ; "
�
�t); y

��1) � F�1� ("� j F�11 ("1); F
�1
2 ("2 j F�11 ("1); y1); :::; y

��1) 8"� 2 E�

is di¤erentiable and its derivatives satisfy

@z� ((�; "��t); y��1)
@"t

= Îtt ("
t; yt�1)Ĵ�t ("

� ; � ��1) 8� � t

This follows directly from the chain rule for Frechet (and hence multivariate) di¤erentiation.

Furthermore, using the de�nitions of the Îtt and Ĵ�t functions, it is immediate that, for any

("t; yt�1) 2 E t � Y t�1; ����@zt("t; yt�1)@"t

���� �Mt (37)

and, for any � > t any ("� ; y��1) 2 E� � Y ��1;

����@z� ("� ; y��1)@"t

���� �Mt

8>><>>:D�

26641 + X
l2N:t<l<�

Dl +
X

K2N, l2NK+1:
t+1�l0<:::<lK���1

lKY
l=l0

Dl

3775
9>>=>>; (38)

From the �rst fundamental theorem of calculus, it then follows that, for any t; � ; � � t there exists a

Ct;� 2 R+ such that for all ("��t; y��1) 2 E��t�Y ��1; the function z� ((�; "��t); y��1) is Ct;� -Lipschitz
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continuous. The constant Ct;� can be taken to be equal to the RHS of (37) if � = t and to the RHS

of (38) if � > t. To prove the result, it then su¢ ces to show that, for any t;

Mt

8>><>>:1 +
TX

�=t+1

D�

26641 + X
l2N:t<l<�

Dl +
X

K2N, l2NK+1:
t+1�l0<:::<lK���1

lKY
l=l0

Dl

3775
9>>=>>; < +1: (39)

This is immediate when T < +1: Thus consider the case T = +1: Because, for any period
� = 1; ::; T; the expression in the square bracket in (39) is decreasing in t; the inequality in (39)

holds true for any arbitrary t > 1 if it holds true for t = 1: Because the latter property is true by

assumption 9, the result then follows.

Proof of Proposition 7. The initial steps of the proof are in the main text. Here we simply

prove that, under the assumptions in the proposition, the formula in (9) reduces to the one in (2).

Di¤erentiating the identity40

Fs(F
�1
s ("sj�s�1; ys�1)j�s�1; ys�1) = "s:

with respect to �t, t < s; we have that for a.e. "s;

0 = fs(�s j �s�1; ys�1)
��
�s=F

�1
s ("s j �s�1;ys�1) �

@F�1s ("s j �s�1; ys�1)
@�t

+
@Fs(�s j �s�1; ys�1)

@�t

����
�s=F

�1
s ("s j �s�1;ys�1)

;

from which we obtain that

@F�1s ("s j �s�1; ys)
@�t

= �
@Fs(�s j �s�1;ys�1)

�t

���
�s=F

�1
s ("s j �s�1;ys�1)

fs(�s j �s�1; ys�1)
��
�s=F

�1
s ("s j �s�1;ys�1)

:

It follows that

Îst ("
s; ys�1) � �@F

�1
s ("s j �s�1; ys)

@�t

����
�s�1=zs�1("s�1;ys�2)

= �@Fs(�s j �
s�1; ys�1)=@�t

fs(�s j �s�1; ys�1)

����
�s�1=zs�1("s�1;ys�2)

� Ist (�sj�s�1; ys�1)
��
�s=zs("s;ys�1)

:

40Note that the di¤erentiability of Fs(�sj�s�1; ys�1) with respect to �t, t < s, follows from the assump-
tions in the proposition. This can be seen from the implicit function theorem applied to the identity
F�1
s (Fs(�sj�s�1; ys�1)j�s�1; ys�1) = �s:
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and hence that

Ĵst ("
s; ys�1) = Jst (z

s("s; ys�1); ys�1):

By the de�nition of independent-shock representation, we then have that

@V 
(zt("t; yt�1); zt�1("t�1; yt�2); yt�1)

@�t
=

E�̂[
̂]j"
t;"t�1;yt�1

"
TX
�=t

J�t (z
� (~"� ; y��1); y��1)

@U(zT (~"T ; eyT�1); eyT )
@��

#

= E�[
]jz
t("t;yt�1);zt�1("t�1;yt�2);yt�1

"
TX
�=t

J�t (
~�
�
; y��1)

@U(~�; ey)
@��

#
;

which is the same formula as in (2).

