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Abstract

We study the equivalence between the MB-set and the core in the general context of games
with a measurable space of players. In the first part of the paper, we study the problem
without imposing any restriction on the class of games we consider. In the second part,
we apply our findings to specific classes of games for which we provide new equivalence
results. These include non-continuous convex games, exact non-atomic market games and
non-atomic non-exact games. We also introduce, and characterize, a new class of games,
which we call thin games. For these, we show not only that the MB-set is equal to the core,
but also that it is the unique stable set in the sense of von Neumann and Morgenstern.
Finally, we study the relation between thin games, market games and convex games.

JEL Classification: C 71
Keywords: Mas-Colell Bargaining Set, maximal excess game, core-equivalence, thin games,
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1 Introduction

The Mas-Colell Bargaining set as a solution for cooperative games was introduced by A.
Mas-Colell in [26], where he showed that for atomless economies his bargaining set consists of
the Walrasian equilibria. Shitoviz [30] later extended this result to more general economies.
The idea of Mas-Colell Bargaining set is in the same spirit as that underlying various other
Bargaining sets that, starting with Davis and Maschler’s [8], have been proposed in the
literature (see [10], [33] and [34]). Roughly speaking, it goes as follows. An allocation ξ of
the resources is proposed. A subset A of the players objects to ξ if they can allocate among
themselves the resources available to them in such a way that every member of A is better off
with respect to the allocation ξ. A counter-objection to this objection is another objection
to ξ, which guarantees that a certain subset of players D ⊂ A is better off with respect to
the previous objection. An objection is called justified if there is no counter-objection to
it, and a Bargaining set is the set of all allocations for which there is no justified objection.
The rationale is clear: if a subset A of players can make a justified objection to ξ, then ξ will
never take place because players in A have both the incentives and the power to make sure
that that would not happen. The actual definition of Mas-Colell Bargaining set (MB-set,
henceforth) has later been refined by Einy et al. in [13]. In that paper, they showed that for
continuous convex games the MB-set not only coincides with the core, but it is also stable
in the sense of von Neumann and Morgenstern. Later, Marinacci and Montrucchio [23,
Corollary 2] (in a paper which is mainly devoted to the stability of the core) showed that
the equivalence between the MB-set and the core also holds for exact non-atomic market
games with finite-dimensional cores.

Here, we study the equivalence between the MB-set and the core in the general context
of games with a measurable space of players. The paper is divided into two parts. In Part I,
we study the problem of equivalence without imposing any restriction on the class of games
we consider. In Part II, we apply our findings to specific classes of games for which we
provide new equivalence results. For each part, we provide a separate roadmap so to allow
the reader to select the path better suited to his/her own interests.

Notation. The notation employed throughout the paper is standard. For a measurable
space (Ω,Σ), B(Σ) denotes the Banach space of bounded Σ-measurable functions equipped
with the sup-norm. The subset of B(Σ) consisting of all f ∈ B (Σ) such that 0 ≤ f ≤ 1 is
called the space of ideal coalitions, and denoted by B1 (Σ). The indicator function of a set
E, will be usually denoted by χE.

The dual of B(Σ), that is the space of bounded charges endowed with the variation
norm, is denoted by ba(Σ). If m ∈ ba (Σ) and A ∈ Σ, by mA we denote the charge in ba (Σ)
defined by mA (C) = m (A ∩C) for all C ∈ Σ. The subsets of ba(Σ) consisting of σ-additive
measures and of non-atomic measures are denoted by ca(Σ) and na(Σ), respectively. The
notation caα(Σ) (naα(Σ)) indicates all measures μ in ca(Σ) (na(Σ)) for which μ(Ω) = α. If
λ ∈ ca(Σ), ca(λ) denotes the set of all measures in ca(Σ) which are absolutely continuous
with respect to λ. We shall use the short-hand notation ba and ca whenever no confusion
may arise. Finally, if X is a Banach space and X∗ is its dual, we often denote the duality
pairing by hx, x∗i, x ∈ X and x∗ ∈ X∗. All unexplained notation and terminology is also
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fully standard, and can be found nearly in any paper on the subject (see, for instance, [24]
for a rather comprehensive reference).

PART I: THEORY

After stating the main definition (Section 2), we give a characterization of justified
objections in Section 3. This readily leads to establishing necessary and sufficient conditions
for the equivalence between the MB-set and the core (Theorem 1, Section 4). Throughout
this part, we stress the fundamental role played by the maximal excess game introduced
by Solymosi in [32] and further studied by Holzman in [18]. In Section 5, we provide some
criteria for checking whether or not a given game satisfies the conditions of Theorem 1. In
Section 6, we introduce a new condition, called Property (H), which implies that for any
allocation ξ not in the core, one can find a justified objection against it by using elements of
the core only. Transparently, Property (H) guarantees the equivalence between the MB-set
and the core. At an intuitive level, Property (H) is a demand that the core be “large”
in that it has to contain sufficiently many justified objections. This intuition is confirmed
in Proposition 9 (Section 7), where we show that Property (H) is equivalent to two other
conditions: one is, indeed, a “core-largeness” condition previously introduced by Marinacci
and Montrucchio in [23] and the other is the existence of a maximum for the maximal excess
game (condition (SM) of Theorem 1). Section 7’s main result is Theorem 4, which states
that the last two conditions are, in turn, equivalent to the existence of a certain saddle
point. As a sample of the applicability of our theory, we conclude the section (and with
it PART I of the paper) by giving a proof of the equivalence result mentioned by [5] for
unitary glove market games.

2 Mas-Colell bargaining set

A transferable utility (TU) game is a triple (ν,Ω,Σ), where Ω is the set of players, Σ is a
σ-algebra of coalitions of Ω and ν : Σ → R, with ν (∅) = 0. In this paper, we consider
only games that are bounded, that is such that supE∈Σ |ν (E)| < ∞. Also, in order to
avoid tedious complications, we will always assume that the σ-algebra Σ contains all the
singletons of Ω. This ensures that for any non-empty A ∈ Σ there is a positive measure
m ∈ ca (Σ) for which m (A) > 0. The core of a game ν is

core(ν) = {m ∈ ba : m (Ω) = ν (Ω) and m(E) ≥ ν(E) for all E ∈ Σ}.

The core is a weak∗-compact subset of ba. Games having nonempty cores are called bal-
anced. Given a game (ν,Ω,Σ), the set I∗ (ν) = {ξ ∈ ba : ξ (Ω) ≤ ν (Ω)} is the set of all
preimputations.

We are now ready to give the definition of the Mas-Colell Bargaining set. We adopt the
formulation of Einy et al. [13]. Given a preimputation ξ ∈ I∗ (ν) , an objection to ξ is a pair
(A, η), A ∈ Σ and η ∈ ba, which satisfies η (A) ≤ ν (A), ξ (A) < η (A) and ξ (B) ≤ η (B) for
all B ⊆ A. A counter objection to the objection (A, η), is a pair (C, ζ) for which:
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(i) C ∈ Σ, ζ ∈ ba and ζ (C) ≤ ν (C) ,

(ii) If B ⊆ A ∩C then ζ (B) ≥ η (B) ,

(iii) If D ⊆ C \A then ζ (D) ≥ ξ (D) ,

(iv) ζ (C) > η (A ∩ C) + ξ (C \A) .

An objection to ξ is called justified if there is no counter objection to it.

Definition 1 The Mas-Colell bargaining set, denoted by MB (ν), is the collection of all
preimputations against which there is no justified objection.

All measures (preimputations, objections and counter-objections) which appear in the
definition are elements of ba. One could give a more restrictive definition of MB-set by
requiring that either objections or counter-objections be elements of ca. This gives rise to
four different definitions of MB-set. To keep track of these possibilities, we will be using
the notation MB (ν) − (·, ·), where (·, ·) denotes, respectively, the type of objections and
counter-objections that are allowed. For instance, we shall write MB (ν)− (ca, ba) to mean
that objections are in ca, while counter objections are in ba. MB (ν)−(ca, ba) is the largest
bargaining set, MB (ν)− (ba, ca) is the smallest and the other two are sandwiched between
them. The notation MB (ν) without any qualification stands for MB (ν) − (ba, ba). We
conclude this section by observing the well-known fact that elements of core (ν) are immune
to any objection.

Proposition 1 A member ξ ∈ I∗ (ν) is immune to any objection if and only if ξ ∈ core (ν).
Thus, core (ν) ⊆MB (ν)− (ba, ca).

Proof. It suffices to prove that each ξ ∈ I∗ (ν) \ core (ν) has at least one objection. By
definition ξ (U) < ν (U) for some coalition U . Let m ∈ ca+ be such that m (U) > 0. Then,
for α > 0 and sufficiently small, we have ξ (U) + αm (U) ≤ ν (U) and one easily sees that
(U, ξ + αm) is an objection against ξ.

3 Maximal excess games

If a preimputation ξ /∈ core (ν), then (from Proposition 1) there always exists an objection
(A, η) to ξ. In order to understand the structure of the MB-set, it is clear from its very
definition that we need to know when it is that (A, η) is a justified objection. This is
accomplished by Proposition 2 below, which also brings to light the fundamental role played
by the game

νξ (A) = sup {ν (E)− ξ (E) : E ⊆ A, E ∈ Σ} ,

in the study of the MB-set. The game νξ — called the maximal excess game associated with
ν and ξ — is clearly monotone and bounded provided ν is bounded. Moreover, νξ ≡ 0 if and
only if ξ ∈ core (ν).
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Proposition 2 Let ξ /∈ core (ν) be a preimputation. The following conditions are equiva-
lent:

(i) (A, η) is a justified objection at ξ;
(ii) (A, η) is an objection at ξ, and for all C ∈ Σ

ν (C) ≤ η (A ∩ C) + ξ (C \A) ; (1)

(iii) for the pair (A, η),

sup
E∈Σ

ν (E)− ξ (E) = νξ (Ω) = ν (A)− ξ (A) (2)

holds and ηA − ξA ∈ core (νξ);

Proof. (i) =⇒ (ii) Suppose that

ν (C) > η (A ∩ C) + ξ (C \A) (3)

holds for some C. Pick m ∈ ca+ so that m (C) > 0. We are going to show that for ε > 0
small enough and for ζ = ηA + ξC\A + εm, the pair (C, ζ) is a counter objection at (A, η),
thus contradicting (i). In fact, if D ⊆ A ∩ C, then ζ (D) = η (D) + εm (D) ≥ η (D). If
D ⊆ C \A, then ζ (D) = ξ (D) + εm (D) ≥ ξ (D). Moreover,

ζ (C) = η (A ∩ C) + ξ (C \A) + εm (C)

> η (A ∩ C) + ξ (C \A)

and, by (3), ζ (C) ≤ ν (C) for ε small enough. That is, (C, ζ) is a counter objection at
(A, η).

(ii) =⇒ (iii) From (1), by subtracting ξ (C) on both sides, we obtain

ν (C)− ξ (C) ≤ η (A ∩ C)− ξ (A ∩C) =
¡
ηA − ξA

¢
(C)

for all C. Since η (C) ≥ ξ (C) for all C ⊆ A, we have ηA − ξA ≥ 0. Hence, νξ (E) ≤¡
ηA − ξA

¢
(E) for all E ∈ Σ. Moreover,¡

ηA − ξA
¢
(Ω) = η (A)− ξ (A) ≤ ν (A)− ξ (A) ≤ νξ (Ω) .

