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Abstract

Time-changed Brownian motions are extensively applied as mathematical models for

asset returns in Finance. Time change is interpreted as a switch to trade-related business

time, different from calendar time. Time-changed Brownian motions can be generated

by infinite divisible normal mixtures. The standard multivariate normal mean variance

mixtures assume a common mixing variable. This corresponds to a multidimensional

return process with a unique change of time for all assets under exam. The economic

counterpart is uniqueness of trade or business time, which is not in line with empirical

evidence.

In this paper we propose a new multivariate definition of normal mean-variance

mixtures with a flexible dependence structure, based on the economic intuition of both

a common and an idiosyncratic component of business time. We analyze both the

distribution and the related process.

We use the above construction to introduce a multivariate generalized hyperbolic

process with generalized hyperbolic margins. We conclude with a stock market example

to show the ease of calibration of the model.
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Mathematics Subject Classification (2000): 60G51, 60E07.

Keywords: Multivariate normal mean-variance mixtures, multivariate generalized hy-
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Introduction

We aim at providing a multidimensional model for financial asset pricing based on a

generalization of the traditional multivariate normal mixtures and multivariate time-

changed Brownian motions.

This class of processes has been introduced in the financial literature by Clark [11]

to model the departure of returns from normality. The idea underlying his work is that,

even though returns are normal in calendar time, the latter may not be appropriate to

represent financial-market time. Business time depends on the arrival of information

and can often be proxied by trade. A change is needed in order to go from business

time to the calendar time needed in modelling. The generality of the models proposed

by Clark is supported by the fact that any arbitrage free return process can be written

as a time changed Brownian motion1.

In the Lévy environment, univariate subordinators (see Sato [23] on this matter)

are used to time change a Brownian motion and introduce a stochastic clock (see Ge-

man, Madan and Yor [15]). Different Lévy processes, discussed in the financial lit-

erature, can be represented as time-changed Brownian motions: the variance gamma

process, introduced in Madan and Seneta [20], the normal inverse Gaussian introduced

by Barndorff-Nielsen [4], the CGMY in Carr et al. [10], the hyperbolic and generalized

hyperbolic ones, defined by Barndorff-Nielsen [2] and applied to finance by Eberlein [12]

and Eberlein and Prause [13].

The law at time one of a time-changed Brownian motion is a normal mean-variance

distribution, that has been extensively studied from a statistical perspective. Among the

others, Kelker [17] studied the infinite divisibility of such distributions, Barndorff-Nielsen

et al. [7] focused on the n dimensional case.

Both normal mean-variance distributions and time-changed Lévy processes have been

extended to the multivariate setting. The extensions proposed in the literature are

based, respectively, on a common mixing distribution and a common time change. The

financial meaning is that the corresponding assets have a common business time. This

last assumption seems to be quite restrictive in the stock market setting (see for instance

Harris [16] and Lo and Wang [18]). Since the change of time has trade as a proxy, a

more realistic assumption is that each return has its own change of time (each marginal

distribution its own mixing variable).

Here we propose to adopt multidimensional mixing distributions. We use a feature

of trade which has been recently explored by the financial literature: the fact that trade

over different stocks or assets presents a common component. This is the key ingredient

to our modelling approach: since it stems from empirics, it seems to us a due base for

1Monroe [22] established that any semimartingale can be written as a time-changed Brownian motion;

see also Ané and Geman [1] and references therein.
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modelling. The above argument supports our choice of a one factor structure for the

change of time. The construction is therefore based on a random-additive-effect model,

as introduced in Barndorff-Nielsen et al [6]. The one factor change of time has been used

in Semeraro [25] and Luciano and Semeraro [19] to generalize the multivariate variance

gamma and other processes of interest in Finance. Their models can be derived as

particular cases of the present one.

As an example of parametrical Lévy model arising from our general mean-variance

mixture we study a generalized hyperbolic (GH) distribution. We propose a multivariate

GH distribution different from the popular one, introduced by Barndorff-Nielsen [2]. We

discuss the features of the (linear and non linear) dependence introduced and study a

methodology for dependence calibration, once the marginal parameters are arbitrarily

fixed. We conclude with a stock market example to show that the generalized GH process

is easy to calibrate.

The paper is organized as follows. Section 1 recalls some notations. Section 2 de-

fines the generalized normal mean-variance distribution, provides conditions for infinite

divisibility and introduces the corresponding Lévy model. We prove that the latter is

a subordinated Brownian motion and characterize the multidimensional subordinator.

In Section 3 we focus on the generalized hyperbolic example. We give its characteristic

function and provide a method to determine the Lévy triplet. We specify two subcases.

In Section 4 we analyze the dependence structure of the model focusing on linear corre-

lation. Linear correlation is indeed relevant for financial applications. For fixed margins,

at least in the basic case, it identifies the joint distribution of the mixing variable and

then of the whole mixture. Section 5 provides a method to calibrate the model on data

and discusses an example. The proofs are in the appendix.

1 Notations

With capital upshape bold letters X, we denote Rn - valued random variables X =:

(X1, ...,Xn)
T , where T stands for the transpose and vectors are column vectors. We set√

X = (
√
X1, ...,

√
Xn)

T . ψX and ΨX represent respectively the characteristic function

and the characteristic exponent of X. L(X) stands for the law of X and X
L
= Y means

that X andY have the same law. We denote with italic bold lettersX the Lévy process

{X(t), t > 0} which has the law of the vector X at time 1 L(X(1)) = L(X).

LetMn be the set of n× n matrices and In be the n× n identity matrix; X stands

for an element inMn.

Given a vectorX, diag(X) stands for the diagonal matrixX =




X1 0 . . . 0

0 X2 . . . 0

0 0 . . . Xn



.
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We recall here the definition of Lévy process and infinite divisibility, for a complete

overview about this matter see Sato [23].

A càdlàg stochastic process X = {X(t), t ≥ 0} on a probability space (Ω,F , P )

with values in Rn such that X(0) = 0 is called a Lévy process if it has independent and

stationary increments and it is stochastically continuous, i.e. ∀ε > 0, limh→0 P (|X(t+

h)−X(t)| ≥ ε) = 0.

A probability measure µ on Rn is infinitely divisible if, for any positive integer n,

there is a probability measure µn on R
n such that µ = µnn, where µnn represent the n-fold

convolution of µn with itself.

Let X(t) be a Lévy process, it can be proved that for any t the random vector

X(t) has an infinitely divisible distribution and conversely if F is an infinitely divisible

distribution then there exists a Lévy process {X(t), t ≥ 0} such that the distribution of
X(1) is F , moreover if X(t) and X ′(t) are Lévy processes on Rn such that X(1) and

X ′(1) have the same distributions then X(t) and X ′(t) are identical in law (see Sato

[23], Theorem 7.10).

The process X = {(X1(s), ..., Xn(s))
T , s ∈ Rn+} is an Rn+-parameter process (see

Barndorff-Nielsen et al. [8]) if the following hold:

1. for anym ≥ 3 and for any choice of s1 � ... � sm, the incrementsX(sj)−X(sj−1),

j = 1, ...,m, are independent, where s1 � s2 iff the all the component of s1 are

smaller then the components of s2;

2. for any s1 � s2 and s3 � s4 satisfying s2 − s1 = s4 − s3, X(s2) − X(s1)
L
=

X(s4)−X(s3) (increments are stationary);

3. X(0) = 0 almost surely;

4. X(s) is almost surely right continuous with left limits in s in the partial ordering

� of Rn+.

