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Abstract

We characterize the optimal incentive scheme for a manager who faces costly e¤ort decisions
and whose ability to generate pro�ts for the �rm varies stochastically over time. The optimal
contract is obtained as the solution to a dynamic mechanism design problem with hidden actions
and persistent shocks to the agent�s productivity. When the agent is risk-neutral, the optimal
contract can often be implemented with a simple pay package that is linear in the �rm�s pro�ts.
Furthermore, the power of the incentive scheme typically increases over time, thus providing a
possible justi�cation for the frequent practice of putting more stocks and options in the package
of managers with a longer tenure in the �rm. In contrast to other explanations proposed in the
literature (e.g., declining disutility of e¤ort or career concerns), the optimality of seniority-based
reward schemes is not driven by variations in the agent�s preferences or in his outside option.
It results from an optimal allocation of the manager�s informational rents over time. Building
on the insights from the risk-neutral case, we then explore the properties of optimal incentive
schemes for risk-averse managers. We �nd that, other things equal, risk-aversion reduces the
bene�t of inducing higher e¤ort over time. Whether (risk-averse) managers with a longer tenure
receive more or less high-powered incentives than younger ones then depends on the interaction
between the degree of risk aversion and the dynamics of the impulse responses for the shocks to
the manager�s type.
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1 Introduction

This paper contributes to the literature on managerial compensation by adopting a mechanism

design approach to characterize the dynamics of the optimal incentive scheme.

We consider an environment in which the �rm�s shareholders (the principal) hire a manager

(the agent) whose ability to generate pro�ts for the �rm varies stochastically over time. This could

re�ect, for example, the possibility that the value of the manager�s expertise/competence changes

in response to variations in the business environment. It could also be the result of learning by

doing. We assume that both the manager�s ability to generate pro�ts (his type) as well as his

e¤ort choices are the manager�s private information. The �rm�s shareholders simply observe the

dynamics of pro�ts (equivalently, the value of their shares), which we assume to be veri�able, and

pay the manager on the basis of this information.

Contrary to the literature on renegotiation (e.g. La¤ont and Tirole, 1988, 1990), we assume

that the �rm�s shareholders perfectly understand the value of commitment and hence adhere to

the incentive scheme they o¤ered when they hired the manager, even if, after certain contingencies,

such a scheme need not be optimal anymore. However, contrary to this literature, we do not impose

restrictions on the process governing the evolution of the agent�s private information. In particular,

we do not restrict the agent�s type to be constant over time, nor do we restrict the agent�s types

to be independent. Allowing for general processes is important for it permits us to shed light

on certain properties of the optimal scheme that are obscured, if not completely eliminated, by

assuming perfectly correlated, or independent types (more below).

Our baseline model features an environment where both the �rm�s shareholders and the man-

ager are risk-neutral. Because the �rm contracts with the manager at the time the latter is already

privately informed about his type, interesting dynamics emerge even without introducing risk aver-

sion. In particular, we show that the power of incentives typically increases over time, which can

explain the frequent practice of putting more stocks and options in the pay package of managers

with a longer tenure in the �rm. Contrary to other explanations proposed in the literature (e.g.,

declining disutility of e¤ort or career concerns), in our model, the optimality of seniority-based
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reward schemes is not driven by variations in the agent�s preferences, nor by variations in his out-

side option. It results from an optimal allocation of the manager�s informational rents over time.

In other words, it originates in the �rm�s desire to minimize the manager�s compensation while

preserving his incentives for both e¤ort and information revelation.

The driving assumption behind this result is that the e¤ect of the manager�s initial type on

the distribution of his future types (which we call the impulse response) declines over time. This

assumption is satis�ed, for instance, when the agent�s private information evolves according to

an ARIMA process with impulse responses smaller than one. As discussed also in other recent

works on dynamic mechanism design (e.g. Battaglini, 2005, Pavan, Segal, and Toikka, 2009(a))

this assumption implies that, to minimize the agent�s rents, it is more e¢ cient to distort decisions

downwards in the early stages of the relationship than in later ones. The reason is that an agent�s

rent, which is provided to ensure he does not mimic another type, depends on the di¤erent expec-

tations the two types have about their future types. When this di¤erence declines with the time

horizon, distorting decisions in the distant future becomes less e¤ective at reducing informational

rents. When applied to the situation studied in this paper, this principle of �vanishing distortions�

leads to an e¤ort policy that is closer to the �rst-best in the long run than in the short run. This

follows from the fact that a type�s rent increases in the e¤ort of lower types, as shown by La¤ont

and Tirole (1986) in a static setting.

A second prediction of the model is that the optimal contract under risk neutrality often takes

the form of a simple (state-contingent) linear contract. In other words, in each period, the �rm pays

the manager a �xed salary plus a bonus that is linear in the �rm�s pro�ts (or, equivalently, in the

�rm�s stock price, provided the latter also depends on the manager�s e¤ort). When the manager�s

type follows an ARIMA process (more generally, any process where the impulse responses exhibit

a certain separability with respect to the initial type), the slope of the linear scheme changes

deterministically over time, i.e. it depends on the manager�s initial type and on the number of

periods the manager has been working for the �rm, but not on the shocks experienced over time.

