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Abstract

This paper studies the problem of treatment choice between a status quo treatment with a known

outcome distribution and an innovation whose outcomes are observed only in a representative

finite sample. I evaluate statistical decision rules, which are functions that map sample outcomes

into the planner’s treatment choice for the population, based on regret, which is the expected

welfare loss due to assigning inferior treatments. I extend previous work that applied the

minimax regret criterion to treatment choice problems by considering decision criteria that

asymmetrically treat Type I regret (due to mistakenly choosing an inferior new treatment) and

Type II regret (due to mistakenly rejecting a superior innovation). I derive exact finite sample

solutions to these problems for experiments with normal, Bernoulli and bounded distributions

of individual outcomes. In conclusion, I discuss approaches to the problem for other classes

of distributions. Along the way, the paper compares asymmetric minimax regret criteria with

statistical decision rules based on classical hypothesis tests.
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1 Introduction

Consider a planner who has to choose which one of two mutually exclusive treatments should be

assigned to members of a population. One treatment is the status quo, whose effects are well known.

The other is a promising innovation, whose exact effects have yet to be determined. The treatments

in question may be, for example, two alternative drugs or therapies for a medical condition, or

two different unemployment assistance programs. Suppose that a randomized clinical trial or

experiment will be conducted and its results will be used to choose which treatment population

members will receive.

The planner faces two problems. First, she has to know what experiment (in particular, what

sample size) should be chosen to get a sufficiently accurate estimate of the treatment effect. Second,

she has to select how treatment choices will be determined based on the statistical evidence obtained

from the experiment. Often, treatment choice is based on the results of a statistical hypothesis

test, which is constructed to keep the probability of mistakenly assigning an inferior innovation (a

Type I error) below a specified level (usually .05 or .01). Then, the sample size is selected to obtain

a high probability (usually .8 or .9) that the innovation will be chosen if its positive effect exceeds

some value of interest.

Following Wald’s (1950) formulation of statistical decision theory, I analyze the performance

of alternative statistical methods based on their expected welfare over different realizations of the

sampling process, rather than just their probabilities of error. In particular, I continue a recent

line of work advocating and investigating treatment choice procedures that minimize maximum

regret by Manski (2004, 2005, 2007, 2009), Hirano and Porter (2009), Stoye (2007a, 2007b, 2009a)

and Schlag (2007). Regret is the difference between the maximum welfare that could be achieved

given full knowledge of the effects of both treatments (by assigning the treatment that is actually

better) and the expected welfare of treatment choices based on experimental outcomes. The latter

is smaller, because experimental outcomes generally do not allow the decision maker to choose the

best treatment 100 percent of the time.

This paper’s main departure from previous literature on the subject is asymmetric consideration

of Type I regret (due to mistakenly using an inferior new treatment) and Type II regret (due to

missing out on using a superior innovation). The persistent use in treatment choice problems of

2



the hypothesis testing approach, which allows Type II errors to occur with higher probability than

Type I errors, suggests that many decision makers want to place the burden of proof on the new

treatment. Most do so by selecting a low hypothesis test level, such as  = 05. It is not clear

what principles, besides convention, are there to guide the selection of hypothesis test level for the

circumstances of a particular decision problem. Values of maximum Type I and maximum Type II

regret of a statistical procedure could provide the decision maker with more relevant characteristics

of its performance than the traditional hypothesis testing measures (test level and power), since

regret takes into account both the probability of making an error and its economic magnitude.

The asymmetric minimax regret criterion proposed here combines minimax regret with a kinked

linear welfare function that is intended to capture the policy maker’s loss aversion. Maximum Type

II regret of asymmetric minimax regret solutions is larger than their maximum Type I regret by

a given factor. When treatment effect estimates are normally distributed, hypothesis testing rules

with a given level  correspond to asymmetric minimax regret solutions for some asymmetry

factor  () for any sample size and variance. It turns out, however, that extreme degrees of

loss-aversion are needed to obtain treatment choice rules corresponding to hypothesis tests with

standard significance levels.

Instead of looking at maximum regret values, a Bayesian decision maker would assert a subjec-

tive probability distribution over the set of feasible treatment outcome distributions, use sample

realizations to derive an updated posterior probability distribution, and maximize expected wel-

fare with regard to that posterior distribution (which is equivalent to minimizing expected regret).

Unfortunately, in many situations decision makers do not have any information that would form

a reasonable basis for asserting a prior distribution. In group decision making, members of the

group may disagree in their prior beliefs. These problems lead to frequent use of conventional prior

distributions in applied Bayesian analysis. Bayesian treatment choice based on a conventional prior

distribution, rather than on a subjective distribution reflecting the decision maker’s prior informa-

tion, does not have a clear economic justification. Decision making based on maximum regret is a

conservative approach to dealing with the lack of reasonable prior beliefs, since maximum regret is

the sharp upper bound on expected regret for decision makers with any prior distributions.

The paper proceeds in the following order. Section 2 exposits the decision-theoretic formulation

of the problem and introduces the asymmetric minimax regret criterion. In section 3, I consider a
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simple but instructive case where the experiment generates a normally distributed random variable

with known or bounded variance. I analyze conventional treatment choice rules based on hypothesis

testing and sample size choice based on power analysis in light of their maximum regret. Section 4

analyzes treatment choice in a more practically applicable setting with binary or bounded random

treatment outcomes. Exact mimimax regret results were obtained for these problems by Stoye

(2009a) and Schlag (2007). I extend their results to derive asymmetric minimax regret solutions

using a different technique. I also demonstrate that minimax regret solutions proposed by these

authors for bounded outcomes could be suboptimal if the decision maker can place an informative

upper bound on the variance of the outcome distribution, which is the case in many applications.

In section 5, I discuss the use of approximations, bounds, and numerical methods for problems

that do not have convenient analytical solutions and illustrate their performance in a hypothetical

clinical trial problem with rare dangerous side effects. All proofs are collected in an appendix.

2 Statistical treatment rules, welfare and regret

The basic setting is the same as in Manski (2004, 2005). The planner’s problem is to assign members

of a large population to one of two available treatments  ∈   = {0 1}. Let  = 0 denote the

status quo treatment and  = 1 the innovation. Each member  of the population, denoted  , has a

response function  () describing that individual’s potential outcome under each treatment . The

population is a probability space (Ω  ) and the probability distribution  [ (·)] of the random
function  (·) describes treatment response across the population. The population is "large," in the
sense that  is uncountable and  () = 0  ∈  .

The planner does not know the probability distribution  , but knows that it belongs to a set

of feasible treatment response distributions {   ∈ Γ}.  will be called the state of the world. I
assume that average treatment outcomes  [ ()] are finite for all  and .

All population members are observationally identical to the planner, thus the planner’s treat-

ment assignment decision can be fully described by an action  ∈  = [0 1], where  denotes

the proportion of the target population assigned by the planner to the innovative treatment  = 1.

Proportion 1 − , then, is assigned to the status quo treatment  = 0. I assume that fractional

treatment assignment (0    1) is carried out randomly.
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I consider planners whose welfare from taking action  in state of the world  is the average

treatment outcome across the population:

 ( ) ≡ (1− ) · [ (0)] +  · [ (1)]

=  [ (0)] +  · .

The second line expresses the welfare function in terms of the average treatment effect

 ≡  [ (1)]− [ (0)] ,

which is the primary population statistic of interest to the planner.