Hence,
¡
ηA − ξA

¢
(Ω) = νξ (Ω) =⇒ ηA − ξA ∈ core (νξ). Also, η (A) − ξ (A) = νξ (Ω) and

(2) is true.
(iii) =⇒ (i). Assume that (iii) holds for a pair (A, η). We first show that (A, η) is an

objection at ξ. Since ξ /∈ core (ν), νξ (Ω) > 0. Hence,
¡
ηA − ξA

¢
(Ω) > 0 =⇒ η (A) > ξ (A).

Similarly, η (B) ≥ ξ (B) for all B ⊆ A. Moreover,¡
ηA − ξA

¢
(Ω) = η (A)− ξ (A) = νξ (Ω) = ν (A)− ξ (A) .

Therefore, η (A) = ν (A) and (A, η) is an objection at ξ. Finally, for all C ∈ Σ,¡
ηA − ξA

¢
(C) ≥ νξ (C) ≥ ν (C)− ξ (C)⇐⇒

ν (C) ≤
¡
ηA − ξA

¢
(C) + ξ (C) = η (A ∩ C) + ξ (C \A) .
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It is clear that (A, η) is immune to counter objections. For, if (C, ζ) were a counter objection,
then we would have ζ (C) ≤ ν (C) ≤ η (A ∩ C) + ξ (C \A), which violates point (iv) in the
definition of bargaining set.

The next proposition is useful in that it gives a method for constructing a justified
objection (if any) to a given preimputation ξ.

Proposition 3 Any of the conditions in Proposition 2 is implied by
(iv) for the pair (A, η), (2) holds and η = ξ + u with u ∈ core (νξ).

Proof. We prove that (iv) =⇒ (iii). Let νξ (Ω) = ν (A) − ξ (A) and η = u + ξ for some
u ∈ core (νξ). We have u (Ω) = νξ (Ω) = ν (A)− ξ (A) and u (A) ≥ νξ (A) ≥ ν (A)− ξ (A).
As u ≥ 0, u = uA. Consequently, ηA − ξA = uA = u ∈ core (νξ) and (iii) holds.

By virtue of Proposition 3, we can construct a justified objection (if any) to a preimpu-
tation ξ as follows: first, take any coalition A for which ν (A) − ξ (A) = νξ (Ω); then, pick
any element u ∈ core (νξ) (if nonempty). Then, (A, ξ + u) is a justified objection to ξ.

3.1 Related literature

Maximal excess games were introduced by Solymosi [32] in his study of the Davis-Maschler
bargaining set. Later, they have been used by Holzman [18] in his work on the comparability
between the Davis-Maschler bargaining set and the MB-set. Holzman made the important
observation that the characterization of the MB-set is intimately related to the balancedness
of games νξ, whenever ξ runs in the space of preimputations. Both Solymosi’s and Holzman’s
analysis are restricted to games with finitely many players.

Proposition 2 is a straightforward extension of Observation 2.2 of Holzman [18], who also
remarked the role played by condition (2). Condition (2), however, plays here a much more
significant role than it does in finite games where it is automatically satisfied. Condition
(1) has also been stated by [14, Lemma 5.1] for games with a countable set of players.

4 MB-set and the core

In this section as well as in Section 6, we study conditions guaranteeing the equivalence
between the core and the MB-set. Necessary and sufficient conditions for this equivalence
are easily obtained from Proposition 2 (see also [18, Cor. 2.3]). We have

Theorem 1 MB (ν) = core (ν) if and only if for all ξ ∈ I∗ (ν), the following two conditions
are both satisfied

(SM) supE∈Σ ν (E)− ξ (E) is a maximum; and
(C) core (νξ) 6= ∅.

Proof. Suppose that for some ξ either (SM) or (C) is violated. Clearly, ξ /∈ core (ν). By
Proposition 2 there is no justified objection at ξ. Hence ξ ∈MB (ν), andMB (ν) 6= core (ν).

Conversely, assume that both (SM) and (C) hold, and suppose that there exists ξ ∈
MB (ν) \ core (ν). Let A ∈ Σ be such that νξ (Ω) = ν (A) − ξ (A), and let u ∈ core (νξ).
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Then, by (iv) Proposition 3, the pair (A, u+ ξ) is a justified objection to ξ, thus contra-
dicting ξ ∈MB (ν).

Thus, Theorem 1 states that two conditions of a rather different nature must be satisfied
for the equality MB (ν) = core (ν) to hold. Of course, this raises the question of how likely
it is for an arbitrary game to satisfy both (SM) and (C). The next example describes a
rather typical phenomenon.

Example 1 Let
¡
ν,N, 2N

¢
be a σ-additive and positive game on the natural numbers N

(i.e., ν ∈ ca+). Let ν ({i}) > 0 for all i ∈ N. Clearly, core (ν) = {ν}. If π ∈ ba+ is any
purely additive measure such that π (N) ≤ ν (N) then π ∈MB (ν)− (ba, ba). To see this, it
suffices by Theorem 1 to check that (2) fails. We have

sup
E∈Σ

ν (E)− π (E) ≤ sup
E∈Σ

ν (E) = ν (N) . (4)

Clearly π (F ) = 0, if F ⊂ N is finite. Hence,

sup
F is finite

ν (F )− π (F ) = ν (N) .

It follows that νπ (N) = ν (N). This value, however, cannot be reached. For if it could, then
we would have ν (A)−π (A) = ν (N) for some coalition A, which implies −π (A) = ν (Ac)⇔
ν (Ac) = π (A) = 0. As the support of ν is N, it would follow that A = N and π (N) = 0, a
contradiction.

Example 1 makes it clear that there is little hope to establish core-equivalence results
at a significant level of generality if we do not restrict the space of preimputations to be in
ca. Because of this, for the remainder of the paper we are going to restrict our analysis to
the σ-bargaining set, MBσ (ν) = MB (ν) ∩ ca. Consequently, the following reformulation
of Theorem 1 is handy. The notation coreσ (·) stands for core (·) ∩ ca.

Theorem 2 MBσ (ν)− (ba, ba) = coreσ (ν) holds, if and only if for all ξ ∈ I∗ (ν) ∩ ca,
(SM) supE∈Σ ν (E)− ξ (E) is a maximum;
(C) core (νξ) 6= ∅.
Similarly, MBσ (ν)− (ca, ba) = coreσ (ν), if and only if (SM) holds and
(Cσ) coreσ (νξ) 6= ∅.

The easy proof is omitted. With regard to the second part of the statement, it should be
noticed that while condition coreσ (νξ) 6= ∅ is clearly more demanding than core (νξ) 6= ∅,
it is also true that MBσ (ν)− (ba, ba) ⊆MBσ (ν)− (ca, ba).

We close this section by recording one more consequence of Proposition 2. It asserts
that, when we restrict to σ-additive preimputations, the four bargaining sets discussed in
Section 2 are indeed fewer.

Proposition 4 We have MBσ (ν)− (ca, ba) =MBσ (ν)− (ca, ca).
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Proof. We have already observed that MBσ (ν) − (ca, ca) ⊆ MBσ (ν) − (ca, ba). Let
ξ /∈MBσ (ν)−(ca, ca) and ξ ∈ ca. By definition, there is an objection (A, η) at ξ with η ∈ ca
which is immune to counter objections from ca. By mimicking the proof of Proposition 2,
one sees that necessarily (1) holds. In turn, this implies that there are no counter objections
in ba. That is, ξ /∈MBσ (ν)− (ca, ba).

5 Conditions (SM) and (C)

It is often difficult to check whether or not a given game satisfies conditions (SM) and (C)
for all ξ ∈ ca. Scope of this section is to provide some criteria for accomplishing this task.
The next proposition shows that, when a game is λ-continuous with respect to λ ∈ ca+,
it suffices to check that (SM) and (C) hold only for preimputations in ca (λ). We recall
that a game is λ-continuous with respect to λ ∈ ca+ if λ (N) = 0 implies that N is ν-null
coalition. Namely, ν (E ∪N) = ν (E) for all E ∈ Σ.

Proposition 5 Let ν be a λ-continuous game with λ ∈ ca+. Conditions (SM) and (C)
hold provided they do for all preimputations ξ ∈ ca (λ).

Proof. Let ξ ∈ ca. By the Lebesgue Decomposition Theorem it holds ξ = ξa + ξs,
with ξa ⊥ ξs and ξa ∈ ca (λ). Hence, there exists a coalition N such that λ (N) = 0
and |ξs| (Ω \N) = 0. By the Jordan Decomposition Theorem, there exists a decomposition
ξs = ξs+ − ξs− and a decomposition N = N+ ∪ N− such that ξs is positive on N+ and
negative on N−.

Fix a coalition A. For E ⊆ A, consider the coalition eE = (E \N) ∪ (N− ∩A) ⊆ A and
notice that any coalition E1 ⊆ A admits the representation E1 = eE for some E ⊆ A (it
suffices to set E = (E1 \N) ∪ (N+ ∩A)). Clearly

ν
³ eE´− ξ

³ eE´ = ν (E)− ξa (E) + ξs− (A) .

Thus, we get
sup
E⊆A

ν (E)− ξ (E) = ξs− (A) + sup
E⊆A

ν (E)− ξa (E) . (5)

Namely, νξ (A) = νξa (A)+ ξs− (A) for all A. This implies core (νξ) = core
¡
νξa
¢
+ ξs− which

proves the first part of our claim. By setting A = Ω in (5), we obtain

sup
E∈Σ

ν (E)− ξ (E) = ξs− (Ω) + sup
E∈Σ

ν (E)− ξa (E) . (6)

We now prove that if supE∈Σ ν (E)− ξa (E) is a maximum then supE∈Σ ν (E)− ξ (E) is a
maximum as well. Suppose that supE∈Σ ν (E) − ξa (E) = ν (A) − ξa (A), and consider the
coalition A1 = (A \N) ∪N−. Then

ν (A1)− ξ (A1) = ν (A)− ξa (A) + ξs− (Ω)

and the second part of the claim is true by (6).
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The next theorem concerns condition (C) only. This is the only one that matters when
the game is finite. In that setting, Solymosi [32] has identified several types of games having
a “closure property”, that is such that, for any preimputation, the maximal excess game
and the original game are of same type. Convex games (see Proposition 15, below; see also
Maschler, Peleg and Shapley [25]), monotonic veto-controlled games and assignment games
(Granot and Granot [17]) all fall into this category. In such cases, balancedness of νξ is
easy to deduce. Here we give a result of different nature, which is based on the properties
of the game’s extension to the space of the ideal coalitions B1 (Σ).

Theorem 3 Assume that the game ν has an extension bν : B1 (Σ)→ R satisfying:
i) bν (χA) ≥ ν (A) for all A ∈ Σ;
ii) bν is bounded, positively homogeneous and concave;
iii) supf∈B1(Σ) [bν (f)− hξ, fi] = νξ (Ω) holds for any ξ ∈ ba.
Then core (νξ) 6= ∅.

Proof. Define the functional bνξ : B1 (Σ)→ R by

bνξ (f) = sup
0≤ϕ≤f

bν (ϕ)− hξ, ϕi ,
for all f ∈ B1 (Σ). It is easy to check that bνξ is concave and linearly homogeneous. In
particular, bνξ (αχΩ) = α bνξ (χΩ) for α ∈ [0, 1]. By (i), we have bνξ (χA) ≥ νξ (A) . Further,
(iii) implies bνξ (χΩ) = νξ (Ω).

