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Abstract

Due to wealth effects, the price of a security may vary with the real-

ization of an underlying risk factor even when the security’s dividend

is independent of that factor. This paper highlights a crucial com-

ponent of these effects hitherto ignored by the literature: changes in

wealth do not alter only an agent’s risk aversion, but also her perceived

“riskiness” of the security. The latter enhances significantly the extent

to which market-clearing leads to endogenously-generated correlation

across asset prices and returns, over and above that induced by corre-

lation between payoffs, giving the appearance of “contagion”.
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1 Introduction

For the most part of the theoretical continuous-time financial economics

literature, the workhorse has been some analogue of the model in Lucas [26].

In its purest form, it depicts a one-commodity, pure-exchange economy with

identical price-taking consumers, in which economic activity occurs over a

time-interval. The consumption good is provided by distinct units whose

productivity fluctuates stochastically, their usual interpretation being that

of Lucas trees. Namely, a crop is growing stochastically on different trees

via a production process that is entirely exogenous.

Even though commonly endowed with the generated filtration, the indi-

viduals cannot observe the actual productivity shocks. Instead, they moni-

tor the crop on the trees whose magnitude plays the role of an information

process. In the basic model, the agents use this information to trade con-

tinuously and frictionlessly a given set of perfectly divisible securities. It

consists of one security, in positive net supply, for each productive unit rep-

resenting one equity share (termed “stock”) in that tree. There is also a

promissory note (termed a “bond”), in zero net supply, paying one unit of

the good with certainty.

In the equilibrium of this economy, the price of the typical security is

the current expectation of its future dividends valued at the representative

agent’s marginal rate of substitution between consumption at the dividend-

collection date and the present. Derivations have been provided by a number

of seminal papers and for different versions of the model. As asset-pricing

framework, moreover, this has been used extensively in the literature to

price more complex financial assets, such as derivative securities, and to

identify optimal consumption and portfolio policies. Surprisingly, though,

the dynamics of the equilibrium pricing process with respect to the under-

lying risk process have not been thus far investigated - not analytically and,

hence, not to a satisfactory degree of generality with respect to the economic

primitives. And this is the task of the present paper.

Whether these dynamics are monotone is the most fundamental com-

parative statics question. For if (and only if) they are, there can be an
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invertible relation between the asset prices of this economy and the under-

lying stochastic process that represents its primitive sources of risk. This

would, for instance, greatly facilitate economic but also econometric analy-

sis and prediction. In fact, it would ensure that either (and especially the

latter) makes sense by rendering the effect of the unobserved risk process

on the equilibrium asset prices identifiable from the observable path of the

production process, the available information process in this economy.

Of course, marginal utilities are not observable in practise and securities

are priced with respect to a numeraire so that what really matters is the

relative price between two securities. Taking the price of the consumption

good as the numeraire, my focus will rest upon the price of the typical stock

relative to the price of the bond. To examine the comparative statics of

this relative price analytically, I restrict attention to the case in which the

production process on the typical Lucas tree follows a multi-dimensional

geometric Brownian motion.

This specification that has been widely used in theoretical as well as em-

pirical studies because it allows the equilibrium asset prices to be identified

either in closed form or as solutions to well-known stochastic differential

equations. Yet, determining their comparative statics properties with re-

spect to the typical component of the underlying risk process, the typical

Brownian motion, is not straightforward. Observe, for instance, that, albeit

each stock’s dividend follows a geometric Brownian motion, its equilibrium

relative price will not do so apart from a very special case.1

Other things being equal, an increase in the current realization of the

typical Brownian motion raises the expected dividend of any stock that cor-

responds to a tree whose output is positively related to this risk factor. This

is an improvement in first-order stochastic dominance terms and, due to her

non-satiation, the representative agent becomes more willing to hold the as-

1Working with one tree, one Brownian motion, and no endowment for the representative
agent (other than the net supply of the stock), Bick [9] established that the relative price
between the stock and the bond will follow a geometric Brownian motion in equilibrium if
and only if the representative agent’s utility exhibits constant relative risk aversion. For
general dimensions of the Brownian and production processes, this has been confirmed by
Raimondo [32] (see his Remark 1 and Example 1).
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set. Being constrained, however, to hold its fixed net supply in equilibrium,

she cannot but push up its price. As a mechanism relating shocks to asset

prices, this will be termed here the dividend effect of a change in the typical

Brownian motion on the typical stock price.

Yet, the increase in the expected dividend raises also the representative

agent’s expected wealth, her expected equilibrium consumption. Because of

her risk-aversion, this reduces the expected marginal utility of equilibrium

consumption and, thus, the value of future receipts. This is another linkage

between the realizations of an underlying risk factor and the prices of the

securities which I will call the risk-aversion effect. It works in the same

direction on every security in the model, being also of the same magnitude

once stock and bond units are compared appropriately (see Section 3.2).

Considering just these two effects together, the complexity of the asset-

price dynamics under study in this paper begins to reveal itself, at least

partially. For example, the price of a stock need not increase when its divi-

dend increases.2 It also need not change, however, in the opposite direction

to the agent’s wealth, when the dividend is independent of the Brownian

motion in question. In fact, under some fairly general conditions, the stock

price and the agent’s wealth will be positively correlated (and monotoni-

cally so) as long as the representative agent’s utility function exhibits non-

increasing absolute risk aversion (see Section 3.2). Needless to say, given the

absence of a dividend effect, this positive relation nessecitates the presence

of yet another effect which ought to be outweighing risk-aversion in this

case. This is the third (and final) aspect of the shock-transmission mecha-

nism that market-clearing brings about. I will be referring to it henceforth

as the asset-riskiness effect of a change in the typical Brownian motion on

the typical stock price.

This depicts the very fact that the extent to which changes in the

marginal utility of equilibrium consumption affect the price of a stock de-

2In fact, assuming one tree, one Brownian motion, log-utility and no endowment for the
representative agent, the price of the stock will be constant (see Example 1 in Raimondo
[32]). All of the adjustment, that must take place on its relative price to clear the markets
in the face of its stochastic dividend, obtains entirely through the price of the bond.
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pends on the actual realizations of its dividend. That is, the evolution of the

underlying Brownian motion influences the stock price also through altering

the correlation between the dividend and the marginal utility of equilib-

rium consumption. In the example of the preceding paragraph, an increase

in the Brownian realization raises the agent’s wealth, thereby, reducing its

marginal utility. Yet, the decrease in the marginal utility tends to be small

when the dividend realization is large and large when the dividend is small.

In other words, even though independent from the Brownian motion, fol-

lowing an increase in the Brownian realization, the dividend becomes less

positively correlated with consumption. As a result, the agent perceives now

the stock as less “risky,” which induces her to demand more of it and, facing

its fixed net supply, push up its equilibrium price.

Even though strictly introductory, the above overview of the market-

clearing induced asset-price dynamics is quite telling about their complexity.

And this cannot but increase when the focus is turned onto relative prices.

If anything, even the risk-aversion effect, being always in the same direction

for all securities, is no longer immediately identifiable. More importantly,

as shown throughout the remainder of the paper, the asset-riskiness effect is

again a fundamental but hard to pin down driving factor. The dynamics of

relative asset-prices are much richer than one is led to expect at first glance,

armed with basic economic intuition.

And this is the case even when the utility function of the representative

agent is such that her optimal portfolio is well-known regarding how it di-

vides her invested wealth between stocks and bond. Suppose, for instance,

that her utility exhibits constant relative risk aversion (CRRA) and that her

current invested wealth is $150 ($1 representing one unit of consumption)

of which $100 are placed on stocks. Consider also a negative productivity

shock that reduces the value of this part of her wealth to $85. Other things

(in particular, her endowment) being equal, she will want to adjust her port-

folio so that her invested wealth remains split between stocks and bond in

the original 2:1 ratio. She will seek, that is, to invest $90 on stocks and

$45 on the bond. Since the securities are in fixed supply, their prices must

adjust but is not clear how. Obviously, the price of at least one stock (since
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each is in positive net supply) must fall whereas that of the bond (as it is

in zero net supply and the agent is risk averse) must rise. But which one is

this stock and what happens to the other stocks’ relative prices?

The present paper sheds light on questions of this kind. It analyzes

the economic mechanism that determines how the relative price of a stock

changes in the face of such shocks (Section 3). It also identifies settings

of economic primitives under which the direction of these changes can be

unambiguously foretold (Section 4). By establishing that, as a norm, asset

prices are correlated with an underlying risk source even when payoffs are

not, my findings attest to the richness of the asset-price dynamics. By

showing, on the other hand, that it is by no means straightforward to identify

settings in which the sign of this correlation remains constant, they attest

to their complexity.

The main message of the paper is that the relative price of a stock

will typically vary with the realization of a Brownian motion even when

its dividend is not correlated with that Brownian component. Proposition 1

presents settings under which this relation is monotone given any decreasing

absolute risk-aversion (DARA) utility function for the representative agent.

One of these settings has all the dividends uncorrelated with one another and

the agent’s non-stock endowment deterministic (Corollary 1.2). Admittedly,

this is the most inhospitable economic environment for cross-correlations in

asset-prices.

When the agent’s utility exhibits constant absolute risk-aversion (CARA),

such cross-correlations are also omnipresent. In fact, the relative price of

a stock will not change now with the realizations of a Brownian motion

which does not affect its dividend if and only if this Brownian component

and the Brownian motions which are correlated with the dividend affect the

agent’s wealth through independent channels. That such separation in the

wealth components is sufficient is given by Proposition 3. Necessity, on the

other hand, follows from Proposition 2. This identifies settings of economic

primitives under which the wealth separation is violated and, even though

the dividend is not correlated with the Brownian motion while the agent

exhibits CARA, the relative price of the stock varies (indeed monotonically)
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with the realizations of the Brownian motion.

For many a reader, the assertion in the preceding paragraph might come

as a surprise. The risk source in question affects the agent’s wealth leaving,

however, the asset’s payoff unaltered. And it is a rather widely-held view

that, under CARA, changes in wealth should not matter for relative prices.

Yet, the intuition behind this premise is erroneously crude, stemming most

probably from the multitude of examples in the discrete-time financial eco-

nomics literature that take the agent’s wealth to be linearly-dependent upon

asset payoffs. Although rendering models analytically tractable and elegant,

the linearity assumption obscures the interaction between the asset-riskiness

and risk-aversion effects on the relative prices. For as I show at the end of

Section 4.1, it constraints these effects to cancel each other out.

Overall, my analysis shows that, mostly through the asset-riskiness ef-

fect, market-clearing generates correlations across relative asset prices (and,

hence, returns) over and above those induced by correlations between their

respective payoffs. In the model under study, this is a generic phenomenon

and the induced correlations are stochastic, even though the covariance co-

efficients of the dividends are constant. Of course, as I discuss in the next

section, the possibility for correlation in asset prices and returns, when there

is no common factor in cash flows, is well-known in the literature, typically

as “contagion.” But it has not been demonstrated before analytically in a

general equilibrium model. And the analytical results are of importance, not

only for facilitating economic intuition, but also because the direction of the

excess co-movements depends fundamentally on our assumptions regarding

the representative agent’s attitudes towards risk.

The remainder of the paper is organized as follows. In the next section,

the model I study and the results I obtain throughout the paper are placed

in the context of the pertinent literature. Section 3 investigates the compar-

ative statics of equilibrium relative prices, its emphasis being on economic

intuition and interpretation. Section 4 takes this further, aiming at specific

analytical claims regarding the relative price dynamics, while Section 5 con-

cludes. All proofs, as well as some supporting technical material, can be

found in the Appendix.
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2 Theoretical Foundation and Related Literature

The theoretical backdrop of the relative-price dynamics investigated by

the present paper can be outlined as follows. Consider a one-commodity,

pure-exchange economy with identical price-taking consumers, in which eco-

nomic activity occurs over a time-interval [0, T ] ⊆ ℝ+. The consumption

good is produced by N ∈ ℕ∗ Lucas trees whose productivity fluctuates

stochastically according to a K-dimensional (K ≥ N) standard Brown-

ian motion � = {� (!, t) : t ∈ [0, T ]}!∈Ω defined on a complete probabil-

ity space (Ω,ℱ , �).3 This is meant to describe the exogenous uncertainty

about productivity in the sense that the sample paths in the collection

{� (!, [0, T ])}!∈Ω completely specify all the distinguishable events.

Even though endowed with the generated filtration {ℱt : t ∈ [0, T ]}, the

agents cannot observe � directly.4 Instead of the actual productivity shocks,

they monitor the crop on the trees, depicted by the N -dimensional process

Y , which is a function of the process ℐ = {� (!, t) , t}(!,t)∈Ω×[0,T ] and whose

component processes Y1, . . . , YN represent the current amount of the con-

sumption good on the respective tree. Of course, the evolution of Y over

time depends upon � in a nonpredictable fashion, being adapted to the given

filtration.5

3A probability space (Ω,ℱ , �) consists of a sample space Ω, a �-algebra ℱ on Ω, and
a probability measure � on ℱ . Each ! ∈ Ω represents a complete description of the
exogenous uncertain environment while ℱ is the collection of the distinguishable, at the
end of time, events. The probability space is complete if any subset of any �-null set is
included in ℱ .

4A filtration {ℱt : t ∈ [0, T ]} is a family of �-algebras ℱt ⊆ ℱ which is increasing:
ℱs ⊆ ℱt if s ≤ t. It depicts the evolution of information: ℱt represents the information
available at t. The filtration being increasing, more and more is known with time (past
information is not forgotten). Being, in particular, generated by the Brownian motion,
it depicts the informational structure revealed to someone who observes the path of the
Brownian motion. Mathematically, this entails ℱt = {� (!, s) : (!, s) ∈ Ω× [0, t]} while
ℱT = ℱ . We assume that � (!, 0) = 0 ∀! ∈ Ω almost surely, so that ℱ0 is almost trivial
(it contains only Ω and all the �-null sets).

5The process Y is said to be adapted to the filtration {ℱt : t ∈ [0, T ]} if, for each ! ∈ Ω,
Y (!, t) is is measurable with respect to ℱt ∀t ∈ [0, T ]. In words, whatever the underlying
true state of the world !, the value of Y at any date cannot depend on any realization of
the Brownian motion after that date. The process ℐ depicts the vector Brownian process
� but also time as distinct entities. As functional argument, it allows for time- as well as
state-dependence in the corresponding function, as long as the latter dependence obtains
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The trading structure consists of N + 1 securities: a zero-coupon bond,

depicted as the zeroth security, and stocks indexed by n ∈ {1, . . . , N}. Fi-

nally, individual preferences are such that the representative agent has some

von-Neumann Morgenstern utility function over instantaneous consumption,

u : ℝ++ 7→ ℝ, which is twice continuously-differentiable, strictly increasing,

and concave everywhere in its domain.

The underlying informational structure being a filtration, the choice

of numeraire here is essentially arbitrary because the equilibrium market-

clearing condition will depend only on the prices of the securities relative

to the price of consumption, and will do so node (!, t) by node (!, s), for

s ∕= t.6 We may choose, therefore, consumption as the numeraire and set

its price at Pc (!, t) = 1 ∀ (!, t) ∈ Ω× [0, T ]. My aim then is to investigate

the dynamics of pn (!, t) = Pn(!,t)
P0(!,t) , the equilibrium relative price process

of the typical stock (relative to the price of the bond) with respect to the

current realization �k (!, t) of the typical Brownian motion. Needless to say,

these depict a relation that cannot be readily identified from the path of the

production process, the available information process in this economy.7

only through the realizations of the Brownian process.
6Recall that each ! ∈ Ω is a complete description of the uncertain environment. As

such, it gets predetermined exogenously and remains fixed throughout time. What changes
with time is the path of realizations for the underlying stochastic process that generates
the filtration {ℱt : t ∈ [0, T ]}. Being a K-dimensional standard Brownian motion, its
component processes �1, . . . , �K are independent, one-dimensional Brownian motions with
zero drift and unit variance so that the process changes here in increments such that, for all
0 ≤ s < t ≤ T , � (!, t)−� (!, s) is independent of ℱs (!) and distributed N (0, (t− s) IK).
A given ! determines, therefore, the Brownian path � (!, [0, T ]). And since this path has
been drawn by nature before the economic activity even starts, the equilibrium market-
clearing conditions need to apply only along the path; along every possible path, of course,
but not across paths. As a consequence, and given that only relative prices matter in
equilibrium, it is without loss of generality to normalize such that the price of one of the
traded entities is 1 throughout every path.

7Let dY = adt+Bd� be an N -dimensional Ito process and D ⊆ ℝN an open set such
that Y (!, t) ∈ D ∀ (!, t) ∈ Ω× [0, T ] almost surely. Even though not displayed as such to
save on notation, the quantities a ∈ ℝN and B ∈ ℝN×K can be also stochastic as long as
a (Y (!, t) , t) ∈ ℒ1 and B (Y (!, t) , t) ∈ ℒ2. Consider now a twice-differentiable function
f : D 7→ ℝ (such as any price in the model). By Ito’s lemma, and not displaying the
dependence upon (!, t), df (Y ) =

[
fY (Y )a + 1

2
tr (B⊺fY Y (Y )B)

]
dt+ fY (Y )Bd� where

fY =
(
∂f
∂Y1

, . . . , ∂f
∂YN

)
and fY Y =

(
∂2f

∂Yi∂Yj

)N
i,j=1

denote the gradient vector (in row form)

and the Hessian matrix of f , respectively. If one fixes time, the “sensitivity” of f with
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To examine the relative-price dynamics analytically, I will use the closed

form solution for pn (!, t) as this has been provided by two related strands

of the literature. The first assumes that the crop on the trees is ripe for

consumption only at a finite terminal date T . At any intermediate time t ∈
[0, T ), the agent consumes some exogenously-given deterministic endowment

flow (see, for example, Raimondo [32] as well as Anderson and Raimondo [6])

or nothing at all (as in Bick [8]-[9] but also He and Leland [20]). Letting W

denote the representative agent’s wealth process (in units of consumption),

we have then

pn (!, t) =
Pn (!, t)

P0 (!, t)
=

E� [u′ (W (ℐ (!, T )))Dn (ℐ (!, T )) ∣ℱt]
E� [u′ (W (ℐ (!, T ))) ∣ℱt]

(1)

In Bick [9], Raimondo [32], as well as Anderson and Raimondo [6], the

production, consumption, information, trading, and preferences structures

but also the dividends’ specification are exactly as in the present analysis.8

The same is true, apart for a much more general dividend specification,

regarding Bick [8] as well as He and Leland [20], two models with no real

differences between them. Either assumes N = K = 1 and that the repre-

sentative agent has no endowment - other than the net supply of the stock

(which can be viewed as the market portfolio), - two restrictions present

also present in Bick [9].9 As a consequence, in all three papers consumption

respect to changes in the realization of the underlying Brownian risk factors is given by
df (Y ) =

∑N
n=1

∑K
k=1

∂f(Y )
∂Yn

bnkd�k. In particular, restricting attention to changes in the

kth risk source only, ∂f(Y )
∂�k

= b⊺
kfY (Y ) where bk is the kth column of B.