The planner conducts an experiment and observes its outcome — a random vector  ∈ X . The
probability distribution of  depends on the unknown state of the world  and will be denoted

by  . A (random) function  mapping feasible experimental outcomes from X into actions from

 will be called a statistical treatment rule (or simply a decision rule). The action chosen by a

planner with statistical treatment rule  when  is observed will be denoted by  (). The set of

all such functions (feasible statistical treatment rules) will be labeled D.
I follow Wald’s (1950) approach and evaluate alternative statistical treatment rules based on the

expected welfare they yield across repeated samples in each state of the world . If the planner’s

welfare function is  ( ) , then the expected welfare from using statistical treatment rule  in

state of the world  equals

 ( ) ≡
Z
∈X

 ( ()  ) (1)

=  [ (0)] +  [ ()] ,

where  [()] denotes
R
∈X  ()  .

Statistical treatment rule 2 dominates 1 if  (2 ) ≥  (1 ) for all  ∈ Γ with strict
inequality at least for one value of . Statistical treatment rule 1 is said to be admissible if there

does not exist any 2 ∈ D that dominates 1, otherwise 1 is called inadmissible.

The analysis of this paper is based on a normalization of the expected welfare called regret.
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The regret of statistical treatment rule  is the difference between the highest expected welfare

achievable by any feasible statistical treatment rule in state of the world  and the expected welfare

of statistical treatment rule  :

 ( ) ≡ sup
0∈D


¡
0 

¢− ( ) .

The highest welfare in state of the world  is achieved by statistical treatment rule ∗ () =

1 |  0| that selects the optimal (in state ) treatment regardless of experimental outcomes. The
regret function, then, equals

(2)  ( ) =
¡
∗  

¢− ( ) =

⎧⎪⎨⎪⎩  · (1− [ ()]) if   0

− · [ ()] if  ≤ 0.

The regret of a statistical treatment rule, thus, is the product of the probability of making an error

(assigning an individual to the wrong treatment) and the magnitude of the welfare loss suffered

from that error.

2.1 Treatment choice based on hypothesis testing

The most common framework used for treatment choice between a status quo treatment and an

innovation is hypothesis testing. Typically, the researcher poses two mutually exclusive statistical

hypotheses — a null hypothesis 0 :  ≤ 0 that the innovation is no better than the status quo
treatment, and an alternative hypothesis 1 :   0 that the innovation is superior. If the null

hypothesis is rejected, then treatment  = 1 is assigned to the population. If it is not rejected, the

status quo treatment  = 0 is assigned.

Rejecting the null hypothesis when it is, in fact, true (assigning an inferior innovation  = 1

to the population) is called a Type I error. Not rejecting the null hypothesis when it is, in fact,

false (assigning the status quo treatment instead of the superior innovation) is called a Type II

error. Hypothesis testing procedures are designed to have a certain significance level, which is the

probability of making a Type I error (the maximum probability over states of the world  that fall

under the null hypothesis). The significance level (also called -level) is usually set at conventional

values  = 005 or  = 001.
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The probability of not making a Type II error (assigning an innovation when it is superior to

the status quo treatment) is called the power of the test. The power of the test is usually calculated

for some specific value ̄  0. The sample size of an experiment is selected so that a hypothesis

test with a chosen significance level would have the desired power (typically 8 or 9) at ̄ .

2.2 Treatment choice based on maximum regret

Savage (1951) introduced the criterion of minimizing maximum difference between potential and

realized welfare (now called regret) in a review of Wald (1950) as a clarification of Wald’s minimax

principle. Under the minimax regret criterion, statistical treatment rule 0 is preferred to  if

max
∈Γ


¡
0 

¢
 max

∈Γ
 ( ) .

A planner who accepts the minimax regret criterion should select a statistical treatment rule

that satisfies

(3)  ∈ argmin
∈D

max
∈Γ

 ( )

and select a sample size such that the maximum regret max
∈Γ

 (  ) is acceptable. Axiomatic

properties of minimax regret were first studied by Milnor (1954) and more recently by Hayashi

(2008) and Stoye (2009b).

2.3 Asymmetric reference-dependent welfare

As a way to express the planner’s desire to place the burden of proof on the innovation, I will also

consider asymmetric reference-dependent welfare functions. For an asymmetry coefficient   0,

let the welfare function () be linear in the average treatment outcomes with the same slope

as  above the reference point  [ (0)] and a  times steeper slope below the reference point.
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Formally, define () as:

() ( ) ≡  [ (0)] +

⎧⎪⎨⎪⎩ ( ( )− [ (0)]) if  ( )   [ (0)] ,

 · ( ( )− [ (0)]) if  ( ) ≤  [ (0)] ,

=  [ (0)] +

⎧⎪⎨⎪⎩  ·  if   0,

 ·  if  ≤ 0.

The expected welfare for this kinked linear welfare function equals

() ( ) ≡
Z
∈X

() ( ()  ) (4)

=  [ (0)] +

⎧⎪⎨⎪⎩  [ ()] if   0,

 ·  [ ()] if  ≤ 0.

Ordinal relationships between expected welfare of two statistical decision rules do not depend on

the asymmetry factor   0. For any 1 2 ∈ D and  ∈ Γ :

 (2 ) T (1 )⇐⇒() (2 ) T() (1 ) .

Thus, the set of admissible statistical treatment rules is the same for all asymmetrical linear welfare

functions (4) and for the standard linear welfare (1).

The regret function for expected welfare (4) equals

() ( ) ≡ sup
0∈D

()

¡
0 

¢−() ( )

=

⎧⎪⎨⎪⎩  · (1− [ ()]) if   0

− · [ ()] if  ≤ 0,

=

⎧⎪⎨⎪⎩  ( ) if   0

 ( ) if  ≤ 0.

The only difference between this regret function and the regret function for standard linear welfare

(2) is the factor  for  ≤ 0. Maximum regret under the asymmetrical welfare function can be
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expressed through the regret function for linear welfare as

max
∈Γ

() ( ) = max
¡
 · ̄  ()  ̄  ()

¢
,

where

̄  () ≡ max
:≤0

 ( )

is the maximum Type I regret (maximum regret across states of the world in which the innovation

is inferior) under the linear welfare function and

̄  () ≡ max
:0

 ( )

is the maximum Type II regret (maximum regret across states of the world in which the innovation

is superior). The names Type I and Type II regret are given in analogy to Type I and Type II

errors in hypothesis testing. Type I regret is the welfare loss due to Type I errors, while Type II

regret is the welfare loss due to Type II errors under the null hypothesis 0 :  ≤ 0.
Since the asymmetry factor  does not affect admissibility, I will only consider asymmetrical

welfare functions indirectly, by solving the weighted minimax regret problem

(5) min
∈D

max
¡
 · ̄  ()  ̄  ()

¢
for the linear expected welfare (1). In problem (5) the planner gives  times greater weight to

regret from Type I errors.

3 Simple normal experiment

I will first consider a very simple experiment whose outcome  ∈ R is a scalar normally distributed
random variable with unknown mean  ∈ R and known variance 2:

 ∼ N (  2).
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While  is a scalar, it need not originate from an experiment with sample size one. For example, 

could be a sample average  = 1


P
=1  of  independent random observations. If observations

(1  ) all have a normal distribution N
¡
  

2
0

¢
, then  is a sufficient statistic for (1  )

with variance 2 =
20

. Comparing single normal draw experiments with different values of , then,

is equivalent to comparing experiments with different sample sizes.

More importantly, the probability distribution of many commonly used statistical estimators of

average treatment effect converges to a normal distribution as sample size grows
√

³
̂ − 

´
→

N (0 20). Then the asymptotic distribution of ̂ is said to be N (  
2
0


). Heuristically, studying

experiments with a single normally distributed outcome for different values of  will suggest what

effect different types of decision rules and sample sizes have on regret in more general settings.