More generally, the optimal contract requires that the manager be given the possibility of
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proposing changes to his pay package in response to the shocks to his productivity (equivalently,

to any privately observed shock to the environment that a¤ects his ability to generate pro�ts for

the �rm). The idea that a manager may be given the possibility to propose changes to his reward

package seems appealing in light of the recent empirical literature on managerial compensation

where it is found that this practice has become more frequent in the last decade (see, among

others, Kuhnen and Zwiebel (2008), and Bebchuck and Fried (2004)).

While, under risk neutrality, the optimality of linear schemes holds across a variety of speci�-

cations of the process governing the evolution of the manager�s productivity, there are instances

where the optimal e¤ort policy requires the use of stronger incentive schemes according to which

the manager is paid a bonus only when the �rm�s pro�ts exceed a certain threshold, where this

threshold may depend on the history of the manager�s reports about his type. While the power of

these schemes is stronger, contrary to linear schemes, these �bonus�schemes would not be appro-

priate when pro�ts are the result not only of the manager�s type and e¤ort, but also of unobservable

noise shocks whose distribution is una¤ected by the manager�s e¤ort.

Building on the insights from the risk-neutral case, in the second part of the paper we explore

the properties of optimal incentive schemes for risk-averse managers. We �nd that risk-aversion

tends to reduce (but not necessarily eliminate) the bene�ts of seniority-based incentive schemes

whose power increases, on average, over time. The reason is that the uncertainty the agent faces

about his future productivity given his current productivity increases with the time horizon. In

other words, while the agent�s current type is a fairly good predictor of his type in the next period,

it is a fairly poor predictor of his type, say, �ve periods into the future. Furthermore, because

incentives are forward-looking, the sensitivity of the agent�s pay to his productivity in period t is

increasing in all future e¤ort levels and is independent of past e¤ort choices. Reducing e¤ort in

the far future is thus more e¤ective at reducing the agent�s overall exposure to risk than reducing

e¤ort in the present or in the near future. Other things equal, risk aversion thus makes it more

attractive for the principal to induce higher e¤ort in the early stages of the relationship, when the

agent faces little uncertainty about his ability to generate pro�ts, than in later periods, where this
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uncertainty (as perceived from the moment the contract is signed) is higher. Whether risk-averse

managers with a longer tenure receive more or less high-powered incentive schemes than younger

ones then depends on the interaction between the degree of risk-aversion and the impulse responses

for the shocks to the manager�s type.

Related literature.1 The literature on managerial compensation is too large to be successfully

summarized within the context of this paper. We refer to Prendergast (1999) for an excellent review

and to Edmans and Gabaix (2009) for a survey of some recent developments. Of particular interest

for our paper is the empirical literature on the use of seniority-based incentive schemes. This

literature �nds mixed evidence as to the e¤ect of tenure on performance-related pay. While some

papers suggest that managers with a longer tenure tend to have weaker incentives and explain this

by the fact that the board of directors tends to be captured by CEOs over time (e.g. Hill and

Phan, 1991), others point to the contrary (see, e.g., Lippert and Porter, 1997, but also Gibbons

and Murphy, 1991). As one would expect, these di¤erences often originate in the choices about

which incentives are relevant (e.g. whether to consider stock options). At the theoretical level, our

paper contributes to this literature by o¤ering a new trade-o¤ for the optimality of seniority-based

incentives that, to the best of our knowledge, was not noticed before.

Obviously the paper is also related to the literature on �dynamic moral hazard� and to its

application to dynamic managerial compensation. Seminal works in this literature include Lambert

(1983), Rogerson (1985) and Spear and Srivastava (1987). These works provide some qualitative

insights about the optimal policy, but do not provide a full characterization. This has been possible

only in restricted settings: Phelan and Townsend (1991) characterize optimal policies numerically in

a discrete-time model, while Sannikov (2008) uses a continuous-time setting with Brownian shocks

to characterize the optimal policy as the solution to a di¤erential equation. In contrast to these

results, Holmstrom and Milgrom (1987) show that the optimal contract has a simple structure

when (a) the agent does not value the timing of payments, (b) noise follows a Brownian motion

and (c) the agent�s utility is exponential; under these assumptions, the optimal contract is a simple

1This part is even more preliminary than the rest. We apologize to those who believe their work should have been
cited here and that we omitted to discuss.
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linear aggregator of aggregate pro�t.

Contrary to this literature, we assume that, in each period, the agent observes the shock to his

productivity before choosing e¤ort. In this respect, the paper is most closely related to La¤ont

and Tirole (1986). This alternative approach permits one to use techniques from the mechanism

design literature to solve for the optimal contract. In work independent from ours, Edmans and

Gabaix (2008) show how this approach can be applied to a dynamic setting, allowing for risk

aversion. However, they do not characterize the optimal e¤ort policy, nor which policies are imple-

mentable.2 Allowing for general processes and characterizing the optimal e¤ort policies is essential

to establishing results about the dynamics of the power of incentives and the optimality of linear,

or quasi-linear, schemes. Characterizing the optimal e¤ort policy also shows that details about

the agent�s preferences and the process for the shocks do matter for the structure of the optimal

contract.