2 Generalized normal mean-variance mixture

In this section we recall the notion of normal mean-variance mixture (Mnmv), provide

condition for infinite divisibility and introduce the corresponding time-changed Lévy

process in a multidimensional environment. We therefore propose a generalization.

Definition 2.1. A random vector Y has a multivariate normal mean variance distrib-

ution (shortly Y ∈Mnmv) if

Y
L
= µ

0
+ µG+

√
GQW, (2.1)
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where µ0,µ ∈ Rn, Q ∈ Mn and QQ
T is positive-definite, G is a positive random

variable,W ∼ N(0, In) and G is independent from (each element) inW.

For simplicity from now on we assume µ
0
= 0. The Mnmv distributions are strictly

related to type G distributions2 on Rn. Properties and examples of the former class of

distributions are in Barndorff-Nielsen et al. [7].

If the random vector Y has an infinitely divisible (shortly i.d.) distribution, its law

uniquely determines a Lévy motion.

These processes play a central role in representing returns of stock prices in financial

applications. For this reason our interest is in i.d. Mnmv distributions and the Lévy

processes related to them. The infinite divisibility of this class is discussed for example

in Kelker [17]. A sufficient condition for i.d. is that the mixing distribution is i.d. it-

self (see Barndorff-Nielsen et al. [7]). Under this condition Barndorff-Nielsen et al. [8]

proved that the corresponding process is a time-changed Lévy motion, whose subordi-

nator at time one has the law of the mixing distribution. In financial applications the

subordinator represents economic time. Therefore the model assumes that each return

has the same change of time. As explained in the introduction, the same clock for all

stocks seems to be too restrictive, taking into consideration the empirical cross-sectional

properties of information tested in Harris [16].

We therefore propose a generalization of the Mnmv definition, using a multivariate

mixing random vector instead of G. We then provide sufficient conditions for the distri-

bution introduced to be infinitely divisible in order to introduce the corresponding Lévy

process. The latter can also be represented as a subordinated Brownian motion. Our

task is to provide a multidimensional model capable of describing the joint behavior of

returns, which attaches to each single stock its own change of time.

Definition 2.2. A random vector Y has generalized normal mean-variance mixture

distribution (shortly Y ∈ Gnmv) if

Y = AGµ+Q
√
GW, (2.2)

where W ∼ N(0, In), A,Q ∈ Mn, QQ
T is positive-definite, G = diag(G), G positive

and independent fromW.

It is easy to verify that the model introduced covers a wide range of dependence and

also allows to model independence. Moreover, Definition 2.1 can be derived as a subcase

of Definition 2.2. The following theorem provides sufficient condition for i.d.

2Y is of type G if there is a standard Gaussian random X vector on Rn and a non negative i.d.

random variable T , independent of X, such that Y
L
= T 1/2X
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Theorem 2.1. If the mixing distribution G is infinitely divisible, the vector Y defined

in 2.2 is i.d. with characteristic function

ψY(z) = exp

(
ΨG

(
i diag(µ)ATz − 1

2
Qz

))
, (2.3)

where Qz = ((
∑n

l=1 zlql1)
2, ...., (

∑n
l=1 zlqln)

2)T = diag(QTz)QTz.

Under the condition of the previous theorem the vector Y ∈ Gnmv uniquely deter-

mines a Lévy process in law.

Definition 2.3. The Lévy motion Y = {Y (t), t ≥ 0} is the (unique in law) process

such that L(Y (1)) = L(Y), where Y ∈ Gnmv and Y is infinitely divisible.

The following proposition shows that the Lévy motion Y can be constructed by

multidimensional subordination. A complete treatment of the matter is in Barndorff-

Nielsen et al. [8].

The following holds:

Proposition 2.1. A random vector Y is in Gnmv if and only if Y
L
= Y (1), where

Y is a Lévy process obtained by subordination of a Rn+-parameter Brownian motion

B(s). Moreover the subordinator G is the Lévy process {G(t) : t > 0}, such that
L(G(1)) = L(G).

Since our task is to propose a multi dimensional normal mixture model for returns,

we specify the structure of G in order to satisfy the following requirements:

• representing an idiosyncratic and a common component in the change of time,
consistently with Lo and Wang [18];

• modelling different levels of dependence for fixed univariate marginal distributions;

• generating infinitely divisible mixing distributions with given margins (in order to
be able to resort to popular processes to represent single returns).

We adopt the random-additive-effect distributions proposed in Barndorff-Nielsen et

al. [7] to define the mixing vector G.

Definition 2.4. Let G be

G = (X1 + γ1Z, ...,Xn + γnZ), (2.4)

where γ1, ..., γn are positive real parameters and Xi, i = 1, ..., n and Z are independent

positive random variables.
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If the margins of G have distributions closed under convolution and under scale

transformations, it is possible to fix the marginal distributions Gi (and consequently the

margins of Y) and move the dependence structure of G from independence to maximal

dependence.

If Xi, i = 1, ..., n and Z are i.d., thenG is i.d. In this case, by Theorem 2.1,Y ∈ Gnmv

is infinitely divisible. Since our task is to discuss the Lévy motion arising from such

distributions, in the sequel Xi, i = 1, ...n and Z are assumed to be independent and i.d.

random variables.

The resulting subordinator G can be also decomposed as the sum of an idiosyncratic

and a common component:

G(t)
L
= (X1(t) + γ1Z(t), ..., Xn(t) + γnZ(t))T ,

for each t > 0 (the proof is straightforward, see Semeraro [25]).

The Lévy triplet of Y is derived from the ones of G and of the Brownian motion

as stated in Theorem 4.7 in Barndorff-Nielsen [8]. It is easy to verify that the subcase

with a common subordinator always has normal mean-variance marginal distributions.

This property does not hold in general. Sufficient conditions are given in the following

proposition.

Proposition 2.2. Let Q∗ = (q2ij)1≤i,j≤n with rank(Q∗) = n. If either µi = 0 (symmetric

case), or µi = 1 and A = Q∗, the marginal processes are time-changed Brownian motion.

The change of time is a subordinator G∗
i whose distribution at time 1 is L(G∗

i (1)) =

L(∑n
j=1 q

2
ijGj(1)).

The previous proposition implies that the marginal laws of the subordinators at time

one are L(∑n
j=1 q

2
ijGj(1)). Therefore they are generally not known. As a consequence,

the subordinators of the marginal processes are unknown.

We provide an example based on the multivariate of α-Variance Gamma (α-VG)

model, defined in Semeraro [25], whose subordinator has gamma margins.

Example 1. The VG case. Let Y (t) =W (G(t)) be a multivariate α-VG process, sym-

metric (the Brownian motions have no drift). Consider the process Ỹ (t) = QW (G(t)).