It follows from the results of Karlin and Rubin (1956, Theorem 1) that if the distribution of 

exhibits the monotone likelihood ratio property (which is true for normal and binomial distribu-

tions) and the welfare function is (1), then the class of monotone decision rules

() ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1   

  =    ∈ [0 1]  ∈ R,
0   

is essentially complete (for any decision rule 0 there exists  such that 
¡
0 

¢ ≤  ( )

in all states of the world). Since the probability of observing  =  equals zero for the normal

distribution, it follows that a smaller class of threshold decision rules

 () ≡ 1 |   |   ∈ R

is also essentially complete. Thus, considering other rules is not necessary in this problem.

Given that  is normally distributed, the regret of a threshold decision rule  in state of the

world  equals

(  ) =

⎧⎪⎨⎪⎩  · ( ≤  ) =  · Φ
³
−


´
if   0,

− · (   ) = − · Φ
³
−


´
if  ≤ 0,
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which is the probability of making an incorrect decision multiplied by | |, the magnitude of the
loss incurred from the mistake. Φ denotes the standard normal cumulative distribution function.

Maximum Type I and Type II regret equal

̄  ( ) = max
:≤0

½
− · Φ

µ
 − 



¶¾
=  ·max

≤0

½
−Φ

µ
− 



¶¾
(6)

̄  ( ) = max
:0

½
 · Φ

µ
 − 



¶¾
=  ·max

0

½
Φ

µ



− 

¶¾


The right-hand equalities are derived by substituting  =


. These functions have finite pos-

itive values for every  ∈ R. Since  (  ) =  (− −), it follows that ̄  ( ) =

̄  (− ). Lemma 1 shows that the decision maker faces a trade off between maximum Type

I and maximum Type II regret. Higher threshold values imply lower Type I regret, but necessarily

higher Type II regret.

Lemma 1 a) ̄  ( ) is a continuous, strictly decreasing function of 

lim
→−∞

̄  ( ) =∞ and lim
→∞

̄  ( ) = 0

b) ̄  ( ) is a continuous, strictly increasing function of  ,

lim
→−∞

̄  ( ) = 0 and lim
→∞

̄  ( ) =∞

Figure 1 displays the maximum Type I and maximum Type II regret as functions of the decision

rule threshold  . The scale of both axes is normalized by . The maximum regret max
∈Γ

 (  ) =

max
¡
̄  ( )  ̄  ( )

¢
is minimized when ̄  ( ) = ̄  ( ), which happens

only at  = 0. The minimax regret treatment rule in this problem is 0. This is sometimes called

the plug-in rule (a plug-in rule takes the estimated value of the average treatment effect and assigns

treatments as if it were the true value).

Similarly, the minimax regret statistical treatment rule under asymmetric welfare function

() is uniquely characterized by the equation

 · ̄  ( ) = ̄  ( ) .
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By substituting right-hand expressions from (6), this characterization can be rewritten as

 ·max
≤0

½
−Φ

µ
− 



¶¾
= max

0

½
Φ

µ



− 

¶¾
.

Since only one value of 

solves the equation for a given , the threshold of the minimax regret

statistical treatment rule is proportional to .

A conventional one-sided hypothesis test with significance level  rejects the null hypothesis

( ≤ 0) and assigns the innovative treatment if   Φ−1 (1− ). This critical value guarantees

that the probability of a Type I error does not exceed  for any  ≤ 0. Since −


has a standard

normal distribution,


¡
  Φ−1 (1− )

¢
= 1− 

µ
 − 


≤ Φ−1 (1− )− 



¶
=

= 1−Φ
µ
Φ−1 (1− )− 



¶
≤

≤ 1−Φ ¡Φ−1 (1− )
¢
= 

The statistical treatment rule based on results of a hypothesis test with level  is a threshold rule

()with threshold  () ≡ Φ−1 (1− ). For a given test level , the threshold  is proportional

to the standard error . Thus a hypothesis test based treatment rule can be rationalized as a

solution to an asymmetrical minimax regret problem with asymmetry factor

 () =

max
0

{Φ ( ()  − )}
max
≤0

{−Φ (− () )} =
max
0

©
Φ
¡
Φ−1 (1− )− 

¢ª
max
≤0

{−Φ (−Φ−1 (1− ))} .

 () is the ratio of maximum Type II to maximum Type I regret of the hypothesis test based

decision rule, which depends only on the test level . In this normal model, the correspondence

between a hypothesis test based rule with level  and an asymmetric minimax regret rule with level

 () does not depend on the standard error of , and thus on sample size. This feature is specific

to the normal example. For example, if  is a binomial variable, then hypothesis test based rules

with the same level correspond to different asymmetric minimax regret treatment rules for different

sample sizes.

Table 1 provides maximum Type I and II regret values and the asymmetry factors corresponding
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Test significance level Threshold Max Type I regret Max Type II regret  ()

 = 5 (minimax regret)  = 0 17 17 1

 = 25  = 6745 0608 3724 6125

 = 1  = 1282 01877 6409 3415

 = 05  = 1645 008178 8371 1024

 = 025  = 196 003665 1026 2799

 = 01  = 2326 001304 1264 9696

Table 1: Maximum Type I and Type II regret of statistical treatment rules induced by hypothesis

tests based on a normally distributed estimate with variance 2.

to commonly used hypothesis test levels. Decision rules based on the one-sided  = 05 level

hypothesis test minimize maximum regret for decision makers who place 102 times greater weight

on Type I regret than on Type II regret. Decision rules based on  = 01 level tests are minimax

regret for decision makers who place nearly 970 times greater weight on Type I regret. The trade

off between Type I and Type II regret is markedly different from the trade off between raw Type

I and Type II error rates (an  = 05 level test has a 95% maximum probability of Type II error,

which is 19 times higher than the maximum probability of the test’s Type I error).

Figure 2 compares the regret functions of the minimax regret treatment rule 0 and the treat-

ment rule (05) induced by a hypothesis test with significance level  = 05 over a range of feasible

values of  . The scale of both axes is normalized by . The maximum regret of the hypothesis

test rule is approximately 837 which is nearly five times higher than the maximum regret of the

minimax regret treatment rule (approximately 17). The hypothesis test rule has lower regret

over  ≤ 0, but it can only achieve it by greatly increasing the regret for   0. The greatest

expected welfare losses from using a hypothesis test rule occur when the innovative treatment is

moderately effective.

3.1 Sample size selection

I will illustrate sample size selection based on maximum regret by comparing it with one of the

conventional methods. The International Conference on Harmonisation formulated "Guideline E9:

Statistical Principles for Clinical Trials" (1998), adopted by the US Food and Drug Administra-

tion and the European Agency for the Evaluation of Medicinal Products. The guideline provides

researchers with the values of Type I and Type II errors typically used for hypothesis testing and

sample size selection in clinical trials. For hypothesis testing, the limit on the probability of Type

14



I errors is traditionally set at 5% or less. The trial sample size is typically selected to limit the

probability of Type II errors to 10-20% for a minimal value of the treatment effect that is deemed

to have "clinical relevance" or at the anticipated value of the effect of the innovative treatment.

Suppose that a researcher considers bearable the loss of public welfare due to a 10% probability

that her innovative treatment could be rejected if its actual treatment effect equals ̄  0. Following

the convention, she selects the sample size for which the variance of  equals ̄2, where ̄2 satisfies

the condition that  will fall under the 5% hypothesis test threshold  (05) = ̄Φ−1 (95) with

probability 10% if  = ̄:


¡
 ≤  (05) | = ̄

¢
= Φ

µ
Φ−1 (95)− ̄

̄

¶
= 1,

̄ =
̄

Φ−1 (95)−Φ−1 (1) =
̄

2926
.