8The consumption and trading structures in Bick [9] differ slightly from the ones I
presented above but these discrepancies bear no effect on the equilibrium prices. The
author restricts attention to a dynamically-complete securities’ market with N = K = 1.
His equilibrium being essentially an Arrow-Debreu one, it suffices that the assets are
traded only once, at t = 0. Raimondo [32] as well as Anderson and Raimondo [6], on the
other hand, do not restrict the dimensionality of the Brownian and production processes.
Since their securities’ market can be also dynamically incomplete, their securities have
to be traded continuously. These papers differ only in the specification of the terminal
dividends: Anderson and Raimondo [6] (and Bick [9] for that matter) have them following
general geometric Brownian motions whereas Raimondo [32] considers the special case in
which these geometric Brownian motions are driftless and independent of one another.

9As opposed to the trading structure of Bick [9], the securities in Bick [8] as well as in
He and Leland [20] are traded continuously.
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takes place only at the final date. By contrast, Raimondo [32] as well as

Anderson and Raimondo [6] assume that the agent is endowed with a deter-

ministic flow rate of consumption during the interval [0, T ) and with a lump

sum at T , which may be stochastic (a continuous function of the terminal-

date realization of the underlying Brownian process). Nevertheless, in all

five papers, the equilibrium relative price of the typical stock is given by the

fundemental equation (1).10

The second approach in the literature has been to consider the actual

continuous-time extension of the setting in Lucas [26], granting the agent

continuous access to the crop so that her consumption can be financed by

the trees’ payoffs at all times while T may be infinite. The equilibrium

relative price of the nth risky security is then essentially the flow-analogue

of that in (1):11

pn (!, t) =
E�
[∫ T
t u′ (W (ℐ (!, s)) , s)Dn (ℐ (!, s)) ds∣ℱt

]
E�
[∫ T
t u′ (W (ℐ (!, s)) , s) ds∣ℱt

] (2)

From all of the papers in this strand, the most well-known is Cox et al.

10I am referring to Theorems 1 and 2.1 of Raimondo [32] and Anderson and Raimondo
[6], respectively. As I have done, both papers take consumption as the numeraire. In Bick
[9], see equation (4) and the very intuitive argument for why it is a necessary equilibrium
relation, bearing in mind that this author chose the bond as the numeraire. Hence,
P0 (!, t) = 1 at all (!, t) ∈ Ω × [0, T ] and, given that consumption occurs only at the
final date, Pc (!, t) = E [u′ (W (!, T )) ∣ℱt]. The same pricing equation supports also the
analysis of Bick [8], which characterizes general diffusions as equilibrium price processes.
In fact, Bick makes here explicit reference (in the proof to the corollary that follows
Proposition 1) to equation (4) of his earlier paper. By contrast, He and Leland [20]
characterize general diffusions as equilibrium pricing processes by identifying necessary
and sufficient conditions for the appropriate partial differential equations. Their approach
does not involve conditional expectations of the marginal utility of consumption. Yet,
as established by their Corollary 1, their analysis and Bick’s are in complete agreement
when the stock prices (which are given in units consumption and, thus, coincide with the
dividends) are restricted to be time-homogenous diffusions, a family of processes of which
the geometric Brownian motion is a member.

11In fact, regarding the economic underpinnings, the main difference between the two
approaches concerns the instantaneous risk-free rate during the intermediate period. The
representative agent’s endowment and, thus, consumption being deterministic in the in-
termediate period, the instantaneous risk-free rate is exogenously-specified in the first
approach. By contrast, it is derived as part of the equilibrium in the latter.
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[13], probably the most seminal study of the continuous-time, single-good

economy with identical agents and Lucas trees. Lucas [26] considered an

infinite-horizon, discrete-time, single- and perishable-good, pure-exchange

economy with several trees in which a representative agent with state- and

time-independent utility for instantaneous consumption and no endowment

(other than the trees) has continuous access to the trees’ output, so that

intermediate consumption is financed by the trees’ dividends.

Cox et al. [13] present the continuous-time analogue of this model, en-

hancing it to include production. As before, an underlying stochastic process

generates shocks to the productivity of the trees. Yet, the trees’ productivity

is now influenced also by the representative agent who has continuous access

to the trees’ output, consuming some and reinvesting the rest in the pro-

duction process. The authors consider in addition a more general preference

structure along, however, with a more restricted trading one. The agent

may have now state- and time-dependent preferences for instantaneous con-

sumption while there is a dynamically-complete securities market in which

a full set of Arrow-Debreu contingent claims are traded (each available in

zero net supply).

Allowing for time- but not state-dependence, the representative agent of

Cox et al. [13] seeks to maximize the current expectation of the entire future

utility flow, E�
[∫ T
t u (W (ℐ (!, s)) , s) ds∣ℱt

]
. In this case, the equilibrium

price of any real asset relative to that of the zero-coupon bond is given

by (2).12 The same pricing formula can be found also in Merton [28]-[29],

Cochrane et al. [12], Martin [27], Duffie and Zame [15] (see Theorem 1 and

12I am referring to the last term of equation (38) in Cox et al. [13] (whose nota-
tion pretermits the dependence upon Ω). This term prices real assets, claims that pay
� (W (s) , Y (s) , s) units of consumption at time s when the realization of the stochastic
process is Y (s) (the zero-coupon bond, for instance, has � (Y (s) , s) = 1 at all s). By con-
trast, the first two terms in (38) allow for the pricing of general financial assets, including
options and futures. More precisely, claims that pay Θ (W (T ) , Y (T )) if some underlying
variables do not leave a certain region before the maturity date T and Ψ (W (s) , Y (s) , s)
every time s they do, otherwise. Notice that J (W (s) , Y (s) , s) is the agent’s equilibrium
indirect utility at time s, given the realization Y (s). It depends on the date s and the
state variable Y as the authors allow for the direct utility to be time- and state-dependent.
As I establish in Appendix D, all of my results remain valid in the face of the former de-
pendence. The latter is a level of generality beyond the scope of my study.
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the subsequent discussion in Section 5), Karatzas et al. [21] (Corollary 10.4),

Riedel [33] (Theorem 2.1), and Wang [36] (Equation 2.4).13

It should be pointed out also that, even when the individuals in the

economy have non-identical preferences for consumption, the pricing formula

takes still the same basic form as in (1)-(2). The only difference is that the

individual marginal utilities are now taken at the equilibrium consumptions

of the agents, which are determined endogenously as part of the equilibrium

(see, for instance, Duffie and Zame [15] or Anderson and Raimondo [5]).

To enable the analytical manipulation of the fundamental pricing equa-

tions in (1)-(2), I will restrict attention to the case in which the typical

component of the production process follows a geometric Brownian motion:

Yn (ℐ (!, t)) = e�nt+�
⊺
n�(!,t), both the drift �n ∈ ℝ and the instantaneous

covariance matrix �n�
⊺
n ∈ ℝK×K being constants. This is a widely-used

specification, both in the theoretical as well as empirical literature, which

allows the derivative ∂pn(!,t)
∂�k(!,t) to be recovered from the current information

on future dividends in a very straightforward way.14 More importantly per-

haps for the purposes of the current study, it greatly facilitates exposition as

it allows us to restrict attention on obtaining insights and results about the

dynamics of the pricing process in (1) which are also valid for the dynamics

of that in (2).15

13Wang’s pricing formula derives actually from a particular case of the analysis in Duffie
and Skiadas [14] (Example 3).

14By Ito’s lemma, the current output of the nth productive unit follows the Ito process

d lnYn =
(
�n − �⊺

n�n
2

)
dt+ �⊺

nd�. Hence, for the N -dimensional process X = (lnYn)Nn=1,

we have dX =
(
�n − �⊺

n�n
2

)N
n=1

dt+Σd� where Σ is the N ×K matrix with �⊺
n its typical

row. Recall now the one before the preceding footnote. The “sensitivity” of pn with
respect to changes in the realization of the underlying Brownian risk factors is given by
dpn (X) =

∑N
n=1

∑K
k=1

∂pn(X)
∂Xn

�nkd�k so that ∂pn(X)
∂�k

= �⊺
kpnX (X) is a linear combination

(the coefficients being the kth column of Σ) of the gradient vector of the relative price
with respect to the natural logarithm of the production process.

15In Appendix D, I establish that P0 (!, t)2 ∂pn(!,t)
∂�k(!,t)

=
∫ T
t
P0,s (!, t)2

∂pn,s(!,t)

∂�k(!,t)
ds, which

requires ∂pn(!,t)
∂�k(!,t)

to have the sign of
∂pn,s(!,t)

∂�k(!,t)
if the latter derivative maintains the same

sign at all s ∈ [t, T ]. Yet, as the expectation operator readily commutes inside the time-

integrals, signing
∂pn,s(!,t)

∂�k(!,t)
is nothing but the problem I study in this paper when s is

the terminal date. And this sign, being determined solely by the entries of the constant
dispersion matrix Σ, is indeed the same at all s. The analysis of Sections 3-5, being
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Regarding the analysis of these dynamics per se, the works that are

closest to the present are Cochrane et al. [12] and Martin [27]. The lat-

ter being a generalization of the former, both papers investigate special

cases of the pure-exchange infinite-horizon version of the economy in Cox et

al. [13]. Cochrane and his co-authors consider a representative agent with

log-utility for instantaneous consumption who has access to the dividend

stream of at most two Lucas trees, each following a geometric Brownian

motion (N = K ≤ 2 in my notation), and characterize the asset-price and

return dynamics that result from market-clearing in this context. They ob-

tain closed-form solutions for a large collection of variables of interest such

as absolute prices, expected returns, market-betas, and return-correlations.

Yet, these are given with respect to the dividend-share (the share of total

output due to a tree’s dividend) rather than the underlying risk process,

while the corresponding dynamics are examined numerically rather than

analytically.

The solution method in Cochrane et al. [12] depends fundamentally upon

the dividend-share being the unique state variable, in a way that makes it

applicable only to log-utility and at most two trees. By contrast, Martin

[27] uses an approach that extends to power utility and many trees, whose

dividend streams may follow geometric Brownian motions with (normally-

distributed) jumps, offering also closed-form solutions for absolute prices,

expected returns, and bond-yields. However, these solutions are given in

terms of a state-vector which is not the underlying stochastic process (it

depicts instead the relative sizes of the dividends), while the corresponding

dynamics are presented again through calibrations.

Both papers draw a substantial part of the reader’s attention to the

fact that there is significant price comovement even between assets whose

dividends are independent. The intuition is somewhat clear in the case of

two trees. When one asset has a positive dividend shock, other things being

built upon identifying the sign of
∂pn,s(!,t)

∂�k(!,t)
, applies at every point of the time interval

[t, T ]; hence, also to the time integral. Obviously, nothing precludes from taking T →∞
if necessary. Equally obviously, time-dependence in the utility flow is not an issue for
Sections 3-4 as long as the utility remains CARA or DARA throughout the interval.

13



equal, its dividend becomes a larger share of a now larger total consumption.

As a result, investors want to rebalance by spreading some of their larger

wealth across both trees. In the face of the fixed net supply, though, they

cannot collectively rebalance, so asset prices must adjust.

Typically, the price of the tree with the positive shock rises whereas the

risk premium of the other falls. If the two dividend streams are independent,

given no shock on the second dividend, its risk premium can fall only via

an increase in its price. Given no news about its own cash flow, the fact

that it now constitutes a smaller part of total consumption typically means

that the asset becomes less positively correlated with consumption. Ergo,

investors want to hold more of the second asset but cannot, forcing instead

its price to rise.

But this is what happens typically, not always, because the relation

between an asset’s risk-premium and the dividend-share does not depend

only on this “cash-flow beta” intuition. It depends also on “valuation-beta,”

the tendency of the price-dividend ratio to change with the market and, thus,

total consumption. And the latter relation is not always positive. There are

ranges of dividend-share values where the price of the second asset falls in

the preceding example (see Figure 3 in Cochrane et al. [12] and Figure 7(a)

in Martin [27]). This is most evident when the second asset is a zero-coupon

bond (N = K = 1). Given its smaller dividend-share, it is still true that

investors want to spread their larger wealth across both trees, which should

raise the price of the bond. Yet, the interest rate also changes, and this

may more than offset the rebalancing desire (see Figure 9 in Cochrane et al.

[12]).

As shown by my analysis, however, the ambiguous nature of the asset-

price dynamics in the above example is mostly due to the variable with

respect to which these are examined by the two papers. Be it the dividend-

share or the relative size of the dividends, the evolution of the state-variable

depends, in either paper, on that of the underlying stochastic process in a

way that is not clear unless N = K = 1. Both papers attempt in effect

to relate a change in the current realization of one of the dimensions of

the underlying stochastic process to asset-prices via a state-variable whose

14



own change cannot be isolated to come from that dimension alone. In the

present paper, by contrast, I study the asset-price dynamics with respect to

the underlying stochastic process directly. As it turns out, there are settings

of economic primitives under which these dynamics are not ambiguous at

all. In fact, in either of the above examples, they are described by Theorem

1 and Corollary 1.2, analytically and for any DARA utility.

Of course, the deployment of an intermediate state-variable allows for

calibrations that show to what extent asset-price comovements are quanti-

tatively important. Nevertheless, when the goal is purely theoretical, to un-

derstand the economic dynamics induced by market-clearing, this comes at

the cost of obscuring the distinction between two separate channels through

which shocks to current wealth affect asset prices: by changing the agent’s

risk aversion but also by altering her perception of the “riskiness” of a secu-

rity. The dynamics of the former mechanism are well-known and straight-

forward. Those of the latter have not, to the best of my knowledge, hitherto

been analyzed by the finance literature and are complex.

As shown in the next section but also by Corollary 1.2, under DARA

and independent dividend streams, the two mechanisms operate in the same

direction, leading to positive contemporaneous correlation in relative asset

prices. But this is by no means universally the case. The operation of the

asset-riskiness effect on relative prices can be isolated under CARA since

the risk-aversion channel leaves then relative prices unchanged. As attested

by Proposition 2 or Corollary 2.1, it can lead to negative correlation.

The possibility for a “common factor” or “contagion” in asset prices

(and, thus, returns) to emerge, when there is no common factor in cash

flows, is well-known but has not been demonstrated before analytically in a

general equilibrium model.16 It is noted, for example, in Raimondo [32] as

16The literature on contagion has focused mostly on the propagation of shocks across
national or regional stock markets. One of its peculiarities is that, although there is fairly
widespread agreement about the contagion events themselves, there is no consensus on
exactly what constitutes contagion or how it should be defined. One preferred definition
is the propagation of shocks in excess of that which can be explained by fundamentals.
Another (often referred to as shift-contagion) looks for changes in how shocks are propa-
gated between normal and crisis periods. Yet another labels contagion the transmission
of shocks through specific channels, such as herding or irrational investor behavior. And
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well as Anderson and Raimondo [6] but no formula is given for the cross-

derivative. Kodres and Pritsker [22], Kyle and Xiong [23], but also Lagunoff

and Schreft [24] show that contagion can obtain as a wealth effect in rational

expectations equilibria. These are not general equilibrium models, however,

as some market participants are not rational (the former two models require

the presence of noise traders, the latter of irrational ones). Contagion equi-

libria arise as well in Aliprantis et al. [1] within the context of a monetary

model where players engage, though, in strategic, non price-taking behavior.

On the empirical side, the literature has focused mostly on contagion

across national or regional stock markets (see, for instance, Shiller [35] or

Forbes and Rigobon [17]). Yet, to name but a couple of studies, Gropp and

Moerman [19] identify within-country contagion among large European bank

stocks while Pindyck and Rotemberg [31] find evidence of excess correlation

in asset price comovements. There is also ample evidence that conditional

correlations across asset prices and returns are stochastic, and of a mag-

nitude that cannot be explained by covariances between their respective

payoffs alone.17 Both, phenomena that my analysis finds to be generic and

due to market-clearing alone, since the assumed covariances between asset

payoffs are constant. In this sense, the present paper provides another theo-

retical justification for excess asset-price comovements within, however, the

context of general equilibrium asset-pricing.

an even broader definition identifies contagion as any linkage mechanism that causes mar-
kets or asset prices to move together. The main reason for this prolificness is that each
definition seems to run in its own difficulties when it comes to empirical identification.
My focus being strictly theoretical in the present paper, I will be referring to contagion
having in mind the first definition.

17In a seminal study, Fama and French [16] identified a set of common risk factors
that explained the expected returns on stocks and bonds. Similarly but more recently,
Moskowitz [30] found evidence that risk-premia are better represented by covariances
with the implied market portfolio than by own-variances. Andersen and Lund [4], on
the other hand, suggest that U.S. risk-free short-term interest rates can be consistently
estimated as stochastic-volatility diffusions. On stochastic second moments of returns, see
also Andersen et al. [3]-[2], Longin and Solnik [25] or Schwert and Seguin [34].
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3 Mechanics of Comparative Statics

In what follows, for reasons of expositional clarity, my analysis refers to the

fundamental pricing equation (1) even though, as I establish formally in

Appendix D, all of the insights and results carry through also to the pricing

equation (2) given that the dividend specification is a geometric Brownian

motion.

