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Abstract

We make the point that a flexible specification of spousal preferences and household pro-
duction technology precludes the possibility of using revealed preference data on household
time allocations to determine the manner in which spouses interact. Under strong, but
standard, assumptions regarding marriage market equilibria, marital sorting patterns can
be used essentially as “out of sample” information that allows us to assess whether house-
hold behavior is cooperative. We use a sample of households drawn from a recent wave
of the Panel Study of Income Dynamics, and find some evidence supporting the view that
households behave in a cooperative manner.

JEL: D13, J12, J22
Keywords: Bilateral Matching, Household Time Allocation, Nash Bargaining



1 Introduction

Most analyses of household behavior conducted at the microeconomic level posit cooper-
ative behavior by spouses (for an exception, see Chen and Woolley (2001)). In fact, Chi-
appori and his coauthors (e.g., Chiappori (1992), Browning and Chiappori (1998)) have
argued that all such models should posit efficiency as an identifying assumption when at-
tempting to estimate individualistic preferences using data on household allocations. Such
an assumption, however, leads to other difficult identification issues since the dependent
variables, which are household allocations, are not uniquely determined.

In order to “close” the cooperative model, analysts have resorted to one of two devices.
Since some of the original bargaining approaches to household behavior relied on the Nash
bargaining axiomatic solution (e.g., Manser and Brown (1980) and McElroy and Horney
(1981)), the use of some sort of refinement to select one of the continuum of possible
outcomes associated with points on the Pareto frontier was a jumping off point (McElroy
(1990)). While the use of a refinement approach solves the multiple equilibria problem,
it does so at the cost of the necessity of specifying outside options and bargaining power
weights (in the case of nonsymmetric Nash bargaining).

Alternatively, Chiappori and his collaborators (e.g., Chiappori (1988,1992), Browning
et al. (1994), Browning and Chiappori (1998)) have proposed a data-based strategy to
estimate the household utility function µU1(x)+(1−µ)U2(x), where µ is the Pareto weight
attached to the individualistic utility of agent 1, and x is a vector of consumption choices.
The solution to this problem is guaranteed to lie on the Pareto frontier for µ ∈ [0, 1].Model
identification is achieved through restrictions regarding the arguments of the weighting
and individualistic utility functions as well as functional forms. Identification is achieved
without resort to a specific axiomatic solution, with the data given the power to solve the
multiple equilibria problem within the particular model structure.

While each of these competing approaches to the estimation of cooperative equilibria
have their own advantages, both clearly have some unappealing aspects as well. From an
econometric perspective, noncooperative equilibria are attractive since it is often straight-
forward to demonstrate existence and uniqueness given common specifications of spousal
objectives, household production technologies, and constraint sets. Though cooperative
equilibria lead each spouse to a superior welfare outcome in the absence of transactions
costs associated with attaining the Pareto frontier, some prior empirical evidence suggests
that the welfare gain to cooperative behavior may be small. For example, under strong
functional form assumptions on individualistic utilities, Del Boca and Flinn (2006) found
generally small differences between welfare levels associated with cooperative and nonco-
operative behavior in a sample of Italian married couples within a framework that allowed
for the choice of mode of behavior. In analyzing the behavior of divorced parents, Del Boca
and Flinn (1994) whose welfare was interdependent due to the presence of their child, the
authors found little difference in the welfare of the parents under cooperative and nonco-
operative behavior. These results are quite idiosyncratic of course, and do not imply that
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expenditure patterns cannot be very different under alternative behavioral assumptions.
However, they do raise the question of whether, in the presence of implementation costs
associated with cooperative outcomes, spouses should choose cooperative solutions to the
allocation problem.

In this paper we explore the issue of the “mode” of household behavior, and for simplic-
ity focus on only two alternatives, Nash equilibrium (NE) and symmetric Nash bargaining
(NB). We first show that after allowing for general forms of population heterogeneity in
preferences, household productive ability, market productivity, and time endowments, it is
not possible to distinguish between NE and NB on the basis of household time allocation
decisions. To do so requires imposing homogeneity restrictions that may not be justifiable
and are rarely tested.

Nevertheless, we show that the patterns of marital sorting observed in the data do
contain information on the manner in which household members interact. We are by no
means the first to point this out. Following the view of Becker (1991) that marriage is a
partnership for joint production and consumption, several authors have analyzed aspects
of the marriage market to explore marital behavior and the gains to marriage (e.g., Choo
and Siow (2006), Dagsvik et al. (2001), Pollack (1990)). Other research has explored
the effects of the marriage market on household behavior. While Aiyagari, Greenwood
and Guner (2000) and Greenwood, Guner and Knowles (2003) have focused on the link
between the marriage market and parental investments in children and patterns of intergen-
erational mobility, Fernandez et al. (2005) have studied the implication of marital sorting
for household income inequality.

Micro analyses such as Browning et al. (2003), Seitz (1999), and Igiyun and Walsh
(2004) have explored aspects of household formation that precede marriage to merge house-
hold models with marital sorting in order to explore the implications of spousal matching
for intrahousehold allocations. While the objective of these papers is mainly to identify
sharing rules and to consider with household allocations are efficient, we use marital sorting
to investigate what type of interaction is most consistent with observed outcomes.

The basic idea of our approach can be summarized in the following way. We begin by
assuming that spouses interact using some rule R, and then use the observed household
time allocations, along with exogenously determined wages and nonlabor incomes, to “back
out” the parameters characterizing both spouses within each household in the sample. Us-
ing these individual-specific parameters, we can then construct preference orderings for
each male over all possible females in this marriage “sub-market” assuming the household
allocations are chosen according to R, and we can construct the preference orderings for
the females in a similar manner. Armed with these R-specific preference orderings, we then
apply the Gale and Shapley (1962) - henceforth GS - bilateral matching algorithm to de-
termine the predicted equilibrium matches under R.We then compare the correspondence
between the predicted matches and the observed ones for R using a variety of metrics.
This analysis is conducted for the two modes of behavior (R) we consider, symmetric Nash
bargaining and Nash equilibrium, and we conclude by comparing the relative performance
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of the two rules under the various metrics examined.
The plan of the paper is as follows. Section 2 contains the description of the model and

the bilateral matching algorithm. In Section 3 we explore econometric issues, which are
reasonably straightforward for the most part. Empirical results are presented in Section 4,
and Section 5 contains a brief conclusion.

2 Model

A focus of our attention will be household formation. Without loss of empirical generality
(as we shall see below), we will assume the following simple determination of household
utility in a static context. We assume a Stone-Geary utility function for spouse i of the
form

ui(li,K) = αi ln(li − λi) + (1− αi) ln(K −Ki), i = 1, 2,

where li is the leisure of spouse i, λi is their leisure “subsistence level,” K is a public good
that is produced within the household, Ki is the subsistence level of the public good for
spouse i, and αi is the preference weight attached to “discretionary” leisure. For purposes
of model identification, we will normalize the subsistence level Ki = 0, i = 1, 2. The
household good K is produced according to a Cobb-Douglas technology

K = τ δ11 τ
δ2
2 M,

where τ i is the time input of spouse i in household production, δi is the elasticity of K
with respect to time input τ i, and M is total income of the household, or

M = w1h1 + w2h2 + y1 + y2,

where wi is the wage rate of spouse i, hi is their hours of work, and yi is the nonlabor
income of spouse i.We assume that each of the production elasticities δ1 and δ2 is strictly
positive, so that there are increasing returns to household production.1 The “physical”
time endowment of each spouse is T, and

T = li + hi + τ i, i = 1, 2.

It will be convenient to think of there being a “notional” time endowment specific to each
individual in the population. This notational time endowment is equal to T̃i ≡ T − λi,
where λi can be positive, negative, or zero.

Each individual has their own value of market productivity, with the value of their time
in the market given by wi. Moreover, each individual has a nonlabor income level of yi.
Both of these quantities are determined outside of the model.