From a methodological standpoint, our paper uses recent results from the dynamic mechanism

design literature to arrive to a characterization of the necessary and su¢ cient conditions for incen-

tive compatibility. In particular, the approach here builds on the techniques developed in Pavan,

Segal, and Toikka (2009,a,b). This paper provides a general treatment of dynamic mechanism

design in which the principal has full commitment, and the agent�s type may be correlated across

time. It extends previous work, for example by Besanko (1985) and Battaglini (2005), to a setting

with fairly general payo¤s and stochastic processes. We refer the reader to Pavan, Segal, and Toikka

(2009,a) for a more extensive review of the dynamic mechanism design literature.

An important dimension in which the paper makes some progress is the characterization of

optimal mechanisms under risk aversion and correlated information. In this respect, the paper is

also related to the literature on optimal dynamic taxation (also known as Mirrleesian taxation).

Battaglini and Coate (2008) consider a discrete-time-two-type model with Markov transitions and

show continuity in the optimal mechanism as preferences converge to risk neutrality. Zhang (2009)

considers a model with �nitely many types, but where contracting occurs in continuous-time and

2Other di¤erences are that (a) they restrict attention to e¤ort policies that depend at most on the current shocks,
and (b) they assume contracting occurs at a time the agent does not possess any private information.

6



where the arrival rate of the transitions between types follows a Poisson process. For most of the

analysis, he also restricts attention to two types and �nds that many of the results derived for

the i.i.d. case (studied, for instance, by Albanesi and Sleet, 2006) carry over to the environment

with persistent types. In particular, the celebrated �immiserization result�according to which con-

sumption converges to its lower bound, extends to a setting with correlated types. One qualitative

di¤erence with respect to the i.i.d. case is that the size of the �wedges�, i.e. the distortions due to

the agent�s private information, is signi�cantly larger when types are persistent. Consistent with

Battaglini and Coate (2006), he also �nds that, contrary to the risk-neutral case, distortions do

not vanish as soon as the agent becomes a high type.

Our results appear broadly consistent with the aforementioned �ndings from the dynamic op-

timal taxation literature; however, by allowing for a continuum of types and by considering fairly

general stochastic processes, we also uncover patterns of distortions that have not been noticed be-

fore (e.g. the possibility that, under risk aversion and su¢ ciently persistent shocks, e¤ort actually

declines over time, as it is the case when productivity follows a random walk). The techniques

used to arrive to the characterization of the optimal contract are also di¤erent from those in the

literature with �nitely many types.

Lastly, the paper relates to the literature on the optimal use of �nancial instruments in dynamic

principal-agent relationships. For instance, DeMarzo and Fishman (2007), DeMarzo and Sannikov

(2006) and Sannikov (2007)3 study optimal �nancial contracts for a manager who privately ob-

serves the dynamics of cash-�ows and can divert funds from investors for private consumption. In

these papers it is typically optimal to induce the highest possible e¤ort (which is equivalent to no

stealing/no saving); the instrument which is then used to create incentives is the probability of

terminating the project. One of the key �ndings is that the optimal contract can often be imple-

mented using long-term debt, a credit line, and equity. The equity component represents a linear

component to the incentive scheme which is used to make the agent indi¤erent as to whether or

not to divert funds for private use. Since the agent�s cost of diverting funds is constant across time

3As in our work, and contrary to the other papers cited here, Sannikov (2007) allows the agent to possess some
private information prior to signing the contract. Assuming the agent�s initial type can be either "bad" or "good",
he then characterizes the optimal separating menu where only good types are funded.
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and output realizations, so is the equity share. In contrast, we provide an explanation for why and

how this share typically changes over time. While these two papers suppose cash-�ows are i.i.d.,

Tchistyi (2006) explores the consequences of correlation and shows that the optimal contract can

be implemented using a credit line with an interest that increases with the balance. DeMarzo and

Sannikov (2008) consider an environment in which both investors and the agent learn about the

�rm�s true productivity (which evolves according to a Brownian motion). In this paper, as in ours,

the agent�s private information is correlated over time.

The rest of the paper is organized as follows. Section 2 presents the baseline model. Section 2.2

characterizes the optimal mechanism. Section 3 extends the analysis to settings where the optimal

e¤ort policy is contingent on the entire history of shocks. Section 4 examines optimal schemes for

risk-averse agents. All proofs omitted in the text are in the Appendix.

2 The Baseline Model

2.1 The environment

The �rm�s shareholders (hereafter referred to as the principal) hire a manager (the agent) to work

on a project over T periods, where T may be either �nite or in�nite. In each period t, the agent

receives some private information �t 2 �t about the environment or, equivalently, about his ability

to generate pro�ts for the �rm, and then chooses e¤ort level et 2 E � R. We will assume that

�t � R is either equal to [�t; ��t] or, in case ��t = +1, to [�t; ��t) � R for some �1 < �t � ��t � +1.4