It follows by construction that Ỹ (1) ∈ Gnmv and Proposition 2.2 applies to Ỹ . Then

L(Ỹi(t)) = L(W (
∑n

j=1 q
2
ijGj(t))). If Gj := Gj(1) ∼ Γ(aj, bj) then q2ijGj(t) ∼ Γ(aj,

bj
q2ij
)

and
∑n

j=1 q
2
ijGj is gamma distributed if and only if b1

q2i1
= b2

q2i2
= . . . = bn

q2in
. Since the rows

of Q∗ are pairwise different (rank(Q∗) = n), the previous equations can only be fulfilled

for at most one i ∈ {1, ..., n}. Therefore the process Ỹ (t) has time-changed marginal

processes and the economic idea of attaching to each return its own time change is pre-

served, but the time changes are no longer gamma distributed and the Yi(t) are no longer

VG processes (apart from possibly one).
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The previous example shows that even if G has very simple marginal laws, the

marginal law of G∗, as defined in Proposition 2.2, may not have known distributions.

Moreover by Proposition 2.1,

L(Q
√
GW (t)) = L

(
n∑

j=1

q1jWj(Gj(t)), ...,
n∑

j=1

qnjWj(Gj(t))

)T
. (2.5)

Each component of Y depends on more than one margin of G, in that the conditional

law of Yj given G = s, i.e L(∑n
j=1 qijWj(sj)), depends on the whole multi-parameter

s. Since our aim is to model returns and to represent each single return as a time-

changed Brownian motion, its dependence from different business times. We want to

attach to each Brownian motion its own change of time. We therefore have to consider

independent Brownian motions.

We therefore formally define the class independent generalized mean-variance distri-

butions, IGnmv:

Definition 2.5. A random vector Y has independent generalized mean-variance distri-

bution (Y ∈ IGnmv), if Y ∈ Gnmv, Q = A and they are diagonal.

Let Y ∈ IGnmv and Q = diag(σj), we have

YT = (
√
G1σ1W1 + µ1σ1G1, ...,

√
GnσnWn + µnσnGn). (2.6)

Remark 1. Random vectors Y ∈ IGnmv always have margins that are normal mean-

variance mixtures, even if the restrictions of Proposition 2.2 are not fulfilled. This can

be seen easily from equation (2.6). For example, if G̃i := σ2iGi and µ̃i := µi
σi
, then

Yi = µ̃iG̃i +
√
G̃iWi, that is, Y = G̃µ̃+

√
G̃W where µ = Q−1µ and G̃ = Q2G.

Observe that if G has independent components so does Y ∈ IGnmv. Therefore

the model allows to capture independence. Observe also that, since Q and A just

imply a rescaling of the components and marginal distributions of Y, one could assume

A = Q = In without loss of generality.

We will consider also the process Y associated to Y by L(Y (1)) = L(Y). When

Q = A = In and µ = 0 the law of Y is

L(
√
GW (t)) = L(W (G(t))). (2.7)

The characterization of this process in terms of its Lévy triplet (γY ,ΣY , νY ) , can

be obtained through Theorem 3.3 in Barndorff Nielsen et al. [8]. The Lévy triplet is

γY =
∫
Rn
+

νT (ds)
∫
|x|≤1 xρs(dx),

ΣY = 0,

νY (B) =
∫
Rn
+

ρs(B)νG(ds),

(2.8)
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where ρs = L(W (s)), s ∈ Rn+, x = (x1, ..., xn)
T , B ∈ Rn \ {0} and νG is the Lévy

measure of G. Observe that Y is a pure jump process. Y has finite activity/variations

if and only if the margins do.

Please notice that
∑

Y
= 0 holds true only if the drift component c in the L´evy-

Khintchine representation of the characteristic function of the subordinator G vanishes

(see Barndorff-Nielsen et. al. [8], Proposition 3.1). This is the case for the Gamma and

GIG-distributions considered later in the paper.

In the following sections we apply the above described construction using a multivari-

ate subordinator of random-additive type to get a GIG subordinator (mixing distribution

in static case), which is not closed under convolution. We obtain a multidimensional GH

distribution, and we use it in order to generate the corresponding time changed Lévy

model.

3 The Multivariate GH model

We now focus on the generalized hyperbolic case. We have proved that Gnmv are the

distributions at time one of a subordinated Lévy process. Taken this into account, in

this section we start by introducing a multivariate generalized hyperbolic distribution in

order to investigate the associated process. The process we are going to introduce could

be an alternative to the multidimensional GH process. The multivariate generalized

hyperbolic distribution (MGH) is defined in the literature as a normal mean-variance

distribution with mixing variable GIG distributed: see Barndorff-Nielsen [2], [6] and

Barndorff-Nielsen at al. [7]. A first extensive survey about its properties was given in

Blæsild and Jensen [9]. The GH process and its multidimensional extension are very

popular in the financial literature to model stock returns, see Eberlein [13], [14]. The

literature assumes one common business time, as discussed for the general Mnmv.

The goal of this section is to introduce a multivariate GH distribution such that:

• it has GH margins;

• it allows to calibrate easily both the margins and the dependence;

• it contains also non linear dependence;

• it answers our economic requirement to attach to each Brownian motion its own
change of time.

The main difficulty in the construction is that the GIG distribution is not closed
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under convolution 3. However, under a proper choice of the parameters, the convolution

of a gamma and a GIG distribution is itself GIG distributed. We adopt the device of

defining the change of time by means of a gamma distributed common component. For

this reason we are not able to recover the multidimensional GH process analyzed by

Eberlein [13] on stock market as a limit case. In fact, if the idiosyncratic component

degenerates we find the variance gamma (VG) process. The peculiarity of our model is

that both the distribution and the process are generalizations of the αVG model.

Definition 3.1. Let λ > 0, b ≥ 0, γi > 0, 0 < a ≤ λ. Let δi and
b
γi

both nonnegative and

not simultaneously zero. Let Xi be GIG(−λ, δi,
b
γi
), Vi be Γ(λ−a, b2

2γ2i
) and Z ∼ Γ(a, b

2

2
).

Let G be

G = (X1 +V1 + γ21Z, ...,Xn +Vn + γ2nZ). (3.1)

Since the Xj, Vj, j = 1, ..., n and Z have i.d. distributions so does G. Moreover

Xi +Vi + γ2iZ is GIG with parameters (λ, δi,
b
γi
), where γi ≥ 0 since

GIG(−λ, δ, γ) ∗ Γ
(
λ,

γ2

2

)
= GIG(λ, δ, γ),

as first stated, but not proven, in Barndorff-Nielsen et al. [5], in Barndorff-Nielsen [3]

and proved in Eberlein and Hammerstein [14]. In the limiting case δ = 0, one identifies

GIG
(
−λ, 0, b

γi

)
∼= ε0, where ε0 is the Delta-Dirac function centered at zero, Xi vanishes

and Gi ∼ Γ
(
λ, b2

2γ2
i

)
.

The characteristic function of G is

ψG(z) =
n∏

j=1

ψXj (zj)ψVj (zj)ψZ(
n∑

j=1

γ2jzj), (3.2)

The vector G is defined as the sum of three independent factors. Anyway, since

both X and V have independent components, G has one common factor to satisfy our

economic intuition of a common factor in the change of time. Let T = X + V, T

represent the idiosyncratic change of time 4.

We now define a multivariate distribution whose margins are GH distributed by

means of the previous vector G.