Proof of Proposition 8.

By (iii), it su¢ ces to consider only single-stage deviations in period t, i.e., deviations to some

report mt followed by truthtelling from t + 1 onward. Thus, it su¢ ces to verify that the agent�s

period-t payo¤ expectation from such a deviation at any truthful history
�
�t�1; �t�1; yt�1

�
and at

any current type �t, which is given by

	(�t;mt; �
t�1; yt�1) � E�[
]jj(�t�1;�t);(�t�1;mt);yt�1 [U(~y; ~�)];

is maximized by reporting mt = �t. For this purpose, the following lemma is useful. (A similar

approach has been applied to static mechanism design with one-dimensional type and multidimen-

sional decisions but under stronger assumptions� see Garcia, 2005.)

Lemma 12 Consider a function 	 : (�; �)2 ! R. Suppose that (a) 	(�;m) is Lipschitz continuous
in � for all m, (b) � (�) � 	(�; �) is Lipschitz continuous in �, and (c) for any m, for a.e. �,

(�0 (�)� @	(�;m)=@�) � (� �m) � 0. Then �(�) � 	(�;m) for all (�;m).

Proof of the Lemma: Let g(�;m) � �(�) � 	(�;m). For any �xed m, g(�;m) is Lipschitz
continuous in � by (a) and (b). Hence, it is di¤erentiable a.e. in �, and

g(�;m) =

Z �

m

@g(z;m)

@�
dz =

Z �

m

�
�0 (z)� @	(z;m)

@�

�
dz:

By (c), the integrand is nonnegative for a.e. z � m and nonpositive for a.e. z � m. Therefore,

g(�;m) � 0 for both � � m and � < m. �
Now, to apply the Lemma, we interpret 	(�t;mt; �

t�1; yt�1) as the agent�s expected utility

from truthtelling in the mechanism 
̂ constructed from 
 by ignoring the agent�s report in pe-
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riod t and substituting mt instead. Assumption (iii) means that the mechanism 
̂ is IC at

any history in period t, and therefore 	(�t;mt; �
t�1; yt�1) is the agent�s value function in the

mechanism. Applying to 
̂ the result in Proposition 2, or equivalently in Proposition 7, we have

that, for any mt, 	(�t;mt; �
t�1; yt�1) is Lipschitz continuous in �t and @	(�t;mt; �

t�1; yt�1)=@�t =

D

�
�t;
�
�t�1;mt

�
; yt�1

�
a.e. �t. The former property establishes assumption (a) in the Lemma.

Assumption (i) in the proposition establishes assumption (b) in the Lemma and, together with

assumption (ii) in the proposition, it establishes assumption (c) in the Lemma. The Lemma then

implies that 	(�t;mt; �
t�1; yt�1) is indeed maximized by reporting mt = �t which implies that 
 is

IC at any truthful period-t history.

Proof of Proposition 9. Let 
i[�;  ] and 
i[�;  ̂] denote the randomized direct mechanisms that

agent i faces respectively under h�;  i and
D
�;  ̂

E
, as de�ned in the main text. Let V 
i[�; ] : Hi ! R

and V 
i[�; ̂] : Hi ! R denote the corresponding value functions.
We �rst establish the following result.

Lemma 13 Suppose the assumptions in Proposition 9 hold. Then, for �[�]�almost all truthful

private histories ht�1i = (�t�1i ; �t�1i ; �t�1i (�t�1i ; �t�1�i )); there exists a scalar Kit(h
t�1
i ) such that

V 
i[�; ]
�
�it; h

t�1
i

�
� V 
i[�; ̂]

�
�it; h

t�1
i

�
= Kit(h

t�1
i ) for all �it: (40)

Proof of the Lemma. From Lemma 1, the fact that h�;  i and
D
�;  ̂

E
are ex-ante BIC implies

that they are BIC at �Ti [�]-almost all truthful private histories h
t�1
i � (�t�1i ; �t�1i ; �t�1i (�t�1i ; �t�1�i )),

for any i and any t � 1. Iterating (IC-FOC) backward (or alternatively using (9)) and (11)), then
implies that, under quasi-linearity, for any t � 1 and �Ti [�]�almost all truthful private histories

ht�1i ; the value functions V 
i[�; ]
�
�; ht�1i

�
and V 
i[�; ̂]