1We have chosen not to impose constant returns to scale in this function for purposes of conducting the
matching analysis conducted below.
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Within our framework, all households in the population share the same preference and
household production structure. The population is, however, characterized by heterogene-
ity in all of the parameters that appear in the functions defined above. The population
consists of two types of agents, males (husbands) and females (wives). Each subpopulation
is characterized by a distribution of characteristics particular to that type. The cumulative
distribution function of characteristics of individuals of gender i is

Gi(αi, δi, T̃i, wi, yi).

Then a household is defined by the vector of state variables

S = (α1, δ1, T̃1, w1, y1) ∪ (α2, δ2, T̃2, w2, y2).

Given a value of S, the household determines equilibrium time allocations and the
resultant welfare distribution in the household according to some rule R. Thus R is a
mapping from S into a vector of observable household choices, in our case given by the
vector

C = (h1, h2, τ1, τ2).

Thus
C = R(S). (1)

We will discuss specific properties of the mapping R below, but for now we assume that R
assigns a unique value E to any vector S ∈ ΩS, where we will think of ΩS as the parameter
space of household characteristics.

2.1 Noncooperative Behavior

We begin our investigation of the time allocation decision of the household with the case
of Nash equilibrium. Later we will turn our attention to cooperative models of household
behavior.

The reaction function for spouse 1 in a household characterized by S is given by

(h1, τ1)
∗(h2, τ2;S) = argmax

h1,τ1
α1 ln(T̃1 − h1 − τ1)

+(1− α1)[δ1 ln τ1 + δ2 ln τ2 + ln(y + w1h1 + w2h2)].

Assuming an interior solution for h, 2 the solutions are given by continuously differentiable
functions

h∗1 = h∗1(h2, τ2;S)

τ∗1 = τ∗1(h2, τ2;S).

2Whenever α1 > 0 and δ1 > 0, an interior solution for τ1 is assured by the Inada condition.
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An analogous pair of reaction functions exists for the second individual. Under our specifi-
cation of preferences and the production technology, there exists a unique Nash equilibrium

h∗∗1 = h∗1(h
∗∗
2 ; τ

∗∗
2 ;S)

τ∗∗1 = τ∗1(h
∗∗
2 , τ∗∗2 ;S)

h∗∗2 = h∗2(h
∗∗
1 , τ∗∗1 ;S)

τ∗∗2 = τ∗2(h
∗∗
1 , τ∗∗1 ;S).

Insuring that h∗∗1 and h∗∗2 are both greater than zero requires restricting the parameter
space ΩS. We will provide further discussion on this point in the econometrics section
below.

Associated with the Nash equilibrium is a welfare pair (V NE
1 (S), V NE

2 (S)). These val-
ues will be used as outside options in the Nash Bargaining part of the analysis. After
considering the marital sorting process, we will justify the use of these values as threat
points.3

2.2 Symmetric Nash Bargaining

We consider the case of symmetric Nash bargaining, once again, without any loss of (em-
pirical) generality. Denote the outside options of the husband and wife by Q1(S,Z1) and
Q2(S,Z2), where Zi represents environmental characteristics for individual i that influence
the value of the alternative to behaving cooperatively within marriage S. Then the Nash
bargained household time allocation is

(hNB
1 , τNB

1 , hNB
2 , τNB

2 )(S,Z1, Z2)

= arg max
h1,τ1,h2,τ2

(U1(h1, τ1, h2, τ2;S)−Q1(S,Z1))× (U2(h1, τ1, h2, τ2;S)−Q2(S,Z2)),

where Ui(h1, τ1, h2, τ2;S) = αi ln(T̃i − hi − τ i) + (1− αi)[δ1 ln τ1 + δ2 ln τ2 + ln(y1 + y2 +
w1h1+w2h2)], i = 1, 2. Given our soon to be justified assumption that Qi(S,Zi) = V NE

i (S),
we will dispense with the variables (Z1, Z2), and write

(hNB
1 , τNB

1 , hNB
2 , τNB

2 )(S)

= arg max
h1,τ1,h2,τ2

(U1(h1, τ1;S)− V NE
1 (S))× (U2(h2, τ2;S)− V NE

2 (S)) (2)

We note that since we restrict the parameter space ΩS so as to produce noncooperative
time allocations that are strictly positive, the choices made under Nash bargaining, with
the noncooperative equilibrium values serving as outside options, will be strictly positive
as well.

3We will consider the case in which there are an equal number of males and females in the population.
In the marriage equilibrium we define all agents will have the possibility of being married to an individual
of the opposite sex. We find that the value of marriage exceeds the value of living alone for all population
members in equilibrium, so the correct outside option will be the value of noncooperative marriage.
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2.3 Single Agent Welfare

Single agents must produce their own household goods and as a result receive no “sub-
sidy” from a partner in terms of time contributions to production4 or money contributions
through earnings and nonlabor income. Then the production technology the single indi-
vidual i faces is

K = τ δii (yi + wihi), (3)

where we have used the convention 00 = 1 in eliminating the missing spouse’s time contri-
bution.5 Then the single agent has a utility yield of

V 0i (Si) = max
hi,τ i

αi ln(T̃i − hi − τ i)

+(1− αi)[δi ln τ i + ln(yi + wihi)],

where Si ≡ (αi, δi, T̃i, wi, yi).

2.4 Marital Sorting

The subpopulation distributions G1 and G2 are assumed to exogenously determined. The
marriage model equilibrium which matches males an females produces an endogenous joint
distribution of S, which we denote by H(S), of which G1 and G2 are appropriately defined
marginal distributions.

We consider the case of a closed population in which there exists a total of 2N indi-
viduals, equally divided between males and females. Male i is defined by his vector of
characteristics

mi = (α1i, δ1i, T̃1i, w1i, y1i),

while female j is defined by her characteristics vector

fj = (α2j , δ2j , T̃2j , w2j , y2j).

Following GS, we consider the simple case in which their exists a marriage market in
which individuals from the different subpopulations are matched one-to-one, all individual
characteristics are perfectly observable, and the market clears instantaneously. Each male
has preferences over possible mates, with the preference ordering of male mi given by
P (mi).

Similarly, the preference ordering of woman j is given by P (fj). In each case, the
preference ordering amounts to a sequence of potential mates ranked in descending order,

4Our specification of household production and utility could lead to “negative” subsidies if the spouse
provides less than 1 unit of time to household production. Income externalities could be zero but never
negative.

5That is, the missing spouse has an associated δ equal to 0 and supplies 0 amounts of time to household
production.
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and may include ties. In addition, remaining single may dominate being married to certain
individuals of the opposite sex. The value of this state we shall denote by f0 to a male
(that is, the “null” female) and m0 if we are describing the preference ordering of a female.
For example, with N = 5, we could have

P (m4) = f3, f1, f2, f5, f4.

That is, male 4’s first choice as a mate is female 3, followed by 1, 2, 5, and 4. The preferences
of female 2 might be represented by

P (f2) = m4,m1,m3,m0. (4)

In this case, she prefers male 4 to male 1 to male 3, and would rather live alone than be
married to either male 2 or male 5. As soon as we hit the null individual in the preference
ordering, the ordering “stops.”

A marriage market is defined by (M,F ;P ), where

P = {P (m1), ..., P (mN);P (f1), ...P (fN)}

is the collection of preferences in the population, M = {m1, ...,mN}, and F = {f1, ..., fN}.
Then we have the following:

Definition 1 A matching µ is a one-to-one correspondence from the set M ∪F onto itself
of order 2 (that is µ2(x) = x) such that µ(m) ∈ F and µ(f) ∈M. We refer to µ(x) as the
mate of x.

The notation µ2(x) = x is read as µ(µ(x)), and just means that the mate of individual
x0s mate is individual x.

Definition 2 The matching µ is individually rational if each agent is acceptable to his or
her mate. That is, a matching is individually rational if it is not blocked by any (individual)
agent.