For any ! ∈ Ω, therefore, at all intermediate dates t ∈ [0, T ), the divi-

dends of the N+1 securities are zero while the representative agent’s endow-

ment process is deterministic. At the terminal date, however, the dividends

will be given by D0 (ℐ (!, T )) = 1 and Dn (ℐ (!, T )) = e�nT+�⊺
n�(!,T ) for

n = 1, . . . , N . The representative agent’s endowment process, moreover,

will be given by � (ℐ (!, T )) for some continuous function � : ℝK × {T} 7→
ℝ+. The agent’s wealth (equivalently, her equilibrium consumption) equals,

therefore, her deterministic endowment during the intermediate period and

W (!, T ) = � (ℐ (!, T )) +

N∑
n=1

Dn (ℐ (!, T ))

at the end. She also has an additively-separable, time-independent utility

function which, for a measurable with respect to the Brownian filtration

consumption function c : Ω× [0, T ]→ ℝ++, is given by

U (c (ℐ (!, t))) = E�
[∫ T

t
v (c (ℐ (!, s))) ds+ u (c (ℐ (!, T ))) ∣ℱt

]
(3)

for some instantaneous utility functions v, u : ℝ++ 7→ ℝ that are everywhere

twice continuously-differentiable, strictly increasing, and strictly concave.

The corresponding equilibrium pricing process has been derived explic-

itly by Raimondo [32], in terms of the agent’s utility function, her terminal-

period endowment, and the current realization � (!, t) of the Brownian vec-
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tor:18

Pn (!, t) = E�
[
u′ (W (ℐ (!, T )))Dn (ℐ (!, T )) ∣ℱt

]
=

∫
ℝK

u′ (W (ℐ (!, t) ,x)) e�nT+�⊺
n(�(!,t)+

√
T−tx)dΦ (x)

P0 (!, t) = E�
[
u′ (W (ℐ (!, T ))) ∣ℱt

]
=

∫
ℝK

u′ (W (ℐ (!, t) ,x)) dΦ (x)

Here, the quantities

W (ℐ (!, t) ,x) = �
(
� (!, t) +

√
T − tx

)
+

N∑
n=1

Dn (ℐ (!, t) ,x)

Dn (ℐ (!, t) ,x) = e�nT+�⊺
n(�(!,t)+

√
T−tx) (4)

depict, respectively, the terminal realizations of the agent’s wealth and of

the nth dividend, conditional on the current Brownian realization and on its

future increment � (!, T )−� (!, t) =
√
T − tx, with x ∼ N (0, IK) and Φ (⋅)

being the standard K-dimensional Normal cumulative distribution function.

Notice that both of the last two quantities above as well as all expec-

tations henceforth are ℱt-conditional. It should be kept in mind also that,

since the remainder of my analysis applies at all states, the dependence upon

Ω will be pushed aside in the interest of parsimonious notation. My focus

18See Theorem 1 in Raimondo [32] but also Theorem 2.1 in Anderson and Raimondo
[6]. All prices are stochastic processes; more precisely, continuous, square-integrable mar-
tingales with respect to the Brownian filtration. To obtain the former theorem, Raimondo
imposes three additional assumptions. Specifically, the utility functions are bounded be-
low: ∃K > −∞ s.t. v (c) , u (c) > K ∀c ∈ ℝ++. Moreover, in order to not have to handle
genericity considerations on existence, a short-sale constraint is introduced: ∃M > 0 s.t.
the agent is not permitted to hold less than −M units of any of the N + 1 traded assets.
Finally, the terminal-period endowment function is taken to satisfy 0 ≤ � (x) ≤ r + er∣x∣

for some r ∈ ℝ+ and ∀x ∈ ℝK . Yet, Anderson and Raimondo [5] show that the first two
assumptions are not necessary for the existence of equilibrium. As for the third condition,
it is satisfied by any bounded-above function � (⋅). It should be pointed out also that my
results per se do not depend upon any assumptions other than the ones already stated
in the text. Additional conditions, that may be necessary for an existence proof, are not
really relevant for a comparative statics analysis. If an equilibrium price process does
indeed exist, the equilibrium relative prices have to be as in (1), and this is where I begin.
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will be on the comparative statics of the typical relative price

pn (t) =
Pn (t)

P0 (t)
=

Ex [u′ (W (ℐ (t) ,x))Dn (ℐ (t) ,x)]

Ex [u′ (W (ℐ (t) ,x))]

with respect to changes in �k (t), the current realization of the typical Brow-

nian motion. As it turns out, the corresponding dynamics are quite complex,

surprisingly so in some situations. This section attests to their richness by

means of describing the constituent parts of their generating mechanism.

Towards an overview of this mechanism, let us begin by observing that

the typical relative price can be expressed also as follows

pn (t) = Ex [Dn (ℐ (t) ,x)] +
Covx [u′ (W (ℐ (t) ,x)) , Dn (ℐ (t) ,x)]

P0 (t)
(5)

= Ex [Dn (ℐ (t) ,x)] +
Ex

[
u′
(
W
(
ℐ (t) ,x +

√
T − t�n

))]
Ex [u′ (W (ℐ (t) ,x))]

(6)

whereas the second equality follows by Lemma A.2 of Appendix A. As a

consequence, we have

∂Pn (t)

∂�k (t)
=
∂Covx [u′ (W (ℐ (t) ,x)) , Dn (ℐ (t) ,x)]

∂�k (t)
(7)

+Ex [Dn (ℐ (t) ,x)]
∂P0 (t)

∂�k (t)
+ �jkEx [Dn (ℐ (t) ,x)]P0 (t)

while, on the other hand,

∂P0 (t)

∂�k (t)
= Ex

[
u′′ (W (ℐ (t) ,x))

∂W (ℐ (t) ,x)

∂�k (t)

]
(8)

In words, these equations depict the following relations. Given an arbi-

trary realization � (t) of the underlying stochastic process, exchanging one

unit of the bond for one unit of the stock increases the currently (i.e. ℱt-
conditional) expected terminal-period wealth by the currently expected ter-

minal dividend of the security, Ex [Dn (ℐ (t) ,x) ∣ℱt] = e
�nT+�⊺

n

(
�(t)+

(T−t)�n
2

)
.

The latter quantity gives the number of bond units one unit of the nth

stock is equivalent to in terms of terminal-period wealth. In terms of

marginal utility (which is what matters in general equilibrium pricing),
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however, the corresponding equivalence requires also that any realization
√
T − tx ∼ N (0, (T − t) IK) of the future increment � (T )−� (t) gets trans-

lated by the quantity (T − t)�n.

3.1 The Dividend and Risk-Aversion Effects

Other things remaining equal, a change d�k (t) in the kth component of � (t)

alters by �nkd�k (t) the ℱt-conditional drift, �nT+�⊺n� (t), of the underlying

stochastic process that determines the nth terminal dividend.19 The ℱt-
conditional expectation of the terminal dividend itself, then, changes by

�nkEx [Dn (ℐ (t) ,x)] d�k (t). Suppose now that �k (t) increases. If �nk > 0

(�nk < 0), the currently expected terminal dividend will be higher (lower).

Due to non-satiation (u′ (⋅) > 0), this increases (decreases) the willingness

of the agent to hold the nth risky security. As she must, though, continue to

hold its net supply in equilibrium, the (absolute) price of the security must

rise (fall) exactly by �nkP0 (t)Ex [Dn (ℐ (t) ,x)] d�k (t), which is the change

in the ℱt-conditional drift of the underlying stochastic process in units of

the bond. This is the dividend effect of d�k (t) on the nth equilibrium price,

depicted by the third term on the right-hand side of (7).

For any future realization
√
T − tx of the stochastic process � (T )−� (t),

a change in �k (t) corresponds to revealing information that changes also the

ℱt-conditional expected terminal dividend of any security n′ ∈ {1, . . . , N}
by �n′kEx [Dn′ (ℐ (t) ,x)] d�k (t). These changes along with that in the

terminal-period endowment, d�
(
� (t) +

√
T − tx

)
, give the corresponding

change in the ℱt-conditional terminal-period wealth. Ceteris paribus, the

agent’s risk aversion (u′′ (⋅) < 0) induces an opposite change in marginal

utility, the risk-aversion effect of d�k (t).

Regarding the equilibrium price of the bond, this effect is given by equa-

tion (8). With respect to the equilibrium price of the nth risky security,

it is given by the second term on the right-hand side of (7). Clearly, the

direction of the wealth effect is the same on either price. In fact, this is true

19“Other things remaining equal” (or similar expressions) refer henceforth to the current
realizations of the remaining K − 1 sources of uncertainty, {�m (t)}m∈{1,...,K}∖{k}.
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also for its magnitude since the two terms differ only by the proportionality

constant needed to convert units of the stock into units of the bond, in terms

of ℱt-conditional expected terminal-period wealth.

To identify the effect on the nth relative equilibrium price, consider its

derivative

∂pn (t)

∂�k (t)
=

1

P0 (t)

[
∂Pn (t)

∂�k (t)
− pn (t)

∂P0 (t)

∂�k (t)

]
(9)

Using equations (8) and (6) and the second term on the right-hand side of

(7), it is straightforward to verify that the wealth effect is given by(
Ex [Dn (ℐ (t) ,x)]− pn (t)

P0 (t)

)
∂P0 (t)

∂�k (t)
(10)

= Ex [Dn (ℐ (t) ,x)]

(
1−

Ex

[
u′
(
W
(
ℐ (t) ,x +

√
T − t�n

))]
Ex [u′ (W (ℐ (t) ,x))]

) ∂P0(t)
∂�k(t)

P0 (t)

3.2 The Asset-Riskiness Effect

Given
√
T − tx, the extent to which d�k (t) alters Pn (t) by changing the

marginal utility of terminal-period wealth depends on the future realization

of the nth terminal dividend. Similarly, the extent to which d�k (t) alters

Pn (t) via a change in the nth terminal dividend depends on the future

realization of the marginal utility of terminal-period wealth. Which is to say

that changes in �k (t) affect the equilibrium price of the nth risky security

through changes in the correlation between the marginal utility of terminal-

period wealth and the terminal dividend of the security. This is the asset-

riskiness effect of d�k (t) on Pn (t), depicted by the first term on the right-

hand side of equation (7).

To understand the mechanics of this effect, it is instructive to consider a

setting in which (i) the components of the Brownian process that are corre-

lated with the nth dividend (�m (t) with �nm ∕= 0) affect the terminal-period

wealth only through this dividend, and (ii) the kth Brownian component is
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not correlated with the nth dividend (�nk = 0). Formally, let

Kn = {m ∈ {1, . . . ,K} : �nm ∕= 0}

be the collection of the Brownian components that affect Dn (t). Suppose

also that k ∕∈ Kn and consider the terminal-period wealth specification

W (ℐ (t) ,x) = � (ℐ (t) ,y) +
∑
n′ ∕∈Kn

Dn′ (ℐ (t) ,y) +Dn (t, z)

≡ W−M (ℐ (t) ,y) +Dn (t, z) (11)

where M = ∣Kn∣ < K and x = (z,y) ∼ N

(
0,

[
IM OM×(K−M)

O⊺ IK−M

])
(with ∣ ⋅ ∣ and O denoting, respectively, the cardinality of a set and the zero

matrix). In this case, ∂W (ℐ(t),x)
∂�k(t) =

∂W−M (ℐ(t),y)
∂�k(t) so that the first term on the

right-hand side of (7) can be written out as follows

Covx

[
u′′ (W (ℐ (t) , (z,y)))

∂W (ℐ (t) ,y)

∂�k (t)
, Dn (t, z)

]
=

∫
ℝK−M

( ∫
ℝM u′′ (W (ℐ (t) , (z,y)))Dn (t, z) dΦ (z)−∫

ℝM u′′ (W (ℐ (t) , (z,y))) dΦ (z)
∫
ℝM Dn (t, z) dΦ (z)

)

×∂W−M (t,y)

∂�k (t)
dΦ (y)

=

∫
ℝK−M

Covz

[
u′′ (W (t, (z,y))) , Dn (t, z)

] ∂W−M (t,y)

∂�k (t)
dΦ (y)(12)

In this setting, conditional on the realization y, the terminal-period

wealth W (ℐ (t) ,x) is strictly comonotonic in z with Dn (t, z). Under non-

increasing absolute risk aversion (NARA), so is u′′ (W (ℐ (t) ,x)) which im-

plies, in turn, that the covariance within the integral above is strictly positive

(see Appendix B).20 Clearly, the sign of the asset-riskiness effect of d�k (t)

on Pn (t) will be given by the sign of
∂W−M (ℐ(t),y)

∂�k(t) , as long as the latter

remains unchanged on ℝK−M .

Recall, however, that the wealth effect of d�k (t) on Pn (t) obtains al-

20The coefficient of absolute risk-aversion is the function rA : ℝ+ → ℝ++ defined by
rA (⋅) = −u′′ (⋅) /u′ (⋅). It is non-increasing (r′A (⋅) ≥ 0) only if u′′′ (⋅) ≥ −u′′ (⋅) rA (⋅) > 0.
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ways in the same direction as the wealth effect on P0 (t). And ∂P0(t)
∂�k(t) is

required by (8) to have the opposite sign of
∂W−M (ℐ(t),y)

∂�k(t) . In this setting,

therefore, the asset-riskness and risk-aversion effects push Pn (t) in oppo-

site directions under NARA. The intuition why is straightforward. Let, for

instance,
∂W−M (ℐ(t),y)

∂�k(t) > 0 ∀y ∈ ℝK−M . An increase in �k (t) raises the

ℱt-conditional terminal-period wealth, reducing its marginal utility. Under

NARA, though, the decrease in u′ (W (ℐ (t) ,x)) is smaller when Dn (t, z) is

large and larger when it is small. Which, due to risk aversion, means that the

increase in �k (t) makes the terminal-period wealth less positively correlated

with the nth dividend. This diminishes the agent’s perceived “riskiness” of

the nth security, inducing her to demand more of it and (in the face of fixed

supply) raise its price in equilibrium.

A concrete example of this type of equilibrium price dynamics due to

the asset-riskness effect is provided by Corollary 1.2. It assumes that the

nth dividend and that of some other security, say the n′th, vary with the

mth and the kth Brownian motions, respectively, while the former Brownian

component is the only source of stochastic variations in the nth dividend

(�n = �jmem).21 Moreover, these two Brownian motions do not affect other

components of the terminal-period wealth (∂�(ℐ(T ))
∂�k(t) = ∂�(ℐ(T ))

∂�m(t) = 0 and

�n′′k = �n′′m = 0 for any n′′ ∈ {1, . . . , N} ∖ {n, n′}). The corresponding

terminal-period wealth specification is a special case of (11)

W (ℐ (t) ,x) = �
(
ℐ (t) ,x−(k,m)

)
+

∑
n′′∈{1,...,N}∖{n,n′}

Dn′′
(
ℐ (t) ,x−(k,m)

)
+e�n′T+�n′k(�n′k(t)+

√
T−txk) + e�nT+�n(�m(t)+

√
T−txm)

≡ W−(k,m)

(
ℐ (t) ,x−(k,m)

)
+Dn′ (ℐ (t) , xk) +Dn (ℐ (t) , xm) (13)

In this case, under DARA, the relative equilibrium price of the nth

security is increasing (decreasing) in the realization �k (t) if �n′k > 0 (�n′k <

21As usual, em ∈ ℝK denotes the vector with 1 at its mth entry and zeroes
elsewhere. Moreover, x−m = (x1, ..., xm−1, xm+1, ..., xK)⊺ ∈ ℝK−1 and x−(k′,m) =
(x1, ..., xk′−1, xk′+1, ..., xm−1, xm+1..., xK)⊺ ∈ ℝK−2.
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0). And this obtains even though the wealth effect on the relative price

has the same sign as the wealth effect on the price of the bond, negative

(positive) if �n′k > 0 (�n′k < 0).22 Clearly, the monotonicity of pn (t) with

respect to �k (t) is due to the fact that the asset-riskness effect of �k (t) on

pn (t) dominates the wealth effect.

Once we allow the nth dividend to depend upon the kth Brownian mo-

tion (�nk ∕= 0), the mechanics of the asset-riskness effect become more com-

plicated. Given a change d�k (t), the new level of terminal-period wealth

will be W (ℐ (t) ,x) + dW (ℐ (t) ,x) while the new covariance of its marginal

utility with the nth terminal dividend is given by

Covx

[
u′ (W (ℐ (t) ,x) + dW (ℐ (t) ,x)) , e�nT+�⊺

n(�(t)+d�k(t)ek+
√
T−tx)

]
= e�nkd�k(t)Covx

[
u′ (W (ℐ (t) ,x) + dW (ℐ (t) ,x)) , Dn (ℐ (t) ,x)

]
Obviously, what happens to the perceived “riskness” of the nth stock is

determined now, not only by the covariance on the right-hand side of the

above equation, but also by the term e�nkd�k(t).

Suppose, for instance, thatW (ℐ (t) ,x) andDn (ℐ (t) ,x) are again strictly

comonotonic in x. As before, u′ (W (ℐ (t) ,x)) is strictly countermonotonic in

x and, thus, negatively correlated with Dn (ℐ (t) ,x). Let also �nkd�k (t) > 0

so that e�nkd�k(t) > 1. Even if, as in the preceding example, the change in

terminal-period wealth renders its marginal utility less negatively correlated

with the nth dividend, the increase in the dividend’s drift might be suffi-

cient to make their new covariance more negative overall. As opposed to the

preceding example, the perceived “riskiness” of the nth stock would increase

with �k (t), exerting a downward pressure on its equilibrium relative price.