To simplify the exposition (and facilitate the characterization of the optimal e¤ort policy) we

will assume that E = R.5

The principal�s pro�ts �t in period t, gross of any agent compensation, depend on the sequence

of e¤ort decisions et � (es)ts=1 chosen by the agent in previous periods and on the agent�s current
4As it will become clear from the analysis in the subsequent sections, that �t is bounded from below is to guarantee

that expected payo¤s, when expressed taking incentives into account, are well de�ned.
5That e¤ort can take negative values should not raise concerns: here, e simply stands for the e¤ect of the agent�s

activity on the �rm�s performance, so there is no reason to restrict it to be positive.
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�type��t.6 In particular, we assume that7

�t = �t + et +

t�1X
�=1

��et��

for some constant � � 0 that captures the persistence of the e¤ect of the manager�s e¤ort on the

�rm�s pro�ts. The set of possible period-t pro�ts will be denoted by

�t � f�t 2 R : �t = �t + et +

t�1X
�=1

��et�� ; �t 2 �t, es 2 E; 8s � tg

Both �t and et are the agent�s private information. On the contrary, the stream of pro�ts �t are

assumed to be veri�able, which implies that the agent can be rewarded as a function of the �rm�s

pro�ts.

As is common in the literature, we equate the agent�s period-t consumption ct with the payment

from the principal (in other words, we assume away the possibility of hidden savings). Such a

restriction is, however, without loss of generality under the assumption of risk-neutrality considered

in this section.

In each period, the principal may condition the agent�s payment on the entire history of pro�ts

�t. By choosing e¤ort et in period t, the agent su¤ers a disutility  (et). To ensure interior solutions

and to validate a certain dynamic envelope theorem (more below), we will assume that  is a

continuously di¤erentiable function and that there exist scalars �e 2 R++ and K 2 R++ such that

 (e) = 0 for all e < 0;  is thrice continuously di¤erentiable over (0; �e) with  00(e) > 0 and

 000(e) � 0 for all e 2 (0; �e) and  (e) = Ke for all e > �e.8

The agent�s preferences over (lotteries over) streams of consumption levels cT and streams of

e¤ort choices eT are described by an expected utility function with (Bermoulli) utility given by

UA(cT ; eT ) =

TX
t=1

�t�1[ct �  (et)] (1)

6From now on, we adopt the convention of denoting sequences of variables by their superscripts.
7Note that because �t is not restricted to be independent of the past shocks �t�1 � (�1; :::; �t�1), there is no loss

of generality in assuming that �t depends only on �t, as opposed to the entire history �t = (�1; :::; �t): To see this,
suppose that �t = ft(�

t)+ht(e
t) for some functions ft : Rt ! R and ht : Rt ! R: It then su¢ ces to change variables

and simply let �newt = ft(�
t).

8These conditions are satis�ed e.g. when �e = K and  (e) = (1=2)e2 for all e 2 [0; �e]. More generally, note that
the assumption that  000 � 0 guarantees that the principal�s relaxed program, as de�ned below, is concave.
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where � < 1 is a discount factor. As standard, the aforementioned speci�cation presumes time

consistency. In what follows, we will thus assume that, after each history ht, the agent maximizes

the expectation of UA(cT ; eT ); where the expectation is taken with respect to whatever information

is available to the agent after history ht.

The principal�s payo¤ is given by the discounted sum of the �rm�s pro�ts, net of the agent�s

compensation:

UP (�T ; cT ) =
TX
t=1

�t�1 [�t � ct] :

The function UP also corresponds to the principal�s Bermoulli function used to evaluate lotteries

over (�T ; cT ).

Throughout, we will also assume that �� < 1 and that K > 1 +
PT�1

s=1 (��)
s:

In each period t, �t is drawn from a cumulative distribution function Ft(�j�t�1) de�ned on �t.9

Below, we will often �nd it convenient to describe the evolution of the agent�s type through a

collection of functions of independent shocks. More precisely, let (~"t)
T
t=2 denote a collection of

random variables, each distributed according to the c.d.f. Gt, strictly increasing on the interval

Et � R, where Et = ["t�"
t] if �"t < +1 and ["t;�"t) if �"t = +1 for some �1 < et � �"t � +1;

and such that (~�1;~"T ) are jointly independent.10 Then, let (zt(�))Tt=2 denote a collection of real-

valued functions such that, for any t � 2, any �1 and any "t�1 2 E t�1 � �t�1s=2Es; the distribution

of zt(�1; ("t�1;~"t)) given (�1; "t�1) is the same as that of �t given �t�1 = zt�1(�1; "t�1), where

zt�1(�1; "t�1) � (�1; z2(�1; "2); :::; zt�1(�1; "t�1)): As indicated in Pavan, Segal, and Toikka, 2009(b),

any stochastic process (i.e. any collection of kernels F = hFt(�j�)iTt=1) admits at least one such

representation.

We initially restrict attention to processes for which each zt is separable in its �rst component.

De�nition 1 The process for (~�t)Tt=1 given by the kernels

F �


Ft : �

t�1 ! �(�t)
�T
t=1

9Throughout, we assume that, for any t, any
�
�t
�
, any s > t; E[j~�sj j �t] < +1.