The value of regret that the researcher finds acceptable at  = ̄ thus equals 1̄. This procedure

does not make apparent to the researcher that a much larger welfare loss will be suffered at a twice

smaller value of  = 146̄ ≈ 5̄, where the regret function achieves its maximum of 837̄ = 286̄.

Consider now how the sample size would differ if it were selected by the researcher with an

explicit objective that maximum regret should equal 1̄ in two scenarios. First, suppose that the

researcher planning the experiment has to take for granted that the decision making will be carried

out using a 5% hypothesis test rule. SInce its maximum regret equals 837, she would select

sample size such that

837 = 1̄

 =
1̄

837
=

1 · 2926̄
837

= 35̄,

which implies sample size that is over 8 times larger than the one selected by power calculations in

the example above. In a second scenario, suppose that the researcher has control over treatment

assignment and plans to use the minimax regret decision rule 0. Since the maximum regret of the
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minimax regret decision rule equals 17, the sample size should be such that

17 = 1̄

 = 1722̄,

which implies sample size that is almost 3 times smaller than the one selected by power calculations.

3.2 Normally distributed outcomes with unknown variance

So far in this section I have assumed that the planner knows the variance of the normally distributed

average treatment effect estimate . Suppose now, instead, that the data (1   ) consists of

 independent normally distributed observations with unknown mean  and unknown variance

2 . Let the set of feasible states of the world be

Γ ≡ © :  ∈ R 2 ∈ £2 ̄2¤ª 
where 2  0 and ̄2 ∞ and let

Γ̄ ≡ © :  ∈ R 2 = ̄2
ª

denote the subset of states of the world with the highest feasible outcome variance. Let ̄ ≡
1


P
=1  be the sample mean and 2 ≡ 1



P
=1

¡
 − ̄

¢2
the sample variance. It is well known

(cf. Berger, 1985) that the pair
¡
̄ 2

¢
is a sufficient statistic for (1   ), thus only decision

rules that are functions of ̄ and 2 need to be considered. It turns out, however, that decision

rules satisfying criteria based on maximum Type I and Type II regret could often be found within

a smaller class of threshold decision rules that depend only on the sample mean ̄.

Proposition 2 Let  ≡ 1
¯̄
̄  

¯̄
be a threshold statistical treatment rule such that  ∗ ≡

√

̄
| |

satisfies the condition

(7) max
∈(0∗)

½
 · Φ

µ
̄


( ∗ − )

¶¾
≤ max

≥∗
{ ·Φ ( ∗ − )} 

then
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a) maximum Type I and Type II regret of  over the set Γ is the same as over the set Γ̄:

max
∈Γ:≤0

 (  ) = max
∈Γ̄:≤0

 (  ) 

max
∈Γ:0

 (  ) = max
∈Γ̄:0

 (  ) ,

b) there is no statistical treatment rule 0
¡
̄ 2

¢
that has both lower maximum Type I regret and

lower maximum Type II regret than  .

Condition (7) ensures that the threshold decision attains maximum Type I and maximum Type

II regret on the subset Γ̄. If it is not satisfied, the maximum Type I or maximum Type II regret of

 could be higher on the set Γ than on Γ̄, then there maybe exists a non-threshold decision rule

that has both lower Type I and lower Type II regret than  .

It follows from Proposition 2 that threshold decision rules that satisfy minimax regret or asym-

metric minimax regret criteria for outcomes with fixed variance (set of feasible states of the world

Γ̄) also satisfy the corresponding criteria for outcomes with bounded variance (set of feasible states

Γ) if their threshold values satisfy condition (7). The range of thresholds for which condition (7)

holds depends on the ratio ̄

. For ̄


= 1, it holds if | | ≤ 125 ̄√


. In the opposite extreme case

when ̄

→ ∞ (meaning  → 0) it holds if | | ≤ 22 ̄√


. In particular, since a threshold rule with

 = 0 is the symmetric minimax regret decision rule in the problem with known variance, it also

minimizes maximum regret in the problem with unknown variance.

4 Exact statistical treatment rules for binary and bounded out-

comes

Exact solutions to the minimax regret problems and exact maximum regret values are available

when the data  consists of  independent random outcomes of treatment  = 1, provided that

the outcomes are binary or have bounded values. I will first consider the case of binary outcomes

and then its extension to outcomes with bounded values.
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4.1 Binary outcomes

Let the treatment outcomes of the innovative treatment  = 1 be binary, w.l.o.g. let  (1) ∈ {0 1},
and let the known average outcome of the status quo treatment  = 0 equal 0 ≡  [ (0)] ∈ (0 1).
Let the set of feasible probability distributions of  (1) be a set of Bernoulli distribution with

means  ∈ [ ]  0 ≤   0   ≤ 1 (if 0 is outside of the interval [ ], then the treatment
choice problem is trivial). The experimental data consists of  independent random outcomes

(1  ), each having a Bernoulli distribution with mean  . The sum of outcomes  =
P

=1 

has a binomial distribution with parameters  and .  is a sufficient statistic for (1   ),

so it is sufficient to consider statistical treatment rules that are functions of .

It follows from the results of Karlin and Rubin (1956, Theorems 1 and 4) that monotone

statistical treatment rules

 () =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1   

  = 

0   

  ∈ {0 }  ∈ [0 1]

are admissible and form an essentially complete class, thus it is sufficient to consider only monotone

rules. The regret of a monotone rule  equals

 (  ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
 ·

(
 ( ) +

P
≤

 ( )

)
if   0,

− ·
(
1−

Ã
 ( ) +

P
≤

 ( )

!)
if  ≤ 0,

where  ( ) denotes the binomial probability density function with parameters  and 

and  ≡  − 0.

It will be convenient to use a one-dimensional index for monotone rules  () ≡  +(1− ).

There is a one to one correspondence between index values  ∈ [0  +1] and the set of all distinct
monotone decision rules.  = 0 corresponds to the decision rule that assigns all population members

to the innovation, no matter what the experimental outcomes are.  =  + 1 corresponds to the

most conservative decision rule that always assigns the status quo treatment.

Lemma 3 establishes properties of maximum Type I and Type II regret of monotone statistical
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treatment rules for binomially distributed  that lead to simple characterisations of minimax

regret and asymmetric minimax regret treatment rules. As before, maximum Type I regret is

̄  () ≡ max
:∈[0]

 ( ) and maximum Type II regret is ̄  () ≡ max
:∈(0]

 ( ).

Lemma 3 If  has a binomial distribution, then

a) ̄  () is a continuous and strictly decreasing function of  () with ̄  () = 0 for

 () =  + 1.

b) ̄  () is a continuous and strictly increasing function of  () with ̄  () = 0 for

 () = 0.

It follows from lemma 3 that there is a unique value of  () such that ̄  () =

̄  ().  is the minimax regret treatment rule. While its characterisation is implicit,

monotonicity and continuity of the maximum Type I and Type II regret as functions of  () makes

computation very straightforward. The same characterisation of the minimax regret treatment rule

for  ∈ [0 1] was derived in Stoye (2009a) using game theoretic methods.
Likewise, there is a unique value 

¡
()

¢
such that  · ̄ 

¡
()

¢
= ̄ 

¡
()

¢
.

() is the minimax regret statistical treatment rule for asymmetric reference dependent welfare

function ().

The following proposition derives the exact large sample limit of maximum regret of minimax

regret statistical treatment rules. Unlike in the normal case covered in Section 3, the minimax

regret rule in the Bernoulli case does not generally coincide with the plug-in rule:

 ≡ 1
¯̄̄̄



 0

¯̄̄̄


In large samples, however, the difference between  and  has little effect on maximum regret.