The direction and importance of the asset-riskiness effect for the relative

22Recall that the wealth effect of d�k (t) operates in the same direction on all ab-
solute prices. To establish that it pulls also all relative prices in this direction,
it suffices to show that it drives the nth relative price in the direction in which
it pushes the price of the bond. It is enough, therefore, that the expression in
the brackets on the right-hand side of (10) be positive. Which follows immediately
by risk aversion (u′′2 (⋅) < 0): (13) gives W

(
ℐ (t) ,x +

√
T − t�n

)
= W (ℐ (t) ,x) +

Dn
(
ℐ (t) , xm +

√
T − t�jm

)
− Dn (ℐ (t) , xm) where Dn

(
ℐ (t) , xm +

√
T − t�jm

)
=

e�nT+�jm(�m(t)+
√
T−t(ym+

√
T−t�jm)) =

(
e(T−t)�

2
jm − 1

)
Dn (ℐ (t) , xm).
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price dynamics depends also on the agent’s utility function; namely, her risk-

aversion. Consider, for instance, the following setting. The agent exhibits

CARA and the mth Brownian motion affects both the nth and n′th termi-

nal dividends. The former dividend is independent of any other Brownian

component (�n = �nmem). The latter varies also with but only with the kth

Brownian motion (�n′ = �n′mem + �n′kek), which, in turn, affects no other

component of wealth (∂�(ℐ(T ))
∂�k(t) = 0 and �ik = 0 ∀i ∈ {1, . . . , N} ∖ {n′}). The

corresponding wealth specification is another subcase of (11):

W (ℐ (t) ,x) = � (ℐ (t) ,x−k) +
∑

n′′∈{1,...,N}∖{n,n′}

Dn′′ (ℐ (t) ,x−k)

+e�nT+�n(�m(t)+
√
T−txm)

+e�n′T+�n′m�m(t)+�n′k�k(t)+
√
T−t(�n′mxm+�n′kxk)

≡ W−k (ℐ (t) ,x−k)

+Dn (ℐ (t) , xm) +Dn′ (ℐ (t) , (xk, xm)) (14)

In this setting, Corollary 2.1 dictates that, as long as �nm�n′m > 0, a rise

in �k (t) increases (decreases) the nth relative price if �n′k < 0 (�n′k > 0).

To analyze this result in terms of the asset-riskness and risk-aversion effects,

we need to determine the direction of the latter. Which is easy to do if we

restrict attention to the special case of (14) in which the mth Brownian

motion affects no other component of the terminal-period wealth but the

two dividends (∂�(ℐ(T ))
∂�m(t) = 0 and �im = 0 for any i ∈ {1, . . . , N} ∖ {n, n′}).

The specification in question

W (ℐ (t) ,x)

= W−(k,m)

(
ℐ (t) ,x−(k,m)

)
+Dn (ℐ (t) , xm) +Dn′ (ℐ (t) , (xk, xm))

gives

W
(
ℐ (t) ,x +

√
T − t�n

)
−W−(k,m)

(
ℐ (t) ,x−(k,m)

)
=

(
e(T−t)�2

nm − 1
)
Dn (ℐ (t) , xm) +

(
e(T−t)�n′m�nm − 1

)
Dn′ (ℐ (t) , (xm, xk))
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so that, if �nm�n′m > 0, we get W
(
ℐ (t) ,x +

√
T − t�n

)
> W (ℐ (t) ,x). By

(10), then, the wealth effect of d�k (t) on the nth relative price operates in

the same direction as it does on the price of the bond. Yet, �n′k
∂W (ℐ(t),x)
∂�k(t) > 0

and (8) dictates that the wealth effect pushes the bond price in the direction

of d�k (t) if �n′k < 0 (�n′k > 0). Contrary to the DARA example, therefore,

a change in �k (t) changes here the nth relative price in the direction of the

wealth effect, irrespectively of the asset-riskness effect.

3.3 The Combined Effect

Recall (5). The dynamics of the nth relative price with respect to �k (t) are

determined by two terms: the own-dividend effect, and the asset-riskiness

effect relative to the price of the bond. As, however,

1

pn (t)

∂pn (t)

∂�k (t)
=

1

Pn (t)

∂Pn (t)

∂�k (t)
− 1

P0 (t)

∂P0 (t)

∂�k (t)
(15)

the dynamics are in fact given by the difference between the relative (per-

centage) changes in the absolute prices, Pn (t) and P0 (t); a complex enough

relation, in general, to preclude its prediction using only economic intuition,

mainly for three reasons. First, the risk-aversion effects on the two abso-

lute prices, by pushing them in the same direction, pull pn (t) in opposite

directions. Second, the own-dividend effect on Pn (t) pushes it always in the

opposite direction than its wealth effect. Finally, as shown by the preceding

examples, if u (⋅) exhibits NARA, the asset-riskiness effect may pull pn (t)

in the opposite direction than the wealth effect.

Theorem 1 (in the next section) addresses these issues unequivocally

for the dynamics of the typical relative price with respect to the current

realization of the entire Brownian vector. It dictates that the inner product

of the nth row of the dispersion matrix Σ with the gradient vector of the nth

relative price, ∇�(t)pn (t), is strictly positive as long as the nth dividend is

stochastic, in the sense in which the uncertainty is captured in this model.23

23For �n = 0, we get pn (t) = e�nT . The relative price is constant, independent of any
Brownian realization. Consider the typical Brownian dimension. Since �nk = 0, there is no
own-dividend effect on Pn (t). Since all other factor loadings of the nth terminal dividend
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The intuition behind this result is straightforward when the terminal

dividend is correlated with only the mth Brownian motion and this relation

is exclusive (�n = �nmem, ∂�(ℐ(T ))
∂�m(t) = 0, and �n′m = 0 ∀n′ ∈ {1, . . . , N} ∖

{n}). The corresponding terminal-wealth specification is that in (11) for

M = 1. In this setting, let �m (t) change by d�m (t). For any realization

xm, the terminal-period wealth changes now only through the nth dividend,

whose new value is

Dn (�m (t) + d�m (t) , t, xm) = e�nT+�jm(�m(t)+d�m(t)+
√
T−txm)

= e�nmd�m(t)Dn (ℐ (t) , xm)

Since the agent is everywhere non-satiated (u′ (⋅) > 0) and any other com-

ponent of her terminal-period wealth remains unaffected by d�m (t), her

preferences for the nth stock change in the direction of First-order Stochas-

tic Dominance (FSD).

Suppose, specifically, that �m (t) increases (decreases). If �nm > 0, the

new terminal dividend dominates (is dominated by) the old in the sense of

FSD. The agent is now more (less) willing to hold the stock and, facing its

fixed supply, pushes up its absolute price. By (8), in addition, the wealth

effect on the price of the bond is negative (positive). Clearly, the relative

price of the security increases (decreases). If �nm < 0, on the other hand,

the new terminal dividend is dominated by (dominates) the old in terms

of FSD whereas the wealth effect on P0 (t) is positive (negative). In either

case, therefore, �nm
∂pn(t)
∂�m(t) > 0.24

In more complex settings, the theorem can be viewed as generalizing this

argument to the relative price dynamics with respect to the current realiza-

are also zero, the dividend is independent of the subsequent path {� (!, �) : � ∈ (t, T ]} of
the Brownian process and, consequently, of the terminal-period wealth. Clearly, a change
in �k (t) induces no asset-riskiness effect on Pn (t) while its risk-aversion effects on Pn (t)
and P0 (t) cancel each other out.

24Put differently, when �nm > 0 (�nm < 0), going from the old to the new terminal
dividend is in the opposite (same) direction as Proposition 1 in Gollier [18], the factor being
e�nmd�m(t). For any risk-averse individual, d�m (t) increases (reduces) the optimal demand
and, consequently, the nth equilibrium relative price. Of course, Gollier studies probability
distributions whose supports are closed intervals but this restriction is inconsequential in
my context (see Lemma A.1 in Appendix A).
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tion of entire Brownian vector. Its proof (see Appendix C) uses straightfor-

ward mathematical apparatus but is quite subtle in its reasoning, especially

with respect to its last and most crucial step. It attests to the complex-

ity of the equilibrium relation between the relative prices and the current

realization of the underlying stochastic process.

4 Dynamics of Relative Prices

Given the complexity of the dynamics in question, we cannot but restrict

attention to situations in which there is sufficient structure for precise con-

clusions to be made. In what follows, my aim is to identify conditions on

the economic primitives of the model that suffice for pn (t) to be monotone

in �k (t). To this end, the building block of my analysis will be a result

that holds universally across the space of economic primitives. The required

conditions for it to apply are extremely mild, met by all utility functions

generally of interest in financial economics.

Theorem 1 Let the nth terminal dividend be given by (4). Suppose also

that, given �−k (t) ∈ ℝK−1 and viewing u′ (W (ℐ (t) ,x))Dn (ℐ (t) ,x) as a

function ℝK+1 7→ ℝ++ of (�k (t) ,x), Lemma A.1 in Appendix A applies.

Then,

K∑
k=1

�nk
∂pn (t)

∂�k (t)
≥ 0 with equality only if �n = 0

This claim refers to the typical row of the Jacobian matrix of relative

prices

Jp (t) =

[
∂pn (t)

∂�k (t)

]
(n,k)∈{1,...,N}×{1,...,K}

not to its typical element. Yet, it has immediate implications for the dy-

namics of the typical relative price when the associated dividend varies with

the terminal realization of only one Brownian motion (�n = �nmem for some

m ∈ {1, ...,K}). Specifically, it follows immediately from the theorem that,
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given

Dn (ℐ (t) ,x) = e�nT+�nm(�m(t)+
√
T−txm) (16)

pn (t) will be monotone in �m (t) so that the observed path of the former

identifies uniquely the path {�m (�) : � ∈ (t, T ]} in which the associated un-

certainty gets resolved. More precisely, we have �nm
∂pn(t)
∂�m(t) > 0.

In this case, the combination of the three potentially contradicting effects

highlighted in the preceding section is identified unequivocally by the theo-

rem. To illustrate, let the agent exhibit DARA and her terminal wealth be

increasing in the current realization of themth Brownian motion, ∂W (ℐ(T ))
∂�m(t) >

0 (which would be the case, for example, if �nm > 0 and ∂�(ℐ(T ))
∂�m(t) , �n′,m ≥ 0

∀n′ ∈ {1, . . . , N}∖{n}). If the nth terminal dividend is positively correlated

with the mth Brownian component (�nm > 0), an increase in �m (t) raises

its ℱt-conditional expectation, pushing its price Pn (t) upwards through the

own-dividend effect. It increases, though, also the agent’s terminal wealth,

exerting negative risk-aversion effects on both P0 (t) and Pn (t). And, as

pointed out in the previous section, the asset-riskiness effect on Pn (t) may

go in either direction. Nevertheless, the combined effect on the latter price

is such that, even though the price of the bond necessarily falls, that of the

stock either increases or decreases by less in percentage terms.

More generally, the theorem describes completely the price dynamics

of the economy when there is a single source of uncertainty and one tree

(N = K = 1), a model representing stocks and bonds as broad asset classes.

It applies also to the dynamics of every risky security in the model, with

respect to the associated risk source, when Σ is diagonal (N = K and

Σ = [�11e1, ..., �KKeK ]), in which case �nn
∂pn(t)
∂�n(t) > 0 ∀n = 1, . . . ,K.

4.1 Contagion

Having identified the relation between the relative price and the associated

Brownian motion when the dividend depends on only one Brownian com-

ponent, the obvious next step is to examine it with respect to �k (t), for

some k ∕= m. In what follows, I will present some results which, in conjunc-
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tion with Theorem 1, describe the comparative statics of the corresponding

economy. Their common theme is that, apart from quite special cases, the

relative price pn (t) varies with �k (t) when �nk = 0. How it does depends on

(i) the way in which the terminal wealth depends upon the terminal realiza-

tion of the Brownian process, and (ii) the functional form (the risk-attitude

in particular) of the agent’s utility function.

Given that �nk = 0, changes in �k (t) produce no own-dividend effect

on the absolute price Pn (t), only wealth and asset-riskiness effects. The

derivative of interest then becomes

∂pn (t)

∂�k (t)
=

⎛⎝ e�nT+�⊺
n�(t)

P0 (t)2
√

(T − t) (2�)2K

⎞⎠ (17)

Covyk

[
yk,E(x,y−k)

[
u′
(
W
(
ℐ (t) ,y +

√
T − t�n

))
u′ (W (ℐ (t) ,x))

−u′
(
W
(
ℐ (t) ,x +

√
T − t�n

))
u′ (W (ℐ (t) ,y))

]]

Contagion under DARA

The dynamics of the nth relative price with respect to changes in the Brown-

ian realization �k (t) when �nk = 0 are particularly rich. Enough so, in fact,

to render contagion in this representative agent economy a rather generic

phenomenon regarding her utility function. For, as I show below, under

any DARA utility, the relative price varies (monotonically) with the current

realization of the kth Brownian motion even when the dispersion matrix Σ

is diagonal and the terminal-period endowment is deterministic.

To demonstrate the prevalence of contagion due to market-clearing, I

will progressively stack the cards against contagion. Let us begin, therefore,

by assuming that the kth Brownian motion affects the agent’s wealth only

through dividends and, in particular, ones that are not correlated with any

of the Brownian motions that affect the payoff of the nth stock. To state this

formally, recall that the condition �nk = 0 can be equivalently written as

k ∕∈ Kn, for the index set of those Brownian components that are correlated

with the nth terminal dividend. Let also

Nk =
{
n′ ∈ {1, . . . , N} : �n′k ∕= 0

}
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denote the index set of those stocks whose terminal dividends do vary with

the kth Brownian motion. We require then ∂�(ℐ(T ))
∂�k(T ) = 0 and Nm ∩Nk = ∅

∀m ∈ Kn, the corresponding wealth specification being

W (ℐ (t) ,x) = � (ℐ (t) ,x−k) (18)

+
∑
n′∈Nk

Dn′ (ℐ (t) ,x−M ) +
∑

n′′∈Nm

Dn′′ (ℐ (t) ,x−k)

As it turns out, under some additional restrictions, the nth relative price

varies (monotonically) with the kth Brownian motion under DARA.

Proposition 1 Let the following conditions apply.

(i) u (⋅) exhibits DARA while the nth terminal dividend and the terminal

wealth are given by (4) and (18), respectively.

(ii) �n′m = �nm ∀ (n′,m) ∈ Nm ×Kn.

(iii) �n′k�n′′k > 0 ∀n′, n′′ ∈ Nk. Then

�n′k
∂pn (t)

∂�k (t)
> 0 n′ ∈ Nk

The covariance matrix Σ1 depicts a situation within the operational

realm of this claim. It refers to an economy where the first risky security

is an exclusive “bet” on the first Brownian component, a risk factor which

does not affect any other asset. The result applies on the relative price of

this stock and for k ≥ 2, as long as the terminal-period endowment is in-

dependent of the first and the kth Brownian components and �2k�3k > 0.

The inequality is due to condition (iii) while condition (ii) is redundant

since the index set N1 contains only the first security. In this case, we have

�2k
∂p1(t)
∂�k(t) > 0.

Σ1 =

⎛⎜⎝ �11 0 0

0 �22 �23

0 �32 �33

⎞⎟⎠ Σ2 =

⎛⎜⎝ �11 0 0

0 �22 0

0 0 �33

⎞⎟⎠
If the terminal-period endowment is independent of either of the last two

Brownian components, the requirements in the preceding paragraph and,
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thus, its last relation may hold for k = 2, 3. As, in addition, �11
∂p1(t)
∂�1(t) > 0

(Theorem 1), we can now sign the entire first row of the Jacobian matrix of

relative prices. If, moreover, the terminal-period endowment is determinis-

tic, we can sign also the derivatives of the second and third relative prices

with respect to the first Brownian motion. For these cases, condition (iii)

is redundant (N1 is a singleton) while condition (ii) requires that �2k = �3k

for k = 2, 3. We ought to have then �11
∂pn(t)
∂�1(t) > 0 for n = 2, 3.

The application of Proposition 1 on the first relative price of Σ1 brings

us forward in our quest to stack the cards of our model as much as possi-

ble against cross-correlations. For it indicates that cross-correlations obtain

even when the payoff of nth risky security is correlated with only one Brow-

nian component (Kn = {m}).

Corollary 1.1 Let the following conditions apply.

(i) u (⋅) exhibits DARA while the nth terminal dividend and the terminal

wealth are given by (16) and (18), respectively.

(ii) �ñm = �nm ∀ñ ∈ Nm.

(iii) �n′k�n′′k > 0 ∀n′, n′′ ∈ Nk. Then

�n′k
∂pn (t)

∂�k (t)
> 0 n′ ∈ Nk

Before proceeding further, I should point out that this corollary assumes

the terminal-wealth specification in (18), which now reads

W (ℐ (t) ,x) = � (ℐ (t) ,x−k)+
∑
n′∈Nk

Dn′ (ℐ (t) ,x−m)+
∑

n′′∈Nm

Dn′′ (ℐ (t) ,x−k)

mainly for expositional ease in the presentation of its proof (see Appendix

C). The result does apply, for instance, also when

W (ℐ (t) ,x) = �1

(
�−m (t) +

√
T − tx−m

)
+ �2

(
�m (t) +

√
T − txm

)
+

∑
n′∈{1,...,N}∖{n}

Dn′ (ℐ (t) ,x−m) +Dn (ℐ (t) , xm) (19)
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for some continuous functions �1 : ℝK−1 7→ ℝ+ and �2 : ℝ 7→ ℝ+ such that

� (� (T ) , T ) = �1 (�−m (T ) , T ) + �2 (�m (T ) , T )

as long as each of the derivatives ∂W (ℐ(t),x−m)
∂xk

and ∂W (ℐ(t),xm)
∂xm

maintains a

given sign on ℝ.

Specifically, let �k
∂W (ℐ(t),x−m)

∂xk
, �m

∂W (ℐ(t),xm)
∂xm

> 0 for some �k, �m ∈ ℝ
and all x ∈ ℝK . As we already know, the wealth effect of the realization

�k (t) pushes both equilibrium prices P0 (t) and Pn (t) in the direction in

which it moves the terminal wealth. Given the separability in (19), this

direction is given by the derivative ∂W (�−m(T ),T )
∂�k(t) (i.e., by the sign of �k). By

contrast, the specification in (19) being a special case of that in (11), the

asset-riskiness effect of �k (t) on the relative price pn (t) is given by (12) as

Exk

[
Covx−k

[
u′′ (W (ℐ (t) ,x)) , Dn (ℐ (t) , xm)

] ∂W (ℐ (t) ,x−m)

∂�k (t)

]
The combined effect on the nth equilibrium relative price is to change it

monotonically. It is straightforward to reproduce the proof of Corollary 1.1

in this setting and verify that �nm�m�k
∂pn(t)
∂�k(t) > 0.

To continue strengthening the model against contagion, we may revisit

the terminal wealth specification in (13), the subcase of the one in (19) which

restricts the kth and mth Brownian components to be correlated with no

other terminal-wealth components but the n′th and nth terminal dividends,

respectively, for some n′ ∕= n. Under such a requirement, both sets Kn

and Nk are singletons so that conditions (ii)-(iii) of Corollary 1.1 become

redundant, allowing it to be stated as follows.