This is a weak concept, particularly in our application, since matched individuals will
almost invariably be better off than unmatched individuals no matter what the quality level
of their mate. A stronger notion is one of stability. Say that a matching µ has resulted in
µ(mi) = fj and µ(fk) = ml, but that male i strictly prefers fk to fj and female fk strictly
prefers mi to ml. Then the pair (mi, fk) can deviate from the matching assignment µ and
improve their welfare. Such a match is unstable in the terminology of GS.

Definition 3 A matching µ is stable if it is not blocked by any individual or any pair or
agents.
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The main achievement of GS was to set out an algorithm for finding an equilibrium of
the marriage game that was decentralized and constructive in the sense of establishing that
at least one stable matching equilibrium exists. They assumed that preferences of agents
were public information and a convention regarding the meeting and offering technology.
Roth and Sotomayer (1990) devote considerable attention to the design of mechanisms
that elicit truthful revelation of preference orderings when preferences are not public infor-
mation, and also explore alternative meeting and proposal technologies. These important
issues will be of less importance to us here given the nature of the application and the
econometric and empirical focus of our analysis.

In our application a male individual i is characterized by the vectormi = (α1i, δ1i, T̃1i, w1i, y1i).
His induced preference ordering over the females f1, ...fN is determined by R in the follow-
ing manner. If mi and fj are matched, then the household is characterized by

Si,j = mi ∪ fj . (5)

Then equilibrium time allocations in the household are given by

Cij(R) = R(Sij). (6)

Given our assumptions regarding the form of the “payoff” functions to i and j, we can
define the value to mi of being matched with fj under R as

Vi(j;R) = α1i ln(l
∗
1(Sij ;R)) + (1− α1i) ln(τ

∗
1(Sij ;R)

δ1iτ∗2(Sij ;R)
δ2j

×(w1ih∗1(Sij ;R) +w2jh
∗
2(Sij ;R) + y1i + y2j)).

Given behavioral mode R, the preference ordering of i is given by

P (mi|R) = f i(1)(R), f
i
(2)(R), ..., f

i
(N)(R),

where
Vi(f

i
(1)(R);R) > Vi(f

i
(2)(R);R) > ... > Vi(f

i
(N)(R);R).

Given knowledge of mi, fj , and R, the preference ordering of all population members is
determined. This implies the following.

Definition 4 A marriage market is defined by (M,F ;R).

An equilibrium assignment is a function of marriage market characteristics. Then the
set of stable matchings is determined by the characteristics vectors M and F and the be-
havioral model R, or Θ(M,F ;R).Now there may exist, and generally do exist, multiple
stable assignment equilibria. Among this set of equilibria, attention has focused on the
two “extreme” stable matchings, the one that is most beneficial to men and the one most
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beneficial to women.6 The GS matching algorithm, which they termed “deferred accep-
tance,” enables one to determine at least these two, of the many possible, equilibria in a
straightforward manner. We describe the computation of the male-preferred equilibrium.
In a given round,

1. Each male not tentatively matched with a female makes a marriage proposal to the
woman he most prefers among the set of women who have not rejected a previous
proposal of his. If he prefers the state of being single to any of the women in his
choice set, he makes no offer.

2. Each woman (tentatively) accepts the proposal that yields the maximum payoff to
her from the set of offers made to her during the round plus the value of the match
with the offer she carries over from the previous round (she may reject one or more
proposals because the option of remaining single dominates them). Any man whose
offer is refused in the period cannot make another marriage proposal to the woman
rejecting him in future rounds.

3. The process is repeated until no man makes a marriage proposal to any woman.

The female preferred stable matching equilibrium is found in the identical way after
reversing the roles of two sexes as proposers and responders.

There may well exist other stable matchings besides these two. Given the generality
of the preference structure, the size of the individual characteristic space, and the number
of individuals in the marriage market in our empirical analysis (877), it is not possible
to attempt to enumerate all possible stable matchings. We have computed the predicted
marriage assignments using estimates of the state vectors mi and fj under the two R that
we consider. We found that the same pairs were matched in over 96 percent of the cases
in the male-preferred and female-preferred matchings. As a result, we use pairings from
the male-preferred equilibria only in all of the empirical work that follows. The reader
should bear in mind that other equilibria exist, even if they are not so different in metrics
of concern to us in this exercise.

3 Econometrics

We consider estimation of the marriage market equilibrium in sequence. We begin with
the issue of the estimation of (M,F ), the distribution of gender types. In this paper we do
not treat the difficult censoring issues that arise when not all household members supply
time to the labor market or in household production. Then, given that there are no corner
solutions in the time allocation decisions with the household, we are able to posit that the
entire vector

Ak = (h1k, h2k, τ1k, τ2k, w1k, w2k, y1k, y2k), k = 1, ..., N,

6When there is a unique equilibrium these stable matchings are identical, of course.
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is observable by the analyst, where we have constructed the male and female indexing so
that in the data male i is married to female i, i = 1, ...,N, in the data. It will be useful to
partition this vector into two subvectors,

A1k = (h1k, h2k, τ1k, τ2k),

A2k = (w1k, w2k, y1k, y2k),

with A1k representing the (endogenous) time allocations of household k and A2k the ob-
servable (to the analyst) state variables. The unobservable state variables in household
k are (α1k, α2k, T̃1k, T̃2k, δ1k, δ2k). As will become apparent soon, we will require further
restrictions on the variability in the unobservable characteristics if we are to be able to
nonparametrically identify the model. We will restrict the αik, i = 1, 2, k = 1, ..., N, to
have no variation within the population of males and females (individually), so that

α1i = α1,

α2i = α2, i = 1, ..., N.

Assume that the values α1 and α2 are known, for now. Then denote the remaining unob-
served household characteristics by

A3k = (T̃1k, T̃2k, δ1k, δ2k).

The data used in the empirical work discussed below are drawn from the Panel Study
of Income Dynamics (PSID). In keeping with the static setting of the model, we use data
pertaining to household characteristics and time allocation decisions in one year, 2000. We
chose this year because information on the time spent in household tasks is widely available
for both spouses in that year.

We assume that the PSID is randomly drawn from the population distribution of mar-
ried households in this year (which is an unlikely situation, admittedly), and that all
households in the population belong to one unified marriage market. As we shall see be-
low, this assumption is critical if we are to perform meaningful statistical analyses of the
PSID data. Within this marriage market, assumed large, we consider the restrictive case
in which there exists an equal number of males and females, with the stable match im-
plying all agents are married. The characteristic vectors defining males and females, m
and f, have associated distribution functions G1 and G2, respectively. Since we have a
random sample of households, we also have a random sample of household members given
the marriage assignment rule.

Using a random sample of N households from the population marriage market, the first
task is to estimate the distribution functions G1 and G2. For household k, we can restate
(1) as

A1k = R(A2k ∪A3k).
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Proposition 5 Assume all households in the population behave according to R, and that
R is invertible in the sense that there is a unique value of A3k such that

A3k = R−1(A1k ∪A2k) (7)

for all values of A1k∪A2k. Then the distributions G1 and G2 are nonparametrically identified
and can be consistently estimated.

Proof: Given knowledge and invertibility of R, then R−1 is a known function. If A1k
and A2k are observed without error, then the vector A

3
K is observable as well. Since the

vectors A1k and A2k are observed for a random sample of households, then A3k is as well.
Define the vectors

Xk = (A3k, w1k, w2k, y1k, y2k),

X1
k = (T̃1k, δ1k, w1k, y1k),

X2
k = (T̃2k, δ2k, w2k, y2k).

The vector X1
k is an i.i.d. draw from G1 and X2

k is an i.i.d. draw from G2. Then define

ĜN
1 (x) = N−1

NP
k=1

χ(X1
k ≤ x),

ĜN
2 (x) = N−1

NP
k=1

χ(X2
k ≤ x).

Since {X1
1 , ...X

1
N} and {X2

1 , ...,X
2
N} are both random samples from their respective popu-

lations, we know that
plim
N→∞

ĜN
i (x) = Gi(x), i = 1, 2,

by the Glivenko-Cantelli Theorem.¥
The following important implication immediately follows.