Proposition 4 shows that as sample size grows, the maximum regret of minimax regret rules and

plug-in rules (normalized by
√
) converge to the same limit. That limit is the same as minimax

regret in a problem with  normally distributed outcomes with fixed variance 0 (1− 0).

Proposition 4 Asymptotic maximum regret of both minimax regret and plug-in statistical treat-
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ment rules is equal to

lim
→∞

s


0 (1− 0)
max
∈Γ

 (  ) = lim
→∞

s


0 (1− 0)
max
∈Γ

 (  ) = max
0

[Φ (−)] .

4.2 Bounded outcomes

Now consider a more general setting. Let the outcomes of treatment  = 1 be bounded variables

 (1) ∈ [0 1]. Let 0 ≡  [ (0)] ∈ (0 1) denote the known average treatment outcome of the
status quo treatment  = 0. Let {  ∈ Γ} be the set of probability distributions  [ (1)] that
the planner considers feasible. Assume that  [ (1)] ∈ [ ]  0 ≤   0   ≤ 1. Also, let

{  ∈ Γ} denote the set of all Bernoulli distributions with  [ (1)] ∈ [ ] and assume that
Γ ⊂ Γ. The technique outlined below relies on including all the Bernoulli distributions in the

feasible set.

Schlag (2007) proposed an elegant technique, which he calls the binomial average, that extends

statistical treatment rules defined for samples of Bernoulli outcomes to samples of bounded out-

comes. The resulting statistical treatment rules inherit important properties of their Bernoulli

ancestors. Let  : {0 } → [0 1] be a statistical treatment rule defined for the sum of  i.i.d.

Bernoulli distributed outcomes (as in the previous subsection). Let  = (1  ) be an i.i.d.

sample of bounded random variables with unknown distribution  [ (1)] and let  = (1  )

be a sample of i.i.d. uniform (0 1) random variables independent of . Then the binomial average

extension of  is defined as

̄ () ≡ 

µX

=0
1 [ ≤ ]

¶
.

Verbally, this extension can be described as a simple process:

a) randomly replace each bounded observation  ∈ [0 1] with a Bernoulli observation ̃ = 1 with

probability  and with ̃ = 0 with probability 1− ,

b) apply statistical treatment rule  to (̃1  ̃).

The random variables 1 [ ≤ ]   = 0  are i.i.d. Bernoulli with expectation  [ (1)],

thus
P

=0 1 [ ≤ ] has a Binomial distribution with parameters  and  [ (1)]. For any state

of the world , let ̄ be the state of the world in which ̄ [ (1)] is a Bernoulli distribution with

the same mean  [ (1)]. Then (̃) = ̄ () and (̃ ) =  ( ̄). The regret of a binomial
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average treatment rule ̃ in state of the world  is the same as the regret of  in a Bernoulli state of

the world ̄ with the same mean treatment outcomes. It follows that maximum Type I (II) regret

of ̃ in the problem with bounded outcomes ( ∈ Γ) is equal to maximum Type I (II) regret of  in

the problem with Bernoulli outcomes ( ∈ Γ).
If statistical treatment rule  satisfies some decision criterion based on maximum Type I and

maximum Type II regret for the feasible set of Bernoulli outcome distributions, then its binomial

average extension ̃ satisfies the same criterion for the feasible set of bounded outcome distributions.

Suppose, for example, that  minimizes maximum regret for Bernoulli distributions. Suppose

there was a treatment rule ̃
0
for bounded distributions that had lower maximum regret than ̃ .

Then 0 would have to have lower maximum regret over Γ than  , which would imply that 

does not minimize maximum regret for the problem with Bernoulli distributions.

Binomial average extension yields exact minimax regret and asymmetric minimax regret sta-

tistical treatment rules if the set of feasible outcome distributions Γ includes the set of Bernoulli

outcome distributions with the same means Γ. In many applications, however, the planner knows

that Bernoulli outcome distributions are not feasible. If the outcome variable is annual income

of a participant in a job training program, the planner may assume not only that the variable is

bounded, but also that it’s variance is much smaller than the variance of a Bernoulli distribution

with the same mean. If Bernoulli outcome distributions are excluded, then binomial average based

treatment rules may not be optimal. The following proposition shows that a plug-in statistical

treatment rule

 ≡ 1
¯̄̄̄
¯ 1

X
=1

  0

¯̄̄̄
¯

has lower asymptotic maximum regret than a binomial average extension of  , a minimax regret

statistical treatment rule in the Bernoulli case.

Proposition 5 Let 0 =  [ (0)] and let {   ∈ Γ} be the set of feasible probability distributions
of  (1) such that  ( (1)− [ (1)])

2  2, where 2  0 (1− 0). Let (1  ) be i.i.d.

random outcomes of treatment  = 1. Then

√
 sup

∈Γ
 (  ) ≤  ·max

0
[Φ (−)] +  (1) .
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Maximum regret of binomial average extension ̃ is by design the same as the maximum

regret of the minimax regret treatment rule  in the Bernoulli case. As long as for some ∆  0

Γ contains distributions with all possible means in a ∆-neighborhood of 0

∀ ∈ [0 −∆ 0 +∆]  ∃ :  [ (1)] = ,

the results of proposition 4 apply and

lim
→∞

√
 max

∈Γ
(̃  ) =

p
0 (1− 0) ·max

0
[Φ (−)]   ·max

0
[Φ (−)] .

Thus, for large enough  , max
∈Γ

(̃  )  sup
∈Γ

 (  ). This underscores the importance of

placing appropriate restrictions on the set of feasible treatment outcome distributions before looking

for minimax regret or asymmetric maximum regret based treatment rules.

5 Evaluating regret using approximations and bounds

In conclusion, I would like to discuss methods for dealing with statistical problems which do not

have neat finite sample solutions such as described in the previous sections and give an example

illustrating their properties. I will restrict attention to the case when the data consists of  i.i.d.

observations (1   ) such that  [] = , where  ≡  [ (1)] −  [ (0)] is the average

treatment effect. For many sets of feasible distributions of {}, there aren’t proven complete
class theorems that justify restricting attention to a small class of decision rules. Considering all

feasible statistical treatment rules that are functions of (1  ) can be prohibitively difficult,

but progress can be made by considering a suitable subset of feasible decision rules. Based on their

sufficiency in an idealized problem with normally distributed outcomes considered in Section 3, the

class of threshold decision rules  ≡ 1
¯̄
̄  

¯̄
based on the sample mean ̄ ≡ 1



P
=1  is a

reasonable and tractable candidate class of statistical treatment rules to consider.

The regret of a threshold decision rule  equals

(  ) =

⎧⎪⎨⎪⎩  · (̄ ≤  ) if   0,

− · (̄   ) if  ≤ 0.
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To evaluate maximum Type I and Type II regret of  ,

̄  ( ) = sup
≤0

(
− · sup

:=

(̄   )

)


̄  ( ) = sup
0

(
 · sup

:=

(̄ ≤  )

)


the planner needs to know, for each value of , the range of feasible probabilities that the sample

mean ̄ exceeds the threshold  . Note that for each , (̄   ) is a non-increasing function of 

and (̄ ≤  ) is non-decreasing. It follows that ̄  ( ) is non-increasing and ̄  ( )

is non-decreasing in  , thus solutions to minimax regret and asymmetric minimax regret problems

can be easily found if the researcher has a way to evaluate ̄  ( ) and ̄  ( ). The

problem of evaluating 
¡
̄ Q 

¢
for distributions of  that do not yield a convenient closed-form

expression is well studied in statistics. I will consider three main approaches: brute force calculation

or simulation, normal approximation, and large deviation bounds.