�
�; ht�1i

�
are Lipschitz continuous in �it and

@V 
i[�; ]
�
�it; h

t�1
i

�
@�it

=
@V 
i[�; ̂]

�
�it; h

t�1
i

�
@�it

a.e. �it:

This also implies that for �[�]�almost all truthful private histories ht�1i , there exists a scalar

Kit(h
t�1
i ) such that the condition in (40) holds. �

The result for t = 1 then follows directly from this lemma by letting Ki = Ki1(h
0), where h0 is

the null history, and noting that, in any ex-ante BIC mechanism, the value function coincides with

the expected payo¤ under truthtelling with probability one.

The proof for the second result in the proposition is by induction. Suppose there exists a Ki 2 R
such that

E�[�][V 
i[�; ]
�
~�i� ; ~h

��1
i

�
j ~��i ]� E�[�][V 
i[�; ̂]

�
~�i� ; ~h

��1
i

�
j ~��i ] = Ki (41)
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when � = t � 1: We then show that (41) holds also � = t+ 1:

First note that for �[�]�almost all private histories (�it; ht�1i );

V 
i[�; ]
�
�it; h

t�1
i

�
= E�

T
i [�]j�it;h

t�1
i [V 
i[�; ]

�
~�it+1; ~h

t
i

�
]:

By the law of iterated expectations, we then have that

E�[�][V 
i[�; ]
�
~�it; ~h

t�1
i

�
j ~�ti] = E�[�][V 
i[�; ]

�
~�i;t+1; ~h

t
i

�
j ~�ti]

It follows that

E�[�][V 
i[�; ]
�
~�it; ~h

t�1
i

�
j ~�ti]� E�[�][V 
i[�; ̂]

�
~�it; ~h

t�1
i

�
j ~�ti]

= E�[�][V 
i[�; ]
�
~�i;t+1; ~h

t
i

�
j ~�ti]� E�[�][V 
i[�; ̂]

�
~�i;t+1; ~h

t
i

�
j ~�ti]

= E�[�][V 
i[�; ]
�
~�i;t+1; ~h

t
i

�
� V 
i[�; ̂]

�
~�i;t+1; ~h

t
i

�
j ~�ti]

= E�[�][Ki;t+1

�
~hti

�
j ~�ti];

(42)

where the last equality follows from Lemma 13.

Now note that, when assumption DNOT holds, the stochastic process �[�] over � does not

depend on �: Because any truthful private history ~hti is then a deterministic function of ~�
t
i and ~�

t
�i

and because types are independent we then have that

E�[Ki;t+1

�
~hti

�
j ~�ti] = E�[Ki;t+1

�
~hti

�
j ~�t+1i ] (43)

= E�[V 
i[�; ]
�
~�i;t+1; ~h

t
i

�
j ~�t+1i ]� E�[V 
i[�; ̂]

�
~�i;t+1; ~h

t
i

�
j ~�t+1i ],

where the last equality follows again from Lemma 13. Combining (42) with (43) then gives

E�[V 
i[�; ]
�
~�i;t+1; ~h

t
i

�
j ~�t+1i ]� E�[V 
i[�; ̂]

�
~�i;t+1; ~h

t
i

�
j ~�t+1i ]

= E�[�]j[V 
i[�; ]
�
~�it; ~h

t�1
i

�
j ~�ti]� E�[�]j[V 
i[�; ̂]

�
~�it; ~h

t�1
i

�
j ~�ti]

Using again the fact that the value function coincides with the equilibrium payo¤ with probability

one then gives the result.

Finally note that, when N = 1; ~ht1 is a deterministic function of ~�
t
1 only. The result in (43)

is thus always true when the allocation rule is deterministic. We conclude that, when N = 1; the

result in the second part of the proposition holds even if assumption DNOT is dispensed with.

Proof of Proposition 15. The proof is in two parts. Part (1) proves that any handicapped

cut-o¤ rule � is implementable in a mechanism that is IC at all histories. Part (2) proves that there
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exists a handicapped cuto¤ rule that solves the relaxed problem.