10The reason for restricting "t > �1 is the same as for restricting �t to be bounded from below; it guarantees
that the agent�s payo¤ in any incentive compatible mechanism can be conveniently expressed in integral form.
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is separable in the �rst component (SFC) if it admits an independent-shock representation such

that for each t � 2, the function zt : �1 � E t ! �t takes the form

zt(�1; "
t) = t(�1) + �t("2; : : : ; "t)

for some functions t : �1 ! R and �t : E t ! R.

The set of SFC processes is quite large and it includes for example all moving average processes,

and more generally any ARIMA process with arbitrary parameters.

2.2 The mechanism design problem

The principal�s problem consists of choosing a mechanism detailing for each period t a recommen-

dation for the agent�s e¤ort et and a level of consumption ct that depend on the sequence of realized

pro�ts �t and (possibly) on a sequence of messages about the environment sent by the agent over

time.

By the revelation principle, we restrict attention to direct mechanisms for which a truthful and

obedient strategy is optimal for the agent. Let �t � �t�=1�� and �t = �t�=1�� . A (deterministic)

direct mechanism 
 = h�t; stiTt=1 consists of a collection of functions �t : �t��t�1 ! E and st : �t�

�t ! R such that �t(�t; �t�1) is the recommended level of e¤ort for period t given the agent�s reports

�t and the observed past pro�ts �t�1, while st(�t; �t�1; �t) is the principal�s payment (i.e. the agent�s

consumption) at the end of period t given the reports �t and the observed pro�ts �t = (�t�1; �t):

Note that st(�t; �t�1; �t) depends also on the current performance �t: Equivalently, the mechanism


 speci�es for each period t and each history (�t; �t�1) a recommended e¤ort level �t(�
t; �t�1)

along with a contingent payment scheme st(�t; �t�1; �) : �t ! R. With a slight abuse of notation,

henceforth we will denote by et(�t) � �t(�
t; �t�1(�t�1)) and by ct(�t) = st(�

t; �t(�t)) respectively

the equilibrium e¤ort and the equilibrium consumption level for period t given �t; where �t(�t) =

(�s(�
s))ts=1 with �s(�

s) de�ned recursively by �s(�s) = �s +
Ps�1

�=0 �
��s�� (�

s�� ; �s���1(�s���1)):

The timing of play in each period t is the following:

� At the beginning of period t; the agent learns �t 2 �t;
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� The agent then sends a report �̂t 2 �t;

� Finally, the mechanism reacts by prescribing an e¤ort choice et = �t(�
t; �t�1) and a reward

scheme st(�t; �t�1; �) : �t ! R:

The mechanism 
 is o¤ered to the agent at date 1; after he has observed the �rst realization �1

of the process governing the evolution of �t:11 If the agent refuses to participate in the mechanism


; then both the agent and the principal receive their outside options, which we assume to be

equal to zero. If, instead, the agent accepts 
; then he is obliged to stay in the relationship in all

subsequent periods.12

Because we will often �nd it convenient to describe the evolution of the agent�s type through an

independent-shock representation (described above), hereafter, we will also consider direct mech-

anisms in which the agent reports the shocks "t in each period t � 2 instead of his period-t type

�t. We will then denote such mechanisms by 
̂ = h�̂t; ŝtiTt=1 where �̂t : �1 � E t � �t�1 ! E and

ŝt : �1 � E t � �t ! R have the same interpretation as the mappings �t and st in the primitive

representation (the one in terms of the �t). Likewise, we will denote by ĉt(�1; "t) and by êt(�1; "t)

the consumption and e¤ort choices that are implemented in equilibrium given (�1; "t):

The optimal mechanism

To ease the understanding of the properties of the optimal mechanism, we start by considering the

optimal e¤ort policy in the absence of any private information.13

Proposition 1 Assume the agent does not possess any private information, i.e. both the evolution

of the environment (as captured by the process for �t) and the agent�s e¤ort choices eT are publicly

observable and veri�able. The optimal contract for the principal then implements the following

11Allowing the agent to possess private information at the time of contracting is not only realistic, but essential to
shed light on important aspects of the optimal contract such as the time-varying power of incentives. Furthermore,
it permits one to derive interesting dynamics, even without assuming the agent is risk-averse.
12That participation must be guaranteed only in period one is clearly not restrictive when the principal can ask the

agent to post bonds. Below, we will discuss also situations/implementations where, even in the absence of bonding,
participation can be guaranteed after any history.
13Given the assumptions on  ; eFBt 2 (0; �e) for all t.
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e¤ort policy:

 0(eFBt ) = 1 +

T�tX
s=1

(��)s 8t, 8(�1; "t)

In particular, when T = +1; the optimal e¤ort is stationary over time and is implicitly given

by  0(eFB) = 1=[1 � ��]: Likewise, the optimal e¤ort is constant and given by  0(eFB) = 1 when

the manager�s e¤ort has only a transitory e¤ect on the �rm�s performance, i.e. when � = 0:

That the �rst-best e¤ort policy is independent of any variation in the underlying environment is a

consequence of the assumption of independence of the agent�s disutility of e¤ort from the underlying

state �t:

Clearly, the same �rst-best e¤ort policy is implemented in any environment in which the agent�s

initial type �1 is publicly observed and veri�able (equivalently, in any environment in which the

agent contracts with the principal before learning �1), irrespective of the observability of e¤ort

choices and future shocks �t.14

Next, consider the case where the agent possesses relevant private information. Thus assume

that both the evolution of the environment (as captured by the process for �t) and the agent�s e¤ort

choices are the agent�s private information. In addition, suppose that contracting between the agent

and the principal occurs at a time at which the agent is already informed about his period-1 type

�1. The following proposition presents the main characterization result for this environment.