The game bνξ is bounded by condition (ii). Therefore bνξ is sup-norm continuous and
superdifferentiable over the interior of B1. Denoting by ∂ the superdifferential operator, we
have that ∂ bνξ ¡2−1χΩ¢ 6= ∅. Let m ∈ ∂ bνξ ¡2−1χΩ¢ with m ∈ ba. It follows

bνξ (f) ≤ bνξ ¡2−1χΩ¢+ m, f − 2−1χΩ
®

(7)

for all f ∈ B1 (Σ). Setting f = 0, we get m (Ω) ≤ νξ (Ω). While, by setting f = χΩ,
we obtain m (Ω) ≥ νξ (Ω). Hence, (7) becomes bνξ (f) ≤ hm,fi. In particular, νξ (A) ≤bνξ (χA) ≤ m (A). Consequently, m ∈ core (νξ) 6= ∅.

From the second part of Theorem 2, it is also useful to have a criterion for checking
when coreσ (νξ) 6= ∅. The next proposition gives an easy one, which we will be using in
several occasions. We recall that a game is inner (outer) continuous if ν (An) → ν (A) for
all the sequences An ↑ A (An ↓ A) and for all A ∈ Σ. In particular, a game is continuous if
it is both inner and outer continuous.

Proposition 6 coreσ (νξ) = core (νξ) for all ξ ∈ ca, provided ν is inner continuous.

Proof. As νξ is monotone, a sufficient condition for all charges in its core to be σ-
additive is that νξ is continuous at Ω (see [28] and [24]). Namely νξ (An) → νξ (Ω), as
An ↑ Ω. Let An ↑ Ω and E be any coalition. Clearly, An ∩ E ↑ E. We have νξ (An) ≥
ν (An ∩E) − ξ (An ∩E). By taking limits, limn νξ (An) ≥ ν (E) − ξ (E), which implies
limn νξ (An) ≥ νξ (Ω) thus proving the claim.
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6 A sufficient condition for MB = Core

In this section, we introduce a new condition which guarantees that the equality MB-set
= core holds. The reason for doing so is twofold. First, our condition clarifies a good
deal of what is behind equivalence results previously established (see [13] and [23]). In
fact, our condition suggests that equivalence results should be linked, in most cases, to
a property of the core of being large in the (loose) sense of containing sufficiently many
justified objections. We will make this intuition precise in the next section. Second, most of
new equivalence results that we prove in the second part will be derived from this condition
(precisely, from Corollary 1 below).

We recall that, given a (signed) charge μ, a Hahn decomposition for μ is a partition
{A,Ac} of Ω (A ∈ Σ) such that μ(B) ≥ 0 for every B ⊆ A and μ(B) ≤ 0 for every
B ⊆ Ac. A charge need not admit a Hahn decomposition (H-decomposition, for short),
while a measure always does. Clearly, if {A,Ac} is a Hahn decomposition for μ, we have
μ(A) = supE∈Σ μ(E).

Definition 2 We say that a game ν has Property (H) if for any ξ /∈ core (ν), there exists
η ∈ core (ν) such that:

(i) {A,Ac} is a Hahn decomposition for the measure η − ξ;
(ii) ν (A) = η (A).

Proposition 7 Suppose that ν has Property (H). Then, for any ξ /∈ core (ν) there exists
a justified objection, (A, η) to ξ with η ∈ core (ν).

Proof. Let ξ /∈ core (ν). By assumption, there exists η ∈ core (ν) satisfying (i) and (ii) of
the Definition 2 above. Consider the pair (A, η). We are going to show that (A, η) satisfies
condition (iii) in Proposition 2. We have,

sup
E∈Σ

ν (E)− ξ (E) ≤ sup
E∈Σ

η (E)− ξ (E) = η (A)− ξ (A)

= ν (A)− ξ (A)

and hence (2) holds. Moreover, νξ (Ω) = η (A) − ξ (A) = ηA (Ω) − ξA (Ω). Finally, if C is
any coalition, then

νξ (C) = sup
B⊆C

ν (B)− ξ (B) ≤ sup
B⊆C

η (B)− ξ (B)

= η (C ∩A)− ξ (C ∩A) ≤ ηA (C)− ξA (C) .

Hence, ηA − ξA ∈ core (νξ), and this completes the proof.
Proposition 7 readily leads to the following Corollary, which we specialize to the count-

ably additive case.

Corollary 1 Suppose that for all ξ ∈ I∗ (ν)∩ ca, ν has Property (H) and that, in addition,
the measure η in Definition 2 is in coreσ (ν). Then, MBσ (ν)− (ca, ba) = coreσ (ν).

We remark that this result remains true for any formulation of the bargaining set where
objections are restricted to lie in a fixed subspace containing coreσ (ν).
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7 Largeness and saddle property

At an intuitive level, Property (H) is a demand that the core of the game be in some sense
“large”. Following this intuition, it is then natural to ask whether or not there is a link
between Property (H) and other “core-largeness” conditions that have been studied in the
literature. A classic one is as follows.

[L0] A balanced game ν satisfies largeness condition (L0) if ξ ≥ ν, ξ ∈ ca, implies that
there is η ∈ core (ν) such that ξ ≥ η ≥ ν.

This was introduced by Sharkey [29]. Marinacci and Montrucchio [23] strengthened this
to the following one, which is easily seen to imply (L0).

[L1] A balanced game ν satisfies largeness condition (L1) if ξ + k ≥ ν, ξ ∈ ca and k is
a non-negative scalar, implies that there is η ∈ core (ν) such that ξ+ k ≥ η ≥ ν. The game
ν satisfies (Lσ

1 ) if η can be selected in coreσ (ν).
Largeness condition (L1) is linked to the maximal excess game by means of the following

proposition, whose proof we omit because elementary.

Proposition 8 A game ν satisfies largeness condition (L1) if and only if for all ξ ∈ ca
there is η ∈ core (ν) such that ξ + νξ (Ω) ≥ η.

The next proposition shows that Property (H) is intimately related to Condition (L1).

Proposition 9 A game ν has properties (L1) and (SM) if and only if it has Property (H).

Proof. Assume that ν has (L1) and (SM). Then, by (SM) there exists A ∈ Σ such that
ν(A) − ξ(A) = supE∈Σ[ν(E) − ξ(E)]. By Property (L1), ∀ξ ∈ ca there exists η ∈ core(ν)
such that ξ + νξ(Ω) ≥ η. Hence, ν(A)− ξ(A) ≥ supE∈Σ[η(E)− ξ(E)].

Let {C,Cc} be an H-decomposition for η − ξ. By the preceding

ν(A)− ξ(A) ≥ η(C)− ξ(C) ≥ η(A)− ξ(A) ≥ ν(A)− ξ(A),

where the last inequality follows from η ∈ core(ν). That is,

ν(A)− ξ(A) = η(C)− ξ(C).

Now, suppose that A 6= C modulo (η− ξ)-measure 0 sets (mod(η− ξ)−0, for short). Then,

ν(A)− ξ(A) = η(C)− ξ(C) > η(A)− ξ(A) ≥ ν(A)− ξ(A),

a contradiction. Thus A = C mod(η− ξ)− 0, {A,Ac} is an H-decomposition for η− ξ and
η(A) = ν(A).

For the converse, just observe that Property (H) immediately implies both (SM) and
the existence of η ∈ core(ν) such that ξ + νξ(Ω) ≥ η.

As a consequence of Proposition 9, we obtain the following easy corollary.

Corollary 2 MBσ (ν) = coreσ (ν) for any balanced game satisfying (L1) and condition
(SM). Furthermore, MBσ (ν)− (ca, ba) = coreσ (ν), whenever ν satisfies (Lσ

1 ).
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In connection with Theorem 1, the result of Proposition 9 naturally raises the question
of when a game satisfies condition (L1). This is answered by Proposition 10, below. In
order to state and prove it, we need to introduce another auxiliary game.

Definition 3 Given a balanced game ν and ξ ∈ ba, the dual of the maximal excess game
νξ is the game eνξ : Σ −→ R defined by

eνξ (A) = inf
μ∈core(ν)

(μ− ξ)+ (A) . (8)

We refer to discussion following the proof of Proposition 10 for an explanation of whyeνξ is the dual game of νξ. In the meantime, we observe that, generally speaking, while the
set M = {(μ− ξ)+ : μ ∈ core(ν)} is always relatively weak*-compact and convex, it may
not be weak*-closed. Thus, the inf in (8) cannot be replaced by a minimum. If, however,
core(ν) ⊂ ca, then it follows from Mazur’s theorem that core(ν) is weakly compact, M
is weakly closed and the inf in (8) is actually a minimum. We also observe that eνξ is
always a totally balanced game. The study of the relation between eνξ and νξ leads to a full
characterization of condition (L1).

Proposition 10 For any balanced game ν, we have νξ ≤ eνξ. Moreover, the game ν sat-
isfies largeness condition (L1) if and only if νξ (Ω) = eνξ (Ω) and, in addition, the inf is a
minimum, that is:

νξ (Ω) = min
μ∈core(ν)

(μ− ξ)+ (Ω) . (9)

In this case, core (νξ) 6= ∅ for all ξ ∈ ca. Furthermore, coreσ (νξ) 6= ∅ for all ξ ∈ ca,
provided ν satisfies (Lσ

1 ) .

Proof. Let ν be any balanced game. If μ ∈ core (ν) and A ∈ Σ,

νξ (A) = sup
B⊆A

[ν (B)− ξ (B)] ≤ sup
B⊆A

[μ (B)− ξ (B)] = (μ− ξ)+ (A) .

Hence, νξ (A) ≤ eνξ (A).
Let ν satisfy (L1). Then, there is μ ∈ core (ν) such that νξ (Ω) + ξ ≥ μ. Namely,

νξ (Ω) ≥ μ− ξ or, equivalently, νξ (Ω) ≥ μ (A)− ξ (A) for all A ∈ Σ. Consequently,

νξ (Ω) ≥ sup
E∈Σ

[μ (E)− ξ (E)] = (μ− ξ)+ (Ω) .

Since νξ ≤ eνξ, we get (9).
Conversely, assume that (9) holds. We have νξ (Ω) = (μ− ξ)+ (Ω) for some μ ∈ core (ν).

Hence,
(μ− ξ)+ (Ω) = sup

E∈Σ
[μ (E)− ξ (E)] = νξ (Ω) ,

which amounts to saying μ− ξ ≤ νξ (Ω). Equivalently, μ ≤ νξ (Ω) + ξ which proves that ν
satisfies (L1). To conclude, if μ is a minimum point in (9), we have (μ− ξ)+ (Ω) = νξ (Ω) .
Moreover, for any coalition A,

νξ (A) ≤ eνξ (A) ≤ (μ− ξ)+ (A) .

11



Hence (μ− ξ)+ ∈ core (νξ) and core (νξ) 6= ∅. If ν satisfies Lσ
1 , it is easy to see that μ ∈ ca

and therefore coreσ (νξ) 6= ∅, and the claims are proved.
The maximal excess game νξ is transparently associated to the extremum problem

sup
E∈Σ

½
inf

η∈core(ν)
[η(E)− ξ(E)]

¾
(A)

Its dual problem is

inf
η∈core(ν)

½
sup
E∈Σ

[η(E)− ξ(E)]

¾
(B)

which is what allows us to think of eνξ as of the dual of νξ. A quick glance at problems (A)
and (B) also tells that Property (H) is equivalent to the existence of a saddle point. Thus,
the following theorem comes with no surprise. Recall that a game ν is exact if core(ν) 6= ∅
and

ν (A) = min
η∈core(ν)

η (A)

for all A ∈ Σ. For ξ ∈ ca(Σ), define the Lagrangian function Lξ : Σ× core (ν)→ R, by

Lξ (A, η) = (η − ξ) (A) .