Corollary 1.2 Suppose that u (⋅) exhibits DARA while the nth terminal

dividend and the terminal wealth are given by (16) and (13), respectively.

Then

�n′k
∂pn (t)

∂�k (t)
> 0

This result applies even under the most restrictive Σ-form against cross-

correlation in relative prices. Namely, the case of a diagonal matrix of
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factor loadings, such as Σ2, where the claim is valid for any security n and

any Brownian motion k ∕= n as long as the terminal-period endowment is

uncorrelated with either of the nth and kth Brownian components. If, in

particular, the terminal-period endowment is deterministic, the corollary

along with Theorem 1 allow us to sign the entire Jacobian matrix of the

relative price process. Under a diagonal Σ of general dimensions and a

deterministic terminal-period endowment, the terminal-wealth specification

is given by

W (ℐ (t) ,x) = � (T ) +

N∑
n=1

Dn (ℐ (t) , xn) (20)

The entries of Jp (t) are such that �kk
∂pn(t)
∂�k(t) > 0 for k = 1, . . . ,K.

Contagion under CARA

Cross-correlations will generally be nonzero even when the representative

agent exhibits CARA. And, even in this case, there are settings of economic

primitives where the cross-derivative of the relative price maintains every-

where the same sign, so that pn (t) remains monotone in �k (t) when k ∕∈ Kn.

To demonstrate the prevalence of contagion due to market-clearing under

CARA, I will again progressively stack the cards against contagion, starting

now with the hypothesis that the kth Brownian motion affects the agent’s

wealth only through dividends (∂�(ℐ(T ))
∂�k(T ) = 0).

Under the corresponding terminal-wealth specification

W (ℐ (t) ,x) = � (ℐ (t) ,x−k)

+
∑
n′∈Nk

Dn′ (ℐ (t) ,x) +
∑

n′′ ∕∈Nk

Dn′′ (ℐ (t) ,x−k) (21)

which actually embeds the one in (18), we have the following result.

Proposition 2 Suppose that the following conditions apply.

(i) u (⋅) exhibits CARA (u (c) = 
e�c 
, � < 0) while the nth terminal

dividend and the terminal wealth are given by (4) and (21), respec-
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tively.

(ii) ∀ (n′,m) ∈ Nk ×Kn, ∃�n′ ∈ ℝ∗: �nm = �n′�n′m

(iii) �n′�n′k�n′′�n′′k > 0 ∀n′, n′′ ∈ ∪m∈Kn (Nm ∩Nk). Then

�n′m�nm�n′k
∂pn (t)

∂�k (t)
< 0 ∀n′ ∈ Nm ∩Nk

As shown in Appendix C, when the nth dividend is correlated with only one

Brownian motion, condition (ii) above becomes redundant and the statement

simplifies as follows.

Corollary 2.1 Let the following apply.

(i) u (⋅) exhibits CARA while the nth terminal dividend and the terminal

wealth are given by (16) and (21), respectively.

(ii)
∏
n′∈Nm∩Nk �n′m�n′k > 0. Then

�nm�n′m�n′k
∂pn (t)

∂�k (t)
< 0 ∀n′ ∈ Nm ∩Nk

To illustrate the workings of these claims, consider the dispersion matrix

Σ3, a generalization of Σ1 depicting an economy where the first Brownian

component represents macroeconomic uncertainty - it affects all risky assets

(albeit with possibly different degrees of sensitivity) - while the first stock

is a “bet,” exclusively on this risk factor.

Σ3 =

⎛⎜⎝ �11 0 0

�21 �22 �23

�31 �32 �33

⎞⎟⎠ Σ4 =

⎛⎜⎝ �11 0 0

�21 �22 0

�31 0 �33

⎞⎟⎠
Using the corollary, we can determine the dynamics of the relative price of

the macroeconomic “bet” with respect to changes in the realization of one of

the non-macroeconomic risk-factors (k ≥ 2), as long as the agent’s terminal-

period endowment does not depend upon it. Condition (ii) of the corollary

reads here �21�2k�31�3k > 0. In this case, we have �11�n′1�n′k
∂p1(t)
∂�k(t) < 0

with n′ ∈ {2, 3}. As in addition �11
∂p1(t)
∂�1(t) > 0 by Theorem 1, we can actually

sign the entire first row of the Jacobian matrix of the relative price process.
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To deploy Proposition 2 as well, we may assume that �32 = 0 in this

example and sign also the derivative ∂p3(t)
∂�2(t) . Now, K3 = {1, 3} and N2 = {2}

so that condition (ii) of the proposition requires that �31/�21 = �33/�23

while condition (iii) is redundant (∪m∈K3 (Nm ∩N2) = N2 since the latter

set is a singleton).25 Here, as long as the second Brownian motion is not

correlated with the terminal endowment, it must be �2m�3m�22
∂p3(t)
∂�2(t) < 0

with m ∈ {1, 3}.
To constrain the economic setup against cross-correlations more, suppose

that also the factor loading �23 is zero in the preceding example, as depicted

by the covariance matrix Σ4. Now, for k ∈ {2, 3}, the kth Brownian compo-

nent affects only one terminal dividend, the unique payoff that is correlated

with both the kth and the first Brownian motion. In general, we may re-

quire that, for k ∕= m, the kth Brownian motion affects no terminal-wealth

element but, say, the n′th terminal dividend (∂�(ℐ(T ))
∂�k(T ) = 0 and Nk = {n′}

for some n′ ∕= n). This dividend, moreover, is correlated only with the kth

and mth Brownian motions (�n′ = �n′mem + �n′kek).

The specification in question is given by (14), which is obviously embed-

ded in (21). In this case, condition (ii) of the preceding corollary becomes

redundant (Nm∩Nk is a singleton) and, as shown in Appendix C, the claim

can be stated as follows.

Corollary 2.2 Suppose that u (⋅) exhibits CARA while the nth terminal

dividend and the terminal wealth are given by (16) and (14), respectively.

Then,

�nm�n′m�n′k
∂pn (t)

∂�k (t)
< 0

In the example Σ4, this applies for the relative price of the first stock

with respect to k ≥ 2 as long as the kth Brownian motion is not corre-

lated with the terminal-period endowment process. In this case, we have

25Taking m ∈ K3 = {1, 2}, we have N1 = {1, 2, 3} and N3 = {2, 3} so that Nm ∩N2 =
{2}. Condition (ii), therefore, requires that �31 = �2�21 and �33 = �2�23 for some �2 ∕= 0.
For the redundancy of condition (iii) when the set ∪m∈Kn (Nm ∩Nk) is a singleton, see
the proof of the proposition in Appendix C - in particular, the concluding part which
establishes Corollary 2.2. Notice also that, given �32 = 0, condition (ii) of Corollary 2
reduces to �21�22 > 0 for k = 2.
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�11�k1�kk
∂p1(t)
∂�k(t) < 0 for k = 2, 3.

No Cross-correlations under CARA: a very special case

The preceding results might seem puzzling at fist glance for they contradict

a rather commonly held view: under CARA, changes in wealth that are

independent of an asset’s payoff should not matter for its equilibrium relative

price. An assertion that stems probably from an unwarranted generalization

of the applicability of the following fact. As is well known, under CARA,

changes in wealth that do not affect the risk premium of an asset should

leave its relative price unchanged. If the change in �k (t) results in such a

wealth change, therefore, and given the absence of the own-dividend effect

when �nk = 0, the asset-riskiness effect on the absolute price of the nth

stock should exactly cancel out the wealth effect on its relative price.

A sufficient condition for this to happen is that the kth and mth Brow-

nian components affect the agent’s terminal wealth through independent

channels. This obtains under either of two terminal-wealth specifications.

In the first, the kth Brownian motion affects the agent’s terminal wealth

in an exclusive way. Specifically, it may be correlated with only one of

the remaining N − 1 terminal dividends with this dividend not correlated

with any other Brownian component. The kth Brownian component may

also affect the terminal-period endowment process but through an element

that is uncorrelated with any of the other Brownian motions. Formally, let

�n′ = �n′kek and Nk = {n′} for some n′ ∕= n and suppose also that

� (� (T ) , T ) = �1 (�−k (T ) , T ) + �2 (�k (T ) , T )

for some continuous functions �1 : ℝK−1 7→ ℝ+ and �2 : ℝ 7→ ℝ+. The

terminal wealth can now be expressed as

W (ℐ (t) ,x) = �1

((
�−k (t) +

√
T − tx−k

))
+ �2

(
�k (t) +

√
T − txk

)
+

∑
n′′ ∕=n,n′

Dn′′ (ℐ (t) ,x)

+Dn (ℐ (t) , xm) +Dn′ (ℐ (t) , xk) (22)
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of which the formulations in (13) and (14) are subcases.

The second specification is the one in (19) in which the mth Brownian

component affects the terminal wealth separately from the remaining K− 1

Brownian motions. It does so, moreover, via exclusive relations with at most

two terminal-wealth components: through the nth dividend and, possibly,

through some component of the terminal-period endowment process.

When the agent exhibits CARA, under either of these specifications,

changes in the kth component of the Brownian process leave the nth relative

equilibrium price unaffected.26

Proposition 3 Suppose that u (⋅) exhibits CARA while the terminal wealth

is specified as in (19) or (22). Then, ∂pn(t)
∂�k(t) = 0.

An important special case of the specifications in (19) or (22) obtains

when the dispersion matrix Σ is diagonal and the terminal-period endow-

ment process is separable along the K dimensions of the Brownian vector.

Formally, the latter condition is that

� (� (T ) , T ) =
K∑
i=1

�i

(
�i (t) +

√
T − txi

)
for some continuous functions �i : ℝ→ ℝ+ and the corresponding terminal

wealth specification is

W (ℐ (t) ,x) =

K∑
i=1

�i

(
�i (t) +

√
T − txi

)
+

K∑
i=1

Di (ℐ (t) , xi) (23)

The proposition requires now that ∂pn(t)
∂�k(t) = 0 ∀k ∈ {1, . . . ,K} ∖ {n}. In

view of Theorem 1, the Jacobian matrix of relative prices is diagonal with

all diagonal elements being nonzero. It is nonsingular, therefore, and the

26It can be shown explicitly actually that, under either of the three terminal wealth
specifications (22)-(23), �k (t) is not a functional argument of pn (t). See equations (29)-
(31) in Appendix C.
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securities market is dynamically complete.27

Proposition 3 appears to support the premise that, under CARA, changes

in wealth that are independent of an asset’s payoff should not matter for its

relative price. Yet, the fact that pn (t) does not respond to changes in �k (t)

is not only due to �nk = 0 and CARA. It depends also, and fundamentally

so, upon the separability of the channels through which the kth and mth

Brownian motions operate in (19) and (22). For we know from Proposition

2 and its subsequent corollaries that, as soon as the two Brownian compo-

nents are allowed to influence the agent’s wealth through a common element,

the relative price will no longer be unresponsive to changes in �k (t), even

though the CARA and �nk = 0 assumptions are maintained.

To see what is so special about the underlying separability in the specifi-

cations (19) and (22), it is instructive to consider equation (26) in Appendix

C, which gives the rates of change of the equilibrium absolute prices of the

nth risky security and the bond with respect to the current realization of

the kth Brownian motion. For �nk = 0, since E [xk] = 0, it reads

∂Pn (t)

∂�k (t)
=

1

T − t
Ex

[√
T − txku′ (W (ℐ (t) ,x))Dn (ℐ (t) ,x)

]
=

1

T − t
Covx

[√
T − txk, u′ (W (ℐ (t) ,x))Dn (ℐ (t) ,x)

]
∂P0 (t)

∂�k (t)
=

1

T − t
Covx

[√
T − txk, u′ (W (ℐ (t) ,x))

]
Either equation is in terms of the ℱt-conditional covariance between the

marginal utility of terminal wealth (and, thus, consumption) that is derived

from holding an extra unit of the security and the Brownian increment

�k (T ) − �k (t). It is trivial to check that, when the agent’s utility exhibits

CARA and her terminal wealth is given by either of (19) and (22),
∂Pn(t)
∂�k(t)

Pn(t) =
∂P0(t)
∂�k(t)

P0(t) . But then condition (15) precludes any changes in the relative price

of the security.

In this case, a change in the realization �k (t) induces a percentage change

27By Theorem ??, dynamic completeness requires in turn that the factor loadings matrix
Σ is invertible. Indeed, under the specification in (23), it is necessarily diagonal.
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in the covariance of the marginal utility of terminal wealth with the nth

terminal dividend which is exactly equal to the percentage change it induces

in the price of the bond. As a consequence, the covariance in question

remains unchanged when measured in units of the bond, which means in turn

that the second term on the right-hand side of (5) remains unaltered. And

so does the relative price itself given that the expected terminal dividend

does not vary with �k (t).

Most probably, the erroneously crude intuition behind the “zero cross-

correlations under CARA” premise stems from the multitude of examples in

the financial economics literature that take the agent’s wealth to be linearly-

dependent upon asset payoffs. Although rendering discrete-time models

analytically tractable and elegant, the linearity assumption obscures our

grasp of the interaction between the asset-riskiness and risk-aversion effects

on relative equilibrium prices. For it forces this interaction to amount to

nothing. And this is true irrespectively of the correlations between the

various other elements of the agent’s wealth.

To illustrate, suppose that W (T ) is linear on the kth Brownian com-

ponent: ∂W (ℐ(t),x)
∂�k(t) = �k for some �k ∈ ℝ and all x ∈ ℝK . From (12), the

asset-riskiness effect on the relative equilibrium price is now

�k
P0 (t)

Covx

[
u′′ (W (ℐ (t) ,x)) , Dn (ℐ (t) ,x)

]
=

��k
P0 (t)

Covx

[
u′ (W (ℐ (t) ,x)) , Dn (ℐ (t) ,x)

]
= ��k (pn (t)− Ex [Dn (ℐ (t) ,x)])

the first equality above following from CARA. But this is exactly the oppo-

site of the wealth effect which is given by

1

P0 (t)
(Ex [Dn (ℐ (t) ,x)]− pn (t))

∂P0 (t)

∂�k (t)

=
1

P0 (t)
(Ex [Dn (ℐ (t) ,x)]− pn (t))Ex

[
u′′ (W (ℐ (t) ,x))

∂W (ℐ (t) ,x)

∂�k (t)

]
= ��k (Ex [Dn (ℐ (t) ,x)]− pn (t))
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Of course, given that the ℱt-conditional future realizations �k (T )−�k (t)

are normally-distributed here, the linearity assumption requires unlimited

liability, an unrealistically strong condition (as it implies that the agent may

lose more than everything with positive probability). This is a well-known

drawback. To make matters worse, the assumption is restrictive also in a

theoretical sense. When the representative agent exhibits CARA, it condi-

tions the asset-riskiness and risk-aversion effects on the relative equilibrium

price to cancel each other out.

4.2 General Dynamics

To complete the investigation on the dynamics of the relative price process,

it remains to consider the case k ∈ Kn (�nk ∕= 0). Evidently from our anal-

ysis thus far, when the terminal dividend is correlated with the Brownian

dimension of interest, there is really little hope of pinpointing settings in

which its relative price is monotone in the Brownian realizations. Neverthe-

less, I conclude by presenting a situation in which the correlation between

the relative price of the security and the underlying Brownian motion main-

tains a constant sign throughout the stochastic domain.

Claim 3.1 Let the following conditions apply.

(i) u (⋅) exhibits CRRA (u (c) = 
c� �, 
 < 0 or u (c) = ln c) while the

nth terminal dividend is given by (4).

(ii) ∃�n ∈ ℝ++: W
(
ℐ (t) ,x +

√
T − t�n

)
= �nW (ℐ (t) ,x) ∀x ∈ ℝK .

Then, setting � = 0 in the logarithmic case,

∂pn (t)

∂�k (t)
= �nk�

�−1
n e

�nT+�⊺
n

(
�− (T−t)�n

2

)
∀k = 1, . . . ,K

Admittedly, the setting under which this result applies is quite specific.

Yet, it is also instructive for it allows the recovery of the entire Jacobian

matrix of relative prices, its nth row being (in column form)

jp,n (t) = ��−1
n e

�nT+�⊺
n

(
�(t)− (T−t)�n

2

)
�n
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An example of the relevant setting can be constructed by considering an

economy in which the terminal-period endowment is deterministic while the

factor loadings are such that (�n′ − �n)⊺ �n = 0 ∀n′ = 1, . . . , N . Together

these restrictions suffice for condition (ii) of the claim to be met (with �n =

e(T−t)�⊺
n�n in particular).28

The two restrictions are met, for instance, by the dispersion matrix Σ4

with respect to the second or third stock (n = 2, 3) as long as �n′1�21 =

�2
21+�2

22 and �n′1�31 = �2
31+�2

33, for n′ ∈ {1, 3} and n′ ∈ {1, 2}, respectively.

We ought to have then �nk
∂pn(t)
∂�k(t) > 0 for k = 1, 2, 3. Similarly, for the

matrix Σ5, the claim would apply on the second security if the terminal-

period endowment is deterministic and �11�21 = �2
21 + �2

22. In this case,

�2k
∂p2(t)
∂�k(t) > 0 for either of the two Brownian motions.

Σ5 =

(
�11 0

�21 �22

)
Σ6 =

(
�11 �12

�21 �22

)

Of course, if the first stock were also correlated with the second Brown-

ian component, as in the example Σ6, the relevant restriction would read

�21 (�21 − �11) = �22 (�12 − �22). In this case, the result would apply also on

the first security if �11 (�21 − �11) = �12 (�12 − �22). That is, �nk
∂pn(t)
∂�k(t) > 0

for n, k ∈ {1, 2}.
Regarding the last example above, it should be pointed out that the

sufficient for condition (ii) restriction on the factor loadings may apply on

both stocks only if the matrix Σ6 is degenerate. In fact, (�n′ − �n)⊺ �n = 0

∀n′ = 1, . . . , N can hold for any risky security n in the model, only if Σ has

identical rows, being of the form Σ = (�1e, . . . , �Ke) where e =
∑N

n=1 en.29

In this case, even when markets are potentially dynamically complete (N =

K), they will be necessarily dynamically incomplete. As it applies now

to each and every stock in the model, Claim 3.1 restricts each row of the

28Observe that W
(
ℐ (t) ,x +

√
T − t�n

)
=
∑N
n′=1 e

(T−t)�⊺
n′�ne�n′T+�

⊺
n′(�(t)+

√
T−tx) =

e(T−t)sn
∑N
n′=1 e

�n′T+�
⊺
n′(�(t)+

√
T−tx) = e(T−t)�

⊺
n�nW (ℐ (t) ,x).