Proposition 6 Let < be the set of equilibrium rules that determine time allocations in the
household that are invertible in the sense of (7). Then all R ∈ < are equivalent descriptions
of sample information.

Proof: Consider a household k in the sample. We observe four household choices D1
k =

(h1k, h2k,τ1k,τ2k) and we have four unobservable characteristics of the spouses. Thus given
any D2

k = (w1k,w2k,y1k, y2k) and any R ∈ <, there exists a unique vector of characteristics
(T̃1k, T̃2k, δ1k, δ2k) that generate D1

k, or

D1
k = Γ(T̃1k(R), T̃2k(R), δ1k(R), δ2k(R)|D2

k, R).
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Then for any two R,R0 ∈ <, R 6= R0,

Γ(T̃1k(R), T̃2k(R), δ1k(R), δ2k(R)|D2
k, R)

= Γ(T̃1k(R
0), T̃2k(R

0), δ1k(R
0), δ2k(R

0)|D2
k, R

0),

which describes a correspondence between (T̃1k, T̃2k, δ1k, δ2k)(R) and (T̃1k, T̃2k, δ1k, δ2k)(R0).
Consider any distance function

Q(D1
k, D̂

1
k(T̃1k, T̃2k, δ1k, δ2k|D2

k, R)),

where D̂1
k is the predicted value of the household time allocations given the characteristics

(T̃1k, T̃2k, δ1k, δ2k), D
2
k, and R. But given invertibility

(T̃1k(R), T̃2k(R), δ1k(R), δ2k(R)|D2
k, R)

= argminQ(D1
k, D̂

1
k(T̃1k, T̃2k, δ1k, δ2k|D2

k, R))

and

Q(D1
k, D̂

1
k((T̃1k(R), T̃2k(R), δ1k(R), δ2k(R)|D2

k, R)|D2
k, R)) = 0,

∀ R ∈ <

¥
Because of the flexible parameterization of spouses in terms of their types, if < contains

more than one element there are multiple ways to “reparameterize” the data, in essence.
The cardinality of < depends on assumptions made regarding the functional form of the
utility and household production functions and the features of the data. Since the proof is
not especially instructive, we simply state the following.

Proposition 7 For Stone-Geary utility functions and the Cobb-Douglas home good pro-
duction technology and for a population in which both household members supply time to
the market, the Nash equilibrium and the symmetric Nash bargaining behavioral rules both
belong to <.

This proposition carries the important implication that it is not possible to determine
whether household members (in the general population) operate under Nash equilibrium or
Nash bargaining rules of behavior by observing only within household behavior. This “im-
possibility” result mainly results from the flexible specification of population heterogeneity.
Clearly, by restricting the variability of these underlying parameters in the population, it
will generally be possible to develop tests pitting the two forms of behavior against one
another, but the outcome of such a test will be heavily dependent upon the parametric
restrictions adopted.
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3.1 Marital Sorting

Flexible specifications of population heterogeneity reduce the analyst’s ability to derive
distinguishable empirical implications from members of a class of modes of behavior. How-
ever, they do provide possibilities for developing tests based on marital sorting patterns.7

We explore the construction of such tests in this subsection.
We have assumed that our PSID sample of married individuals is drawn from a large

population of married couples. Given the nature of the marriage equilibrium concept we
are using, and side-stepping uniqueness issues, we have assumed that the households in our
N household sample consist of a subset of husbands and wives who were matched under
the GS deferred acceptance algorithm in the marriage market defined over all population
members. In our sample of size N , without loss of generality, we index the male and female
sample members so that male i is matched with female i under the male-preferred stable
match µ, . i = 1, ..., N. Then we have the following result.

Proposition 8 Define a random sample of N households matched under µ by MN and
FN . Then the set of male-preferred stable matchings in the random sample matches male
i with female i, i = 1, ..., N.

Proof: Let the male-preferred stable matching in the marriage market be given by µ.
Begin by considering the case when N = 1. The only stable matching in the marriage
submarket A(1) is (m1, f1). These are the only two individuals in the sub-market and they
are acceptable to one another since they were acceptable to one another in the full marriage
market and acceptability is a global property (i.e., independent of the choice set) since the
option always exists to remain single. Due to the restricted choice set, there is only one
stable matching.

Next consider the male-preferred stable matching for N = 2. To show that it must
be {(m1,f1), (m2, f2)}, assume that the converse is true. For the male-preferred stable
matching in the sub-market A(1 2) to be {(m1, f2), (m2, f1)}, one of the following strict
preference orderings must hold:

Case 1:

⎧⎪⎪⎨⎪⎪⎩
p(m1) = f2 f1
p(m2) = f1 f2
p(f1) = m2 m1

p(f2) = m1 m2

Case 2:

⎧⎪⎪⎨⎪⎪⎩
p(m1) = f2 f1
p(m2) = f2 f1
p(f1) = ∗ ∗
p(f2) = m1 m2

7Marital sorting is but one phenomenon that could be used to distinguish between modes of intrahouse-
hold behavior, of course. Others include divorce decisions and investments in marriage-specific capital.
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Case3:

⎧⎪⎪⎨⎪⎪⎩
p(m1) = f1 f2
p(m2) = f1 f2
p(f1) = m2 m1

p(f2) = ∗ ∗
where an ‘∗’ indicates that the ordering of this agent’s preferences are irrelevant to the
outcome.

Case 1 is not consistent with the stable matching µ in the global marriage market, since
both pairs (m1, f2) and (m2, f1) would block µ. Case 2 is not consistent with µ because the
pair (m1, f2) block, and Case 3 is not consistent with µ since (m2, f1) block. Since there
always exists a stable male-preferred matching in A(1 2) in which all agents are matched,
it must be {(m1, f1), (m2, f2)}, which is the pairing from µ.

The same argument is extended in a natural, albeit tedious, manner to the male-
preferred stable matching in groups of (equilibrium) pairs larger than 2. The set of sub-
market pairs not consistent with µ in male-preferred sub-market stable matching contains
at least one pair that would block the stable match µ in the complete marriage market.
Therefore the only male-preferred stable matching in any sub-market Γ is identical to the
µ−pairing in the complete market.¥

Let us be clear what this result does and does not imply. In any sub-market, there may
exist more than one stable matching. However, the male-preferred stable matching, which
always exists, is the same as the male-preferred stable matching in the complete marriage
market. Pairings in other stable matchings in the sub-market need not conform to the µ
stable matching with which we are working.

On the positive side, the result gives us something vitally necessary to perform statisti-
cal analysis using matched pairs of observations, particularly when the dependent variables,
so to speak, are the matches observed within sets of husbands and wives, or functions of
those matches. In particular, in some of the statistical analyses we perform, we will work
with random subsamples, or partitions, of the “complete” sample of size N. We denote a
random subsample by Γ, where Γ ⊆ {1, ...,N}, where the size of the subsample is given
by the cardinality of Γ, denoted #(Γ). The result contained in the previous proposition
clearly applies to any and all subsamples of the original sample of size N.

Definition 9 A male-preferred stable matching µ has an Independence from Irrelevant
Alternatives (IIA) property in the sense that

fi = µ(mi), i = 1, ..., N ⇒
fi = µΓ(mi), i ∈ Γ for all Γ ⊆ {1, 2, ..., N},

where µΓ is the male-preferred stable matching in subsample Γ.