Theorem 4 Let ν be an exact game. Then,
(1) ν satisfies (L1) if and only if

sup
A∈Σ

min
η∈core(ν)

Lξ (A, η) = min
η∈core(ν)

max
A∈Σ

Lξ (A, η) (10)

for all ξ ∈ I∗ (ν).
(2) ν satisfies (L1) and (SM) if and only if Lξ (A, η) has a saddle point for all ξ ∈ I∗ (ν).

That is,
max
A∈Σ

min
η∈core(ν)

Lξ (A, η) = min
η∈core(ν)

max
A∈Σ

Lξ (A, η) . (11)

Every saddle point
¡
A, η

¢
of Lξ is a justified objection to ξ.

Proof. Note that
min

η∈core(ν)
Lξ (A, η) = ν (A)− ξ (A) ,

if ν is exact. While,
max
A∈Σ

Lξ (A, η) = (η − ξ)+ (Ω) .

Consequently, relation (10) is nothing but (9), and the claim follows from Proposition 10.
The first statement is obvious, for the minimax condition (11) is equivalent to the fact

that the sup of supA∈Σ [ν (A)− ξ (A)] is attained.
Let

¡
A, η

¢
be a saddle point. Namely,

Lξ (A, η) ≤ Lξ

¡
A, η

¢
≤ Lξ

¡
A, η

¢
12



for all A ∈ Σ and η ∈ core (ν). The first inequality means (η − ξ)
¡
A
¢
≥ (η − ξ) (A).

Hence,
¡
A,A

c¢
is a Hahn decomposition of η−ξ. The second inequality amount saying that

ν
¡
A
¢
= η

¡
A
¢
. By Proposition (7)

¡
A, η

¢
is a justified objection to ξ.

For the remainder of the paper, we shall say that a game ν has Property (SP ) if Lξ (A, η)
has a saddle point for all ξ ∈ I∗ (ν). Summing up, for exact games

(H)⇐⇒ (L1) & (SM)⇐⇒ (SP ) =⇒ [MBσ (ν) = coreσ (ν)].

More can be said about exact games satisfying (SP ), which are, in addition, continuous.

Corollary 3 If ν is a continuous exact games with property (SP ), then

MBσ (ν) = core (ν) = V ∩ ca

for all von Neumann-Morgenstern stable sets V .

This follows at once from [23, Proposition 3] by observing that Property (H) implies the
conditions stated therein for the stability of the core. Notice also that, if we are willing to
restrict to countably additive imputations, then Corollary 3 says that the MB-set (hence,
the core) is the unique stable set.

We saw in Proposition 7 of Section 6 that Property (H) implies that, for any preimpu-
tation not in the core, there exists an objection (A, η) against it with η ∈ core(ν). It thus
makes sense to ask if a converse to Proposition 7 holds. That is, if a game ν is such that any
preimputation can be objected against by means of elements of the core, does ν necessarily
satisfy condition (L1)?1 The next proposition shows that the answer is affirmative if either
ν is inner continuous and satisfies condition (L0) or if ν satisfies a mild strengthening of
condition (L0) (see the remark following Proposition 11)

Proposition 11 Let ν be inner continuous and satisfy (L0). Then

core (νξ) ⊆ core (eνξ) (12)

for all ξ ∈ ca. Furthermore, if core (νξ) 6= ∅ then core (νξ) = core (eνξ). Consequently, if
this is true for all ξ ∈ ca, then ν satisfies (L1).

Proof. If core (νξ) = ∅, (12) is trivial. Suppose m ∈ core (νξ). As ν in inner continuous,
core (νξ) = coreσ (νξ) by Proposition 6. Therefore, m ∈ ca. Since m (A) ≥ νξ (A) ≥
ν (A) − ξ (A) for all A, it holds m + ξ ≥ ν. By (L0), m + ξ ≥ μ for some μ ∈ core (ν).
Namely, m ≥ μ − ξ. As m ≥ 0, m ≥ (μ− ξ)+ ≥ eνξ. On the other hand, we have
m (Ω) = νξ (Ω) ≤ eνξ (Ω). Consequently, m lies in the core of the game eνξ, and the first
claim is proved. Assume now that core (νξ) 6= ∅, i.e., m (Ω) = νξ (Ω) = eνξ (Ω) for some
m ∈ ca. For any ε > 0, there is some με ∈ core (ν) such that (με − ξ)+ (Ω) ≤ νξ (Ω) + ε.
That is, (με − ξ) (A) ≤ νξ (Ω) + ε for all A. Let μ∗ ∈ core (ν) be a cluster point of the net
{με}. Clearly, (μ∗ − ξ) (A) ≤ νξ (Ω) which implies ξ + νξ (Ω) ≥ μ∗. Hence ν satisfies (L1).
By Proposition 10, core (νξ) = core (eνξ).

For future reference, the following is worth recording.
1Under our hypothesis, (SM) is automatically satisfied.
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FACT 1 In Proposition 11, the condition of inner continuity of the game ν can be dispensed
with if we assume the stronger largeness condition (L∗0): ξ ≥ ν =⇒ ξ ≥ μ ≥ ν for all
ξ ∈ ba.

An interesting by-product of Proposition 11 is the following Corollary. The interest
stems from the fact that, generally speaking, (L0) does not imply (L1), not even for finite
exact games.

Corollary 4 If ν in inner continuous and satisfies (L0), thenMBσ (ν)−(ca, ba) = core (ν)
if and only if ν satisfies (L1) and (SM).

Proof. If MBσ (ν) − (ca, ba) = core (ν), by Theorem 2 Property (SM) holds and
coreσ (νξ) = core (νξ) 6= ∅. From Proposition 11, it follows that ν satisfies (L1). Conversely,
assume that (SM) and (L1) hold. By Proposition 10 coreσ (νξ) 6= ∅. Now, Theorem 2
implies the desired result.

7.1 Glove-market games

As a sample of the applicability of the theory we have developed in this section, we provide
a new proof of a result from [5]. In the game we are going to consider, the space Ω =
{1, 2, ..., n} is the traders space and the space J = {1, 2, ...,m} is the commodity space. Every
trader holds a unit of some commodity in J . Thus, Ω can be partitioned as Ω = ∪r∈JAr,
where i ∈ Ar if trader i holds good r ∈ J . We also assume

|A1| = |A2| = .... = |Am| = s.

That is, there are exactly s traders holding the same commodity r for each r ∈ J . The
unitary glove-market game is the exact game defined by

ν (A) = min
r∈J

|A ∩Ar| . (13)

The interpretation is that there is demand only for equal quantities of each commodity,
each valued at unit price.

Game (13) belongs to the class of glove-market games, which is of fundamental impor-
tance in the theory of games as Kalai and Zemel [19] have shown the equivalence between
the class of glove-market games and that of totally balanced games. Production games
with Leontief technologies are also equivalent to glove market games. Glove-market games
have been studied in a recent paper by Apartsin and Holzman ([5]), especially for what
concerns the relation between the core and the Maschler bargaining set. In [5], Apartsin
and Holzman also stated, without an explicit proof, the equivalence between the Mas-Colell
bargaining set and the core of the game (13). Here we give a proof such equivalence as
an application of our theory. In the course of the proof, we will make use of the following
elementary fact.

FACT 2 Let x, y ∈ Rm
+ with

Pm
r=1 xr ≤ 1 ≤

Pm
r=1 yr. There exists α ∈ ∆ such that

xr ≤ αr ≤ yr for every r (∆ denotes the unit simplex in Rm).
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Proposition 12 Market games (13) satisfy (L1). Consequently, (SP ) holds andMB (ν) =
core (ν).

Proof. It is convenient to re-index individual i as i ≡ (r, k) , where r ∈ J and k ∈
{1, 2, ..., s}. Moreover, given a preimputation ξ = (ξi)i∈Ω, we enumerate the second index
k of (r, k) so that

ξ+(r,1) ≤ ξ+(r,2) ≤ ..... ≤ ξ+(r,s) (14)

for all r ∈ J . If we sum over r ∈ J, there is an integer h such thatX
r∈J

ξ+(r,1) ≤ .... ≤
X
r∈J

ξ+(r,h) ≤ 1 ≤
X
r∈J

ξ+(r,h+1) ≤ .... ≤
X
r∈J

ξ+(r,s). (15)

Note that since we allow for the two extreme cases 1 ≤
P

r∈J ξ
+
(r,1) and

P
r∈J ξ

+
(r,s) ≤ 1,

the integer h may run over {0, 1, ..., s}.
Let ∆ denote the unit simplex in Rm. The core of unitary glove market game is (see

[5])

core (ν) =

(X
r∈J

αr |Ar ∩ ·| : α ∈ ∆
)
.

Hence, it is easy to see that for the dual game we have

eνξ (Ω) = min
α∈∆

X
r∈J

X
i∈Ar

(αr − ξi)
+ = min

α∈∆

X
r∈J

sX
k=1

³
αr − ξ(r,k)

´+
.

Setting A+r = {i ∈ Ar : αr − ξi ≥ 0}, we also have

eνξ (Ω) = min
α∈∆

⎡⎣X
r∈J

αr
¯̄
A+r
¯̄
−
X
r∈J

X
i∈A+r

ξi

⎤⎦ .
Fix ξ. In view of (14), (15) and FACT 2, there exists an element α ∈ ∆ such that

ξ+(r,h) ≤ αr ≤ ξ+(r,h+1) (16)

for all r ∈ J . Hence, for that α ∈ ∆, we get |A+r | = h, unless ξ(r,h), ξ(r,h+1) < 0, where
|A+r | > h. In this case, (16) implies αr = 0. It will be apparent, however, that this does not
affect the next step. In fact,X

r∈J
αr
¯̄
A+r
¯̄
−
X
r∈J

X
i∈A+r

ξi = h−
X
r∈J

X
i∈A+r

ξi.

Moreover, for the coalition A = ∪r∈JA+r
ν
¡
A
¢
− ξ

¡
A
¢
= h−

X
r∈J

X
i∈A+r

ξi.

Consequently, eνξ (Ω) = ν
¡
A
¢
− ξ

¡
A
¢
= νξ (Ω), and unitary glove-market games satisfy

(L1).
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PART II: APPLICATIONS

In this part, we apply the theory we have developed so far in order to obtain new
equivalence theorems for various classes of games such as convex games, exact non-atomic
market games, non-exact non-atomic market games as well as a new class of games, which
we introduce here and call thin games. This part unfolds as follows. In Section 8, we define
thin games and provide the equivalence result for these games. We, then, devote two more
sections to thin games: since this is a new class, it makes sense to inquire into their relation
with other well-known classes of games. In Section 9, we study the relation between thin
games and exact non-atomic market games. We show that these two classes share several
properties (Theorems 6, 7 and 8) and, in fact, their intersection includes a wide class of
games, which we Schur games (Definition 6). Schur games contain all exact non-atomic
market games whose core is finite dimensional, but there is plenty of Schur games with
infinite dimensional cores (Example 4 and Theorem 9). In combination with Theorem 5,
these results improve upon [23] by showing that the equivalence between the MB-set and
the core obtains for a class of exact non-atomic market games with infinite-dimensional
cores. In Section 10, we study the relation between thin games and non-atomic convex
games. We show that the overlap between the two classes is trivial. Precisely, a non-atomic
convex games is thin if and only if it is a measure (Theorem 11). In Section 11, we move
to non-atomic market games which are not necessarily exact (in fact, we require that they
would only be totally balanced). We show that the MB-set coincides with the core whenever
the core is finite dimensional, thus improving upon a result of [23]. We conclude the paper
by applying our theory to convex games. These have been the object of several papers. The
main result in the area is due to Einy et al. [13], who showed that for bounded, continuous
convex games the MB-set coincides with the core. We are going to improve upon their
result by weakening the continuity assumption (Theorem 14, Section 12).