Part (1). The proof is by backward induction. We �rst note that given any history (�T�1;mT�1),

�T (m
T�1; �) is monotone and hence implementable in a mechanism that is IC at any period-T

history. Suppose then that � is implementable in a mechanism that is IC at any period t + 1

history for some t � T � 1. By Proposition 13, we then have that, if for all (�t; (�t�1;mt)),41

D[�](�t; (�t�1;mt)) = E�j�
t

"
TX
�=t

���t�� (�
t�1;mt; ~�t+1; : : : ; ~�� )

#

is nondecreasing in mt, then � is implementable in a mechanism that is IC at all truthful period t

histories (and all period t + 1 histories). This property in turn follows from the fact that, for any

realization (�t+1; : : : ; �T ),
TX
�=t

���t�� (�
t�1;mt; �t+1; : : : ; �� )

is nondecreasing in mt: Increasing mt thus either has no e¤ect on the allocation of the good, or it

permits the agent to get the good sooner. (Note that for t = 1 this uses the assumption that zt(m1)

are nonincreasing in m1) Since � � 1, getting the good sooner (weakly) increases the value of

D[�](�t; (�t�1;mt)). Thus � is implementable at all truthful histories. Given that the environment

is Markov, it is then implementable at all period t histories. This proves the induction which then

establishes the claim.

Part (2). By inspection of the formula for the dynamic virtual surplus, it is immediate that

if xt = 1 for some t, then it is optimal to set x� = 0 for all � > t. Hence the allocation rule

that maximizes the dynamic virtual surplus can be obtained as the solution to an optimal stopping

problem. Let vt be the value function from continuing to period t (i.e. from arriving to period

t without having sold the good in previous periods). Because of the Markov structure of the

environment, it is straightforward to verify, by backward induction, that each vt is independent of

(�2; : : : ; �t�1). The value functions thus satisfy the functional equations

vt(�1; �t) = max
n
�t � c� �t�1��11 (�1); E�j�

t
h
vt+1(�1; ~�t+1)

io
; (44)

where vT+1 � 0. We start by listing some useful properties of vt.

Lemma 14 (i) For all t, vt is nondecreasing.

(ii) For all t > 1, all �01 > �1, and all �t,

vt(�
0
1; �t)� vt(�1; �t) � �t�1(��11 (�1)� �

�1
1 (�

0
1)):

41 In this example, decisions do not a¤ect types; we thus suppressed xt�1 from the argument of D[�] and replaced
�T [�] with �:
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(iii) For all t > 1, all �0t > �t, and all �1,

vt(�1; �
0
t)� vt(�1; �t) � �0t � �t:

Proof of the Lemma. We prove each assertion by backward induction.

(i) For t = T we have

vT (�1; �T ) = max
�
�T � c� �T�1��11 (�1); 0

	
:

Since ��11 (�1) is nonincreasing by assumption, vT is nondecreasing in both arguments. Suppose

then that the claim is true for some t � T . By inspection of (44) vt�1 is then the maximum of two

nondecreasing functions and hence itself nondecreasing.

(ii) vT clearly satis�es the property. Suppose this is true of vt+1 for some 2 � t � T�1. Consider
vt. Fix �t. The �rst term on the right-hand side of (44) increases by �t�1(��11 (�1) � ��11 (�

0
1)) as

one moves from �1 to �01. The second term increases by

E�j�
t
h
vt+1(�

0
1;
~�t+1)� vt+1(�1; ~�t+1)

i
=

Z �
vt+1(�

0
1; ��t + "t+1)� vt+1(�1; ��t + "t+1)

�
dGt+1("t+1)

�
Z
�t(��11 (�1)� �

�1
1 (�

0
1))dGt+1("t+1)

� �t�1(��11 (�1)� �
�1
1 (�

0
1));

where the �rst inequality follows by the induction hypothesis while the second by � � 1. Thus

vt(�; �t) is the maximum of two increasing functions, each of which increases by at most �t�1(��11 (�1)�
��11 (�

0
1)) as �1 ! �01. This implies the claim.

(iii) vT clearly satis�es the property. Suppose this is true of vt+1 for some 2 � t � T � 1.
Consider vt. Fix �1. The �rst term on the right-hand side of (44) increases by �0t � �t as �t ! �0t.