29For arbitrary n′, n′′ ∈ {1, . . . , N}, the requirement in the text can be written
as follows

∑K
k=1 �n′k (�n′′k − �n′k) = 0 =

∑K
k=1 �n′′k (�n′k − �n′′k). Put differently,∑K

k=1 (�n′k − �n′′k)2 = 0 or �n′k = �n′′k ∀k.
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Jacobian matrix of relative prices to be a multiple of the respective row of

Σ. More precisely, we have

∣Jp (t)∣ = ∣Σ∣
K∏
n=1

��−1
n e

�nT+�⊺
n

(
�(t)− (T−t)�n

2

)

but the factor loadings matrix Σ is now singular.30

5 Concluding Remarks

Even in the simple economy that this paper studies, asset-price dynamics

with respect to the underlying fundamental risk are complex to the ex-

tent that assertions about the direction of asset-price movements cannot be

supported, except for particular situations, even when the dividend of the

security is not correlated with the risk source in question. In presenting this

thesis, my strategy has been to find specifications for the economic primi-

tives under which the sign of the correlation between the relative price of

the typical security and the typical underlying Brownian motion remains

unambiguous throughout the stochastic domain.

By establishing that, as a norm, asset prices are correlated with an

underlying risk source even when payoffs are not, my findings indicate that

asset-price dynamics are much richer than one is led to expect at first glance,

armed with basic economic intuition. By showing, on the other hand, that it

is by no means straightforward to identify settings in which the sign of this

correlation remains constant, they attest to the complexity of these dynam-

ics. Together, richness and complexity suggest a tumultuous financial world,

even in the benchmark model of a fully rational, price-taking, representative

agent.

Even though my focus has been purely theoretical, it is important that

my results apply on the entire family of state-independent utility functions

that are monotone in risk-aversion. My formulae, moreover, can be calcu-

30Of course, given Theorem ??, dynamic completeness can be ruled out immediately
once it is observed that Σ is singular.
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lated numerically for any set of the model parameters. Which is relevant

since my findings are of consequence also for applications. The fact that the

equilibrium relative prices of assets and asset returns should be correlated,

even when their underlying dividends are independent, has significant im-

plications for empirical asset-pricing. In particular, it raises questions about

the large body of work that focusses on partial-equilibrium analysis, treat-

ing a small number of securities in isolation from the rest of the market or

modeling the equilibrium price process of an asset as a relation that depends

only on those risk sources that directly affect its payoff.

Of course, my results do not extend beyond state-independent utility

functions. Yet, within the context of general equilibrium analysis, this re-

striction should not be taken at face value. One of the reasons that state-

dependence appears natural in some models is because they are partial equi-

librium studies. If a significant portion of household wealth is held on an

asset that is not included in the model, changes in the value of this asset

induce wealth effects that alter the agents’ willingness to hold those assets

the model does include. As a consequence, value changes in the omitted

asset seem to be instances of state-dependent felicity.

In a general equilibrium model, however, which includes all relevant

assets, this kind of state-dependence would disappear, rendering without

loss of generality that the utility function is exogenously specified. In this

sense, the real limitation of my analysis lies in the dividend specification,

which can only be a geometric Brownian motion. Even though a widely-

used specification in continuous-time finance, it does nonetheless constraint

the scope of my results. For my main proofs, at some point or another, all

exploit the symmetry of the Normal distribution.
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Appendices

A Preliminary Results

Lemma A.1 Given a twice-differentiable function H : ℝK+1 7→ ℝ and an

open interval I� (�) = (� − �, � + �) around the point � ∈ ℝ, suppose that

G : I� (�) 7→ ℝ given by

G
(
�̃
)

=

∫
ℝK

H
(
�̃,x

)
dΦ (x) = Ex

[
H
(
�̃,x

)]
is well-defined and that

s� := sup
�̃∈[�−�,�+�]

sup
x∈ℝK

∣∣∣∣ ∂2

∂�2
H
(
�̃,x

)∣∣∣∣ K∏
k=1

max
{

1, x2
k

}
exp

(
−x⊺x

2

)
< +∞

Then G is differentiable at � with G′ (�) = Ex

[
∂
∂�H (�,x)

]
.
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Proof. For any z ∈ ℝ ∖ {0} : ∣z∣ < �, we have∣∣∣∣G (� + z)−G (�)

z
−
∫
ℝK

∂

∂�
H (�,x) dΦ (x)

∣∣∣∣
=

∣∣∣∣∫
ℝK

(
H (� + z,x)−H (�,x)

z
− ∂

∂�
H (�,x)

)
dΦ (x)

∣∣∣∣
≤

∫
ℝK

∣∣∣∣H (� + z,x)−H (�,x)

z
− ∂

∂�
H (�,x)

∣∣∣∣ dΦ (x)

=

∫
ℝK

∣∣∣∣ ∂∂�H (� +x z,x)− ∂

∂�
H (�,x)

∣∣∣∣dΦ (x) for some 
x ∈ (0, 1)

=

∫
ℝK

∣∣∣∣z
x ∂2

∂�2
H (� + �x
xz,x)

∣∣∣∣ dΦ (x) for some �x ∈ (0, 1)

< ∣z∣
∫
ℝK

∣∣∣∣ ∂2

∂�2
H (� + �x
xz,x)

∣∣∣∣dΦ (x) ≤
∣z∣ s�√
(2�)K

∫
ℝK

dx
K∏
k=1

max
{

1, x2
k

}
where the second and third equalities are due to the mean-value theorem

while the two inequalities follow from ∣
x∣ < 1 and by hypothesis, respec-

tively. Yet, the xk’s are independently distributed so that

∫
ℝK

K∏
k=1

dx

max
{

1, x2
k

} =

K∏
k=1

∫
ℝ

dxk

max
{

1, x2
k

} =

K∏
k=1

(∫ 1

−1
dxk + 2

∫ +∞

1
x−2
k dxk

)
= 4K

and taking ∣z∣ → 0 proves the claim.

The following is a well-known result.

Lemma A.2 Let z ∼ N (0, IK), � ∈ ℝK , and g : ℝK → ℝ s.t. Ez

[
e�

⊺zg (z)
]

is well-defined. Then Ez

[
e�

⊺zg (z)
]

= e
�⊺�
2 Ez [g (z + �)].

The next lemma will be used in establishing its antecedent.

Lemma A.3 Let �,  : ℝ → ℝ be twice-differentiable functions such that

the following integrals are defined

(i)
∫
ℝ � (z) ′ (z) dz and

∫
ℝ �
′ (z) (z) dz

(ii)
∫m
−∞ � (z) ′ (z) dz and

∫m
−∞ �

′ (z) (z) dz, for some m ∈ ℝ
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(iii)
∫ +∞
l � (z) ′ (z) dz, and

∫ +∞
l �′ (z) (z) dz, for some l ∈ ℝ.

Then
∫
ℝ � (z) ′ (z) dz = lima→+∞ � (a) (d)−limb→−∞ � (b) (c)−

∫
ℝ �
′ (z) (z) dz.

Proof. For the given l,m ∈ ℝ, we can write31

∫
ℝ
� (z) ′ (z) dz =

∫ m

−∞
� (z) ′ (z) dz+

∫ l

m
� (z) ′ (z) dz+

∫ +∞

l
� (z) ′ (z) dz

Using standard integration-by-parts, the proper integral above becomes∫ l

m
� (z) ′ (z) dz = � (l) (l)− � (m) (m)−

∫ l

m
�′ (z) (z) dz

while the two improper ones can be written as follows∫ m

−∞
� (z) ′ (z) dz = lim

b→−∞

∫ m

b
� (z) ′ (z) dz

= lim
b→−∞

(
� (m) (m)− � (b) (b)−

∫ m

b
�′ (z) (z) dz

)
= � (m) (m)− lim

b→−∞
� (b) (b)−

∫ m

−∞
�′ (z) (z) dz∫ +∞

l
� (z) ′ (z) dz = lim

a→+∞

∫ a

l
� (z) ′ (z) dz

= lim
a→+∞

(
� (a) (a)− � (l) (l)−

∫ K

l
�′ (z) (z) dz

)
= lim

a→+∞
� (a) (a)− � (l) (l)−

∫ +∞

l
�′ (z) (z) dz

i.e.,∫
ℝ
� (z) ′ (z) dz = lim

a→+∞
� (a) (a)− lim

b→−∞
� (b) (b)

−
(∫ m

−∞
�′ (z) (z) dz +

∫ l

m
�′ (z) (z) dz +

∫ +∞

l
�′ (z) (z) dz

)
= lim

a→+∞
� (a) (a)− lim

b→−∞
� (b) (b)−

∫
ℝ
�′ (z) (z) dz

31Since the improper integrals
∫
ℝ � (z) ′ (z) dz,

∫m
−∞ � (z) ′ (z) dz, and∫ +∞

l
� (z) ′ (z) dz are all defined, so is the proper one

∫ l
m
� (z) ′ (z) dz.
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as required.

Lemma A.4 Let z ∼ N (0, IK), � ∈ ℝK , and g : ℝK 7→ ℝ s.t. the following

conditions are met.

(i) Ez

[
e�
′z ∂g(z)

∂zk

]
and Ez [zkg (z + �)] are well-defined.

(ii) Given any z−k ∈ ℝK−1, Lemma A.3 applies on the functions  , � :

ℝ→ ℝ given by  (zk) = g (zk, z−k) and � (zk) = e�
⊺(zk,z−k)− (zk,z−k)⊺(zk,z−k)

2

while limzk→±∞ � (zk) (zk) = 0 ∀z−k ∈ ℝK−1.

Then Ez

[
e�
′z ∂g(z)

∂zk

]
= e

�⊺�
2 Ez [zkg (z + �)].

Proof. We have

Ez

[
e�

⊺z∂g (z)

∂zk

]
=

∫
ℝK

e�
⊺z∂g (z)

∂zk
dΦ (z)

=
1√

(2�)K

∫
ℝK−1

(∫
ℝ
e�

⊺z∂g (z)

∂zk
e−

z2k
2 dzk

)
e−

∑
i∕=k z

2
i

2 dz−k

By Lemma A.3, we can use integration by parts to simplify the integral in

the brackets. Specifically, given z−k ∈ ℝK−1 and the functions � : ℝ→ ℝ+

and  : ℝ→ ℝ as in the proposition, we have∫
ℝ
e�

⊺z∂g (z)

∂zk
e−

z2k
2 dzk =

∫
ℝ
� (zk) 

′ (zk) dzk

= lim
a→+∞

� (a) (a)− lim
b→−∞

� (b) (b)−
∫
ℝ
�′ (z) (z) dz

=

(
lim

zk→+∞
e�

⊺z− z
2
k
2 g (z)− lim

zk→−∞
e�

⊺z− z
2
k
2 g (z)

)
−
∫
ℝ

(�k − zk) g(z)e�
⊺z− z

2
k
2 dzk

=

∫
ℝ

(zk − �k) g(z)e�
⊺z− z

2
k
2 dzk
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Integrating now over z−k ∈ ℝK−1 gives∫
ℝK−1

(∫
ℝ
e�

⊺z∂g (z)

∂zk
e−

z2k
2 dzk

)
e−

∑
i∕=k z

2
i

2 dz−k

=

∫
ℝK−1

(∫
ℝ

(zk − �k) g(z)e�
⊺z− z

2
k
2 dzk

)
e−

∑
i∕=k z

2
i

2 dz−k

= e
�⊺�
2

∫
ℝK

(zk − �k) g(z)e−
∑
i(zi−�i)

2

2 dz

= e
�⊺�
2

∫
ℝK

(zk − �k) g(z)e−
(z−�)⊺(z−�)

2 dz = e
�⊺�
2

∫
ℝK

zkg(z + �)e−
z⊺z
2 dz

and the result follows immediately.

Lemma A.5 Let S ⊆ ℝn be of non-zero Lebesgue measure and such that S2

is symmetric around the origin.32 Suppose also that

(i) g : S2 7→ ℝ+ is symmetric - i.e., g (x,y) = g (y,x) - everywhere on its

domain except for sets of measure zero,33

(ii) f : S2 7→ ℝ is such that f (x,y) + f (y,x) ≥ 0 everywhere on its

domain except for sets of measure zero, and

(iii) (gf) (⋅) is Lebesgue-integrable over S2.

Then ∫
S2
g (x,y) f (x,y) d (x,y) ≥ 0

with strict inequality iff g (x,y) [f (x,y) + f (y,x)] ∕= 0 on a subset of S2 of

non-zero measure.

Proof. Since (gf) (⋅) is integrable, by the Fubini-Tonelli theorem, the inte-

gral in question can be written as an iterated one:∫
S2
g (x,y) f (x,y) d (x,y) =

∫
S

(∫
S
g (x,y) f (x,y) dy

)
dx

32This is to say that the relation R (x,y) := ⟨(x,y) ∈ S2⟩ ⊆ ℝ2n is symmetric.
33The lemma holds, more generally, if g is symmetric almost everywhere.
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and, by re-naming the variables of integration, we can write it also as∫
S2
g (x,y) f (x,y) d (x,y) =

∫
S2
g (y,x) f (y,x) d (y,x)

=

∫
S

(∫
S
g (y,x) f (y,x) dy

)
dx

Hence,

2

∫
S2
g (x,y) f (x,y) d (x,y)

=

∫
S

(∫
S
g (x,y) f (x,y) dy

)
dx +

∫
S

(∫
S
g (y,x) f (y,x) dy

)
dx

=

∫
S

(∫
S
g (x,y) [f (x,y) + f (y,x)] dy

)
dx ≥ 0

Obviously, the inequality is strict iff g (x,y) [f (x,y) + f (y,x)] ∕= 0 on a

subset of S2 of positive measure.

Lemma A.6 Let the random vector x ∈ ℝK and the function g : ℝK 7→
ℝ be s.t. Ex [g (x)] and Ex [xkg (x)] are well-defined, with Ex [g (x)] ∕= 0.

Suppose also that f : ℝ 7→ ℝ is given by f (yk) = Ex [(yk − xk) g (x)]. Then,

∃y0
k ∈ ℝ :

(
yk − y0

k

)
f (yk)Ex [g (x)] > 0 ∀yk ∈ ℝ ∖ {y0

k}

Proof. Given that Ex [g (x)] ∕= 0, we can write

f (yk) = Ex [g (x)]

(
yk −

Ex [xkg (x)]

Ex [g (x)]

)
and it suffices to define y0

k = Ex [xkg (x)] /Ex [g (x)].

B Comonotonicity and Covariance

For a set S and an algebra � on S, let B (S,ℝ) be the set of bounded �-

measurable functions S 7→ ℝ. Two random variables g, f ∈ B (S,ℝ) are said

to be comonotonic if

[g (x)− g (y)] [f (x)− f (y)] ≥ 0 ∀x,y ∈ S
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They are strictly comonotonic if the inequality is strict whenever x ∕= y.

The following result is borrowed from Chateauneuf et al. [10]. I present the

relevant for my argument “only if” part of the proof.

Lemma B.1 g, f ∈ B (S,ℝ) are (strictly) comonotonic iff Cov� [g, f ] ≥ 0

(> 0) for any prob. measure � on (S, �).

Proof. If g and f are comonotonic and � a probability measure on (S, �),

2Cov� [g, f ] = 2 (E� [gf ]− E� [g]E� [f ])

= 2

(∫
S
g (x) f (x) d� (x)−

∫
S
g (y) d� (y)

∫
S
f (x) d� (x)

)
=

∫
S
g (x) f (x) d� (x) +

∫
S
g (y) f (y) d� (y)

−
∫
S
g (y) d� (y)

∫
S
f (x) d� (x)−

∫
S
g (x) d� (x)

∫
S
f (y) d� (y)

=

∫
S×S

[g (x)− g (y)] [f (x)− f (y)] d� (x) d� (y) ≥ 0

where the third equality uses a change of the variables of integration. The

validity of the claim when the comonotonicity is strict is obvious.

Regarding the application of this result in the main text, notice that f

and g need not be bounded there. The boundedness condition guarantees

that the integrals above exist for any prob. measure � on (S, �). In the

analysis of the asset-riskness effect, I fix y ∈ ℝK−M taking z ∼ N (0, IM ),

f : ℝM 7→ ℝ++ and g : ℝM 7→ ℝ−− with f (z) = e�nT+�⊺
n(�(t)+

√
T−tz)

and g (z) = u′′ (W (ℐ (t) , (z,y))). The relevant expectations are well-defined

even though f and g are, respectively, not and not necessarily bounded. The

strict comonotonicity between f and g is due to non-increasing absolute risk

aversion, r′A (⋅) ≤ 0. For this requires that u′′′ (⋅) > 0 which in turn suffices

since, other things being equal, W (ℐ (t) , (z,y)) in (11) is strictly increasing

in f (z), the realization of the terminal dividend.
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C Proofs of the Results in the Text

This section presents the proofs for the various results in the paper. To keep

notation simple, I will display neither the node (!, t) of the Brownian filtra-

tion nor the process ℐ as arguments in the relevant functions. Notice also

that, even though not shown again for notational parsimony, all expectations

are supposed to be conditional on the current filtration ℱt.