8 Thin Games

Thin games are going to be defined as a subclass of continuous exact non-atomic games.
Thus, Schmeidler’s theorem [28] applies, and the core of a thin game will always be a subset
of ca(λ) for some non-atomic measure λ. Hence, the core of a thin game is isometrically
isomorphic to a weakly compact subset of L1 (Ω,Σ, λ). The crucial concept is stated in
Definition 4, below. For M ⊂ L1 (Ω,Σ, λ) and S ∈ Σ, the subset M (S)⊥ ⊂ L∞ (Ω,Σ, λ) is
given by

M (S)⊥ = {ϕ ∈ L∞ (Ω,Σ, λ) : hf, ϕi = 0 for all f ∈M and ϕχSc = 0} .

Definition 4 (Kingman and Robertson [20]) A set M ⊂ L1 (Ω,Σ, λ) is thin, if and
only if M (S)⊥ 6= {0} for all S such that λ (S) > 0.2

2Thin sets play a key role in the study of infinite dimensional vector measures [20] (see also Section IX
of [12]).
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It is easy to see that non-atomicity of λ is essential for the definition to have a bite. It is
also easy to check that a set M is thin if and only if linM (the closed linear span of M) is
thin, and that every finite dimensional subspace of L1 (Ω,Σ, λ) is thin. Thin sets, however,
need not be finite dimensional (see next section). In what follows, we will call a subset of
naα(Σ, λ) thin, if the corresponding set of densities is thin in the sense of Kingman and
Robertson.

Definition 5 A continuous non-atomic exact game ν is thin if its core is (isometrically
isomorphic to) a thin subset of L1 (Ω,Σ, λ).

As anticipated, for thin games a core-equivalence theorem holds.

Theorem 5 Let ν be a thin game. Then, MBσ(ν) = core(ν). In addition, for any von
Neumann - Morgenstern stable set V , we have V ∩ ca =MBσ(ν).

Proof. In order to prove the equality MBσ = core, we are going to show that a continuous
exact game with thin core satisfies conditions (L1) and (SM). To this end, it will suffice
to prove (by Proposition 9 and Theorem 4) that the Lagrangian Lξ : Σ × core (ν) −→ R,
Lξ (A, η) = (η − ξ) (A), has a saddle point

¡
A, η

¢
for all ξ ∈ ca (λ). Let [L∞ (λ)]1 =

{ϕ ∈ L∞ (λ) : 0 ≤ ϕ ≤ 1}, and consider the function eLξ : [L∞ (λ)]1 × core (ν) → R, given
by eLξ (ϕ, η) = (η − ξ) (ϕ). By Sion’s minimax theorem [31, Corollary 3.3], it has a saddle
point (ϕ, η). That is, eLξ (ϕ, η) ≤ eLξ (ϕ, η) ≤ eLξ (ϕ, η)

for all (ϕ, η) ∈ [L∞ (λ)]1 × core (ν). Namely,

(η − ξ) (ϕ) ≤ (η − ξ) (ϕ)

η (ϕ) ≤ η (ϕ) .

Consider now Kingman-Robertson’s map u : [L∞ (λ)]1 → RI+1 defined as

u (ϕ) =
³
hξ, ϕi , (hη, ϕi)η∈core(ν)

´
.

As core(ν) ∪ {ξ} is thin, [20, Theorem 1] ensures that

u [L∞ (λ)]1 = u {χE : E ∈ Ω} .

Consequently, there exists a coalition A such that η
¡
A
¢
= η (ϕ) for all η ∈ core (ν) and

ξ
¡
A
¢
= ξ (ϕ). Hence,

(η − ξ) (A) ≤ (η − ξ)
¡
A
¢

η
¡
A
¢
≤ η

¡
A
¢
.

That is,
¡
A, η

¢
is a saddle point of Lξ (A, η), and ν satisfies the conditions (L1) and (SM).

Now, the statements follow from Theorem 4 and Corollary 3.
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9 Thin games vs market games

Recall that a game ν is a market game if it is super-additive and it admits a positively
homogeneous na-continuous extension to the set of ideal coalitions (see [27] and [4]). Non-
atomic exact market games are of special importance in Economics because of Aumann
and Shapley’s [7] celebrated result that perfectly competitive pure-exchange economies are
market games.

We begin this section by observing that thin games and non-atomic exact market games
have several properties in common. One is the m-closure property (originally introduced in
[22]): games in both classes can be defined as lower envelopes of certain sets of measures and
the game’s core coincides with the set defining it. This is shown in the next two theorems.
Theorem 6 was proved in [4, Theorem 3]. The notation (·) stands for norm-closure, (·)w for
weak-closure and, finally, (·)∗ stands for weak*-closure.

Theorem 6 ([4]) ν is an exact non-atomic market game if and only if ν is the lower
envelope of some norm-relatively compact subset K of naα(Σ). Moreover,

co(K) = co∗(K) = core(ν).

Theorem 7 ν is a thin game if and only if ν is the lower envelope of some weak-compact
thin subset K of naα(Σ). Moreover,

co(K) = co∗(K) = core(ν).

Proof. One direction is the definition of thin games. In the other, let ν be the lower
envelope of some weak-compact thin subset K of naα(Σ). That is, ν = νK , where νK (A) =
minη∈K η (A). Obviously,

co(K) ⊆ co∗(K) ⊆ core(ν) ⊂ naα(Σ).

Now, if there exists μ ∈ core(ν)\co(K), then by the separation theorem in [3, Theorem
1] there exists an A ∈ Σ for which

ν(A) ≤ μ(A) < inf
η∈K

hη,Ai = νK(A)

which contradicts ν being the lower envelope of K.
Notice that Theorems 6 and 7 also tell us that any exact non-atomic market game with

finite dimensional core is thin. Thus, the two classes of games certainly have a non-trivial
intersection.

Another property common to both thin games and exact non-atomic market games is
that they are both naturally associated with certain compact operators. To see this, let
us begin by observing that any continuous exact game is naturally associated with a linear
operator L∞(λ) → l∞(I). For if ν is continuous and exact, then core(ν) is isometrically
isomorphic (by Schmeidler’s theorem) to a subset F = {fi}i∈I ⊂ L1(λ), and we can define
the operator Tν : L∞(λ)→ l∞(I) by

Tνϕ = (

Z
ϕfidλ)i∈I .
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Tν is the integral of the vector measure μ : Σ −→ l∞(I) defined by

A 7−→ (

Z
χAfidμ)i∈I .

We observe that (a) F weakly compact =⇒ μ bounded and countably additive; and (b) the
Bartle-Dunford-Schwartz theorem implies that Tν is always weak* to weak continuous (see
[12, Corollary 7, p. 14]).

Theorem 8 Tν is a compact operator when ν is either an exact non-atomic market game
or ν is a thin game.

Proof. (1) If ν is an exact non-atomic market game, then core(ν) ∼ F = {fi}i∈I ⊂ L1(λ)
and is compact in the L1-norm by Theorem 6. Let R ≡ Tν |BL∞(λ)

, that is R is the
restriction of Tν to the unit ball in BL∞(λ). We are going to show that R is weak* to norm
continuous, which immediately implies compactness of Tν . To this end, consider the family
of linear functionals F =

©R
·fidλ | i ∈ I

ª
on L∞(λ). By considering the restrictions of the

functionals to BL∞(λ), we can view F as a subset of C(BL∞(λ)). Since F is norm-compact,
it is equicontinuous by Arzelà-Ascoli’s theorem. Hence, for any ϕ∗ ∈ BL∞(λ) and ∀ε > 0,
there exists a weak* neighborhood U(ϕ∗) such that

ϕ ∈ U(ϕ∗) =⇒ kRϕ−Rϕ∗k∞ = supi∈I

¯̄̄̄Z
ϕfidλ−

Z
ϕ∗fidλ

¯̄̄̄
< ε,

which proves that Tν is bounded-weak* to norm continuous.
(2) Let core(ν) ∼ F = {fi}i∈I ⊂ L1(λ). If ν is thin, then the norm-closure of the range

of the vector measure μ is convex [20]. By letting K0 denote the set of indicator functions
in L∞(λ), and by K = [L∞(λ)]1, we have

Tν(K) = Tν(K0)
w
= μ(K0)

w
= μ(K0).

The first equality follows from the fact — noted above — that Tν is always weak* to weak

continuous, the second is a definition and the third follows from μ(K0)
w
=
h
μ(K0)

iw
=

μ(K0). In fact, μ(K0) is convex, and we have
h
μ(K0)

iw
=
h
μ(K0)

i
= μ(K0). Now, Tν(K)

norm-compact =⇒ Tν(BL∞(λ)) = Tν(K −K) — the image of the ball — is norm-compact.
Hence, Tν is a compact operator.

Summing up, thin games and exact non-atomic market games are both associated to
compact operators, they both have the m-closure property and their intersection contains
all market games with finite dimensional cores. These results raise three obvious questions:
(i) Are there market games with infinite dimensional cores which are thin?; (ii) Are there
thin games which are not market games?; and, finally, (iii) Are there exact non-atomic
market games which are not thin? The next three subsections answer all these questions in
the affirmative.
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9.1 Schur games

A Banach space X has the Schur property if every weakly convergent sequence in X con-
verges in norm. The space l1 is an example of a space with the Schur property.

Definition 6 Let ν be a continuous exact game, Let core (ν) ∼ F ⊂ L1 (Ω,Σ, λ). The
game ν is called a Schur game if the linear space linF has the Schur property.

Clearly, by Theorem 6, a Schur game is a market game. Under a mild assumption it is
thin as well.

Proposition 13 Assume that (Ω,Σ) is standard Borel and that λ nonatomic. If the closed
subspace V ⊂ L1 (Ω,Σ, λ) is Schur, then V is thin.

Proof. Fix S ∈ Σ with λ (S) > 0. Let us first prove that if V ⊂ L1 (Ω,Σ, λ) is Schur,
then the subspace of L1 (S,ΣS, λS)

V (S) =
n
f ∈ L1 (S,ΣS, λS) : f = ϕ|S with ϕ ∈ V

o
is Schur. Let fn → 0 weakly, with fn ∈ V (S). Consider the sequence efn ∈ V whereefn (ω) = fn (ω), if ω ∈ S, and efn (ω) = 0, if ω ∈ Sc. For any ϕ ∈ L∞ (Ω,Σ, λ), we haveD efn, ϕE = D

fn, ϕ/S

E
. Hence,

D efn, ϕE → 0. As efn → 0 weakly, then
°°° efn°°° → 0. Namely,

kfnk→ 0 in L1 (S,ΣS , λS) and consequently V (S) has the Schur property.
On the other hand, under our assumptions, L1 (S,ΣS, λS) is isomorphic to L1 (0, 1)

which does not have the Schur property. Hence, V (S) 6= L1 (S,ΣS, λS) for all λ (S) > 0.
This amounts to saying that V is thin.