Brute force calculation or simulation The main challenge for calculation or simulation is

in selecting a finite set of feasible distributions that reliably approximates sup
:=

(̄ ≤  ) or

sup
:=

(̄   ) for different values of . For some distributions (e.g. for discrete distributions

with small finite support) such a set is easily constructed by creating a "grid" of distributions

with different parameter values. In nonparametric problems, however, it may be difficult to con-

struct a finite set of distributions that will be certain to reliably approximate sup
:=

(̄ ≤  ) or

sup
:=

(̄   ) for each . If an insufficiently rich set of distributions is chosen, the approximation

will be lower than actual maximum regret.

Normal approximation With the knowledge of  ≡  [] ∈ R and 2 ≡  [] ∈ R, the
planner can use the normal approximation

(̄ ≤  ) ≈ Φ
Ã√




( − )

!
.

To evaluate maximum Type I and Type II regret of a threshold decision rule it is sufficient to know

minimum and maximum feasible variance 2 for each feasible value of  . Normal approximations
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of tail probabilities of ̄ could be either higher or lower than the actual values, thus approximate

values of maximum Type I/II regret could also be either above or below actual values.

Large deviation bounds There are a number of inequalities for tail probabilities of the distrib-

ution of sample mean ̄. Using these inequalities allows the statistician to construct finite sample

upper bounds on maximum Type I and Type II regret. Unlike normal approximations, bounds

constructed using large deviation inequalities are guaranteed not to be lower than actual maximum

Type I/II regret values, which may be useful for conservative decision making.

The simplest large deviation bound is given by the one-sided Chebyshev’s inequality, which

requires only that 0 have bounded variance:

   ⇒ (̄ ≤  ) ≤ 1

1 +
³√



( − )

´2 ,
   ⇒ (̄   ) ≤ 1

1 +
³√



( − )

´2 .
If outcome variables are bounded  ∈ [ ], then Hoeffding’s exponential inequality (1963,

Theorem 2) applies to the tail probabilities of ̄:

   ⇒ (̄ ≤  ) ≤ exp
⎧⎨⎩−2

Ã √


− 
( − )

!2⎫⎬⎭ ,
   ⇒ (̄   ) ≤ exp

⎧⎨⎩−2
Ã √



− 
( − )

!2⎫⎬⎭ .
Hoeffding’s inequality was used by Manski (2004) to compute bounds on maximum regret of plug-in

(empirical success) treatment rules.

If a feasible distribution has finite absolute third moment  ≡  | − |3 ∈ R, then bounds
on 

¡
̄ ≤ 

¢
could be derived from the Berry-Esseen inequality:

¯̄

¡
̄ ≤ 

¢−Φ ()¯̄ ≤ minµ0 1 1

(1 + ||)3
¶
· 

3
√

 where  ≡

√



( − ) .

Lowest proven values for the constants 0 and 1 are 0 ≤ 07975 (van Beek, 1972) and 1 ≤ 32
(Paditz, 1989). For large enough sample sizes, the Berry-Esseen inequality could show that the tail
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probabilities are arbitrarily close to their normal approximation, which is significantly smaller than

the Chebyshev’s and Hoeffding’s bounds.

5.1 A numerical example

I will illustrate how the different methods of evaluating maximum regret of threshold rules may

perform in practice on a simple example inspired by the problem of rare side effects in clinical trials.

Let the average outcome of the status quo treatment  = 0 be  [ (0)] = 5 (outcome values refer

to individual welfare of clinical outcomes). Suppose that a new treatment has been assigned to

 = 1000 randomly selected patients. The treatment has three potential outcomes:  (1) = 1 and

 (1) = 0 correspond to the positive and negative outcomes of the treatment on the condition that

it is intended to treat, while  (1) = −100 corresponds to a rare, dangerous side effect. The set of
feasible treatment outcome distributions Γ includes all probability distributions with the support

{−100 0 1} that have a limited probability of the rare side effect  [ (1) = −100] ≤ 1
1000

. Let ̄

be the sample average of the 1000 trial outcomes of the new treatment.

First, let’s consider how well the different methods approximate the regret of a plug-in statistical

treatment rule  ≡ 1
¯̄
̄  5

¯̄
, which assigns the population to new treatment if it outperforms

the status quo treatment in the trial by any margin. Figure 3 displays the maximum regret of

 for a range of feasible values of the average treatment effect  ≡  [ (1)] −  [ (0)]. There

are multiple feasible outcome distributions with the same , so the lines represent the maximum

aprroximated regret among those distributions. Figure 4 shows maximum Type I and Type II regret

approximations for threshold decision rules with thresholds ranging from  = 45 to  = 55. The

top lines show the best upper bounds on maximum regret derived from large deviation bounds.

That is, the best of the bounds derived from Chebyshev’s, Hoeffding’s, or Berry-Esseen inequalities.

Each inequality is applied to all feasible values of distribution moments for a given . Chebyshev’s

inequality provides the smallest bounds in this example despite fairly large sample size because

some of the feasible outcome distributions have large range [−100 1] and large third moments. It
provides an upper bound of .0508 for both maximum Type I ( ≤ 0) and maximum Type II (  0)
regret.

The lower dotted lines show maximum regret computed using the normal approximation to the

distribution of ̄ based on the feasible values for the variance of outcome distributions. The normal
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Figure 3: Evaluation of maximum regret of the plug-in ( = 5) statistical tretment rule.
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Figure 4: Maximum Type I and Type II regret approximations for a range of threshold statistical

treatment rules.
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approximation suggests that both maximum Type I and maximum Type II regret of  equal to

.0173.

The thick solid lines in Figures 3 and 4 show the maximum regret evaluated numerically. The

set of feasible distributions in this problem is simple enough (two-dimensional and continuous)

to be reliably approximated by a finite set of distributions. For this example, the probabilities


¡
̄ ≤ 5

¢
and corresponding regret values were evaluated on a grid of 60,000 distributions. These

calculations show that maximum Type I regret of the plug-in rule equals .0262, while the maximum

Type II regret equals .0205. Figure 4 shows that among threshold decision rules, minimax regret

is attained by the decision rule with threshold  = 51 rather than by the plug-in rule, and its

maximum regret equals .0230.

In this example, the large deviation bounds on maximum regret are much higher than its

actual values, while normal approximations are significantly lower. Both of them suggest that

the plug-in decision rule minimizes maximum regret, even though its maximum regret is 12%

higher than the minimum attainable by a different threshold decision rule. The difference between

these approximations and actual maximum regret presents a bigger problem for the selection of

trial sample size. Using the normal approximation to evaluate maximum regret could lead the

statistician to choose sample size about 40% smaller than is necessary to make decisions with the

desired maximum regret. Using the large deviation bounds, on the other hand, could lead her to

choose a sample size almost five times larger than necessary.

Normal approximations and large deviation bounds provide convenient and tractable methods

for evaluating maximum regret of threshold decision rules. This example shows, however, that

even in realistic problems with fairly large sample size, they could significantly misrepresent the

maximum regret of decision rules. Whenever possible, such results should be verified by direct

computation or simulation.
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6 Appendix: Proofs

Lemma 1 I will prove the results in part a), the proof of part b) is analogous. Note that it is

w.l.o.g. to set  = 1 to simplify notation, then

̄  ( ) = max
≤0

{−Φ (−  )} .

For every fixed   0, −Φ (−  ) is a strictly decreasing function of  . Furthermore, for

any fixed  , −Φ (−  ) is a continuous function of  with lim
→−∞

{−Φ (−  )} = 0, and

−Φ (−  )  0 for −∞    0, thus −Φ (−  ) attains its maximum on  ∈ (−∞ 0).