3This means that if both the independent and the common components of G, respectively X =

(X1, ...,Xn) and Z = (γ1Z, ..., γnZ), have GIG distributions, the margins of G are no longer necessarily

GIG distributed.
4The construction given in Definition 3.1 can even be generalized by allowing different λi for each

component Gi of G if the restrictions for a are modified as follows: 0 < a < min1≤i≤n λi. We prefer to

stick to Definition 3.1 for parsimoniousness of the parameters. The usefulness of this choice will appear

from the model calibration. We thank the referee for having pointed out the potential extension.
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Definition 3.2. We say that Y has a G-multidimensional generalized hyperbolic distri-

bution (shortly Y ∈ GMGH) if Y ∈ IGnmv (i.e., A = Q diagonal) and the mixing

distribution has the law of G.

The following proposition is a consequence of our construction.

Proposition 3.1. Let Y ∈ GMGH. Let λ ≥ 0 (we admit the degenerate case a = λ =

0), b > 0, γi > 0. Let δi and
b
γi

both nonnegative and not simultaneously zero and

δi ≥ 0, |βi| < αi if λ > 0. (3.3)

The distribution of Y is infinitely divisible and it has GH margins with parameters

αi, βi, δi|σi|, λ, where

βi =
µj
σi√

α2j − β2j =
b

γj|σi|
.

(3.4)

Notice that |σi| = 1 if A = Q = In. Observe that we do not allow λ < 0 because Vj+

Z, j = 1, ..., n are gamma distributed, and their first parameter is λ. The components

Yi are univariate normal mean-variance mixtures with GIG mixing variable.

The characteristic function of Y becomes

ψY(z) =
n∏

j=1

(
α2j − β2j

α2j − (βj + izj)2

)λ/2 Kλδj
√

α2j − (βj + izj)2

Kλ

(
δj

√
α2j − β2j

) ·

·
(

1−
−1
2
z2j + iβjzj

(α2j − β2j)/2

)−(λ−a)(

1−
∑n

j=1(−1
2
z2j + iβjzj)γ

2
j

(α2j − β2j)/2

)−a
.

(3.5)

From the expression of ψY we infer that Y is the convolution of a vector with

independent GH margins, YX , and a multivariate α-VG random vector, YZ.

With this choice of the mixing distribution we can change the level of dependence

moving a. Letting a → 0, for fixed marginal distributions, we get independence. This

happens because Γ
(
a, b

2

2

)
L→ ε0 (i.e. Z degenerates), as can be seen from the convergence

of the corresponding characteristic function. On the other hand we are not able to

capture perfect correlation for the subordinator only through a: we should also let Xj,

for j = 1, ..., n degenerate. This limit case corresponds to a gamma mixing distribution

and generates a VG distribution. Therefore as subclasses of this family we find both the

α-VG distribution and the distribution with independent GH margins.

We now investigate the Lévy motion defined by the GMGH distribution.
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Definition 3.3. A Lévy process Y is said to be G- multidimensional generalized hyper-

bolic (Y ∈ GMGH) if L(Y (1)) = Y, where Y ∈ GMGH.

The characteristic function of Y (1) has been explicitly stated in (3.5).

From Proposition 3.1 the process Y has GH(αi, βi, δi, λ) marginal processes. It is

a time-changed Brownian motion and the change of time is a GIG process, in fact, as

discussed in general, L(G(1)) =G. We recall that the GIG distributions are not closed

under convolution. As a consequence we do not know the distribution of a GIG process

at any time different from one.

The dependence structure will be analyzed using linear correlation. It is possible, as

we will show in the application, that the data have high correlation and we might need

to add correlation in the Brownian motion. Since by considering the Gnmv mixture we

would not have GH margins, we end this section by proposing a device to add correlation

leaving GH margins.

In order to do that we split the process Y as the sum of two independent multivariate

processes. From its characteristic function it can be argued that the addenda of Y are:

a process with independent GH margins and a time-changed Brownian motion.

Proposition 3.2. Let Y ∈ GMGH. Then Y = Y T +Y Z, where Y T has independent

GH margins and Y Z, the VG component, is the α-VG process. It has both a common

and an idiosyncratic time-change.

The representation evidenced by the previous proposition can be derived from the

characteristic function of Y. Anyway it is a particular case of a more general result,

stated and proved in the Appendix. The process Y can thus be expressed as Y
L
=

Y T + Y Z, where Y T , and Y Z are independent time-changed Brownian motions with

subordinators respectively T (t) and γ2Z(t). The processes T (t) and γ2Z(t) are defined

by the vectors T, γ2Z under Definition 3.1. In particular γ2Z has comonotone marginal

distributions Γ(a, b2

2γ2i
). Thus Y γ2Z is of V G type. This decomposition allows us to add

correlation in the model leaving both the marginal processes fixed in law; furthermore

the marginal returns depend only on their own time change.

Definition 3.4. We name Q̃−GMGH the process Ỹ defined by

Ỹ = Y T + Ỹ
Z
,

where Ỹ
Z
= Q̃Y Z and Y Z is a multivariate process of VG type with a common subor-

dinator Z(1) ∼ Γ(a, b
2

2
).

Since Ỹ
Z ∈Mnmv, i.e. it has a common subordinator, it follows that: L(Ỹ Z

i (t)) =

L(∑n
j=1 q̃ijµZ(t) + WZ

i ((
∑n

j=1 q̃ij)
2Z(t))), i = 1, ..., n, where WZ

i is a standard Brown-

ian motion for each i = 1, ..., n (we are investigating the marginal laws and not their

dependence relationship).

11



Proposition 3.3. Under the condition:

n∑

j=1

q̃2ij = γ2i and
n∑

j=1

q̃ijµj = γ2iµi 1 ≤ i ≤ n (3.6)

the process Ỹ has GH(αj, βj, δj, λ) marginal processes.

The process Ỹ depends on the marginal parameters (βj = µj , αj , λ, j = 1, ..., n) and

on the parameter a, involved in the correlation between the subordinator margins and

also on the matrix Q̃. We underline that since
√

α2j − β2j =
b
γj
is fixed once the marginal

distributions are, moving b we change γj and the matrix Q̃. This fact makes b relevant

in correlation, as we will see in the sequel.

3.1 The general Gnmv model

For completeness we devote this section to discuss a multidimensional GH model arising
from the general normal mixture. We start by considering the distribution of GH type
arising from the general model. Formally let Y ∈ Gnmv, with mixing distribution L(G)
of Definition 3.1, the vector Y has infinitely divisible distribution. Moreover if Q = A,
then Y = QY∗, where Y∗ is a IGnmv with A = Q = In. Its characteristic function is

ψY (z) =
n∏

j=1

(
α2j − β2j

α2j − (βj + i
∑n
l=1 qljzl)

2

)λ/2 Kλδj
√
α2j − (βj + i

∑n
l=1 qljzl)

2

Kλ(δj

√
α2j − β2j)

·

·
(

1− −
1
2(
∑
l zlqlj)

2 + i
∑
l βlzlqlj

(α2j − β2j)/2

)−(λ−a)(

1−
∑n
j=1(−1

2(
∑
l zlqlj)

2 + i
∑
l βlzlqlj)γ

2
j

(α2j − β2j )/2

)−a
.

(3.7)

TheGnmv family, under the conditionQ = A, contains the affine generalized hyperbolic

one proposed and studied by Schmidt [24], when Z → 0. As we noticed at the beginning

of this section, our model does not capture the MGH with a common GIG mixing

distribution, since the common component of the subordinator is gamma distributed.

If the independent part degenerates we indeed find a VG distribution with a common

mixing law and correlated Brownian motions.