Proposition 2 Assume the process governing the evolution of �t satis�es the SFC condition and

that, for each t, t(�) is di¤erentiable and there exists M 2 R+ such that supt fj0t(�1)jg � M for

all �1. For any �1, let D1;1(�1) � 1 and for any t � 2, let D1;t(�1) � 0t(�1) � �0t�1(�1), with,

01(�1) � 1, and suppose that for any t; any �1; D1;t(�1) � 0: Finally, assume that F1 is absolutely

continuous with density f1(�1) > 0 for all �1 2 �1 and denote by �(�1) � [1 � F1(�1)]=f1(�1) its

inverse hazard rate. Then consider the e¤ort policy ê� implicitly de�ned, for all t all �1, by15

 0(ê�t (�1)) = 1 +
T�tX
s=1

(��)s � �(�1)D1;t(�1) 00(ê�t (�1)) 8�1; 8t � 1; (2)

14As we will show below, this property is however a consequence of the assumption of transferable utility, i.e. of
the fact that both the agent�s and the principal�s preferences are linear in the transfers ct.
15Throughout,  00+ will denote the second right derivative of  :
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unless  00+(0) �
h
1 +

PT�t
s=1 (��)

s
i
= [�(�1)D1;t(�1)] in which case ê�t (�1) = 0:

1. For any t and any �1 let

�t(�1) �  0(ê�t (�1))� �� 0(ê�t+1(�1))

[if T is �nite, then �T (�1) �  0(ê�T (�1))]. Suppose the policy ê
� de�ned above satis�es the

following single-crossing condition"
TX
t=1

�t�10t(�1)[�t(�1)� �t(�̂1)]
#
[�1 � �̂1] � 0 8�1; �̂1 2 �1. (3)

Then the recommendation policy

�̂
�
t (�1; "

t; �t�1) = ê�t (�1) 8(�1; "t; �t�1) 2 �1 � E t ��t�1

together with the output-contingent reward scheme de�ned below are part of an optimal mech-

anism. The reward scheme is such that

ŝ�1(�1; �1) = S1(�1) + �1(�1)�1

while for any t � 2;

ŝ�t (�1; "
t; �t) = �t(�1)�t

where

S1(�1) �
TX
t=1

�t�1

"
 (ê�t (�1)) +

Z �1

�1

D1;t(s) 
0(ê�t (s))ds� E

�
�t(�1)�̂

�
t (�1;~"

t)
�#

with �̂�t (�1; "
t) � zt(�1; "

t) + ê�t (�1) +
Pt�1

�=1 �
� ê�t�� (�1):

2. Suppose that for any t, either (a) � = 0 and the function �(�)D1;t(�) is non-increasing, or (b)

 (e) = ke2=2 for all e 2 [0; �e] and �(�)[D1;t(�)� ��D1;t+1(�)] is non-increasing [if T is �nite,

then for t = T; �(�)D1;T (�) is non-increasing]. Then the e¤ort policy ê� of part (1) satis�es

the single-crossing condition (3).
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Because this is one of the main results in the paper and because many of the subsequent results

follow from arguments/techniques similar to those used to establish Proposition 2, the proof for

this result is given below instead of being relegated to the Appendix. The reader interested only in

the predictions of the model can however skip this proof and continue with the reading at page 21.

Proof. The structure of the proof is the following. Lemma 1 provides a necessary condition

for incentive compatibility based on the application of a dynamic envelope theorem (as in Pavan,

Segal, and Toikka, 2009(b)) to the agent�s optimization problem. Lemma 2 characterizes the e¤ort

policy ê� that solves the principal�s relaxed problem, where the latter considers only the necessary

condition established in Lemma 1 (along with a certain participation constraint) and ignores all

remaining constraints. Lemma 3 shows that, when the solution to the relaxed program satis�es the

single-crossing condition of (3), then (i) it can be implemented by the linear scheme described in the

proposition, (ii) under this scheme all types �nd it optimal to participate, and (iii) the lowest type

�1 receives a zero expected payo¤ in equilibrium. As discussed in more detail below, together these

properties guarantee that the e¤ort policy ê� (equivalently, the recommendation policy �̂
�
) along

with the linear reward scheme ŝ� are part of an optimal mechanism. Finally, Lemma 4 completes

the proof by establishing the result in Part 2.

Given the mechanism 
̂ = h�̂; ŝi, let V 
̂(�1) denote the value function when the agent�s period

one type is �1: This is simply the supremum of the agent�s expected payo¤over all possible reporting

and e¤ort strategies. The mechanism 
̂ is incentive compatible if V 
̂(�1) coincides with the agent�s

expected payo¤ under a truthful and obedient strategy for every �1 2 �1: We then have the

following result.