The IIA property of µ is crucial if we are to have a coherent sampling theory.8 The
sampling theory underlying the statistical analysis is developed as follows. We consider the

8The issue being considered here, which is the impact of sampling a complete choice on the assessment
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marriage market to consist of N individuals of each gender, with N arbitararily large. The
male-preferring stable matching in this market is given by µ. Sample elements, as is the
case in the PSID, are defined as households, and our universe is married households within
the complete marriage market, that is, all PSID households are assumed to be drawn from
the same population marriage market.9

3.2 Choosing Between Alternative R

We look at the ability of either R to predict in-sample matches using three “methods.”
The first is purely descriptive, and involves computing the rank order correlation between
the predicted marriage partners under the behavioral rules and the actual marriage part-
ners. Since the model does not contain any random elements, if we restrict our attention
to the NE and NB rules, one of them should fit perfectly and, unsuprisingly, neither
does. The setup we have developed may still be able to produce a perfect correspon-
dence between the observed and observed matches if there exists an R̂ ∈ < such that
Q(Θ0,ΘMP (M̂(R̂), F̂ (R̂); R̂)) = 0, where Θ0 denotes the observed marital sorting pattern
and ΘMP (M̂(R̂), F̂ (R̂); R̂).denotes the male-preferring GS stable marriage sorting under
rule R̂. Since it seems difficult to constructively characterize the set <, this does not appear
to be a promising avenue to follow.

To bring randomness into the model, we allow for measurement error in wages. In
particular, we assume that the distribution of the measurement error is known (more on
this assumption below), and that the logarithm of observed wages is related to the logarithm
of true wages by

ln w̃sk = lnwsk + εsk, s = 1, 2,

where wsk is the true wage of spouse s in household k, w̃sk is the reported wage of spouse s in
household k, and the measurement error εsk is an independently and identically distributed
across households and spouses within households. In order to generate “true” wages based
on the observed wage rates, it is necessary for us to make a functional form assumption
regarding the distribution of εsk, and, as is common, we assume normality. One of the
principle reasons we have chosen to add measurement error in wages is the availability of

of choice probabilities, is reminscent of the analysis conducted by McFadden (1978). Using a multinomial
logit structure, he demonstrated that consistent estimators of choice probability parameters could be be
formed using data on restricted choice sets. As is the case here, the primary motivation for sampling large
choice sets was computational tractability.

9Assume that individuals were drawn from two separate marriage markets, with no information as to
the market membership of any sample household. Say that the male-preferred stable matching in marriage
market i is given by µi. Then if the first 5 households drawn in any sample are all from market 1, say,
the male-preferred stable matching for that sub-population would be consistent with µ1. But say a 6th

household is drawn, and that household is from market 2. Then, the male-preferred stable matching for
the subpopulation consisting of the 6 households cannot be compared to either µ1 or µ2 since there are
different group members, and there is no well-defined correspondence between the three male-preferred
stable matchings.
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high quality estimates of the measurement error variance in the logarithm of wages in the
PSID. Using a special validation survey performed in the 1980s that involved administering
the standard PSID survey instrument to a group of workers at a large factory in the Detroit
area, Bound et al (1994) were able to get reasonably precise estimates of measurement error
in wage reports by comparing subject responses with payroll records. In line with estimates
of the variance of εs they obtained (see their Table 3), we set σ2s = .13 for both husbands
and wives. Note that since we are working in wage levels, we have

w̃sk = wsk exp(εsk).

Since εsk is distributed as a mean 0 normal with variance 0.13, the measurement error in
wages has a lognormal distribution with mean 1.067 and variance 0.158.

Before describing the implications of measurement error for equilibrium marriage pat-
terns, we briefly consider its effect on estimation of the distribution of characteristics of
husbands and wives in existing households. In principle, the wage rate wsk is observed,
and therefore is not a function of the behavioral rule. Knowledge of the wsk and Ysk, along
with the values of the time allocation decisions, allows us to determine the values of T̃sk(R)
and δsk(R). We can write

A3k(R) = R−1(A1k, y1k, y2k, w1k, w2k), (8)

where we recall that A3k(R) ≡ (T̃1k(R), T̃2k(R), δ1k(R), δ2k(R)). Under the measurement
error assumptions, the true wage of spouse 1 is w1k = w̃1k exp(−ε1k) and of spouse 2 is
w2k = w̃2k exp(−ε2k). Then we rewrite (8) as

A3k(R) = R−1(A1k, y1k, y2k, w̃1k exp(−ε1k), w̃2k exp(−ε2k)).

Then define

Xk(εk) = ((A3k(R)(A
1
k, y1k, y2k, w̃1k, w̃2k, ε1k, ε2k), w̃1k, w̃2k, ε1k, ε2k, y1k, y2k)

X1
k(εk) = ((T̃1k, δ1k)(A

1
k, y1k, y2k, w̃1k, w̃2k, ε1k, ε2k), w̃1k, ε1k,y1k),

X2
k(εk) = ((T̃2k, δ2k)(A

1
k, y1k, y2k, w

∗
1k, w

∗
2k, ε1k, ε2k), w̃2k, ε2k, y2k).

Under the measurement error assumption, we have redefined the vector Xs
k to include

the measured wage of spouse s as opposed to the actual wage. We think of Xs
k as being

conditional on the measurement error draws of both the spouses, ε1k and ε2k. The estimator
of the unconditional distribution of the characteristics (T̃sk, δsk, w∗sk, ysk) for household k
is then given by

ĜN
1 (x) = N−1

Z
· · ·
Z

NP
k=1

χ(X1
k(ε1k, ε2k) ≤ x)dΦ(

ε11
σ1
)dΦ(

ε21
σ2
) · · · dΦ(ε1N

σ1
)dΦ(

ε2N
σ2
),

ĜN
2 (x) = N−1

Z
· · ·
Z

NP
k=1

χ(X2
k(ε1k, ε2k) ≤ x)dΦ(

ε11
σ1
)dΦ(

ε21
σ2
) · · · dΦ(ε1N

σ1
)dΦ(

ε2N
σ2
).
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As was the case without measurement error, the distribution function estimators are consis-
tent by the Cantelli-Glivenko theorem. While the marginal distributions of the estimators
of ys remain step functions, integrating over the measurement error distributions results
in smooth estimators of the marginal distributions of the true wage and the unobserved
individual characteristics T̃s and δs.

3.3 Computation of αs

To this point we have assumed that the preference weight on leisure varies only by gender
(i.e., all individuals of the same gender share the same value of αs) and we have treated
it as known. The four first order conditions uniquely determine the four unobserved char-
acteristics of the husband and wife conditional on a behavioral rule R and α1 and α2. We
determine values of αs after adopting a particular normalization.

To stress the dependence of the implied values of the time endowments in the household
on the preference weights α1 and α2, write the implied time endowment for individual of
gender s in household i as

T̃si(R;α). (9)

There are 168 hours in a week. We define the values of α̂s as those that result in the
average time endowment in the sample being equal to 168, or

168 = N−1
NX
i=1

T̃1i(R; α̂) (10)

168 = N−1
NX
i=1

T̃2i(R; α̂). (11)

The use of the average is admittedly somewhat arbitrary, and an argument could be made
for using the median, for example, instead. Nonetheless, given the parameterization of the
model adopted, some such normalization is required if we are to “estimate” the two values
α1 and α2.

3.4 Assessing the Relative Performance of the Two Behavioral Assump-
tions

We now turn to the predictive part of the exercise, and describe the three measures of fit
we consider.

3.4.1 Rank Order Correlation

The most straightforward comparison of the predictive abilities of the two R we consider
uses a rank correlation metric. For this comparison we assume that wages are correctly
measured. As a result, there is no randomness in the model that is consistent with the
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rank order correlation being less than one for one of the two R, if the true state of the
world is, in fact, either NE or NB. That is why this measure cannot be used as the basis
for constructing a formal statistical analysis comparing the two R. Since neither fits the
observed match pattern perfectly (in fact, far from it), both can be rejected as the true
state of the world if the model is correctly specified and all individual characteristics are
measured without error.