For completeness we also mention the process of GH type arising from the above

general GH distribution. Let us consider now the Levy process {Y (t), t ≥ 0} defined by
L(Y (1)) = Y. Proposition 2.1implies that Y is a subordinated Brownian motion with

subordinator G defined by L(G(1)) = L(G), where L(G) is the one in 3.1. In general

Y has neither GH margins, nor time-changed ones.

Even if the marginal processes do not have known distributions the subcase A = Q

can be restated as the case with GH margins through a linear transformation.
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4 Dependence

Linear dependence is the major concern for calibration of return processes, since the

corresponding coefficient is the measure adopted in theoretical asset pricing models and

its estimates are easy to obtain from market data. In addition, Luciano and Semeraro

[19] have shown that, at least for the α-VG case, non-linear dependence “fades away”

over time. Given the mixture nature of the underlying distribution, the same could

happen in the models studied here. Last but not least, in the simplest of our models,

GMGH, correlation completely determines the joint distribution. Most of our theo-

retical dependence analysis is therefore focused on the linear case, on which also the

calibration will be built. However, before attempting the analysis of linear dependence

of the multidimensional generalized hyperbolic processes that we are going to calibrate,

we want to make some considerations about non linear dependence.

The process Y ∈ GMGH has non linear dependence. To prove this, we observe that

the process has dependent margins also in the symmetric case (ρ = 0): indeed the Lévy

measure of Y is given by

νY (B) =

∫

Rn
+

ρs(B)νG(ds), (4.1)

where νG is the Lévy measure of the subordinator. Let νj , νZ be respectively the Lévy

measures of the processes T̃j, j = 1, ..., n and Z̃, then the Lévy measure νG ofG satisfies

νG(E) =
n∑

j=1

νj(Ej) + νZ(E∆),
(4.2)

where E ∈ B(Rn \ {0}), Ej = E ∩ Aj and Aj = {x ∈ Rn : xk = 0, k �= j, k = 1, ..., n}
(see Semeraro [25] for the proof).

From the expression of νG it follows that the components of Y may jump together.

Thus the processes σjBj(Gj(t)) have non-linear dependence, unless the random variable

Z is degenerate.

We now analyze linear dependence. In the asymmetric case, linear dependence allows

us to fully characterize the parameters of the model, given the marginal ones. It is not

exhaustive in describing the dependence structure of Y . Anyway it always allows us to

fully characterize the parameters of the subordinator G, given the marginal ones.

4.1 Linear dependence

Let Y ∈ GMGH, with A = Q = In. We start from the correlation matrix ρG =

(ρG(l, j)) of the subordinator.

13



Since

Cov(Gl, Gj) = γ2l γ
2
jV (Z) and V (Gj) = V (Xj) + V (Vj) + γ2jV (Z), (4.3)

we have

ρG(l, j) =
γ2l γ

2
jV (Z)

√
[V (Gl)][V (Gj)]

=
γ2l γ

2
j4a

b4
√

[V (Gl)][V (Gj)]
,

where the expression for V (Gj) is given in (B.3) in the Appendix. Since L(Gj) =

GIG(λ, δj ,
b
γj
), given the marginal parameters the joint distribution of G is uniquely

determined by the parameter a; in turn a is uniquely determined by ρ.

Let us assume now that the marginal parameters are fixed and such that the marginal

distributions do not degenerate. Since the margins are independent iff a = 0 (iff ρ = 0),

imposing a = 0 we can capture independence starting from no matter which marginal

distribution. The same is not true for perfect correlation: a necessary condition for

ρ = 1 is that Xj degenerates for each j. In this case the subordinator degenerates in a

real gamma random variable and we get the V G model.

Since Y is a subordinated process, the variance of Yj = Y j(1) is:

V [Yj] = E[V [Yj|Gj ]] + V [E[Yj|Gj]] = E[Gj ] + β2jV [Gj ]. (4.4)

The lj -covariance of the process at time 1 is:

cov[Yl,Yj] = βiβjcov[Gl,Gj ] = βlβjγ
2
l γ
2
jV (Z).

Therefore the linear correlation coefficients are

ρY (l, j) =
βlβjγ

2
l γ
2
jV (Z)

√
V (Yl)V (Yj)

=
βlβjγ

2
l γ
2
j4a

b4
√

V (Yl)V (Yj)
, (4.5)

where the expression for the marginal variances (B.8) are in the Appendix.

Observe that the linear correlation coefficient is zero if β is zero, i.e. in the symmetric

case, for each value of a. Therefore in the symmetric case the linear correlation coefficient

does not determine uniquely the joint distribution of Y for each value of the marginal

parameters. Anyway in the asymmetric case, which is more interesting for financial

applications, it does. In the latter case in order to calibrate the parameter a we can use

an estimate of the correlation coefficient. Since the subcase with a common subordinator

leads to the VG process, to reach high correlation leaving the GH marginal distributions

fixed we also investigate the Q̃−GMGH correlation coefficients.

Let Ỹ ∈ Q̃−GMGH, its linear correlation coefficients are

ρ
Ỹ
(i, j) =

∑n
h=1 q̃ihq̃jhV (Y Z

h ) +
∑n

k,l=1

k �=l
q̃ilq̃jkcov(Y

Z
j , Y Z

i )
√

V (Yi)V (Yj)
, (4.6)
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where Y Z
i ∼ V G with a gamma subordinator whose parameters are (a, b

2

2
).

V [Y Z
i ] =

2a

b2
+ µ2i

4a

b4
, i = 1, ..., n; (4.7)

and

cov[Y Z
i , Y Z

j ] = µi

(
n∑

l=1

qil

)

µj

(
n∑

l=1

qjl

)
4a

b4
= µiµj

4a

b4
. (4.8)

5 A stock market application: the hyperbolic case

As usual, define a price process to be the exponential of the process Y :

S(t) = S(0)exp(Y (t)), t ≥ 0.

Let the process Y represent the stock returns under the historical measure5.

In this section we will first discuss a calibration procedure that can be developed for

the GMGH and Q̃− GMGH models. Using the first model, we then provide a simple

numerical example in which the marginal parameters are calibrated on stock market

data, and the remaining parameters are selected in order to calibrate dependence of the

model.

The parameters involved in the GMGH model are:

• The marginal parameters of the returns: αj , βj , δj , λ;

• The parameters of the subordinator, involved in the dependence structure of the
model: γj, a, b.

The relationship between the marginal parameters and the dependence ones is:

b

γj
=
√

α2j − β2j . (5.1)

The calibration procedure we apply is divided into two steps: first calibrate the mar-

ginal parameters, through the returns. Then the remaining ones, through correlation.

Once the marginal parameters are fixed we only have to find the common parameters

a, b, since the γj are determined by (5.1). In order to calibrate a we look for the

value which minimizes the distance between historical and theoretical correlation. The

correlation coefficients depend on b only through the ratios b
γj
: therefore for this kind of

analysis we can fix b = 1. An analogous procedure could be developed for the Q̃−GMGH

model6.
5In this paper we only work with the historical measure; we do not discuss any choice of a risk

neutral equivalent measure
6The parameters involved in the Q̃−GMGH model are:
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5.1 Calibration example

In this section we investigate an application of the model GMGH discussed above. We

use the common parameter a to minimize the distance between the theoretical (model)

and historical correlation matrix. The example shows that, once the marginal parameters

are fixed, the model is very parsimonious and correlation can be changed moving a single

parameter with a small error.