Therefore max
≤0

{−Φ (−  )} is a strictly decreasing function of  .
To show that max

≤0
{−Φ (−  )} is continuous in  for all  ∈ R, let’s fix  = 0 and pick

some ∆  0. Then there exists   0 such that  (−  )  1 and −  0 for all    and for

all  ∈ [0 −∆ 0 +∆]. Then for such  and  :




{−Φ (−  )} = −Φ (−  )−  (−  ) 


 (−  )

− 
−  (−  )

=  (−  )
1−  (−  )

− 
 0.

The second line follows from an well known inequality for the normal distribution:

1−Φ () 
 ()


for   0

⇒ Φ ()  − ()


for   0.

Since 

{−Φ (−  )}  0 for all    and all  ∈ [0 −∆ 0 +∆], the maximum of

−Φ (−  ) over  for each  is achieved on the closed interval  ∈ [ 0] The derivative of

−Φ (−  ) with respect to  is bounded on the rectangle (  ) ∈ [ 0]× [0−∆ 0+∆], thus
max
≤0

{−Φ (−  )} = max
∈[0]

{−Φ (−  )} is continuous in  at 0.

For any   0

max
≤0

{−Φ (−  )} ≥ −Φ (0) = −
2
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(by substituting  =  ), thus max
≤0

{−Φ (−  )}→∞ as  → −∞.
For any   0 and   0, Φ (−  ) ≤ 1

(− )2 by Chebyshev’s inequality. Also, differentiation

of − 

(− )2 with respect to  shows that max
≤0

n
− 

(− )2
o
is achieved at  = − and equals 1

4
.

Then

max
≤0

{−Φ (−  )} ≤ max
≤0

½
− 

(−  )2

¾
=

1

4

and 1
4
→ 0 thus max

≤0
{−Φ (−  )}→ 0 as  →∞.

Proposition 2 a) If   0, then the maximum Type II regret of threshold decision rule  over

the set Γ equals

max
∈Γ:0

 (  ) = max
∈Γ:0

©


¡
̄ ≤ 

¢ª
= max

∈Γ:0

(
Φ

"√



( − )

#)

= max
0

(
 · max

∈[̄]
Φ

"√



( − )

#)

=
̄√

max
0

½
 · max

∈[̄]
Φ
h ̄

( ∗ − )

i¾
=

̄√

max

½
max

∈(0∗)

µ
Φ

∙
̄


( ∗ − )

¸¶
max
≥∗

(Φ [ ∗ − ])

¾
=

̄√

max
≥∗

{Φ [ ∗ − ]}

The third line uses substitutions  ≡
√

̄
 and  ∗ ≡

√

̄
 . The fourth line uses the fact that

max
∈[̄]

Φ
£
̄

( ∗ − )

¤
= Φ

h
̄

( ∗ − )

i
for    ∗ and max

∈[̄]
Φ
£
̄

( ∗ − )

¤
= Φ [ ∗ − ] for  ≥

 ∗. The last equality follows from the condition (7).

Similar derivation for maximum Type II regret over the set Γ̄ shows that for   0:

max
∈Γ̄:0

 (  ) = max
0

(
 · Φ

"√


̄
( − )

#)
=

̄√

max
0

{Φ [ ∗ − ]}

=
̄√

max

½
max

∈(0∗)
(Φ [ ∗ − ]) max

≥∗
(Φ [ ∗ − ])

¾
=

̄√

max
≥∗

{Φ [ ∗ − ]} .

The last equality holds because Φ [ ∗ − ] ≤ Φ
h
̄

( ∗ − )

i
for    ∗, thus condition (7) implies
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max
∈(0∗)

(Φ [ ∗ − ]) ≤ max
≥∗

(Φ [ ∗ − ]).

If  ≤ 0, then  −   0 for all   0, thus max
∈[̄]

Φ
h√



( − )

i
= Φ

h√

̄
( − )

i
and

max
∈Γ:0

 (  ) = max
0

(
 · max

∈[̄]
Φ

"√



( − )

#)

= max
0

(
 · Φ

"√


̄
( − )

#)
= max

∈Γ̄:0
 (  ) .

The proof is analogous for Type I regret.

b) Suppose that 0
¡
̄ 2

¢
has both lower maximum Type I regret and lower maximum Type

II regret than  over the set Γ. Since  achieves maximum Type I and II regret over the subset

Γ̄, it follows that

sup
∈Γ̄:≤0


¡
0 

¢ ≤ sup
∈Γ:≤0


¡
0 

¢
 max

∈Γ:≤0
 (  ) = max

∈Γ̄:≤0
 (  ) 

sup
∈Γ̄:0


¡
0 

¢ ≤ sup
∈Γ:0


¡
0 

¢
 max

∈Γ:0
 (  ) = max

∈Γ̄:0
 (  ) 

Since the class of threshold decision rules is essentially complete for the problem with fixed variance,

there must be a threshold decision rule  0 ≡ 1
¯̄
̄   0

¯̄
such that 

¡
0 

¢ ≤  ( 0  ) for all

 ∈ Γ̄. Then

sup
∈Γ̄:≤0

 ( 0  ) ≤ sup
∈Γ̄:≤0


¡
0 

¢
 max

∈Γ̄:≤0
 (  ) 

sup
∈Γ̄:0

 ( 0  ) ≤ sup
∈Γ̄:0


¡
0 

¢
 max

∈Γ̄:0
 (  ) 

which contradicts the conjecture that  is a solution to the minimax regret or asymmetric minimax

regret problem over the feasible set Γ̄. Thus 0 cannot have both lower maximum Type I and lower

maximum Type II regret than  .

Lemma 3 I will provide the proof for ̄  (), the proof for ̄  () is analogous.

For a fixed ̄, 
¡
̄ 
¢
is a bounded continuous function of  on the closed interval [ 0], thus
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attains its maximum. Also,

| (1)− (2)|  ⇒ sup
:∈[0]

| (1 )− (2 )|  ,

thus max
:∈[0]

 ( ) is a continuous function of  ().

For any fixed  ∈ (0 0),

 (  ) = − ·
⎧⎨⎩1−  · ( )−

X
≤

 ( )

⎫⎬⎭
is a strictly decreasing function of  () =  + (1− ). For  = 0,  (  ) is also a strictly

decreasing function of  () for  () ∈ [0 1] and  (  0) = 0 for  () ≥ 1. If follows that
max

:∈[0]
 ( ) is a strictly decreasing function of  ().

If  () =  + 1, then  =  = 0, thus  (  ) = 0 for any  ∈ (0 0).

Proposition 4 It follows from lemma 3 that maximum regret of the minimax regret treatment

rule lies between maximum Type I and maximum Type II regret of the plug-in treatment rule:

min
¡
̄  ( )  ̄  ( )

¢ ≤ max
∈Γ

 (  ) ≤ max ¡̄  ( )  ̄  ( )
¢
.

If
q


0(1−0)̄  ( ) and

q


0(1−0)̄  ( ) both converge to max
0

[Φ (−)], then it fol-
lows that max

∈Γ
 (  ) converges to the same limit. I will establish that

q


0(1−0)̄  ( )→

max
0

[Φ (−)], the proof for
q


0(1−0)̄  ( ) is analogous.

To simplify notation, I will use the following substitutions:

 =

q
 (1− )

0 =
p
0 (1− 0) and

 =

√


0
( − 0) .

I will use the Berry-Esseen inequality to show that
√

0


³
  0 +

0√


´
uniformly converges

to Φ (−) for  ∈ ¡0 3
2
−20

¤
as  → ∞. Since the function Φ (−) reaches its maximum at
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 ≈ 752 and 3
2
−20 ≥ 6, max

0
[Φ (−)] = max

∈(0 32
−2
0 ]
[Φ (−)]. I use Chebyshev’s inequality to

show that
√

0


³
  0 +

0√


´
 max

0
[Φ (−)] for   3

2
−20 .