Hence, under a standardness assumption, we have the following inclusions:

Finite Dim. games ⊂ Schur games ⊂ Thin games ∩ Market games.

Notice also that, since L1 (Ω,Σ, λ) contains an isomorphic copy of l1, there is plenty of
infinite dimensional thin subspaces in L1 (Ω,Σ, λ). Two concrete examples are given below.
By Theorem 7, the corresponding games are thin games with infinite dimensional cores.

Example 2 Let {Ai}∞i=1 be a countably and measurable partition of Ω, with λ (Ai) > 0.
Let Σ1 be the σ-algebra generated by {Ai}∞i=1. Clearly, the vector space L1 (Ω,Σ1, λ) ' 1 ⊂
L1 (Ω,Σ1, λ) is Schur.

Example 3 Consider a disjoint normalized sequence fn ∈ L1 (Ω,Σ, λ), that is, |fn|∧|fm| =
0 if n 6= m and kfnk = 1. The space lin {fn}∞n=1 is isomorphic (but not lattice isomorphic)
to l1, and therefore is Schur.
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9.2 Thin games which are not market games

To ask whether or not there are thin games which are not market games is, by virtue of
Theorems 6 and 7, the same as asking whether or not there are weakly compact cores that
are thin but are not norm-compact. The example below shows that such cores do exist by
exhibiting a thin subspace of L1 (λ) which does not have the Schur property. This example
is especially insightful, and leads to the far more general result of Theorem 9, which is of
independent interest.

Example 4 Let ([0, 1] ,B, λ) be the standard Lebesgue space. Let {fn} ∈ L1 ([0, 1] ,B, λ)
be a sequence which converges to 0 weakly, but not in the L1-norm. A classical example
is the sequence fn (t) = sin (2nπt). Define the sequence efn ∈ L1 ³[0, 1]2 ,B ⊗ B, λ⊗ λ

´
, byefn (t, s) ≡ fn (t).

The sequence efn → 0 weakly in L1
³
[0, 1]2 ,B ⊗ B, λ⊗ λ

´
but not strongly. Moreover,

the set
nefno

n
is thin.

Proof. The first property is a straightforward exercise. Let us prove that
nefno

n
is

thin. Let E ⊆ [0, 1]2 be any measurable set with positive measure. Denote by χE (t, s) its
indicator function. Set

α (t) =

R 1
0 sχE (t, s) dsR 1
0 χE (t, s) ds

. (17)

By (17) it follows that Z 1

0
(α (t)− s)χE (t, s) ds = 0, (18)

holds for all t ∈ [0, 1]. Define the function ϕ ∈ L∞
³
[0, 1]2 ,B ⊗ B, λ⊗ λ

´
as

ϕ (t, s) = (α (t)− s)χE (t, s) .

By construction ϕ (t, s) = 0 outside E. It is also easy to see that kϕk∞ 6= 0. To conclude,
we have Z

[0,1]2
fn (t) (α (t)− s)χE (t, s) dtds = 0

for all n, because (18) holds. Hence, the set
nefno

n
is thin.

The next Theorem provides a complete characterization of thin subspaces of L1 in the
case in which they are sublattices.

Theorem 9 Let V ⊂ L1 (Ω,Σ, λ) be a closed subspace, and denote by Σ+ the class of set
A for which λ (A) > 0. If V is thin, then:

(i) for all A ∈ Σ+ there is some E ⊆ A such that χE /∈ V .
If V is a sublattice containing the constant function χΩ, then the condition (i) is suf-

ficient for V to be thin. In this case, V ' L1 (Ω,Σ1, λ) where Σ1 is a σ-subalgebra of
Σ.
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Proof. Necessity of (i). Suppose (i) does not hold. Then, there exists some S ∈ Σ+ such
that χE ∈ V for all E ⊆ S. That is, V (S) = L1 (S,ΣS , λS) with λ (S) > 0. Hence, V is
not thin as V ⊥ (S) = {0}.

We now prove that (i) suffices, if V is a sublattice containing the constant functions. In
such a case, it is well-known that the collection Σ1 of the sets A ∈ Σ such that χA ∈ V forms
a σ-subalgebra of Σ. This implies that V can be identified with the sublattice L1 (Ω,Σ1, λ)
of L1 (Ω,Σ, λ) (for details, see for instance [2, Theorem 12.11]). We must prove that (i)
implies L1 (Ω,Σ1, λ) is thin.

Fix A ∈ Σ+ and consider the set E /∈ Σ1 of condition (i). Clearly, λ (E) > 0. Set

ϕ = χE −
E [χE | Σ1]
E [χA | Σ1]

χA, (19)

with the convention 0/0 = 0.
From 0 ≤ χE ≤ χA, it follows 0 ≤ E [χE | Σ1] ≤ E [χA | Σ1]. Hence, E [χA | Σ1] (ω) =

0 =⇒ E [χE | Σ1] (ω) = 0. Consequently, ϕ is well defined, it vanishes outside A and
ϕ ∈ L∞ (Ω,Σ, λ).

Let us prove that
R
fϕdλ = 0, for all f ∈ L1 (Ω,Σ1, λ). From (19),

E [ϕ | Σ1] = E [χE | Σ1]−
E [χE | Σ1]
E [χA | Σ1]

E [χA | Σ1] = 0,

whenever E [χA | Σ1] (ω) 6= 0. Define

N = {ω ∈ Ω = E [χA | Σ1] (ω) 6= 0} .

For any f ∈ V = L1 (Ω,Σ1, λ), we haveZ
Ω
fϕdλ =

Z
Ω
E [fϕ | Σ1] dλ =

Z
Ω
fE [ϕ | Σ1] dλ

=

Z
N
fE [ϕ | Σ1] dλ+

Z
Nc

fE [ϕ | Σ1] dλ

=

Z
Nc

fE [χE | Σ1] dλ = 0.

To conclude the proof, it remains to show that kϕk∞ > 0. Assume, by contradiction, that
ϕ = 0 a.s. Then

χE =
E [χE | Σ1]
E [χA | Σ1]

χA.

Hence, E = E ∩A = {E [χE | Σ1] ≤ 0}, that implies E ∈ Σ1, a contradiction. Summing up,
V is thin.

Theorem 9 provides us with a method to construct a large amount of thin subspaces
without the Schur property: Let (Ω,Σ, λ) be the product of countably many copies of the
probability space [0, 1]; if we consider the canonical filtration (Σn)

∞
n=1 in (Ω,Σ, λ), then

the subspaces L1 (Ω,Σn, λ) trivially satisfy condition (i) of Theorem 9. Note that since
L1 (Ω,Σn, λ) ' L1 [0, 1], these subspaces are not Schur.

22



Having shown that thin games need not be Schur, we conclude this subsection by giving
a necessary and sufficient condition for a thin game to be a market game. It is stated in
terms of the properties of the operator Tν encountered above.

Theorem 10 A thin game ν is a Schur game if and only if the associated operator Tν is
bounded-weak* to norm continuous.3

Proof. If ν is a Schur game, then core(ν) ∼ F = {fi}i∈I ⊂ L1(λ) and is compact in the
L1-norm by Theorem 6. By the proof of Theorem 8 part (a), Tν is bounded-weak* to norm
continuous.

In the converse direction, assume that Tν is bounded-weak* to norm continuous. We
are going to show that this implies that the support functional of F , σF : L∞(λ)→ R,

σF(ϕ) = sup
f∈F

Z
ϕfidλ,

is continuous for the bounded weak*-topology. In fact, let ϕ∗ ∈ L∞(λ). There exists α ∈ R
such that ϕ∗ ∈ αBL∞(λ). Since Tν |αBL∞(λ)

is weak*-to-norm continuous, ∀ε > 0 here exists
a weak* neighborhood U(ϕ∗) such that

ϕ ∈ U(ϕ∗) ∩ αBL∞(λ) =⇒ sup
i∈I

¯̄̄̄Z
ϕfidλ−

Z
ϕ∗fidλ

¯̄̄̄
< ε.

Combining this with the elementary inequality: If w, z ∈ RI are bounded, then¯̄̄̄
sup
I
w − sup

I
z

¯̄̄̄
≤ sup

I
|w − z|

we get (by observing that for ϕ ∈ BL∞(μ) and fi ∈ L1 (λ), the mapping w = (
R
ϕfidμ)i∈I

is a bounded element of RI)

ϕ ∈ U(ϕ∗) ∩ αBL∞(λ) =⇒ |σF(ϕ)− σF(ϕ
∗)| ≤ sup

i∈I

¯̄̄̄Z
ϕfidλ−

Z
ϕ∗fidλ

¯̄̄̄
< ε.

Now, σF continuous for the bounded weak*-topology implies, by Lemma 3 in [4], that F is
compact in the norm topology. That is, ν is Schur.

9.3 Exact non-atomic market games which are not thin

Above, we saw that there is always plenty of thin games which are not market games. The
next example shows that there are exact non-atomic market games which are not thin. The
idea is to construct a norm-compact subset C ⊂ L1 [0, 1], containing a Schauder basis for
L1 [0, 1]. Thus, C spans L1 [0, 1] (and, thus, it is not thin) but, by Theorem 6, the set C
defines (and is the core of) an exact non-atomic market game.

3See [9] for the definition and properties of the bounded weak* topology.
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Example 5 Let L1 [0, 1] and Pn be the uniform partition of the interval [0, 1]. Namely,

Pn =
©£
sn−1, (s+ 1)n−1

¢ªn−1
s=0

for all n ≥ 1. Let Bn = σ (Pn) denote the sigma algebra generated by the partition Pn. If
f0 ∈ L1 [0, 1] is a fixed element, then the sequence fn = E [f0 | Bn] converges in L1 to f0.
Consequently, the set {fn}∞n=1 is relatively norm compact. Thus, by Theorem 6, the game

ν (A) = min
f∈co{fn}∞n=1

Z
A
fdλ

is an exact market game.
Assume that fn = E [f0 | Bn] 6= fn+1 = E [f0 | Bn+1] for all n ≥ 1. For instance, this

property holds if f0 is injective. In this case, we can employ the family of bounded projectors
Sn : L1 [0, 1]→ L1 [0, 1], Sn (f) = E [f | Bn], to construct a Schauder basis for L1 [0, 1] (see
for instance Proposition 1.1.7 of [1]). In fact, the sequence {ϕn}∞n=1, with ϕn = fn − fn−1
and ϕ1 = f1 is one such (conditional) Schauder basis for L1 [0, 1], and, clearly,

lin [core (ν)] = lin {ϕn}∞n=1 = L1 [0, 1] .

10 Thin games vs Convex games

We have seen that thin games and market games have a non-trivial intersection, which
includes the Schur games. The situation is dramatically different when it comes to the
relation between thin games and non-atomic convex games: their intersection consists of
measures only (Theorem 11, below). This result complements [23, Proposition 4] which
shows that convex games have only a trivial intersection with market games.

Theorem 11 Let ν be a nonatomic convex game. Then, its core is thin if and only if ν is
a singleton.

Proof. Step 1. Let A be any linear coalition, that is a coalition such that ν (A)+ν (Ac) =
ν (Ω). Then η (A) = ν (A) for all η ∈ core (ν). Let us prove that

ν (A ∪E) + ν (A ∩E) = ν (A) + ν (E) (20)

holds for all E.
As A ∩ E ⊆ E ⊆ A ∪ E, it follows from A being linear that there is some η ∈ core (ν)

for which η (A ∩E) = ν (A ∩E), η (E) = ν (E) and η (A ∪E) = ν (A ∪E). Hence,

ν (A ∪E) + ν (A ∩E) = η (A ∪E) + η (A ∩E)
= η (A) + η (E) = ν (A) + ν (E) .