3.4.2 Match Prediction using Sample Subsets

Given an N married household sample, there exist 2N measurement errrors associated
with all of the measured wage rates. Given independence of these shocks across households
as well as across spouses, it is conceptually straightforward to express the probability that
a given observed pattern of sorts was generated under any of our alternative behavioral
models R. To simplify notation, let

ΘMP (M,F,R|ε) (12)

denote the marital sorting pattern given measured characteristicsM and F, behavioral rule
R, and measurement errors ε. The observed marital sorting pattern is given by Θ0. Then
over the sample of size N, the probability that the observed marriage pattern is generated
by R is

pN(R) =

Z
· · ·
Z

χ[Θ0 = ΘMP (M,F,R|ε)]dΦ(ε11
σ
)dΦ(

ε21
σ
) · · · dΦ(ε1N

σ
)dΦ(

ε2N
σ
), (13)

where we have restricted the standard deviation of measurement errors to be the same
across genders (i.e., σ1 = σ2 = σ). It is not immediately apparent that a given Θ0 can
be generated by any draw of ε given (M,F,R). In this case, pN(R) = 0 and no further
consideration of the rule R is warranted.

In computing pN(R) we face a computational problem stemming from the fact that
there is no closed form expression for the integral in (13). We adopt a Monte Carlo
integration approach, in which we take 2N independent draws from a mean-zero normal
distribution with standard deviation σ overM replications. Our estimate of pN (R) is then
given by the proportion of the M replications that resulted in the observed distribution of
marital sorts. More formally, let the mth draw of the 2N measurement errors be denoted
εm. Then

p̂NM(R) =M−1
MX

m=1

χ[Θ0 = ΘMP (M,F,R|εm)]. (14)

Consistency of the Monte Carlo integration estimator in this case requires M grow indefi-
nitely large, or

plim
M→∞

p̂NM(R) = pN(R)
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Computation of this quantity is conceptually and numerically straightforward. How-
ever, the size of M required to adequately approximate pN(R) will depend critically on
the size of the married population in the sample. For example, say M is set at 10000.
If N = 10, we may expect to observe a nontrivial number of correspondences between
the predicted matches under R and the observed marriage sorts if R is indeed the correct
behavioral rule. However, even if households behave according to R, we would expect the
likelihood that a sample of M draws yields the observed sorts to be arbitrarily close to 0
if N is equal to 10 million. We circumvent this problem by subsampling our group of 877
households in the following manner.

From the original sample of N households, randomly select J groups of size n. Let the
jth grouping of households selected n at a time be denoted by Cn

j . The groups are selected,
with replacement, from the size N sample subject to the condition that no household
appears more than once within any size n group. For example, for N = 200, n = 2,
the first group selected, denoted by C21 , might be composed of households {5, 173}. The
second group defined can be C22 = {5, 140}, for example, but cannot be {5, 5}. We want
to preclude replication of households in the same “choice set” because this would violate
the strict preference orderings over alternatives that we have assumed in defining marriage
market equilibrium.

For each of the J groups, we then take M replications of 2n independent draws from
a mean-zero normal distribution with standard deviation σ. Denote the mth draw of the
vector ε in group j by εm(j). Since the subsamples are randomly drawn, we think of the
proportion of correct picks in subsample j as being an estimate of the probability of correct
sorting predictions in a randomly selected set of n households from the marriage market
under behavioral rule R. First, denote the estimate of this probability in subgroup j by

p̂nM(j;R) =M−1
MX

m=1

χ[Θ0j = ΘMP (M(j), F (j), R|εm(j))],

where Θ0j is the observed marital sorting pattern in subgroup j, andM(j) and F (j) are the
characteristics of men and women in subgroup Cn

j . Then define the estimator of the proba-
bility of correctly predicting the actual marriage outcomes in a random sample containing
n spousal pairs by

p̂nM(R) = J−1
JX

j=1

p̂nM(j;R).

Clearly plimM→∞ p̂nM(R) 6= plimM→∞ p̂n
0

M(R) for arbitrary choices of n and n0, even
as N → ∞. Neither is it possible to explicitly characterize the relationship between these
two quantities. As a result, we compute p̂nM(R) for four different values of n, 2 through
5. For each value of n, we set J = 1000. While the values of p̂nM(R) vary greatly across
n, the relationship between p̂nM(NE) and p̂nM(NB) displays a great deal of regularity over
the four values of n.
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Since the subsets are randomly selected, and because we have a large number of them,
we consider the distribution of the p̂nM(j;R), j = 1, ..., J, as representing the sampling
distribution of the proportion of correct predictions in a groups of size n. Note that there
are two sources of randomness, given the complete sample information, that generate the
dispersion in the p̂nM(j;R). The first comes from the random composition of the groups,
and the second from the measurement error shocks.

We first find the distribution of each of the group size n sampling probabilities for the J
groups under each of the two rules. From these we compute the sample average and sample
variance, which are consistent estimators of the corresponding population qualities given
our random (sub)sampling assumption. From the sampling distribution of the differences,

d̂nM(j) ≡ p̂nM(j;NE)− p̂nM(j;NB),

we can consistently estimate the average difference in predictive ability under the two
decision rules as well as the variance of the average difference. Since J is relatively large
for any of the n we consider here, and since the Cj

n are considered i.i.d. draws from
the population of sub-marriage markets of size n, we invoke the central limit theorem
to determine whether there exists a statistically significant difference in the predictive
ability of the two R. The sample mean of the differences by d̂nM = J−1

P
j d̂

n
M(j), and

the (estimated) standard error of the difference by ds.e.(d̂nM) = J−1
qP

j(d̂
n
M(j)− d̂nM)

2.

Then under the null of no difference in predictive ability, d̂nM/ds.e.(d̂nM) is approximately
distributed as a standard normal random variable. If the absolute value of d̂nM/ds.e.(d̂nM) is
sufficiently large to cast doubt on the validity of the null, the evidence will favor the model
that provides the best correspondence to the observed marital sorts.

The prediction metric we use here is the same as that utilized in maximum score esti-
mation, and a recent application of this estimator to the bilateral matching problem (with
transferable utility) is considered in Fox (2006). In his model their exist free parameters,
which are not present in our analysis of the marriage market equilibrium. If we allowed
there to exist free parameters that characterized the marriage market and that do not ap-
pear in the payoffs of household members under a given rule R, a maximum score estimator
could be implemented using the entire sample of matches rather than the subsamples we
use here. But the main objective our exercise is model selection, as it were, in a tightly
specified model of household behavior and marriage market characteristics in which no free
parameters appear in our prediction metric. This is what distinguishes the approach here
from that of Fox.10

10An implementation of the Fox-type estimator in our context could be the following. Assume a para-
metric form for the distribuiton of individual characteristics, with the parameter vector characterizing these
two marginal distributions given by Λ. Then, assuming a rule R, find the set Λ̂ of values that maximize the
number of correct predictions. This one step estimator and the associated value of the objective function
could be used to compare fit under various values of R. The downside to its use is the necessity of selecting
a parameteric form for the marginal distributions of male and female characteristics.
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3.4.3 The Assortative Mating Metric

It is common to characterize matching equilibria in terms of the association of observed
characteristics among spouses. In our application, it is most natural to focus on wage
rates, since these are observed for all individuals, albeit with measurement error.11 As was
discussed above, it is infeasible to compare the two rules in terms of their explicit matching
predictions when using the entire sample. However, it is possible to compare their ability
to generate stable match patterns of association between observable spousal characteristics
across all matches in the sample with what is observed in the data. We will use the simple
(zero-order) correlation between spousal wages to characterize assortative mating.

Denote the wage correlation by under the male-preferred stable matching R by ρ(R),
and in the data by ρD. Now the value ρD should not be thought of as the zero order
correlation from the actual spousal wage rates, since by assumption they are measured
with error. Thus ρD is the correlation between the measured wages in the data over the
877 cases.

To generate the correlation of measured wages under the model we proceed as follows.
Under a given R, generate 2N measurement error draws, one for each spouse in the total
sample. Denote one of these measurement error vectors by ε(m). We then compute the
true wage for spouse s in household k from wsk = w̃sk exp(−εsk), and back out all of the
implied characteristics of all sample members based on the “true” wages, nonlabor incomes,
and time allocation decisions given R and the measurement error vector ε(m). We then
apply the GS algorithm to obtain the male-preferred stable matching under R and ε(m),
and based on these matches, we compute the correlation in measured wages between the
spouses. Denote this correlation by ρm(R).