Theorem 1

Take (n, k) ∈ {1, ..., N}×{1, ...,K} and consider (9). ∂pn
∂�k

and ∂P0
∂�k

apply the

partial-derivative operator ∂
∂�k

on Pn = Ex

[
u′ (W (x)) e�nT+�⊺

n(�+
√
T−tx)

]
and P0 = Ex [u′ (W (x))], respectively. Lemma A.1 guarantees that this

operator commutes with the expectations operator in this case. As a result,

the partial-derivative terms on the right-hand side of (9) may be written as

follows

∂Pn
∂�k

= Ex

[
∂

∂�k

(
u′ (W (x)) e�nT+�⊺

n(�+
√
T−tx)

)]
= �nkEx

[
u′ (W (x)) e�nT+�⊺

n(�+
√
T−tx)

]
+Ex

[
u′′ (W (x)) e�nT+�⊺

n(�+
√
T−tx)∂W (x)

∂�k

]
∂P0

∂�k
= Ex

[
u′′ (W (x))

∂W (x)

∂�k

]
Using Lemma A.2, moreover, we get

pn = e
�nT+�⊺

n

(
�+

(T−t)
2

�n
)Ex

[
u′
(
W
(
x +
√
T − t�n

))]
Ex [u′ (W (x))]

∂Pn
∂�k

= e
�nT+�⊺

n

(
�+

(T−t)
2

�n
)⎛⎝ �nkEx

[
u′
(
W
(
x +
√
T − t�n

))]
+Ex

[
u′′
(
W
(
x +
√
T − t�n

)) ∂W(x+
√
T−t�n)

∂�k

] ⎞⎠
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Combining, therefore, these relations gives

P 2
0

e�nT+�⊺
n�

∂pn
∂�k

= �nkEx

[
u′ (W (x)) e

√
T−t�⊺

nx
]
Ex

[
u′ (W (x))

]
+Ex

[
u′ (W (x))

]
Ex

[
u′′ (W (x)) e

√
T−t�⊺

nx
∂W (x)

∂�k

]
−Ex

[
u′ (W (x)) e

√
T−t�⊺

nx
]
Ex

[
u′′ (W (x))

∂W (x)

∂�k

]
= �nkEy

[
u′ (W (y)) e

√
T−t�⊺

ny
]
Ex

[
u′ (W (x))

]
(24)

+Ex

[
u′ (W (x))

]
Ey

[
u′′ (W (y)) e

√
T−t�⊺

ny
∂W (y)

∂�k

]
−Ey

[
u′ (W (y)) e

√
T−t�⊺

ny
]
Ex

[
u′′ (W (x))

∂W (x)

∂�k

]
the second equality using a re-naming of variables of integration with y,x ∼
i.i.d. N (0, IK). For the terminal-period wealth, on the other hand, we have

∂W (x)

∂�k
=

∂

∂�k

(
�
(
� +
√
T − tx

)
+

N∑
i=1

e�iT+�⊺
i (�+

√
T−tx)

)

=
∂�
(
� +
√
T − tx

)
∂�k

+
N∑
i=1

�ike
�iT+�⊺

i (�+
√
T−tx) (25)

=
1√
T − t

∂

∂xk

(
�
(
� +
√
T − tx

)
+

N∑
i=1

e�iT+�⊺
i (�+

√
T−tx)

)

=
1√
T − t

∂W (x)

∂xk

Hence,

P 2
0

e�nT+�⊺
n�n

∂pn
∂�k

= �nkEy

[
u′ (W (y)) e

√
T−t�⊺

ny
]
Ex

[
u′ (W (x))

]
+

1√
T − t

Ey

[
e
√
T−t�⊺

ny
∂u′ (W (y))

∂yk

]
Ex

[
u′ (W (x))

]
− 1√

T − t
Ex

[
∂u′ (W (x))

∂xk

]
Ey

[
u′ (W (y)) e

√
T−t�⊺

ny
]
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Apply now Lemma A.2 on the term Ey

[
u′ (W (y)) e

√
T−t�⊺

ny
]

and Lemma

A.4 on each of Ey

[
e
√
T−t�⊺

ny ∂
∂yk

u′ (W (y))
]

and Ex

[
∂
∂xk

u′ (W (x))
]

(setting,

for the latter term, � = 0 in Lemma A.4). The last equation gives

√
T − tP 2

0

e
�nT+�⊺

n

(
�− (T−t)�n

2

) ∂pn
∂�k

=
√
T − t�nkEy

[
u′
(
W
(
y +
√
T − t�n

))]
Ex

[
u′ (W (x))

]
+Ey

[
yku
′
(
W
(
y +
√
T − t�n

))]
Ex

[
u′ (W (x))

]
−Ex

[
xku

′ (W (x))
]
Ey

[
u′
(
W
(
y +
√
T − t�n

))]
= Ey

[(
yk +

√
T − t�nk

)
u′
(
W
(
y +
√
T − t�n

))]
Ex

[
u′ (W (x))

]
−Ex

[
xku

′ (W (x))
]
Ey

[
u′
(
W
(
y +
√
T − t�n

))]
(26)

= Eỹ

[
ỹku
′ (W (ỹ))

]
Ex

[
u′ (W (x))

]
− Ex

[
xku

′ (W (x))
]
Eỹ

[
u′ (W (ỹ))

]
where ỹ ∼ N

(√
T − t�n, IK

)
is independent of x. That is,

P 2
0

√
T − t (2�)K

e
�nT+�⊺

n

(
�+

(T−t)�n
2

) ∂pn
∂�k

=

∫
ℝ2K

u′ (W (ỹ))u′ (W (x)) ỹke
− (ỹ−

√
T−t�n)⊺(ỹ−

√
T−t�n)+x⊺x

2 dxdỹ

−
∫
ℝ2K

u′ (W (ỹ))u′ (W (x))xke
− (ỹ−

√
T−t�n)⊺(ỹ−

√
T−t�n)+x⊺x

2 dxdỹ

Equivalently, changing variables of integration,

P 2
0

√
T − t (2�)K

e�nT+�⊺
n�

∂pn
∂�k

=

∫
ℝ2K

u′ (W (y))u′ (W (x)) (yk − xk) e
√
T−t�⊺

ny−y⊺y+x⊺x
2 dxdy (27)

i.e,

∂pn
∂�k

=
e�nT+�⊺

n�

P 2
0

√
(T − t)

E(x,y)

[
u′ (W (x))u′ (W (y)) (yk − xk) e

√
T−t�⊺

ny
]

(28)
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so that ∂pn
∂�k

is directly proportional to the 2K-dimensional integral in (27),

which cannot be calculated analytically for general specifications of the func-

tions u (⋅) and � (⋅). Yet, its integrand is symmetric with respect to the

variables of integration in a way that allows the use of Lemma A.5. There

are two cases to consider.

If �n = 0, the integral reads
∫
ℝ2K g (x,y)W (x,y) dxdy with g : ℝ2K 7→

ℝ++ and f : ℝ2K 7→ ℝ defined by

g (x,y) = u′ (W (x))u′ (W (y)) e−
y⊺y+x⊺x

2 f (x,y) = e⊺k (y − x)

And, since g (x,y) [W (x,y) +W (y,x)] = 0 ∀x,y ∈ ℝK while g is symmet-

ric, by Lemma A.5, the integral must be zero.

For �n ∕= 0, observe that the quantity multiplying ∂pn
∂�k

on the left-hand side

of (27) is invariant with respect to k ∈ {1, ...,K}. Summing, therefore, gives

√
T − t (2�)K P 2

0

e
�nT+�⊺

n

(
�+

(T−t)�
2

) K∑
k=1

�nk
∂pn
∂�k

=

∫
ℝ2K

u′ (W (y))u′ (W (x)) e
√
T−t�ny−y⊺y+x⊺x

2

K∑
k=1

�nk (yk − xk) dxdy

=

∫
ℝ2K

g (x,y)ℎ (x,y) dxdy

with g as before and ℎ : ℝ2K 7→ ℝ given by ℎ (x,y) = �⊺n (y − x) e
√
T−t�⊺

ny.

Lemma A.5 requires now that this integral is strictly positive since

ℎ (x,y) + ℎ (y,x) = �⊺n (y − x)
(
e
√
T−t�⊺

ny − e
√
T−t�⊺

nx
)

= e
√
T−t�⊺

nx�⊺n (y − x)
(
e
√
T−t�⊺

n(y−x) − 1
)
≥ 0 ∀x,y ∈ ℝK

with the inequality strict on all of ℝ2K except for the zero-measure subset

which consists of the vectors (x,y): �⊺n (y − x) = 0.
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Supplementary Note for Theorem 1

I will demonstrate briefly how Lemma A.1 can be applied in the opening

section of the preceding proof. For any (�,x) ∈ ℝ2K , we have

∂

∂�k

(
u′ (W (x)) e�nT+�⊺

n(�+
√
T−tx)

)
= e�nT+�⊺

n(�+
√
T−tx)

(
�nku

′ (W (x)) + u′′ (W (x))
∂W (x)

∂�k

)
∂2

∂�2
k

(
u′ (W (x)) e�nT+�⊺

n(�+
√
T−tx)

)

= e�nT+�⊺
n(�+

√
T−tx)

⎛⎜⎜⎜⎝
�2
nku
′ (W (x))

+u′′ (W (x))
(

2�nk
∂W (x)
∂�k

+ ∂2W (x)
∂�2
k

)
+u′′′ (W (x))

(
∂W (x)
∂�k

)2

⎞⎟⎟⎟⎠
Similarly,

∂

∂�k
u′ (W (x)) = u′′ (W (x))

∂W (x)

∂�k

∂2

∂�2
k

u′ (W (x)) = u′′ (W (x))
∂2W (x)

∂�2
k

+ u′′′ (W (x))

(
∂W (x)

∂�k

)2

while, by (25),

∂2W (x)

∂�2
k

=
∂2�

(
� +
√
T − tx

)
∂�2

k

+
J∑
i=1

�2
ike

�iT+�⊺
i (�+

√
T−tx)

Fixing now �−k ∈ ℝK−1, consider W (⋅) as a function of �k and x:

W (�k,x) = �
(

(�k, �−k) +
√
T − tx

)
+

J∑
i=1

e�iT+�⊺
i ((�k,�−k)+

√
T−tx)

Define also the function H : ℝK+1 7→ ℝ++ by

H (�k,x) = u′ (W (�k,x)) e�nT+�⊺
n((�k,�−k)+

√
T−tx)
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For the utility functions u (⋅) that are generally of interest in financial eco-

nomics, H (⋅) does satisfy the requirements of the lemma. □

For the remaining of this section, keep in mind (27). The derivative of

interest has the same sign as the quantity

�nk = e−
(T−1)�

⊺
n�n

2

∫
ℝ2K

u′ (W (y)) (yk − xk)u′ (W (x)) e
√
T−t�⊺

nydΦ (x,y)

=

∫
ℝ2K

u′
(
W
(
y +
√
T − t�n

))(
yk +

√
T − t�nk − xk

)
u′ (W (x)) dΦ (x,y)

the second equality applying Lemma A.2. When �nk = 0, this reads

�0
nk =

∫
ℝ2K

u′
(
W
(
y +
√
T − t�n

))
(yk − xk)u′ (W (x)) dΦ (x,y)

And if, in addition, �n = �nmem, it further simplifies to

�∗nk =

∫
ℝ2K

u′
(
W
(
y +
√
T − t�nmem

))
(yk − xk)u′ (W (x)) dΦ (x,y)

Proposition 3

Observe first that the terminal wealth specification in (22) can be expressed

as W (x) = W1 (x−k)+W2 (xk) for some continuous functions W1 : ℝK−1 7→
ℝ++ and W2 : ℝ 7→ ℝ++. ∀x,y ∈ ℝK then, we have

u′ (W (x)) = �
e�[W1(x−k)+W2(xk)]

u′
(
W
(
y +
√
T − t�nmem

))
= �
e�[W1(y−k+

√
T−t�nmem)+W2(yk)]

(where now em ∈ ℝK−1). Therefore,

�∗nk
�2
2

=

∫
ℝ2(K−1)

(∫
ℝ2

(gf) (xk, yk) dΦ (xk) dΦ (yk)

)
ℎ (x−k,y−k) dΦ (x−k) dΦ (y−k)

where f : ℝ2 7→ ℝ, g : ℝ2 7→ ℝ++, and ℎ : ℝ2(K−1) 7→ ℝ++ are given by

f (xk, yk) = yk − xk g (xk, yk) = e�[W2(xk)+Fk(yk)]

ℎ (x−k,y−k) = e�[W1(y−k+
√
T−t�nmem)+W1(x−k)]
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It is trivial now to verify that Lemma A.5 applies to the two-dimensional

integral in the brackets, requiring it to be zero.

Turning to the terminal wealth specification in (19), observe that it can

be written as W (x) = W1 (x−m) + W2 (xm) for some continuous functions

W1 : ℝK−1 7→ ℝ++ and W2 : ℝ 7→ ℝ++. ∀x,y ∈ ℝK again, we have

u′ (W (x)) = �
e�[W1(x−m)+W2(xm)]

u′
(
W
(
x +
√
T − t�nmem

))
= �
e�[W1(y−m)+W2(ym+

√
T−t�nm)]

Hence,

�∗nk
�2
2

=

∫
ℝ2

ℎ (xm, ym)

(∫
ℝ2(K−1)

(gf) (x−m,y−m) dΦ (x−m) dΦ (y−m)

)
dΦ (xm) dΦ (ym)

with f : ℝ2(K−1) 7→ ℝ++, g : ℝ2(K−1) 7→ ℝ, and ℎ : ℝ2 7→ ℝ++ now given by

g (x−m,y−m) = e�[W1(x−m)+W1(y−m)] f (x−m,y−m) = (y − x) ek = yk − xk
ℎ (xm, ym) = e�[W2(xm)+W2(ym+

√
T−t�nm)]

Again by Lemma A.5, the 2 (K − 1)-dimensional integral in the brackets

must be zero. □

To complete the analytical arguments that support the relevant discussion

in the text, notice the following. Under the specification in (22), equation

(6) reads

pn = e
�mT+�nm

(
�m+

(T−t)�nm
2

)
Exk

[
e�W2(xk)

]
Exk

[
e�W2(xk)

] Ex−k

[
e�W1(x−k+

√
T−t�nmem)

]
Ex−k

[
e�W1(x−k)

]
= e

�mT+�nm
(
�m+

(T−t)�nm
2

)Ex−k

[
e�W1(x−k+

√
T−t�nmem)

]
Ex−k

[
e�W1(x−k)

] (29)
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Under (19), on the other hand, it gives

pn = e
�mT+�nm

(
�m+

(T−t)�nm
2

)Exm [e�W2(xm+
√
T−t�nm)

]
Exm

[
e�W2(xm)

] Ex−m

[
e�W1(x−m)

]
Ex−m

[
e�W1(x−m)

]
= e

�mT+�nm
(
�m+

(T−t)�nm
2

)Exm [e�W2(xm+
√
T−t�nm)

]
Exm

[
e�W2(xm)

] (30)

Finally, the wealth specification in (23) is a special case of either of (19)-(22)

and can be written as W (x) =
∑K

i=1Wi (xi) for some continuous functions

Wi : ℝ 7→ ℝ++. Setting now m = n in (30), gives

pn = e
�nT+�nn

(
�n+

(T−t)�nn
2

)Exn [e�Wn(xn+
√
T−t�nn)

]
Exn

[
e�Wn(xn)

] (31)

Equation (17)

By renaming the variables of integration, we can re-write �∗nk as follows

�∗nk =

∫
ℝ2K

[
u′
(
W
(
y +
√
T − t�n

))
u′ (W (x)) yk

−u′
(
W
(
x +
√
T − t�n

))
u′ (W (y)) yk

]
dΦ (x,y)

= Eyk

[
E(x,y−k)

[(
u′
(
W
(
y +
√
T − t�n

))
u′ (W (x))

−u′
(
W
(
x +
√
T − t�n

))
u′ (W (y))

)]
yk

]

The claim follows since Eyk [yk] = 0.

Proposition 2 and Corollary 2.1

Recall that we have defined the index sets Kn = {m ∈ {1, . . . ,K} : �nm ∕= 0}
and Nk = {n′ ∈ {1, . . . , N} : �n′k ∕= 0}. Notice also that n ∕∈ Nk (since

�nk = 0) while M = ∣Kn∣ < K. Now, by permuting if necessary the

elements of the index set {1, . . . ,K}, it is without any loss of generality to

take the first M of these indices as the set Kn and the last index to depict

the kth dimension, the one under study.

In what follows, xM ∈ ℝM is a collection of realizations for the incre-

ments of the first M Brownian motions, {�m (T )− �m (t)}m∈Kn . Similarly,
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albeit with a slight abuse of notation, x−M ∈ ℝK−M depicts a collection

of realizations for the Brownian increments {�k′ (T )− �k′ (t)}k′∈{1,...,K}∖Kn
which are listed, under the new indexing, as M+1, . . . ,K. Finally, x−(M,k) ∈
ℝK−M−1 refers to a collection of realizations for the increments of the Brow-

nian motions in the set {1, . . . ,K} ∖ (Kn ∪ {k}).