Step 1: data choice.

The data used for the calibration are weekly returns on nine stocks - American

Express Co. (AXP), Boeing Co. (BA), Citigroup Inc. (C), Walt Disney Co. (DIS), East-

man Kodak Co. (EK), Intel Corp (INTC), JPMorgan Chase & Co. (JPM), Coca-Cola

Co. (KO), Microsoft Corp. (MSFT) - which belong to the Dow Jones index.

The data set is the same discussed in McNeil et al. [21], ch. 3.2. Given that they

already detected non-normality for returns below the monthly horizon, we focus on

weekly returns. All the parameter values will therefore be weekly ones.

The time span covered by our time series is from January 1993 to December 2000,

for a total of 416 observations. Dow Jones quotes are used.

Step 2: marginal parameters.

The marginal parameters can be calibrated using the same procedure as in the uni-

variate case, stock by stock. Since the marginal fit is not our main concern in this

calibration example, we fix λ = 1, which means restricting the marginal distributions

to the hyperbolic distribution (GH with λ = 1.)7 Estimation is obtained by maximum

likelihood, as follows. We are interested in estimating the four parameters of each mar-

ginal H density based on the set of 416 return observations. We first write down the

likelihood function of each stock sample, in terms of the corresponding GH density, then

use numerical procedures in order to obtain the density function from the character-

• The marginal parameters of the returns: αj , βj , δj , λ;

• The parameters of the subordinator, involved in the dependence structure of the model: γj , a, b.

• The entries of the matrix Q̃.

The relationships between the marginal parameters and the dependence one are (5.1) and (3.6),

namely
∑n
j=1 q̃

2

ij = γ
2

i and
∑n
j=1 q̃ijµj = γ

2

iµi.

In this case we can fix a and b and use the matrix Q̃ to get high correlation. The γj , j = 1, ..., n are a

consequence of (5.1). The usefulness of b in this generalization is clear from (3.6). Since
√
α2j − β2j = b

γj

is fixed once the marginal distributions are, moving b we change γj and the matrix Q̃. This fact makes b

relevant in correlation. Therefore we can look for the parameters a, b and the entries of Q̃ that minimize

the distance between the sample and theoretical correlation matrix under the constraints (5.1) and (3.6)
7Unreported calibrations (available from the Authors upon request) show that the increase in max-

imum likelihood, obtained by letting λi vary for each stock, is quite negligible for the data set at

hand.
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istic function by inverse Fast Fourier transform. These procedures are conducted in

MATLAB environment and require initial guess values for the parameters. The possi-

ble influence on the result of the use of guess values has been smoothed by adopting

the maximizing procedure iteratively. At each iteration step we use, as starting values,

the maximizing ones in the previous iteration. Maximization is performed taking into

account the parameter bounds and constraints.

The estimated parameters for our sample are given in Table 1. Together with the

H parameters, the table presents: 1) a β′ value which stays between (−1, 1), as soon as
α > |β|, since it is defined as β = αβ ′. It checks that (5.1) is well defined; 2) a µ value

which was obtained as the expectation of the returns over the period of observation (we

estimated µ+GH).

Table 1: Calibrated parameter values for each stock.

parameter AXP BA C DIS EK INTC JPM KO MSFT

µ 0,0048 -0.0001 -0.0070 -0.0043 0.0033 0.0286 0.0090 0.0006 0.0035

α 49.3500 39.0285 35.7161 44.7035 37.2004 34.3269 38.6181 43.5423 38.7950

β′ 0.0041 0.0513 0.1568 0.0803 -0.0375 -0.2230 -0.0640 0.0348 0.0165

β 0.2023 2.0022 5.6003 3.5897 -1.3950 -7.6549 -2.4716 1.5153 0.6401

δ 0.0584 0.0198 0.0366 0.0396 0.0134 0.0517 0.0407 0.0286 0.0467

In Table 2 we present, for each stock, the results of the Kolmogorov-Smirnov test,

with H0 representing acceptance of the hyperbolic distribution.

Table 2: Results of 5% KS test for each stock. cv is the 5% confidence value.

AXP BA C DIS EK INTC JPM KO MSFT

H0 0 0 0 0 0 0 0 0 0

p-value 0.9653 0.9890 0.9672 0.9895 0.9312 0.8601 0.9605 0.9150 0.9795

KS-stat 0.0243 0.0217 0.0241 0.0216 0.0264 0.0294 0.0246 0.0272 0.0230

cv 5 % 0.0662 0.0662 0.0662 0.0662 0.0662 0.0662 0.0662 0.0662 0.0662

The reader can certainly notice that the KS test is highly significant. The corre-

sponding statistics is well below the confidence value at 5%.

Step 3: correlation

As explained above, we can choose b = 1: γj j = 1, ..., n follow from (5.1). The re-

maining parameter to be calibrated is the parameter a ∈ [0, 1]. The maximal correlation

allowed by the model corresponds to a = max = 1, as can be easily argued from the

constraints of the parameters, λ = 1 together with a ≤ λ. This is the correlation which

minimizes the distance from the (estimate) of the observed correlation.
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The theoretical correlation matrix for a = max = 1 is in Table 3.

Table 3: Theoretical correlation matrix (a = max = 1).

AXP BA C DIS EK INTC JPM KO MSFT

AXP 1.0000

BA 0.0003 1.0000

C 0.0007 0.0117 1.0000

DIS 0.0003 0.0056 0.0157 1.0000

EK -0.0002 -0.0032 -0.0090 -0.0043 1.0000

INTC -0.0009 -0.0155 -0.0434 -0.0208 0.0119 1.0000

JPM -0.0003 -0.0046 -0.0129 -0.0062 0.0035 0.0171 1.0000

KO 0.0002 0.0026 0.0074 0.0035 -0.0020 -0.0098 -0.0029 1.0000

MSFT 0.0001 0.0012 0.0032 0.0015 -0.0009 -0.0043 -0.0013 0.0007 1.0000

The mean square error of dependence calibration so obtained is 7.97%. This value is

obtained taking the average of the squared differences between the entries of the model

correlation matrix and those of the (estimated) historical one 8.

6 Conclusions

In this paper we provide a method to construct multidimensional normal mixtures and

multidimensional time-changed Brownian motions based on the economic intuition of a

common component in trade and consequently in business time. We couple the change

of time technique, which has been by now extensively applied in Finance, with some

novel results in the cross section of time-change, as represented by trade. The novel

results put into evidence the low factor nature of trade over different assets. We use

exactly such nature to construct a new, or generalized, time-changed process, under the

form of normal mean-variance mixture.

Using a GIG distributed idiosyncratic component and a common gamma one, our

construction gives rise to GH margins. We use such specification to show that the model

maintains the marginal properties that characterize the GH motions, such as asymmetry

and fat tails, which are commonly considered as desired features for asset returns. On top

of these marginal features, we have linear and non-linear dependency at the multivariate

- or portfolio - level. By means of a stock market example we show that indeed our

model, once parametrized, is easy to calibrate in its basic version.