The second term increases byZ �
vt+1(�1; ��

0
t + "t+1)� vt+1(�1; ��t + "t+1)

�
dGt+1("t+1)

�
Z
�
�
�0t � �t

�
dGt+1("t+1)

� �0t � �t;

where the �rst inequality follows by the induction hypothesis, and the second by � � 1. Thus

vt(�1; �) is the maximum of two increasing functions, each of which increases by at most �0t � �t as
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�t ! �0t. This implies the claim and completes the proof of the Lemma. �
We now show that the solution to the relaxed program takes the form of a handicapped cut-o¤

rule. Consider period t > 1. By inspection of the functional equation (44) we see that conditional

on the good not being sold before period t, only the �rst-period type �1 and the current-period

type �t matter for the period-t decision (recall that �t follows a Markov, process). Fix �1. As

�t ! �0t > �t, the �rst term on the right-hand side grows by �0t � �t. By (the proof of) part (iii)

of Lemma 14 the second term grows at most by �0t � �t. At �t = 0 the �rst term is negative,

whereas the second term is always nonnegative as one feasible continuation strategy is to never sell.

Thus there exists a cut-o¤ zt(�1) 2 R [ f+1g such that the good is sold in period t if and only
if �t � zt(�1). It remains to show that the cut o¤ zt is nonincreasing in �1: This follows from the

fact that the �rst term on the right-hand side of (44) grows by �t�1(��11 (�1)� �
�1
1 (�

0
1)) as �1 ! �01,

whereas the second grows at most by �t�1(��11 (�1) � ��11 (�
0
1)) by part (ii) of Lemma 14. Thus

increasing �1 given any �xed �t makes the �rst term increase relative to the second. This proves

that the cuto¤ zt(�1) is nonincreasing.

Finally, consider t = 1. As �1 ! �01 > �1, the �rst term on the right-hand side of (44) increases

by �01 � �1 + ��11 (�1) � ��11 (�
0
1) � �01 � �1. For the change in the second term we have an upper

bound Z �
v2(�

0
1; ��

0
1 + "2)� v2(�1; ��1 + "2)

�
dG2("2)

�
Z
�
�
�01 � �1

�
dG2("2)

� �01 � �1;

where the �rst inequality follows by part (iii) of Lemma 14 while the second by � � 1. Thus the
�rst term grows everywhere (weakly) faster than the second. Hence there exists a cuto¤ z1 2 cl�1
such that it is optimal to sell the good in period one if and only if �1 � z1. (Note that included

are also the special cases where the good is either sold in period 1 to all �1, or it is not sold to any

�1.)

Proof of Proposition 17. We show that, under conditions (1)�(4), any allocation rule that is

part of a pro�t-maximizing mechanism must maximize the expected dynamic virtual surplus.

First note that, by Proposition 12, assumption (2) and (4) guarantee that the participation

constraints for all types other than the lowest ones can be ignored.

Next note that, because the environment satis�es assumption USEP (i.e. payo¤s are time-

separable), then an allocation rule maximizes the expected dynamic virtual surplus if and only if,

for all t �-almost all �t, �t(�) satis�es condition (27) in the proposition. To prove the result it thus
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su¢ ces to show that any allocation rule that satis�es condition (27) is implementable in an OEP-IC

mechanism that gives zero expected surplus to the lowest types. The result in Proposition 10 then

implies that any allocation rule that is part of a pro�t-maximizing mechanism must necessarily

maximize the expected dynamic virtual surplus.

As a preliminary step, note that, by inspection, the period-t allocation depends only on the

current types �t and the �rst period types �1. Assumptions (1), (3) and (4) then imply that the

period-t-state-�t virtual surplus has increasing di¤erences in (�i1; xit) and in (�it; xit) (for any �xed

values of the other arguments). Thus any allocation rule that maximizes the expected dynamic

virtual surplus has the property that �it(�) is increasing in �ti (in the product order) implying that
� is strongly monotone.