For any   0, there is 1 such that for all   1:

(8) sup
∈(0 32

−2
0 ]

¯̄̄
Φ
³
−0



´
−Φ (−)

¯̄̄


20
3
,

because the standard normal c.d.f. Φ has a bounded derivative, 0 6= 0, and sup
∈(0 32

−2
0 ]

¡
1− 0



¢→ 0

as  →∞.
Application of the uniform Berry-Esseen inequality to , which is a sum of  independent

Bernoulli random variables with mean  (cf. Shiryaev (1995, p. 63)), yields¯̄̄̄
¯

Ã√




µ



− 

¶
≤ 

!
−Φ ()

¯̄̄̄
¯ ≤ 2 + (1− )

2p
 (1− )

√

,

for any  ∈ R.where Φ is the standard normal c.d.f.
There exists 2 such that for   2  ∈ ¡0 3

2
−20

¤
implies  ∈

h
0

1+0
2

i
. The function

2+(1−)2√
(1−)

is continuous and bounded on  ∈
h
0

1+0
2

i
since 0  0 and 1+0

2
 1. Let  ≡

max
∈


0

1+0
2

 2+(1−)2√
(1−)

. Then for   2 and  ∈ ¡0 3
2
−20

¤

(9)

¯̄̄̄
¯

Ã√




µ



− 

¶
≤ 

!
−Φ ()

¯̄̄̄
¯ ≤ √


.

There exists 3  2 such that
√



20
3
 for   3.

Since



Ã√




µ



− 

¶
≤ −0




!
= 

Ã√




µ



− 

¶
≤ −
√



( − 0)

!
= 

µ



≤ 0

¶
,

letting  = −0

 in (9) yields for   3

sup
∈(0 32−20 ]

¯̄̄̄


µ



≤ 0

¶
−Φ

³
−0



´¯̄̄̄
≤ 20
3
.
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Combining this result wtih (8) shows that for   max(1 3)

sup
∈(0 32−20 ]

¯̄̄̄


µ



≤ 0

¶
−Φ (−)

¯̄̄̄
≤

sup
∈(0 32

−2
0 ]

¯̄̄
Φ
³
−0



´
−Φ (−)

¯̄̄
+ sup

∈(0 32
−2
0 ]

¯̄̄̄


µ



≤ 0

¶
−Φ

³
−0



´¯̄̄̄
≤ 2

3
20,

and, since 
³
  0 +

0√


´
= 0√


 · 

¡


≤ 0

¢
for   0

sup
∈(0 32

−2
0 ]

¯̄̄̄
¯
√


0


µ
  0 +

0√



¶
− Φ (−)

¯̄̄̄
¯ =

sup
∈(0 32−20 ]

¯̄̄̄
 · 

µ



≤ 0

¶
− Φ (−)

¯̄̄̄
≤

3

2
−20 sup

∈(0 32
−2
0 ]

¯̄̄̄


µ



≤ 0

¶
−Φ (−)

¯̄̄̄
≤ .

The one-sided Chebyshev’s inequality shows that



µ



≤ 

¶
= 

µ



−  ≤ 0 − 

¶
≤ 1

1 + 
2
( − 0)

2
≤ 1

420
2
,

where the last inequality uses substitution  − 0 =
0√

 and the second one uses 2 ≤ 1

4
. For

  3
2
−20 this implies

√


0


µ
  0 +

0√



¶
=  · 

µ



≤ 0

¶
≤  · 1

420
2
≤ 1
6
 max

0
[Φ (−)] .

Thus, for   max (1 3)¯̄̄̄
¯ max:0

√


0
 (  )−max

0
[Φ (−)]

¯̄̄̄
¯  

Proposition 5 Let  denote the variance of a random variable in state of the world  and let

 ≡  [ (1)]. I will consider the case when   0, the proof for  ≤ 0 is analogous.

For all  such that  [ (1)] 
2


9
(thus 

h
1


P
=1  − 

i


2


9
) the one-sided Chebyshev’s
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inequality shows that



Ã
1



X
=1

 ≤ 0

!
= 

Ã
1



X
=1

 −  ≤ − ( − 0)

!
≤ 1

1 + 9
2


( − 0)
2
.

Applying the result to the formula for regret of the plug-in rule  yields

 (  ) = ( − 0) · 
Ã
1



X
=1

 ≤ 0

!
≤ 

3
√

·

q
9
2


( − 0)

1 + 9
2


( − 0)
2
≤ 

6
√

.

To obtain the last inequality, observe that max
0


1+2

= 1
2
.

For all  such that  − 0 ≥ 6 √

, also apply Chebyshev’s inequality, using the fact that



h
1


P
=1  − 

i


2



:



Ã
1



X
=1

 ≤ 0

!
= 

Ã
1



X
=1

 −  ≤ − ( − 0)

!
≤ 1

1 + 
2


( − 0)
2
.

Applying the result to the formula for regret of the plug-in rule  yields

 (  ) = ( − 0) · 
Ã
1



X
=1

 ≤ 0

!
≤ √


·

q

2


( − 0)

1 + 
2


( − 0)
2
≤ 

6
√

.

The last inequality holds because
q


2


( − 0) ≥ 6 and max
6


1+2

 1
6
.

For all  such that  − 0  6 √

and  [ (1)] ∈

h
2


9
 2

i
, let’s apply the Berry-Esseen

inequality (cf. Shiryaev (1995, p. 374)) to the sum of  i.i.d. random variables ( − ), for any

 ∈ R:

(10)

¯̄̄̄
¯

Ã √
p

 [ (1)]

Ã
1



X
=1

 − 

!
≤ 

!
−Φ ()

¯̄̄̄
¯ ≤  | (1)−  |3


32
 [ (1)]

√

.

Substitute  =
√
√

 [(1)]
(0 − ) into (10) and it becomes

¯̄̄̄
¯

Ã
1



X
=1

 ≤ 0

!
−Φ

Ã √
p

 [ (1)]
(0 − )

!¯̄̄̄
¯ ≤  | (1)− |3


32
 [ (1)]

√

.
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Since  (1)−  ∈ [0 1],  | (1)−  |3 ≤  [ (1)] and  [ (1)] ≥ 2


9

 | (1)− |3

32
 [ (1)]

√

≤ 1


12
 [ (1)]

√

≤ 3


√

,

thus ¯̄̄̄
¯

Ã
1



X
=1

 ≤ 0

!
−Φ

Ã √
p

 [ (1)]
(0 − )

!¯̄̄̄
¯ ≤ 3


√

.

Applying the result to the regret formula for  yields

 (  ) = ( − 0) · 
Ã
1



X
=1

 ≤ 0

!
≤

≤ ( − 0) ·
Ã
Φ

Ã √
p

 [ (1)]
(0 − )

!
+

3


√


!
≤

≤
p
 [ (1)]√


max
0

Φ (−) + 3 ( − 0)


√


≤

≤ √

max
0

Φ (−) + 18

.

The last inequality uses  − 0  6
√

.

The three cases considered are exhaustive of all states of the world  with   0. If  [ (1)] 

2


9
, or  [ (1)] ≥ 2



9
and  − 0 ≥ 6 √


, then

√
 (  ) ≤ 

6
  ·max

0
[Φ (−)] .

If  [ (1)] ≥ 2


9
and  − 0  6

√

, then

√
 (  ) ≤  ·max

0
Φ (−) + 18√


,

thus
√
 sup

∈Γ
 (  ) ≤  ·max

0
[Φ (−)] +  (1).
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