We repeat this procedure for M draws of the measurement error vector. The com-
parison we wish to make between the observed and predicted level of assortative mating
in wages is based on a fixed sample of size N from the marriage market. Then the sam-
pling distribution of ρm(R) we are interested in treats only the measurement errors as
the source of randomness. From the empirical distribution of {ρm(R)}Mm=1, we can con-
struct Monte Carlo confidence intervals in the standard way. A confidence interval that
contains the “true” correlation of measured spousal wages with probability ν has a lower
limit F̂−1R (ν/2) and an upper limit of F̂−1R (1 − ν/2), where F̂R denotes the Monte Carlo
distribution of measured spousal wage correlations under behavioral rule R. We use inde-
pendent measurement error shocks under the two behavioral rules, and then compare the
ν confidence intervals on two, interrelated dimensions. We begin by examining the degreee
to which the confidence intervals intersect. If there exists a large amount of overlap, then
clearly this metric is not very useful in not in distinguishing between the two hypotheses.
Secondly, we see which, if any, of the confidence intervals includes the actual correlation

11Nonlabor income levels are also observed for the spouses, but these are close to zero for most individuals.
Moreover, it is difficult to assign household nonlabor income to individual spouses in many cases, a problem
that does not exist with respect to wages.
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observed in the data. If one does, we say that this behavioral rule is consistent with the
pattern of assortative mating (on wages) observed in the data.

This metric has the advantage that it can be computed using all sample observations
simultaneously, rather than small subsets of the sample, as was the case for the proportion
of correct predictions metric described above. As we shall see, both the NE and NB rules
perform respectably using this metric, which is not so clearly the case under the more
“direct” prediction metric.

4 Empirical Results

The empirical work is performed using a sample of married couples taken from the PSID.
The data contain information on household characteristics in 2000 that were collected in
the 2000 and 2001 survey years. To be included in the sample, the household must have
been headed by a married couple, both of whom were between the ages of 25 through
49, inclusive. All information on time allocations within the household must have been
available for both spouses; this consists of the average amount of time spent in the labor
market per week in 2000 as well as average hours spent in housework per week. Because
household production activities change so markedly when young children are present, we
excluded all households in which there was a child less than six years of age.

We also excluded any household in which one of the spouses made more than $150 an
hour or reported more than 80 hours of market work per week. We also required that the
household not receive more than $1000 per week in nonlabor income. A few households
reported negative total income for the year, and these were excluded.

The (almost) final selection criterion imposed was that both spouses spend time in
the labor market and in home production. This, of course, is a substantive restriction
that is imposed so that we can invert four first order conditions for each household to
obtain four values of the unobserved characteristics of the spouses (two for each spouse).
Approximately 18 percent of the sample was eliminated by insisting that both spouses
report supplying time to the market in the previous year. Some spouses were reported
to have supplied zero time to household production; for these individuals we assumed
that the actual amount of time spent in housework was 1 hour per week.12 During the
process of estimation we found that data from 9 households in our “final” sample produced
problematic values for the four unobserved household characteristics. We excluded these
from all further analyses. The total sample size with which we work is N = 877.

Table 1 contains descriptive statistics for our sample. We think of the decision period
as the week. The unit of time is the week, and all monetary units are expressed in terms of

12 It would be interesting to look at the distribution of responses to these housework questions as a
function of the identify of the respondent. We hazard the conjecture that, conditional on observable
characteristics, respondents are likely to over-emphasize their contributions to the household workload
while under-emphasizing the spouse’s.
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current (year 2000) dollars. For now we focus only on the means and variances of variables
taken directly from the data.

The average wage of husbands is about 40 percent greater than the average wage of
wives. They work about 20 percent more hours per week in the labor market than their
wives do, on average, while their wives supply about twice as much time in housework. It
is interesting to note that the average total time spent in the labor market and performing
household tasks is essentially identical for husbands and their wives. This appears to be a
common finding in empirical studies of labor supply and housework.

The average nonlabor income per household is 120 dollars per week, with a large stan-
dard deviation. Nonlabor income of less than 100 dollars is reported by two-thirds of the
households in the final sample. Recall that we have excluded households in which nonlabor
income exceeded 1000 dollars per week.

The first task performed was to back out the implied values of (T̃si, δsi, αs), s = 1, 2,
i = 1, ..., N, under NE and NB. The means and standard deviations of these characteris-
tics are presented in Table 1. We see that the preference weights on leisure are far greater
under NB. This is to be expected since cooperative behavior will lead to a greater supply
of time to the market and household tasks for a given set of household characteristics.
Thus, to be consistent with the same observed time allocations, the leisure weights un-
der Nash bargaining must be greater than those computed under Nash equilibrium. The
normalization of the mean time endowments results in this value being equal to 168 for
both sexes and under either behavioral mode. The large standard deviation of T̃s· indicates
substantial heterogeneity in this characteristic in the sample.

The average value of efficiency in household production varies across the genders and
the modes of behavior. For the same reason that NB led to higher imputed preference
weights on leisure, it also leads to lower values of the household production elasticities for
both sexes. For both sexes, the average value of the Cobb-Douglas parameter under NB
is about one-third of its average value under NE.

There are large changes in the means of αs and δs· when moving from NE to NB,
and in the standard deviations of T̃s· and δs·. Nevertheless, as Figures 1 and 2 and Table
2 illustrate, the imputed values of (T̃si, δsi, αs) computed under NB are linear transfor-
mations of the values computed under NE.13 In spite of this extreme dependence of the
parameter values computed under the two behavioral rules, the preference orderings and
resulting marital sorts can be very different, as we shall see below.

It may be of some interest to investigate the gains to cooperative behavior and “ratio-
nal” marriage sorts starting from the noncooperative baseline. We perform an experiment
that utilizes our parameter estimates under NE and first computes the welfare gains to
existing households if they switched their behavior to NB. We then look at the change in
welfare that would result if all households continued to behave noncooperatively, but were

13The small deviations from this claim that we see in Table 2 result from numerical inaccuracies involved
in performing the inversion of the first order conditions in the Nash bargaining case.
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matched according to the GS algorithm.
Table 3 and Figure 3 contain the results of this exercise. By definition, when existing

households switch to Nash bargaining, there is a welfare gain for all husbands and wives
in the sample. However, the welfare gains are small, raising the utility levels of husbands
by less than 1 percent and those of wives by 1.2 percent. While these small gains are
specific to the cardinal utility function we have assumed, they do line up with similar
analyses involving divorced parents that are reported in Del Boca and Flinn (1994). They
also point to the fact that cooperative behavior may not be “efficient” if implementing
cooperative outcomes is more costly than simply employing best-response strategies (Del
Boca and Flinn (2006)).

Percentage gains in welfare are also small, on average, when individuals are resorted
using the GS algorithm (they are assumed to behave noncooperatively both in the base-
line case and after being resorted). Unlike the switch from NE to NB behavior for fixed
households, in this experiment there will be winners and losers. However, we find that av-
erage welfare increases for husbands are identical to those recorded in the first experiment,
while they are about one-half as great for wives. Roughly speaking, the scope for welfare
improvements is about as great for marital reshuffling as it is for moves to cooperative
behavior. In neither case are they large given the cardinal utility measures employed here.

We have now reached the main focus of the empirical analysis. Which behavioral
assumption is most consistent with the observed patterns of marital sorts? The short
answer is that there is no clear cut winner, though we will conclude that the evidence
presented here is slightly more supportative of one of them.

We being with the simple rank order correlation between actual marriages and the
predicted ones, in the case in which wages are assumed to be measured without error.
Table 4 contains the rank order correlations between observed, NE, and NB equilibrium
sorts. We notice that even though there exists a linear mapping between unobserved
parameters characterizing individuals computed under NE and NB, there is only a rank
order correlation of 0.028 of the marital sorts under these two models. While the correlation
between the observed sorts and that predicted under NE is only 0.015, the correlation
between observed sorts and those predicted under NB is a relatively strong and “perverse”
-0.063. Thus neither model provides a good fit to the data, though there is no statistical
basis for us to form a formal measure of fit in this deterministic world.