The calibration shows that, on a sample of nine stocks from the Dow Jones index,

already studied byMcNeil et al. [21], the model is able to capture the correlation through

8To lower further the error, one could proceed to calibration of the Q̃ −GMGH model, according

to footnote on pag 16.
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a single parameter, even when the margins are restricted to be GH. Parsimoniousness

preserves the possibility of describing dependence with a moderate error. The error can

be further reduced, as explained in the theoretical model, trading off parsimoniousness

for higher accuracy.

A Appendix

A.1 Proofs

Theorem 2.1. We begin computing the characteristic function of Y. Let

Yj = (a1jµjgj + q1j
√
gjWj, ..., anjµjgj + qnj

√
gjWj)

T , j = 1, ..., n;

where g ∈ Rn+. The random variables Yj are independent andL(Y |G = g) = L(∑n
j=1Y

j).

Consider

E[exp{i 〈Y , z〉}|G = g] = E

[

exp

{

i
n∑

j=1

〈
Y j , z

〉
}]

=
n∏

j=1

ψY j (z). (A.1)

where

ψY j (z) = E
[
exp{i

〈
Y j ,z

〉
}
]

= E

[

exp

{

i
n∑

l=1

zlaljgjµj + i
n∑

l=1

zlqlj
√
gjWj

}]

= exp

{

i
n∑

l=1

zlaljgjµj

}

ψ√gjWj
(
n∑

l=1

zlqlj)

= exp

{

i
n∑

l=1

zlaljgjµj

}

exp

{

−1

2
gj(

n∑

l=1

zlqlj)
2

}

.

(A.2)

The characteristic function of Y becomes

ψY(z) = E

[
n∏

j=1

exp

{

i
∑

l

zlaljGjµj

}

exp

{

−1

2
Gj(
∑

l

zlqlj)
2

}]

= E

[

exp
n∑

j=1

Gj

({

i
∑

l

zlaljµj −
1

2
(
∑

l

zlqlj)
2

})]

= E

[
exp

〈
G, i · diag(µ)ATz − 1

2
Qz

〉]
= exp

(
ΨG

(
i · diag(µ)ATz − 1

2
Qz

))
.

(A.3)

From the previous equation and the infinite divisibility of G it easily follows that Y

is also infinitely divisible. �
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Proposition 2.1.

Define the Brownian motion

B(s) := (
n∑

j=1

α1jsj +
n∑

j=1

β1jWj(sj), ...,
n∑

j=1

αnjsj +
n∑

j=1

βnjWj(sj))
T , (A.4)

where αij , βij ∈ R+, i, j = 1, ...n. B(s) is an Rn+-parameter process. Define Zi(t) :=

(a1iBi(t), ..., aniBi(t))
T . The Zi are independent Lévy processes on R

n and B(s) =∑n
i=1Zi(si). The assert is now a direct consequence of Example 4.4 in Barndorff-Nielsen

et al. [8].

The second part of the proof is similar to that of proposition 6.4 in Barndorff Nielsen
et al. [8]. Let B(s) be a Rn+-parameter Brownian motion defined as in (A.4) with
αij = aijµj and βij = qij. Let Y (t) be the subordination of B(s) by a multivariate
subordinator G(t) and let G := G(1). Using the scaling property of Brownian motion,
for every bounded measurable function f , we have

E[f(Y (1))] = E[E[f(B(s))|G(1)=s]]
= E[E[f(

∑

j

a1jµjsj +
∑

j

q1jWj(sj), ...,
∑

j

anjµjsj +
∑

j

qnjWj(sj))|G=s]]

= E[E[f(
∑

j

a1jµjsj +
∑

j

q1j
√
sjWj(1), ...,

∑

j

anjµjsj +
∑

j

qnj
√
sjWj(1))|G=s]]

= E[f(
∑

j

a1jµjGj +
∑

j

q1j
√
GjWj(1), ...,

∑

j

anjµjGj +
∑

j

qnj
√
GjWj(1))].

(A.5)

Thus

Y (1)
L
= (
∑

j

a1jµjGj +
∑

j

q1j
√
GjWj(1), ...,

∑

j

anjµjGj +
∑

j

qnj
√
GjWj(1))

T , (A.6)

and Y (1) is a generalized normal mean-variance mixture. On the other hand let Y ∈
Gnmv with mixing distribution G. Define G(t) as the subordinator so that G(1)

L
= G

and define the process Y by Y (t) = B(G(t)). An argument similar to the previous one

shows that Y (1)
L
= Y. �

Proposition 2.2. The proof is a consequence of the following Proposition. �

Proposition A.1. Let Y ∈ Gnmv. The following holds:

1. if µi = 0, i = 1, ..., n, i.e. in the symmetric case, the marginal distributions of

Y are normal mean-variance distributions with a mixing variable that is a linear

combination of the components of G.
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2. if A = Q∗ := (q2ij)ij, rank(Q∗) = n and µj = 1, j = 1, ..., n then the marginal

distributions of Y are normal mean-variance distributions with a mixing variable

that is a linear combination of the components of G.

Proof. Since rank(Q∗) = max, define G∗ = Q∗G(1).

1. Since Y i(1) =: Yi =
∑n

j=1 qij
√
GjWj, where Gj =: Gj(1) and Wj are i.i.d

N(0, 1), from the scaling property of the normal distribution, it follows that

L
(∑n

j=1 qij
√
gjWj

)
= L
(√∑n

j=1 q
2
ijgjW

)
, where W is a N(0, 1).

L(Yi|G = g) = L
(

n∑

j=1

qij
√
GjWj|G = g

)

= L
(

n∑

j=1

qij
√
gjWj

)

= L





√√√√
n∑

j=1

q2ijgjWj



 = L





√√√√
n∑

j=1

q2ijGjW|G = g




. (A.7)

G = g iff G∗ = Q∗g, then

L





√√√√
n∑

j=1

q2ijGjWj|G = g



 = L





√√√√
n∑

j=1

q2ijGjW|G∗ = Q∗g



 =

= L





√√√√
n∑

j=1

q2ijGjW|G∗j = g∗j



 = L
(√

g∗jW|G∗j = g∗j

)
,

where g∗j =
∑

j q
2
ijgj.

Therefore L(Yj) = L(
√
G∗jW) and the statement is proved.

2. If A = Q∗ and µi = 1, 1 ≤ i ≤ n, then
∑n

j=1 aijGjµj =
∑n

j=1 q
∗
ijGj = G∗i and

L(Yi) = L(G∗i +
√
G∗iW)

Proposition 3.2. The statement is a direct application of the following Lemma that

applies to Y . �

Lemma A.1. Let Y ∈ IGnmv and assume G as in Definition 2.4. Then Y
L
= Y X +

Y Z, where Y X has independent unidimensional normal mean-variance margins and Y Z

is a multivariate normal mean-variance mixture. Y X and Y Z are independent.
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Proof. Since (A.12) below holds, we give the proof for the vectors corresponding to Y (1)

and G(1). The characteristic function of G =: G(1) is

ψG(z) =
n∏

j=1

ψj(zj)ψZ

(
n∑

j=1

γjzj

)

, (A.8)

where ψj and ψZ are respectively the characteristic functions of Xj and Z, then that of

Y =: Y (1) becomes:

ψY(z) = exp

(
ΨG

(
i · diag(µ)ATz − 1

2
Qz

))

=
n∏

j=1

exp

(

Ψj

(

i
n∑

l=1

aljzlµj −
1

2
(
n∑

l=1

zlqlj)
2

))

· exp
(

ΨZ

(
n∑

j=1

γj

{

i
n∑

l=1

aljzlµj −
1

2
(
n∑

l=1

zlqlj)
2

)})

.