Assume now that all agents other than i are truthful. Suppose further that at each pe-

riod t, before sending his message mit, agent i has observed (�ti; �
T
�i;m

t�1
i ; xt�1) (because the

other agents are assumed to be truthful we omit the speci�cation of the other agents� mes-

sages.) Now consider the allocation rule �i(�; �T�i) that is obtained from � by �xing the type

pro�le for all agents other than i to �T�i: For all �
T
�i, we �rst construct payments of the form

 i(m
T
i ; �

T
�i) =

PT
t=2  it(mi1;mit; ��i;1; ��i;t) that make truthtelling optimal for agent i in all peri-

ods t � 2 and for any period t history. Thus consider an arbitrary period t � 2. Because at any
period � > t both �i� (�; �T�i) and  i� (�) do not depend on agent i�s message mit in period t and be-

cause assumptions DNOT, USEP, and PDPD hold in this environment, then the agent�s incentives

separate over time. That is, the choice of the optimal message mit depends on (�ti; �
T
�i;m

t�1
i ; xt�1)

only through (�it;mi1; ��i;1; ��i;t). Or, equivalently, agent i�s period-t problem is a static problem

indexed by (mi1; ��i;1; ��i;t). Now think of �it(�;mi1; ��i;1; ��i;t) as a static allocation rule indexed

by (mi1; ��i;1; ��i;t). By strong monotonicity this allocation rule is nondecreasing in mit. Standard

results from static mechanism design then guarantee that, when assumption (1) holds, for each

(mi1; ��i;1; ��i;t) � k; truthtelling can be made optimal for agent i using payments of the form

 it(�it; k) � uit(�it; �it(�it; k))�
Z �it

�it

@uit(r; �it(r; k))

@�it
dr:

Repeating these steps for each period t � 2 and each agent i, then gives a mechanism h�;  i, where
 is as constructed above, that is OEP-IC at any period-t history, for any t � 2:

Next, consider period 1. We proved above that there exists a mechanism h�;  i that is OEP-IC
at any (possibly non-truthful) period t � 2 history. Because assumptions DNOT, FOSD, SCP and
PDPD hold in this environment, and because � is strongly monotone, then Corollary 1 implies that

there exists a payment rule  ̂ such that h�;  i is OEP-IC at any history. The construction of the
payments then follows from the proof of that corollary.
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Proof of Lemma 5. Fix an arbitrary history � 2 � and let t be the �rst period such that

�t(�
t) = 0. Then let s > t be the �rst period after t such that �s(�

s) = 1. Because there is no

learning in periods t+ 1; : : : ; s, the last s� t components of �s are necessarily equal to �t, the last
component of �t (that is, �� = �t for � = t; t+1; :::; s). Now consider an allocation rule �̂ such that

(1) �̂t(�
t) = �s(�

s) = 1, (2) for any successor �� to �t, the behavior of �̂� is de�ned by the behavior

of �s+(��t) for the analogous successor �
s+(��t) to �s, with �̂� � 0 if s + (� � t) > T , and (3) �̂

agrees with � elsewhere. Next let  ̂ be the payment scheme that is obtained from  following the

same construction as for �̂:

Now note that, because there is no learning during periods of no sales and because there is

no discounting, the mechanism
D
�̂;  ̂

E
leads to the same payo¤s as h�;  i. Repeating the above

construction for all possible histories � 2 � gives rise to an IR-BIC mechanism
D
�̂;  ̂

E
such that �̂

is a stopping rule and the expected payo¤s of both the buyer and the seller under
D
�̂;  ̂

E
are the

same as under h�;  i.

Proof of Proposition 16. Part (1). Consider the e¢ cient allocation rule ��. It solves a stopping

problem where the period t payo¤ is xt (�t � c) with �t distributed as above. Let v�t (�t) denote
the continuation value from period t onwards, which depends only on the current type given the

Markov structure. We have

v�t (�t) = max
n
0; �t � c+ E

h
v�t+1(~�t+1)j�t

io
: (45)

(We are using the conditional expectation notation for convenience; the expectation is actually

taken with respect to the kernel identi�ed above.) We proceed by backward induction. At T , for

any �, the e¢ cient allocation ��T (�) solves

v�T (�T ) = max f0; �T � cg :

Thus ��T has cut-o¤ z
�
T = c, which is independent of �T�1; by implication, v�T is nondecreasing.

Suppose then that the properties identi�ed for period T are true for some period t + 1 (That is,

��t+1 has cut-o¤ z
�
t+1 independent of �

t and v�t+1 is nondecreasing). We want to show that the same

properties hold in period t.