Lemma 1 The mechanism 
̂ is incentive compatible only if V 
̂(�1) is Lipschitz continuous and,

for almost every �1 2 �1;

dV 
̂(�1)

d�1
= E

"
TX
t=1

�t�1D1;t(�1) 
0(êt(�1;~"

t))

#
:

Proof of the lemma. Consider the following �ctitious environment. At any point in time, the

agent can misreport his private information but is then �forced�to choose e¤ort so as to perfectly
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�hide�his lies. That is, at any period t, and for any given sequence of reports (�̂1; "̂t); the agent

must exert e¤ort et so that �t = �̂t(�̂1; "̂
t), where �̂t(�̂1; "̂t) is the equilibrium pro�t for period t

given (�̂1; "̂t); as de�ned in the Proposition. Now let

êt(�1; "
t; �̂1; "̂

t) = �̂t(�̂1; "̂
t)� zt(�1; "t)� �

t�1X
�=1

���1êt�� (�1; "
t�� ; �̂1; "̂

t�� ) (4)

= �̂t(�̂1; "̂
t)� zt(�1; "t)

��
 
êt�1(�1; "

t�1; �̂1; "̂
t�1) +

t�2X
�=1

�� êt�1�� (�1; "
t�1�� ; �̂1; "̂

t�1�� )

!
= �̂t(�̂1; "̂

t)� zt(�1; "t)� �
�
�̂t�1(�̂1; "̂

t�1)� zt�1(�1; "t�1)
�

denote the e¤ort the agent must exert in period t to meet the target �̂t(�̂1; "̂t) when his true type

is (�1; "t) given that he met the targets (�̂s(�̂1; "̂s))t�1s=1 in all preceding periods, with e1(�1; �̂1) =

�̂1(�̂1)� �1.

Now �x (�̂1; "̂T ) and let (ĉT ; �̂T ) be the stream of equilibrium payments and pro�ts that, given

the mechanism 
̂; correspond to the sequence of reports (�̂1; "̂T ). For any (�̂1; "̂T ) and given any

sequence of true shocks (�1; "T ), the agent�s payo¤ in this �ctitious environment is given by

ÛA(�1; "
T ; �̂1; "̂

T ) =
TX
t=1

�t�1[ĉt �  (êt(�1; "t; �̂1; "̂t))]

= ĉ1 �  (�̂1 � �1)

+

TX
t=2

�t�1[ĉt �  (�̂t � zt(�1; "t)� �
�
�̂t�1 � zt�1(�1; "t�1)

�
)]

= ĉ1 �  (�̂1 � �1)

+

TX
t=2

�t�1[ĉt �  (�̂t � t(�1)� �t("t)� �(�̂t�1 � t�1(�1)� �t�1("t�1)))]

The assumptions that  and t are di¤erentiable and equi-Lipschitz continuous imply that Û
A

is equi-Lipschitz continuous and di¤erentiable in �1. Now suppose the mechanism 
̂ is incentive

compatible in the unrestricted setting where the agent is free to choose any e¤ort he wants at

any point in time. It is then necessarily incentive compatible also in this �ctitious setting where,

for each (�1; "T ; �̂1; "̂T ), e¤ort is pinned down by (4). The result in the Lemma then follows from

Proposition 1 in Pavan, Segal, and Toikka (2009,b): Letting ÛA(�1; "T ) denote the agent�s payo¤

when he follows a truthtelling and obedient strategy, we have that 
̂ is incentive compatible only
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if V 
̂ is Lipschitz continuous and, for almost every �1 2 �1;

dV 
̂(�1)

d�1
= E

"
@ÛA(�1;~"

T ))

@�1

#

= E

"
 0(ê1(�1)) +

TX
t=2

�t�1[0t(�1)� �0t�1(�1)] 0(êt(�1;~"t))
#

= E

"
TX
t=1

�t�1D1;t(�1) 
0(êt(�1;~"t))

#
,

which establishes the result. �

Now, one can think of the principal�s problem as involving the choice of a pair of contingent

policies h�̂; ĉi so as to maximize her expected payo¤

E[ÛP ] = E

"
TX
t=1

�t�1
h
�̂t(~�1;~"

t)� ĉt(~�1;~"t)
i#

subject to all IC and IR constraints. Because both the principal�s and the agent�s preferences

are quasilinear, E[ÛP ] can be rewritten as expected total surplus, net of the agent�s expected

(intertemporal) rent:

E[ÛP ] = E

"
TX
t=1

�t�1
h
�̂t(~�1;~"

t)�  (êt(~�1;~"t))
i#
� E[V 
̂(~�1)]. (5)

Using the result in the previous Lemma, and integrating by parts, the agent�s expected (intertem-

poral) rent can in turn be written as

E[V 
̂(~�1)] = V 
̂(�1)+E

"
1� F (~�1)
f(~�1)

dV 
̂(~�1)

d�1

#
(6)

= V 
̂(�1)+E

"
�(~�1)

TX
t=1

�t�1D1;t(~�1) 
0(êt(~�1;~"

t))

#
.

Finally, substituting (6) into (5), we have that

E[ÛP ] = E

"
TX
t=1

�t�1
�
�̂t(~�1;~"

t)�  (êt(~�1;~"t))� �(~�1)D1;t(~�1) 0(êt(~�1;~"t))
�#
� V 
̂(�) (7)

= E

"
TX
t=1

�t�1
�
zt(~�1;~"

t) + êt(~�1;~"
t) +

Pt�1
�=1 �

� êt�� (~�1;~"
t�� )�  (êt(~�1;~"t))

��(~�1)D1;t(~�1) 0(êt(~�1;~"t))

�#
�V 
̂(�)
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Next, consider a relaxed program for the principal that consists of choosing an e¤ort policy ê

and a constant V 
̂(�) � 0 so as to maximize E[ÛP ]: The solution to this relaxed program is given

in the following lemma.