(A.9)

From the expression of ψY we infer that Y is the convolution of two generalized mean-

variance distributions, which we denote as YX and YZ . Moreover if Y ∈ IGnmv, its

characteristic function reduces to

ψY(z) = exp(ΨG(logψW1
(z1), ..., logψWn

(z1)))

=
n∏

j=1

exp(ΨXj(logψWj
(zj))) exp(ΨZ(log

n∑

j=1

γjψWj
(zj))),

(A.10)

where, as it is well known,
∏n
j=1 exp(ΨXj(logψWj

(zj))) is the characteristic function

of a random vector with independent normal mean-variance mixture components and

exp(ΨZ(log
∑n

j=1 γjψWj
(zj))) is the characteristic function of a Mnmv distribution.

For completeness we also prove that the previous results apply to the general case

discussed in Section 2.

Proposition A.2. Let Y ∈ Gnmv. Let Xj, j = 1, ..., n be independent non negative

infinitely divisible random vectors and G =
∑n

j=1X
j, then

Y (t)
L
=

n∑

j=1

(Xjµ+Q
√
XjW )(t), (A.11)

moreover the processes Xjµ+Q
√
XjW , j = 1, ..., n are independent.
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Proof. Let Y j := Xjµ + Q
√
XjW , and let Y j(t) be the Lévy process such that

L(Y j(1)) = L(Yj) for j = 1, ..., n. Since Y (t) is a Lévy process, its characteristic

function is

ψY (t)(z) = (ψY(z))
t. (A.12)

Since ΨG(z) =
∑

j ΨXj
(z) holds we have

ψY(z) = exp

(
ΨG

(
i · diag(µ)ATz − 1

2
Qz

))

= exp

(
n∑

j=1

ΨXj

(
i · diag(µ)ATz − 1

2
Qz

))

=
n∏

j=1

ψYj (z),

(A.13)

where for each j = 1, ..., n, ψYj (z) = exp(ΨXj
(iµTzA − 1

2
Qz)) is the characteristic

function of a Gnmv distribution. It follows that

ψY (t)(z) = (exp(ΨG(i · diag(µ)ATz −
1

2
Qz)))

t

= (exp(
n∑

j=1

ΨXj
(i · diag(µ)ATz − 1

2
Qz)))

t = (
n∏

j=1

ψYj (z))t =
n∏

j=1

(ψYj (z))t,

(A.14)

where (ψYj (z))t is the characteristic function of Y j(t). Thus the thesis.

Proposition 3.3. It is sufficient to show that Ỹ := Ỹ (1) admits the representation

Ỹ = Gµ +
√
GW where G is given by Definition 3.1 and equation (3.1). The claim

then immediately follows from Proposition 3.1. By Definitions 3.1 and 3.4 we have:

Ỹi
L
= (Xi +Vi)µi +

√
Xi +ViW̃i +

n∑

j=1

qijZµj +
n∑

j=1

qij
√
ZWj

where W̃i ∼ N(0, 1) is independent from (Wj)1≤j≤n. The scaling property of the normal

distribution implies

Ỹi
L
= (Xi + Vi)µi + Z

n∑

j=1

qijµj +W

√√√√Xi +Vi + Z
n∑

j=1

q2ij

where W ∼ N(0, 1). A comparison of the last equation with (3.1) shows that the desired

representation Ỹ = Gµ+
√
GW holds if and only if

∑n
j=1 qijµj = γ2iµi and

∑n
j=1 q

2
ij = γ2i

for all 1 ≤ i ≤ n. �
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Proof of equation (3.5).

By Theorem 2.1 we have for A = Q = In

ψY(z) = ψG

(
i · diag(µ)z − 1

2
diag(z)z

)

where ψG(w) can be derived with help of equations equations (3.2) and (B.1):

ψG(w) =
n∏

j=1

ψXj (wj)ψVj (wj) · ψZ

(
n∑

j=1

γ2jwj

)

=

=

n∏

j=1

(1− 2
wj
b2j
)−

λ
2

Kλ(δjbj)
Kλ

(
δjbj

√
1− 2wjb2j

)(
1− 2wj

b2j

)−(λ−a)(

1−
2
∑n

j=1 γ
2
jwj

b2j

)−a
.

Inserting w = diag(µ)z − 1
2
diag(z)z and setting µj =: βj, bj =

√
α2j − β2j with respect

to equation (3.4) of proposition 3.1 yields

ψY (z) =
n∏

j=1

(
α2j − β2j

α2j − (βj + izj)2

)λ
2 Kλ

(
δj
√

α2j − (βj + izj)2
)

Kλ

(
δj

√
α2j − β2j

)

(
α2j − β2j

α2j − (βj + izj)2

)λ−α
·

·
(

1−
∑n

j=1(2iβjzj − z2j )γ
2
j

α2j − β2j

)−a
.

B Appendix

B.1 Generalized Inverse Gaussian distribution

Let λ ∈ R, a, b ∈ R+ and neither zero. A generalized inverse Gaussian distribution is a
three parameter distribution defined on the positive half line (shortly GIG(λ, a, b)). It

is an infinitely divisible distribution and it generates a subordinator. Its characteristic

function is

ψGIG(u) =
1

Kλ(ab)

(
1− 2iu

b2

)−λ
2

Kλ(ab
√
1− 21ub−2), (B.1)

where Kλ(x) denotes the modified Bessel function of the third kind with index λ.

The GIG mean and variance are:

aKλ+1(ab)

bKλ(ab)
(B.2)

a2b−2K−2
λ (ab)(Kλ+2(ab)Kλ(ab) +K2

λ+1(ab)). (B.3)
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B.2 Generalized Hyperbolic distribution

Let λ, β ∈ R, α, δ ∈ R+, with

δ ≥ 0, |β| < α if λ > 0

δ > 0, |β| < α if λ = 0

δ > 0, |β| ≤ α if λ < 0.

(B.4)

The Generalized hyperbolic distribution - shortly GH(α, β, δ, λ) - has been introduced

in literature by Barndorff-Nielsen [2]. He also showed that it is a normal mean-variance

mixture with mixing distribution GIG. If G ∼ GIG(λ, a, b) (positive distribution), W

is standard normal and they are independent, then
√
GW+ µG has a GH distribution,

with parameters γ, β, δ, λ where:

a = δ

µ = β

b =

√
α2 − β2.

(B.5)

The GH characteristic function is:

ψGH(u) =

(
α2 − β2

α2 − (β + iu)2

)λ/2
Kλ(δ

√
α2 − (β + iu)2)

Kλ(δ
√

α2 − β2)
. (B.6)

The GH distribution mean is

βδ

α2 − β2
Kλ+1(δ

√
α2 − β2)

Kλ(δ
√

α2 − β2)
. (B.7)

Its variance is

δ2

(
Kλ+1(δ

√
α2 − β2)

δ
√

α2 − β2Kλ(δ
√

α2 − β2)
+

β2

α2 − β2

(
Kλ+2(δ

√
α2 − β2)

Kλ(δ
√

α2 − β2)
− K2

λ+1(δ
√

α2 − β2)

K2
λ(δ
√

α2 − β2)

))

(B.8)
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