The second prediction metric yields more interesting results. We computed the average
proportions of correct predictions, and the standard deviations, across 1000 sub-marriage
markets of size n = 2, ..., 5. The results are presented in Table 5. The baseline we use to
assess the success of the models is the probability that the individuals would be correctly
matched by a purely random mechanism, such as flipping coins. For example, when n = 2,
by flipping a fair coin we will correctly match male 1 with female 1 50 percent of the
time. For a sub-market with n individuals, the probability of correctly matching all the
individuals using a random assignment mechanism is 1/n!

We see that there are no noticeable differences between the average correct predictions
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of NE and NB. The last column of the table reports the difference in this proportion and
the standard deviation of the difference. The standard deviation is often close to an order
of magnitude larger than the difference, which is always positive. That is, NE seems to
slightly outperform NB for the size n we have examined, but in no case does it remotely
appear as though the difference is “important.”

As we increase n, the predictive ability of both models falls, natually enough. It is
interesting to note, however, that each perform increasingly better relative to the random
matching baseline as sub-market size increases.

The most conclusive results we obtained were for the assortative mating metric; the
results of this exercise are reported in Table 6. Recall that the correlation of measured
wages between spouses from the data was 0.285. As discussed in the preceding section,
we drew two samples of measurement error draws to evaluate the level of assortative mat-
ing under NE and NB, so that the wage correlations would be independent across the
two evaluations. The first line under Sample 1 and Sample 2 reports the average of the
correlations between observed wages allowing for the measurement error shocks, and we
see that the mean and standard deviation of the distribution of correlation coefficients is
very similar in the two samples of draws. The second line in each panel reports the mean
correlation in measured wages under the male-preferred stable matches for the NE and
NB rules, as well as the standard deviation. The last two columns of the table report the
upper and lower bound of the Monte Carlo confidence intervals corresponding to the 0.05
probability level.

We first note that the wage correlation generated under either R is reasonably close to
that observed in the data, even though this metric was never directly used in obtaining
estimating the model. The average correlation in wages under the predicted sorting from
NB is especially close to the correlation from the data. The average wage correlation
implied by the model in this case is 0.243, which differs from the data only by 0.042. The
average wage correlation under NE is 0.174, instead. Given that each has a Monte Carlo
standard error of 0.022, we might conclude that the NB correlation is appreciably closer
to the sample value than is the wage correlation generated under NE.

This can be more formally stated using the Monte Carlo confidence intervals. First
note that, while the confidence intervals do overlap, the set of values of the correlation
coefficient that belong to one confidence interval but not the other is of significant size.
The behavioral rules are clearly more distinguishable under this metric than they were over
the prediction metric just discussed.

We see that at the 0.05 probability level, neither wage correlation confidence interval
contains the observed value of 0.285, though it is not far from the upper bound of the NB
confidence interval, 0.272. If we use a probability level of 0.01, the sample value is included
in the NB confidence interval, but not within the one associated with NE. On the basis of
this evidence, and the lack of strong support in favor of one or the other under the other
two metrics, our conclusion is that time allocations and marital sorting patterns are more
consistent with the hypothesis that all households make decisions consistent with NB than
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with NE.

5 Conclusion

In this paper we have attempted to make the point that there is no general nonparametric
test to distinguish between modes of household behavior when individual heterogeneity in
unobservable and observable characteristics is not introduced in severely restrictive ways.
Using a flexible specification means that within household behavior is not useful in distin-
guishing between competing modes of behavior, which is the negative conclusion we draw.
The good news is that this heterogeneity does produce interesting implications regarding
the assignments of husbands to wives in equilibrium, and that these can be exploited in in-
vestigating the mode of behavior followed by population members. Using the Gale-Shapley
bilateral concept of stable matchings, we developed two metrics with which the competing
hypotheses of Nash bargaining and Nash equilibrium could be compared. Under the first,
which measured the ability of each behavioral hypothesis to generate predictions consistent
with the observed matches in distinct, small marriage sub-markets, there was no distin-
guishable difference between the two. Under the second, which measured the ability of
each behavioral rule to generate spousal wage correlations consistent with those found in
the data, the Nash bargaining hypothesis performed distinctly better than that of Nash
equilibrium.

The general methodological point we stress is reminiscent of the general problem of
model over-fitting. We adopted a model framework that was capable of perfectly fitting
the data (i.e., the mapping from the data space to the parameter space was 1 to 1) under an
entire class of behavioral rules <. In order to “test” one specification against another, some
restrictions have to be imposed on the parameterization to make the mapping no longer 1
to 1, and to raise the posibility that one of the elements of < “fits” better than another.
Of course, the test results we obtain in the end are a function of sample realizations and
the restrictions we have placed on the parametric specification of individual utilities and
the household production technology. It is, of course, seldom possible to claim that one
parameterization should be preferred over another on theoretical grounds.

Given this inherent arbitrariness, we have moved the test to a different playing field -
one that is “out of sample,” so to speak. The richness of the specification of individual
heterogeneity leads to zero power in testing one element of < against another using only
time allocation data, but has the potential to produce the implication of very different
marital sorts - an empirical phenomenon that is not used in backing out the individual
characteristics. In this application, we believe that we have generated some evidence that
households behave in a cooperative manner. Those advocating the “sharing rule” approach
to the analysis of household allocation decisions posit efficient allocations as a fundamental
identification condition. In this paper, we think we have provided some evidence to support
their assumption, though of course the best way to specify the manner in which surplus is
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distributed between the spouses remains an open question.
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Table 1
Means and (Standard Deviations) of Individual Characteristics

N = 877

Husband Wife
Characteristic NE NB NE NB

α 0.563 0.715 0.467 0.655

T̃ 168.000 168.000 168.000 168.000
(58.637) (50.532) (70.130) (57.139)

δ 0.101 0.027 0.139 0.045
(0.097) (0.031) (0.109) (0.037)

w 21.522 15.206
(13.655) (9.434)

h 45.707 38.202
(8.421) (10.569)

τ 7.853 15.323
(6.878) (9.672)

Y 120.455
(183.175)

Table 2
Correlation Between Imputed Parameters

Nash Bargaining
Nash Equilibrium T̃1 T̃2 δ1 δ2

T̃1 1.000 -0.172 -0.137 0.070
T̃2 -0.175 1.000 0.160 -0.255
δ1 -0.166 0.141 0.993 0.097
δ2 0.066 -0.256 0.108 0.998
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Table 3
Changes in Average Welfare Values from

NE Baseline Behavior and Observed Matches
(Proportionate Gain from Baseline)

Husbands Wives
Baseline 6.103 6.396

NB Behavior 6.159 6.473
(0.009) (0.012)

NE Marriage 6.158 6.431
(0.009) (0.005)

Table 4
Correlations Between Marriage Sorts

Actual Nash Equilibrium Nash Bargaining
Actual 1.000 0.015 -0.063

Nash Equilibrium 1.000 0.028
Nash Bargaining 1.000
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Table 5
Proportion of Correct Predictions

(Standard Deviation)
J = 1000

Group Size “Random” Nash Equilibrium Nash Bargaining Difference

2 0.500 0.607 0.602 0.016
(0.410) (0.390) (0.147)

3 0.167 0.287 0.291 0.006
(0.346) (0.333) (0.135)

4 0.042 0.111 0.131 0.010
(0.211) (0.220) (0.098)

5 0.008 0.034 0.028 0.009
(0.106) (0.080) (0.060)

Table 6
Spousal Wage Correlations

M = 200

Wage Correlation Mean St. Dev. MCCI(0.05) MCCI(0.05)

Sample 1

Data 0.284 0.011
Nash Equilibrium 0.174 0.022 0.135 0.220

Sample 2

Data 0.285 0.014
Nash Bargaining 0.243 0.022 0.196 0.272
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