Given �t, ��t (�
t) solves the maximization problem in (45). Since v�t+1 is nondecreasing by

the induction hypothesis and we have FOSD, ��t has a cuto¤ z
�
t which does not depend on �

t�1.

Furthermore, v�t is nondecreasing.

We conclude that the e¢ cient rule is a cuto¤ rule where the cuto¤s depend only on t. It remains

to show that the cuto¤s z�t are nondecreasing in t. By inspection of (45) it su¢ ces to show that
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v�t is nonincreasing in t. To this end we �rst establish by backward induction that the functions v
�
t

are convex. This is clearly true of v�T . Suppose then that v
�
t+1 is convex. Note that the kernels Ft

identi�ed above imply that �t+1 = �t + 
t, where ~
t � N(0; �2t+1). Note that the distribution of ~
t
is independent of �t. Thus for any �t, �0t and � 2 [0; 1] we have

v�t (��t + (1� �)�0t) = max
n
0; ��t + (1� �)�0t � c+ E

h
v�t+1(~�t+1)j��t + (1� �)�0t

io
= max

�
0; ��t + (1� �)�0t � c+ E

�
v�t+1(��t + (1� �)�0t + ~
t)

�	
= max

�
0; ��t + (1� �)�0t � c+ E

�
v�t+1(�(�t + ~
t) + (1� �)(�0t + ~
t))

�	
� max

�
0; �

�
�t � c+ E

�
v�t+1(�t + ~
t)

��
+ (1� �)

�
�0t � c+ E

�
v�t+1(�

0
t + ~
t)

��	
� �max

�
0; �t � c+ E

�
v�t+1(�t + ~
t)

�	
+(1� �)max

�
0; �0t � c+ E

�
v�t+1(�

0
t + ~
t)

�	
= �v�t (�t) + (1� �)v�t (�0t):

Thus v�t is convex. Suppose then that for some t, v
�
t � v�� for all � � t. Note that this holds

vacuously for t = T . Consider period t� 1. For any a 2 R,

v�t�1(a) = max f0; a� c+ E [v�t (a+ ~
t)]g

� max
�
0; a� c+ E

�
v�t+1(a+ ~
t)

�	
� max

�
0; a� c+ E

�
v�t+1(a+ ~
t+1)

�	
= v�t (a);

where the �rst equality follows by the induction hypothesis and the second by the convexity of

v�t+1, since the distribution of ~
t+1 second order stochastically dominates that of ~
t.

Part (2). Next, consider the Relaxed Program. Let vt(�t) denote the continuation value from

period t onwards. We have

vt(�
t) = max

�
0; �t � c�

1

�1(�1)
+ E

�
vt+1(�

t+1)j�t
��

: (46)

By backward induction one sees that vt(�t) depends only on (�1; �t). Thus the allocation rule �

that solves the Relaxed Program is an e¢ cient rule in the model parameterized by �1 where the

seller�s cost is c� 1
�1(�1)

. The result in part (1) then implies that � is a cuto¤ rule, where the cuto¤s

zt(�1) depend only on t and the parameter �1, and are nondecreasing in t. Since the hazard rate

�1(�1) is assumed to be monotone, the second term on the right hand side is nondecreasing in �1.

This implies that zt(�1) is nonincreasing in �1.

Part (3). We prove the result by verifying the conditions of Proposition 11. Super- and sub-

modularity (respectively of ui (�; x) and of @ui (�; x) =@�it) are satis�ed since the payo¤s are time-
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separable and the �ow payo¤s are linear. By inspection so is SCP. We also have FOSD since �t

follows a nonstationary random walk. DNOT obtains since given the restriction to stopping rules,

for any nontrivial history (i.e., where selling hasn�t yet stopped) the distributions depend only on

t. Finally, the set of stopping rules is seen to be a lattice as follows: De�ne the pointwise order on

X S by setting � � �0 if for all t, all �t, �t(�
t) � �0t(�

t). It is then straightforward to verify that

the meet and the join of any two stopping rules are stopping rules. The result then follows from

Proposition 11.

Part (4). Implementability of each of the two rules follows from Proposition 12 and Corollary

1 since both rules are clearly strongly monotone. Other assumptions are veri�ed as in the proof of

part (3).
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