Step 1. Observe that

E(x,y)

[
u′ (W (y)) (yk − xk)u′ (W (x))

]
= 0 (32)

which, by renaming the variables yM ∈ ℝM , can be written also as

Ey−(M,k)

[
E(zM ,yk)

[
u′ (W (y−M , zM ))Ex

[
(yk − xk)u′ (W (x)) ∣yk

]
∣y−M

]]
= 0

Hence, the quantity �0
nk that we defined previously in this section is now

given by

�0
nk

= E(x,y)

[
u′
(
W
(
y +
√
T − t�n

))
(yk − xk)u′ (W (x))

]
= E(x,y)

[
u′
(
W
(
y +
√
T − t�n

))
(yk − xk)u′ (W (x))

]
−Ey−(M,k)

[
E(zM ,yk)

[
u′ (W (y−M , zM ))Ex

[
(yk − xk)u′ (W (x)) ∣yk

]
∣y−(M,k)

]]
= Ey−(M,k)

[
Eyk

[(
EyM

[
u′
(
W
(
y +
√
T − t�n

))
∣y−(M,k)

]
−EzM

[
u′ (W (y−M , zM )) ∣y−(M,k)

] )
Ex

[
(yk − xk)u′ (W (x)) ∣yk

]]]

= Ey−(M,k)

⎡⎢⎢⎣Eyk
⎡⎢⎢⎣
⎛⎝ e−

(T−t)�⊺n�n
2 EyM

[
u′ (W (y)) e

√
T−t�⊺

ny∣y−(M,k)

]
−EzM

[
u′ (W (y−M , zM )) ∣y−(M,k)

]
⎞⎠

Ex [(yk − xk)u′ (W (x)) ∣yk]

⎤⎥⎥⎦
⎤⎥⎥⎦

= Ey−(M,k)

⎡⎢⎢⎣Eyk
⎡⎢⎢⎣

⎛⎝ e−
(T−t)�⊺n�n

2 EyM

[
u′(W (y))e

√
T−t�⊺ny∣y−(M,k)

]
EzM [u′(W (y−M ,zM ))∣y−(M,k)]

− 1

⎞⎠
EzM

[
u′ (W (y−M , zM )) ∣y−(M,k)

]
Ex [(yk − xk)u′ (W (x)) ∣yk]

⎤⎥⎥⎦
⎤⎥⎥⎦

where the forth equality follows from Lemma A.2 while the last one from

the fact that yM lists exhaustively the Brownian dimensions that affect the

nth terminal dividend.
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Step 2. Fix now an arbitrary point y−(M,k) ∈ ℝK−M−1. I will show that the

function g1 : ℝ 7→ ℝ given by

g1 (yk) =
e−

(T−t)�⊺n�n
2 EyM

[
u′ (W (y)) e

√
T−t�⊺

ny
]

EzM [u′ (W (y−M , zM ))]
− 1

is monotone under the conditions of the proposition. To this end, fix an

arbitrary yk ∈ ℝ. Since �nk = 0, g′1 (yk) has the same sign as the quantity

I (yk) = e−
(T−t)�⊺n�n

2 E(yM ,zM )

[(
u′′ (W (y))u′ (W (y−M , zM )) ∂W (y)

∂yk

−u′ (W (y))u′′ (W (y−M , zM ))
∂W (y−M ,zM )

∂yk

)
e
√
T−t�⊺

ny

]

= rAe
− (T−t)�⊺n�n

2

E(yM ,zM )

[
u′ (W (y))u′ (W (y−M , zM ))

(
∂W (y−M , zM )

∂yk
− ∂W (y)

∂yk

)
e
√
T−t�⊺

ny

]
Under the given terminal-wealth specification, though, we have

W (y) = � (y−k) +

N∑
n′=1

Dn′ (y)

= � (y−k) +

N∑
n′=1

e�n′T+�⊺
n′�+

√
T−t(

∑
k′ ∕∈Kn �n′k′yk′+

∑
m∈Kn �n′mym)

∂W (y)

∂yk
=
√
T − t

∑
n′∈Nk

�n′ke
�n′T+�⊺

n′�+
√
T−t(

∑
k′ ∕∈Kn �n′k′yk′+

∑
m∈Kn �n′mym)

Hence,

I (yk) = rA
√
T − te−

(T−t)�⊺n�n
2∑

n′∈Nk

�n′ke
�n′T+�⊺

n′�+
√
T−t

∑
k′ ∕∈Kn �n′k′yk′E(yM ,zM )

[
u′ (W (y))u′ (W (y−M , zM ))ℎn′ (yM , zM )

]
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with ℎn′ : ℝ2M 7→ ℝ defined as

ℎn′ (yM , zM ) =
(
e
√
T−t

∑
m∈Kn �n′mzm − e

√
T−t

∑
m∈Kn �n′mym

)
e
√
T−t�⊺

ny

= e

√
T−t

(∑
m′∈Kn∖(Kn∩Kn′)

�nm′ym′+
∑
m∈Kn∩Kn′

�nmym

)
(
e
√
T−t

∑
m∈Kn∩Kn′

�n′mzm − e
√
T−t

∑
m∈Kn∩Kn′

�n′mym
)

where the second equality deploys the fact that �n′m = 0 ∀m ∕∈ Kn′ . But,

under condition (ii), �n′m = �n′�nm ∀m ∈ Kn ∩Kn′ . Therefore,

ℎn′ (yM , zM ) = e

√
T−t

(∑
m′∈Kn∖(Kn∩Kn′)

�nm′ym′+
∑
m∈Kn∩Kn′

�nmym

)
(
e
�n′
√
T−t

∑
m∈Kn∩Kn′

�nmzm − e�n′
√
T−t

∑
m∈Kn∩Kn′

�nmym
)

If �n′ > 0 (�n′ < 0), then ℎn′ (yM , zM ) + ℎn′ (zM ,yM ) ≤ 0 (≥ 0) on

ℝ2M with equality only on the zero-measure subset consisting of the vectors

(yM , zM ) :
∑

m∈Kn∩Kn′
�nm (ym − zm) = 0. By Lemma A.5, therefore, the

typical expectation in the preceding sum is negative (positive) if �n′ > 0

(�n′ < 0).34 Equivalently, the typical term of the sum is negative (positive)

if �n′�n′k > 0 (�n′�n′k < 0). To sign the entire sum, it suffices that all of

its terms are of the same sign. And this is guaranteed by condition (iii). To

see this, consider the collection ∪m∈KnNm of those risky securities whose

terminal dividend varies with at least one of the Brownian components that

affect the nth dividend. Condition (ii) required a proportionality constant

�n′ for those securities that are simultaneously members of this collection

and of Nk: n
′ ∈ ∪m∈Kn (Nm ∩Nk). Clearly, if �n′�n′k maintains the same

sign on this set, I (yk) will have the opposite sign.

Step 3. Define the function g2 : ℝ 7→ ℝ by

g2 (yk) = EzM

[
u′ (W (y−M , zM ))

]
Ex

[
(yk − xk)u′ (W (x))

]
34To use the lemma here, let g := ℎn′ and define f : ℝ2M 7→ ℝ++ by f (yM , zM ) =

u′ (W (y))u′ (W (y−M , zM )) e−
y
⊺
M

yM+z
⊺
M

zM
2 .

65



Since u′ (⋅) > 0, Lemma A.6 ensures the existence of some y0
k ∈ ℝ with(

yk − y0
k

)
g (yk) > 0 ∀yk ∈ ℝ ∖

{
y0
k

}
.

Step 4. Let �n′�n′k > 0. By Step 2, �n′�n′kg1 (⋅) is strictly decreasing on ℝ.

But then,

Eyk [�n′�n′kg1 (yk) g2 (yk)]

<

∫
yk∈(y0k,+∞)

�n′�n′kg1

(
y0
k

)
g2 (yk) dΦ (yk) +

∫
yk∈(−∞,y0k)

�n′�n′kg1

(
y0
k

)
g2 (yk) dΦ (yk)

= �n′�n′kg1

(
y0
k

)
Eyk [g2 (yk)]

and, thus,

�n′�n′k�
0
nk = Ey−(M,k)

[Eyk [�n′�n′kg1 (yk) g (yk)]]

< �n′�n′kg1

(
y0
k

)
Ey−(M,k)

[Eyk [g (yk)]] = 0

the last equality following from (32). □

Corollary 2.1 considers the case Kn = {m}. Condition (ii) of the proposition

is now redundant while Kn∖(Kn ∩Kn′) = ∅. In Step 2, for any n′ ∈ Nk, the

relevant function reads ℎn′ (ym, zm) = e
√
T−t�nmym

(
e
√
T−t�n′mzm − e

√
T−t�n′mym

)
.

This is zero if n′ ∕∈ Nm. For n′ ∈ Nk ∩Nm, if �nm�n′m > 0 (�nm�n′m < 0),

ℎn′ (ym, zm) + ℎn′ (zm, ym) is non-positive (non-negative) on ℝ2, being zero

iff ym = zm. By Lemma A.5, therefore, the typical term in sum of I (yk) has

the opposite (same) sign of (as) �n′k if �nm�n′m > 0 (�nm�n′m < 0). Clearly,

as long as �n′k�n′m has the same sign across all n′ ∈ Nk ∩ Nm, I (yk) will

have the opposite (same) sign of (as) �nm if �n′k�n′m > 0 (�n′k�n′m < 0).

Corollary 2.2 follows immediately, Nk being a singleton.

Proposition 1 and Corollary 1.1

This proof proceeds in the same fashion as the preceding one.

Step 1. Fixing an arbitrary y−(M,k) ∈ ℝK−M−1, the function g1 : ℝ 7→ ℝ is

again strictly monotone, with �n′kg
′ (yk) > 0 ∀yk ∈ ℝ in this case. To see
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this, observe that now

I (yk) = e−
(T−t)�⊺n�n

2 E(yM ,zM )

[
u′ (W (y))u′ (W (y−M , zM )) e

√
T−t�⊺

ny[
rA (W (y−M , zM ))

∂W (y−M ,zM )
∂yk

− rA (W (y)) ∂W (y)
∂yk

] ]

Under the given terminal-wealth specification, the terminal-period endow-

ment is a function � (y−k) while �n′m = 0 ∀ (n′,m) ∈ Nk ×Kn. Condition

(ii), moreover, requires that �n′m = �nm for any n′ with �n′m ∕= 0 for some

m ∈ Kn. Hence,35

W (y) = � (y−k) +

N∑
n′=1

Dn′ (y)

= � (y−k) +
∑

n′∈{1,...,N}∖∪m∈KnNm

e�n′T+�⊺
n′�+

√
T−t

∑
k′ ∕∈Kn �n′k′yk′

+ e
√
T−t

∑
m∈Kn �nmym

∑
n′∈∪m∈KnNm

e�n′T+�⊺
n′�+

√
T−t

∑
k′ ∕∈Kn �n′k′yk′

∂W (y)

∂yk
=
√
T − t

∑
n′∈Nk

�n′ke
�n′T+�⊺

n′�+
√
T−t

∑
k′ ∕∈Kn �n′k′yk′

=
√
T − t

∑
n′∈Nk

�n′kDn′ (y−M )

Therefore,

e
(T−t)�⊺n�n

2 I (yk)√
T − t

= E(yM ,zM )

[
u′ (W (y))u′ (W (y−M , zM )) g (y−M , zM )

] ∑
n′∈Nk

�n′kDn′ (y−M )

35Some remarks about the way the terminal wealth is written out here. On the right-
hand side of the second equality, I sum across the N terminal dividends by partitioning
them into two sets. The first summation collects the ones that are not correlated with
any of the Brownian dimensions that affect the nth dividend. In the exponent of the
typical term here, no terms of the form �n′mym with m ∈ Kn appear as they are all
zero. The second summation collects the remaining dividends. In the exponent of the
typical term now, there are terms of the form �n′mym with m ∈ Kn. Yet, in all of them,
�n′m = �nm due to condition (ii). The product of the corresponding exponentials can
be, therefore, pulled out of the summation. In the exponent of the typical term of the
second summation, there can also be terms of the form �n′k′yk′ with k′ ∕∈ Kn. The
corresponding exponentials stay inside the summation. Observe finally that, under the
assumed terminal wealth specification, no dividend n′ whose exponent includes the term
�n′kyk is to be found in the second summation.
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where g : ℝK+M 7→ ℝ is given by

g (y−M , (yM , zM )) = [rA (W (y−M , zM ))− rA (W (y))] e
√
T−t

∑
m∈Kn �nmym

But

g (y−M , (yM , zM )) + g (y−M , (zM ,yM ))

= [rA (W (y−M , zM ))− rA (W (y))]
(
e
√
T−t

∑
m∈Kn �nmym − e

√
T−t

∑
m∈Kn �nmzm

)
is non-negative on ℝ2M , being zero only on the zero-measure set consisting

of the vectors (yM , zM ) :
∑

m∈Kn �nm (ym − zm) = 0.36 This implies that

the expectation above is positive (Lemma A.5), allowing in turn condition

(iii) to ensure that g′1 (yk) has the same sign as �n′k for any n′ ∈ Nk.

Step 2. By the same argument as in the last two steps of the proof of Propo-

sition 2, one can establish that �n′kg1 (⋅) is strictly increasing on ℝ only if

�n′k�
0
n′k > 0. □

For Corollary 1.1, let Kn = {m}. The requirements �n′m = 0 ∀ (n′,m) ∈
Nk ×Kn and �n′m = �nm ∀m ∈ Kn ∀n′ ∈ ∪m∈KnNm reduce now, respec-

tively, to Nk ∩ Nm = ∅ and �n′m = �nm ∀n′ ∈ Nm. The result reads

�n′k�
∗
n′k > 0.

36It is at this point of the proof that condition (ii) is deployed. For it allows the term

� = e
√
T−t

∑
m∈Kn

�nmym to be factored out of the second summation when the expression
for the terminal wealth is written out. The condition ensures, therefore, that ∂W (y)

∂�
> 0

which, under DARA, implies in turn that ∂rA(W (y))
∂�

< 0.
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Claim 3.1

Let u (c) = 
c� (
, � < 0). By condition (ii), we have u′
(
W
(
x +
√
T − t�n

))
=

��−1
n u′ (W (x)). Hence, (26) now reads

√
T − tP 2

0

��−1
n e

�nT+�⊺
n

(
�− (T−t)�n

2

) ∂pn
∂�k

= Ey

[(
yk +

√
T − t�nk

)
u′ (W (y))

]
Ex

[
u′ (W (x))

]
−Ex

[
xku

′ (W (x))
]
Ey

[
u′ (W (y))

]
=
√
T − t�nkEy

[
u′ (W (y))

]2
+E(x,y)

[
u′ (W (x))u′ (W (y)) (yk − xk)

]
=
√
T − t�nkEy

[
u′ (W (y))

]2
=
√
T − t�nkP 2

0

With � = 0, this applies also when the utility function is logarithmic.

D Dividend-financed Intermediate Consumption

Let f : Ω × [t, T ] 7→ ℝ be a stochastic process with f (!, s) = f (ℐ (!, s)).

Let also t = s0 < s1 < ⋅ ⋅ ⋅ < sn−1 < sm = T be a partition of [t, T ] and Δi =

si−si−1 for i = 1, . . . ,m. Given any ! ∈ Ω, as long as the time-paths f (!, ⋅)
are continuous, their time-integral can be approximated using Riemann-

Stieltjes sums:
∫ T
t f (!, s) ds = limm→+∞

∑m
i=1 f (!, si−1) Δi.

37 Fixing the

arbitrary state, we may dismiss it from our notation henceforth. As the

increments of the Brownian process are independent, for each m in the

37It is well-known that a set of sufficient conditions for the integral
∫ T
t
f (!, s) dg (s) to

exist in the Riemann-Stieltjes sense is for (i) f (!, ⋅) and g (⋅) to not have discontinuities
at the same point of [t, T ] and (ii) f (!, ⋅) to be continuous and g (⋅) to have bounded
variation. Here, g (⋅) being the identity function, it is everywhere continuous and has
bounded variation (in fact,

∑m
i=1 ∣g (si)− g (si−1) ∣ = T − t does not even depend on the

interval partition). Clearly, (i)-(ii) are immediately satisfied if f (!, ⋅) is continuous.

69



approximating sequence, we have

E

[
n∑
i=1

f (ℐ (si−1)) Δi∣ℱt

]
=

n∑
i=1

E [f (ℐ (si−1)) ∣ℱs0 ] Δi

=
n∑
i=1

E

⎡⎣f
⎛⎝� (s0) +

i−1∑
j=0

� (sj+1)− � (sj) , si−1

⎞⎠ ∣ℱs0
⎤⎦Δi

=

n∑
i=1

E

⎡⎣f
⎛⎝� (s0) +

i−1∑
j=0

xj , si−1

⎞⎠ ∣ℱs0
⎤⎦Δi

=

n∑
i=1

E [f (� (s0) + yi−1, si−1) ∣ℱs0 ] Δi

with the xj ’s independently distributed N (0,Δj+1IK) and, consequently,

yi−1 ∼ N (0, (si − s0) IK) for their sum. In the limit, therefore, as m→ +∞

(∗) E
[∫ T

t
f (ℐ (s)) ds∣ℱt

]
=

∫ T

t
E [f (� (t) + y (s) , s) ∣ℱt] ds

where y (s) ∼ N (0, (s− t) IK).

Suppose also that, for the arbitrary Brownian component �k (t), the deriva-

tive ∂f(ℐ(s))
∂�k(t) exists and is continuous ∀ ∈ [t, T ]. As long as it commutes in

the expectation operator, for each m in the approximating sequence above,

we get

∂E [
∑m

i=1 f (ℐ (si−1)) Δi∣ℱt]
∂�k (t)

=

m∑
i=1

∂E [f (� (s0) + yi−1, si−1) ∣ℱs0 ]

∂�k (s0)
Δi

and, as m→ +∞,

(∗∗) ∂

∂�k (t)

∫ T

t
E [f (ℐ (s)) ∣ℱt] ds =

∫ T

t

∂E [f (� (t) + y (s) , s) ∣ℱt]
∂�k (t)

ds

For n ∈ {0, 1, . . . , N}, define now fn : Ω×[t, T ] 7→ ℝ by f0 (s) = u′ (W (ℐ (s)))

and, for n ≥ 1, fn (s) = u′ (W (ℐ (s)))Dn (W (ℐ (s))). As long as u (⋅)
and Dn (⋅) are, respectively, continuously-differentiable and continuous and
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Lemma A.1 applies, (∗) and (∗∗) give, respectively,

Pn (t) =

∫ T

t
Pn,s (t) ds and

∂Pn (t)

∂�k (t)
=

∫ T

t

∂Pn,s (t)

∂�k (t)
ds

where Pn,s (t) is the absolute price I have analyzed in this paper taking s to

be the terminal date. But then, by (9), we ought to have

P0 (t)2 ∂pn (t)

∂�k (t)
= P0 (t)

∂Pn (t)

∂�k (t)
− Pn (t)

∂P0 (t)

∂�k (t)

=

∫ T

t

(
E [f (� (t) + y (s) , s) ∣ℱt] ∂E[g(�(t)+ỹ(s),s)∣ℱt]

∂�k(t)

−E [g (� (t) + ỹ (s) , s) ∣ℱt] ∂E[f(�(t)+y(s),s)∣ℱt]
∂�k(t)

)
ds

=

∫ T

t

(
P0,s (t)

∂Pn,s (t)

∂�k (t)
− Pn,s (t)

∂P0,s (t)

∂�k (t)

)
ds

=

∫ T

t
P0,s (t)2 ∂pn,s (t)

∂�k (t)
ds

with ỹ (s) ∼ N (0, (s− t) IK), independent of y (s).

To complete the argument, recall that each and every result in the paper

obtains through signing the integrand term
∂pn,s(t)
∂�k(t) of the last integral above,

taking s as the terminal date. And as the matrix of factor loadings Σ is

constant, so is the respective sign on [t, T ]. Being in fact the sign of the

integral, all of my results remain valid when intermediate consumption is

dividend-financed. Obviously, this is still the case as T →∞.
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