In particular, by (20) we have

ν (A ∪E) = ν (A) + ν (E)

24



for all linear set A and all E such that A ∩E = ∅. It follows that

ν (F ∪E) = ν (F ) + ν (E) (21)

holds for all F and E such that F is contained in some linear set A, i.e., F ⊆ A and
E ∩A = ∅. For

ν (E) ≤ ν (F ∪E)− ν (F ) ≤ ν (A ∪E)− ν (A) = ν (E) .

Step 2. We construct a chain of linear coalitions {Aα}α∈[0,1] with the following properties.

Aα ⊆ Aβ if α ≤ β

A0 = ∅, A1 = Ω
λ (Aα) = α

ν (Aα) + ν (Ac
α) = ν (Ω) for all α ∈ [0, 1] .

Here λ is the positive control measure which is supposed to be normalized to 1.
The construction is similar to [7, Lemma 5.4]. Under our assumption, core (ν) ∼

{fi}i∈I ⊂ L1 (λ). Moreover, {fi}i∈I thin implies that {fi}i∈I ∪ {1} is thin as well, and
the linear operator u : L∞ (λ) → RI+1, u(ϕ) =

¡R
ϕdλ, (

R
ϕfidλ)i∈I

¢
has the property

(see [20]) that u(K) = u(K0) = μ(Σ), where μ is the vector measure associated to u as in
Section 9. Thus, μ(Σ) is compact and convex.

Set A0 = ∅ and A1 = Ω. As u (χΩ) = (1, ν (Ω)), there is a set A1/2 such that u
¡
1
2χΩ

¢
=

u
³
χA1/2

´
. Clearly, ν

¡
A1/2

¢
= 1

2ν (Ω), λ
¡
A1/2

¢
= 1/2 and A1/2 is a linear set. Applying

this procedure to the sets A1 \ A1/2 and A1/2 \ A0 and so on, we get a chain Aα with the
desired properties, for each dyadic rational α. Now if β is an arbitrary number of [0, 1] ,
define Aβ = ∪α<βAα the union being extended over all the α that are dyadic rationals.

Step 3. Consider now two disjoint sets E ∩ F = ∅. By using the family {Aα}α∈[0,1]
constructed in Step 2, we have also (E ∩Aα) ∩ F = ∅ for all α. By (21),

ν [(E ∩Aα) ∪ F ] = ν (E ∩Aα) + ν (F ) .

Clearly, (E ∩Aα) ∪ F ⊆ E ∪ F , and λ ([E ∪ F ] \ [E ∩Aα ∪ F ]) = λ (E ∩Ac
α) ≤ λ (Ac

α) =
1− α. Analogously, λ (E \ (E ∩Aα)) ≤ 1− α. Therefore, we get as α→ 1,

ν (E ∪ F ) = ν (E) + ν (F ) .

This proves that ν is necessarily additive.

11 Non-exact nonatomic market games

It is shown in [23] that the core coincides with the MB-set for exact non-atomic market
games, provided that their cores are finite dimensional. Here, we show that this result
obtains even when the exactness assumption is dropped.
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Recall that a games is dna-continuous if it admits a dna-continuous extension, ν∗, to
B1 (Σ). Mertens’s [27] dna-extension generalizes the classical na-extension of Aumann and
Shapley [7]. Following [15], we say that a game ν is dna-uniformly continuous if for every
ε > 0 there exists a vector measure μ = (μi)

n
i=1 with μi ∈ na, such that μ (A) = μ (B) =⇒

|ν (A)− ν (B)| < ε. Clearly dna-uniformly continuous games are dna-continuous. The
simplest examples of dna-uniformly continuous games are the measure games ν = f (μ),
where f is a real-valued function defined on the range R (μ) of the non-atomic vector
measure μ.

A coalition N ∈ Σ is called na-null, if μ (N) = 0 for all μ ∈ na+. This amounts to
saying that χN ∈ {0}, the dna-closure of {0}. We first record some useful facts.

Proposition 14 i) If ν is dna-uniformly continuous, then ν is λ-continuous for some λ ∈
na1 and core (ν) ⊂ na;

ii) if N is na-null then N is ν-null, provided ν is dna-continuous;
iii) if ν is dna-continuous and ν is continuous at ∅ and Ω, then core (ν) ⊂ na, provided

(Ω,Σ) is the standard Borel space.4

Proof. i) This is proved in [15, Prop. 2.1].
ii) Let N be na-null. Clearly, any N1 ⊆ N is na-null as well. We have

ν (A ∪N) = ν (A ∪ (N \A)) = ν∗
³
χA + χN\A

´
= ν∗ (χA) = ν (A)

for every A ∈ Σ. Thus, N is ν-null.
iii) As ν is continuous at ∅ and Ω, then core (ν) ⊂ ca (see [24]). Let m ∈ core (ν)

and N be any na-null coalition. By (ii), N is ν-null. Let us show that N is m-null. Take
any M ⊆ N , we have m (M) ≥ ν (M) = 0 and m (M c) = ν (Ω) − m (M) ≥ ν (Mc).
Namely, m (M) ≤ ν (Ω) − ν (M c) = 0. Hence, m (M) = 0 =⇒ |m| (N) = 0. To conclude,
|m| (N) = 0 holds for all N na-null. In particular, all the singleton N = {ω} are na-null.
Hence, |m| {ω} = 0. In Borel spaces this implies that m is non-atomic.

The next result, which is a consequence of Theorem 3, ensures the non-emptiness of the
core of the maximal excess games in this setting. Notice that the games covered by this
Theorem are essentially dna-generalization of market games

Theorem 12 Let ν have dna-continuous extension which is concave and linearly homoge-
neous, then core (νξ) 6= ∅ for every ξ ∈ na. In addition, if ν is λ-continuous for some
λ ∈ na1, then core (νξ) 6= ∅ for every ξ ∈ ca.

Proof. Given ξ ∈ na, use Theorem 3 for the dna-extension ν∗ : B1 (Σ) → R. As ν is
bounded, by a density argument, we infer that the function ν∗ (f) is bounded on B1 (Σ). It
suffices to prove (iii) of Theorem 3. On the other hand, the function f → ν∗ (f)− hξ, fi is
dna-continuous, if ξ ∈ na. As the indicator functions are dna-dense in B1 (Σ), condition (iii)

4Notice that if ν is na-continuous, then core (ν) ⊂ na, under no additional assumption. In addition, if a
standardness assumption is made, then ν is necessarily λ-continuous for some λ ∈ na.
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follows. Consequently, core (νξ) 6= ∅ for all ξ ∈ na. The last claim is a direct consequence
of Proposition 5.

The result of Theorem 12 alone does not suffice to ensure equivalence theorems for
non-atomic games, since the additional condition (SM) might still fail. The next theorem
specifies a class of non-atomic games for which (SM) holds.

Theorem 13 Let ν be dna-continuous and λ-continuous for some λ ∈ na1. Then,MBσ (ν)−
(ca, ba) = core (ν) if and only if (SM) holds for all ξ ∈ na ∩ I∗ (ν). In particular, this is
the case for the measure games ν = f (μ), where μ = (μi)

n
i=1 is a non-atomic signed vector

measure and f : R (μ)→ R is continuous, concave and linearly homogeneous on the range
R (μ) .

Proof. The first statement is a consequence of Theorems 12, 2 and Proposition 5. Let
us prove the last claim. The function ν∗ (·) = f (μ (·)) is the dna-continuous and concave
extension of ν. It is bounded as f is continuous on the compact and convex set R (μ).
The game ν is clearly dna-uniformly continuous. Part (i) of Proposition 14 implies that
core (ν) ⊂ na. By Theorem 12, core (νξ) 6= ∅ for every ξ ∈ na. In fact, by (i) of Proposition
14, ν is λ-continuous for some λ ∈ na+ and, hence, core (νξ) 6= ∅ for every ξ ∈ ca.

To end the proof, we must check that (SM) holds. Assume first that ξ ∈ span (μ1, μ2, ..., μn),
namely, ξ = a · μ, with a ∈ Rn. We have

sup
E∈Σ

ν (E)− ξ (E) = sup
E∈Σ

[f (μ (E))− a · μ (E)] = sup
x∈R(μ)

[f (x)− a · x] .

Clearly, the sup is attained at some point x0 ∈ R (μ). By Lyapunov Theorem, there is
some A such μ (A) = x0. If ξ /∈ span (μ1, μ2, ..., μn), then ξ ∈ span (μ1, μ2, ..., μn, ξ), and
we obtain the same result by considering the new measure game

f0 (μ1, μ2, ..., μn, ξ) = f (μ1, μ2, ..., μn) .

An appeal to Theorem 2 concludes the proof.
Theorem 13 is not striking, as the measure games it applies to overlap with the atomless

market games treated by Mas-Colell. Thus, the present result could be derived from Mas-
Colell’s theorem. A sharp comparison between Theorem 13 and Mas-Colell’s one is, however,
difficult since the underlying assumptions are not identical (see also [5, Remark page 199]).

12 Convex games

It is known from Einy et al. [13] that core (ν) =MBσ (ν) holds for bounded and continuous
convex games. We are going to show that this property may hold true under weaker
assumptions than continuity. To this end, a useful observation is that only Condition (SM)
matters here, as Condition (C) of Theorem 1 is automatically satisfied independently of
any continuity assumption. The following result is due to [25]. We include a proof as we
will be using it later on.
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Proposition 15 ([25]) Let ν be convex. Then, the game νξ is convex for all ξ ∈ ba.
Consequently, core (νξ) 6= ∅ if ν is convex and bounded.

Proof. Given two coalitions A and B, and ε > 0, there are A1 ⊆ A and B1 ⊆ B such
that ν (A1)− ξ (A1) ≥ νξ (A)− ε/2 and ν (B1)− ξ (B1) ≥ νξ (B)− ε/2. Hence,

νξ (A ∪B) + νξ (A ∩B) ≥ ν (A1 ∪B1) + ν (A1 ∩B1)− ξ (A1 ∪B1)− ξ (A1 ∩B1)
≥ ν (A1) + ν (B1)− ξ (A1)− ξ (B1)

≥ νξ (A) + νξ (B)− ε.

Hence, νξ is convex. As νξ is convex and bounded, we infer that core (νξ) 6= ∅ (see [21]
and [24]).

Another useful insight comes from the fact, shown in Proposition 16 below, that bounded
convex games satisfy largeness condition (L1). Once again, this is independent of any con-
tinuity assumption. Proposition 16 is straightforward consequence of the following Lemma
for which we only sketch a proof, since it is more or less known. We could not find, however,
a precise reference, at least for the general setting we are dealing with.

Lemma 1 Every bounded convex game ν satisfies largeness condition (L∗0): for all ξ ∈ ba,
ξ ≥ ν =⇒ ∃μ ∈ core (ν) such that ξ ≥ μ ≥ ν.

Proof. [Proof (Sketch)] Observe that ξ ≥ ν implies hξ, ϕi ≥ νc (ϕ) for all ϕ ∈ B+ (Σ),
where νc (ϕ) is the Choquet integral νc (ϕ) =

R
ϕdν. The functional νc is concave over

B+ (Σ), whenever ν is bounded and convex. Hence ξ ∈ ∂νc (0). By a standard argument
of convex analysis, we have that ∂νc (0) = core (ν) + ba+. Hence, the desired result.

Proposition 16 Any bounded convex game satisfies (L1). It satisfies (Lσ
1 ), provided it is

inner continuous. Bounded convex games have the saddle property (SP ) if and only if they
satisfy (SM). In particular, (SP ) holds for continuous convex games.

Proof. Lemma 1, Proposition 11, FACT 1 and Proposition 15 imply condition L1 (or
Lσ
1 ) for convex games. As bounded convex games are exact, Theorem 4 guarantees that
Property (SP ) holds provided that Property (SM) holds.

It remains to show that continuous convex games satisfy (SM). This can be done by
considering the Choquet extension of game as in Einy et al. [13], and we do not duplicate
their proof. The same argument, however, will be also used in the proof of Theorem 14,
below.

Summing up, by virtue of Propositions 15 and 16, we must focus on those convex games
satisfying (SM). The next Proposition illustrates that continuity is not necessary for (SM)
to hold. Consider the class of unanimity games: given a coalition C ∈ Σ, the game νC is
defined by νC (A) = 1, if C ⊆ A, and νC (A) = 0 otherwise.

Proposition 17 If νC is a unanimity game, then:
i) νC is inner continuous if and only if the coalition C contains finitely many players;
ii) coreσ (νC) =MBσ (νC)− (ba, ba) for all C.
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Proof. i) Assume that C is infinite. Let B1 = {a1, a2, ....} ⊆ C and Bn = {an, an+1, ....}.
We have Bn ↓ ∅. Clearly, Ω \Bn ↑ Ω and ν (Ω \Bn) = 0. Hence, ν is not inner continuous
at Ω. Conversely, νC is clearly continuous if C is finite.

ii) By Proposition 16, it suffices to check that (SM) holds for all unanimity games.
Given ξ ∈ ca, a straightforward though tedious calculation yields

νξ (Ω) = sup
A∈Σ

[νC (A)− ξ (A)]

= max
©
1− ξ+(C) + ξ− (Ω) ; ξ− (Ω)

ª
.

Let {N+, N−} be a partition of Ω for which ξ+ (N−) = ξ− (N+) = 0. If ξ+ (C) ≤ 1, it is
easy to check that the maximum is attained at C ∪N−. Likewise, ξ+ (C) ≥ 1 implies that
the maximum is at N− ∪ (C \N+).

We now turn to a general criterion which guarantees the same result as for unanimity
games. Note that all unanimity games νC are outer continuous. Moreover, coreσ (νC) =©
μ ∈ ca1 : μ (C) = 1

ª
is clearly a weak*-dense subset of core (νC).

Theorem 14 Let ν be a bounded convex game. Under the following three conditions:
i) ν ≥ σ for some σ ∈ ca;
ii) ν is λ-continuous for some λ ∈ ca1;
iii) ν is outer continuous;
ν has Property (SP ). Consequently,

coreσ (ν) =MBσ (ν)− (ba, ba) ,

holds and coreσ (ν) is a weak*-dense subset of core (ν).

Proof. By Proposition 16, ν satisfies (L1). We must prove that (SM) holds. By Corollary
5 in Appendix, coreσ (ν) is a weak* dense subset of core (ν). From (ii) it follows that
coreσ (ν) ⊂ ca (λ). Hence, coreσ (ν) may be identified with a subset of L1 (λ). Since any
bounded convex game is of bounded variation, the Choquet integral

R
ϕdν =

R 1
0 ν (ϕ ≥ t) dt

is well-defined for all ϕ ∈ B1 (Σ). By Proposition 5, it suffices to consider elements ξ ∈
ca (λ). We pattern the remainder of the proof after [13]. We have

νc (ϕ) =

Z
ϕdν = min

μ∈core(ν)
hϕ, μi = inf

μ∈coreσ(ν)
hϕ, μi

for all ϕ ∈ [L∞ (λ)]1. Since

νc (ϕ)− hξ, ϕi = inf
μ∈coreσ(ν)

hϕ, μ− ξi ,

νc (ϕ)−hξ, ϕi is weak* upper semicontinuous on [L∞ (λ)]1. By Alaoglu’s theorem, [L∞ (λ)]1
is weak* compact. Therefore, νc (ϕ)−hξ, ϕi attains the maximum value over [L∞ (λ)]1. Let
ϕ∗ ∈ [L∞ (λ)]1 be a maximum point. Namely,

k = νc (ϕ
∗)− hξ, ϕ∗i ≥ νc (ϕ)− hξ, ϕi

k =

Z 1

0
(ν − ξ) (ϕ∗ ≥ t) dt ≥ νc (ϕ)− hξ, ϕi ,
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for all ϕ ∈ [L∞ (λ)]1. It followsZ 1

0
[k − (ν − ξ) (ϕ∗ ≥ t)] dt = 0.

By setting ϕ = χ{f∗≥t}, we see that k ≥ (ν − ξ) (ϕ∗ ≥ t). As the function t → k −
(ν − ξ) (ϕ∗ ≥ t) is of bounded variation, we have k− (ν − ξ)

¡
ϕ∗ ≥ t

¢
= 0 for some t ∈ [0, 1]

(this is true for every t at which the previous function is continuous). By letting A =©
ϕ∗ ≥ t

ª
, we see that k = ν (A) − ξ (A) ≥ ν (E) − ξ (E) for all E ∈ Σ and, hence, (SM)

holds.
There are of course convex games for which the conditions of Theorem 14 fail. In such

a case, the bargaining set may be rather large. The next example expands Example 2.1 of
[13]. Let

¡
ν,N, 2N

¢
be the convex game defined by ν (A) = 1 if Ac is finite and ν (A) = 0

otherwise. Given a measure ξ ∈ ca+, let

carrier (ξ) = {i ∈ N : ξ ({i}) > 0} .

Proposition 18 If ξ ∈ ca+ ∩ I∗ (ν), then ξ ∈ MBσ (ν) − (ca, ba) \ core (ν) if and only if
carrier (ξ) is infinite.

Proof. Observe first that coreσ (ν) = ∅. Otherwise, it would be ξ (N \ {i}) = 1 for all
i ∈ N, which is a contradiction. Hence, ξ /∈ core (ν). We must prove that condition (SM)
fails whenever carrier (ξ) is infinite. As ν (A) − ξ (A) = −ξ (A) ≤ 0 whenever Ac is not
finite, we obtain

sup
A∈Σ

ν (A)− ξ (A) = sup
A is cofinite

1− ξ (A)

= 1− ξ (N) + sup
F is finite

ξ (F ) = 1.

If the sup were achieved, it would be ν (A) − ξ (A) = 1 for some cofinite element A.
That is, ξ (A) = 0, which implies that carrier (ξ) is finite, a contradiction. Conversely,
if carrier (ξ) = F0 is finite, it is easy to check that the sup is attained at F c

0 . Consequently,
ξ /∈MBσ (ν)− (ca, ba) \ core (ν).

Appendix: Density of σ-core

In this appendix, we discuss conditions under which the σ-core of an exact game is
weak*-dense in the whole core. This issue has been recently studied by Delbaen [11], who
related this property to a “Fatou condition”. He deals with positive game. Here, we extend
his results to games that are not necessarily positive. Let

νe (f) = min
μ∈core(ν)

hμ, fi .
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Theorem 15 ([11]) Assume that: (a) ν is exact; (b) ν ≥ σ for some σ ∈ ca; and (c) ν is
λ-continuous for λ ∈ ca1. The following three conditions are equivalent:

i) coreσ (ν) is a weak*-dense subset of core (ν);
ii) for all the sequences 0 ≤ fn ≤ 1 in L∞ (λ),

νe

µ
lim sup

n
fn

¶
≥ lim sup

n
νe (fn) (22)

iii) for all the sequences fn ↓ f in L∞ (λ), with 0 ≤ fn ≤ 1:

νe

³
lim
n

fn

´
= lim

n
νe (fn) .

Proof. We sketch the proof since it follows Delbaen’s [11]. Observe first that there is
some σ1 ∈ ca (λ) for which ν ≥ σ1. To see this, it suffices to define

σ1 (A) = inf
π

X
Ai∈π

ν (Ai) ,

where the inf is made over all countable measurable partition π of A. It is easy to check that
σ1 is λ-continuous, σ-additive and σ1 ≥ σ. Furthermore, as ν is superadditive, it follows
that ν ≥ σ1 ≥ σ.

Clearly, the game ν − σ1 is positive and λ-continuous. Moreover, core (ν − σ1) =
core (ν)− {σ1}. Hence, without loss, we can assume ν ≥ 0 for the remainder of the proof.

(i) =⇒ (ii). If coreσ (ν) is weak*-dense, then

νe (f) = inf
μ∈coreσ(ν)

hμ, fi ,

with f ∈ L∞ (λ). By Fatou’s lemma, hμ, lim supn fni ≥ lim supn hμ, fni ≥ lim supn νe (fn),
for all μ ∈ coreσ (ν). It follows that νe (lim supn fn) ≥ lim supn νe (fn).

(ii) =⇒ (i). As (22) holds for all the sequences 0 ≤ fn ≤ 1 and the functional νe is trans-
lation invariant and positively homogeneous, (22) is true for all the sequences kfnkL∞ ≤ 1.
The first step is to prove that the convex cone K = {f ∈ L∞ (λ) : νe (f) ≥ 0} is σ (L∞,L∞)
closed. By Krein-Smulian’s theorem [9], it suffices to prove that K∩BL∞(λ) is weak*-closed.
Let fα → f in the weak* topology, with fα ∈ K ∩ BL∞(λ). As L∞ (λ) ⊂ L1 (λ), fα → f

weakly in L1 (λ). Hence, f ∈ co (fα)α
w
. This implies that f ∈ co (fα)α, where the closure is

in the strong topology of L1 (λ) . Hence there exists a sequence gn → f strongly in L1 (λ),
with gn ∈ co (fα)α ⊆ K ∩ BL∞(λ). By passing to a subsequence g0n, we have g0n → f a.e.
Consequently,

νe (f) = νe

µ
lim sup

n
g0n

¶
≥ lim sup

n
νe
¡
g0n
¢
≥ 0

and K is weak* closed.
From here, the proof is completed by using the bipolar theorem for the pairing


L∞,L1

®
(see for instance [2, Th. 5.91]) just as in Delbaen’s proof.

(iii) =⇒ (ii). Let lim supn fn = f . Set gn = supm≥n fm. Then gn ↓ f . By assumption,
νe (gn)→ ν (f). On the other hand, νe (fn) ≤ νe (gn). So lim supn νe (fn) ≤ limn νe (gn) =
ν (f) which proves the implication. The converse implication, (ii) =⇒ (iii), is obvious.

Theorem 15 has a noteworthy specialization for convex games.
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Corollary 5 Assume: ν is convex, ν ≥ σ for some σ ∈ ca and ν is λ-continuous for
λ ∈ ca1. Then, coreσ (ν) is weak*-dense in core (ν) if and only if ν is outer continuous.

Proof. In view of (iii) of Theorem 15, the outer continuity is clearly necessary. Let us
prove that it is also sufficient. Let fn ↓ f , with 0 ≤ fn ≤ 1. Clearly, {fn ≥ t} ↓ {f ≥ t}
holds for all t. By the Monotone Convergence Theorem,

lim
n

νe (fn) = lim
n

Z 1

0
ν (fn ≥ t) dt =

Z 1

0
ν (f ≥ t) dt = νe (f)

that provides the desired result.
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