Lemma 2 Suppose that D1;t(�1) � 0 for any �1 2 �1 and any t. The (almost-unique) solution to

the principal�s relaxed program is then given by V 
̂(�) = 0 along with the e¤ort policy ê� in the

Proposition.

Proof of the Lemma. The result follows directly from pointwise maximization of (7). The

assumptions that  is a continuously di¤erentiable function with  (e) = 0 for all e < 0;  00(e) > 0

and  000(e) � 0 for all e 2 [0; �e],  0(e) = K for all e > �e, together with D1;t(�1) � 0 for all

�1, imply that, for all t all (�1; "t), the principal�s payo¤ ÛP is strictly increasing in et for all

et < ê�t (�1); and strictly decreasing in et for all et > ê�t (�1), where ê
�
t (�1) is implicitly given by (2)

when  00+(0) <
h
1 +

PT�t
s=1 (��)

s
i
= [�(�1)D1;t(�1)] and by ê�t (�1) = 0 otherwise. �

To prove the result in part 1, it then su¢ ces to show that, when the e¤ort policy in (2) satis�es

the single-crossing condition (3), it can be implemented by the linear scheme proposed in the

Proposition. That is, it su¢ ces to show that, under this scheme, (i) the agent �nds it optimal

to participate in period one, (ii) the agent �nds it optimal to report all his private information

truthfully and to obey the principal�s recommendations, and (iii) the lowest period-1 type�s expected

payo¤ is equal to his outside option, i.e. V 
̂(�) = 0. This is shown in the following lemma.

Lemma 3 Assume the e¤ort policy ê� that solves the relaxed program (as implicitly given by (2))

satis�es the single-crossing condition (3). Then the mechanism 
̂ = h�̂t; ŝtiTt=1, where �̂t and ŝt

are, respectively, the recommendation policy and the reward scheme described in the Proposition,

implements the e¤ort policy ê�. Furthermore, 
̂ induces any type �1 to participate and gives the

lowest period-1 type �1 an expected payo¤ of zero.

Proof of the Lemma. Because neither �̂t nor ŝt depend on "t; it is immediate that the agent

�nds it optimal to report the shocks truthfully. Furthermore, conditional upon reporting �̂1 in

period 1; it is also immediate that, at any period t � 1, the agent �nds it optimal to follow the
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principal�s recommendation and choose e¤ort ê�t (�̂1); irrespective of his true period-1 type �1, the

true shocks "t and the history of past performances �t�1. To see this, note that at any period

t � 1; and for any history (�1; "t; �̂1; "̂t; �t�1; et�1); the problem that the agent faces in period t is

to choose a (possibly contingent) plan (et; et+1(�); : : : ; eT (�)) to maximize

E

"
TX
�=t

���t

 
�� (�̂1)

 
~e� +

��1X
�=1

��~e��� + z� (�1;~"
� )

!
�  (~e� )

!
j �1; "t

#

The solution to this problem is given by the (non-contingent) e¤ort policy implicitly de�ned by

 0(e� ) = �� (�̂1) +

TX
s=1

(��)s��+s(�̂1) all � � t:

When the sequence
�
�t(�̂1)

�T
t=1

is the one speci�ed in the Proposition, the e¤ort policy that solves

these conditions is the policy ê� that solves the relaxed program.

It remains to show that each type �1 �nds it optimal to report truthfully and to participate,

and that type �1 expects a zero payo¤ from the relationship. That each type �1 �nds it optimal

to participate is guaranteed by the fact that his expected payo¤ (under a truthful and obedient

strategy) is given by
TX
t=1

�t�1
Z �1

�1

D1;t(s) 
0(e�t (s))ds,

which is non-negative because D1;t(�1) � 0 and  0(e) � 0: To see that each type �1 �nds it optimal

to report truthfully let

U(�1; �̂1) �
TX
t=1

�t�1
Z �̂1

�1

D1;t(s) 
0(e�t (s))ds

+E

"
TX
t=1

�t�1�t(�̂1)[zt(�1;~"
t)� zt(�̂1;~"t)]

#
.

The function U(�1; �̂1) simply represents the payo¤ that type �1 obtains by mimicking type �̂1.

Next note that

@U(�1; �̂1)

@�1
=

TX
t=1

�t�1�t(�̂1)
0
t(�1):

The single-crossing condition in the Proposition guarantees that"
dU(�1; �1)

d�1
� @U(�1; �̂1)

@�1

#
[�1 � �̂1] � 0.

19



To see this note that

dU(�1; �1)

d�1
� @U(�1; �̂1)

@�1
=

TX
t=1

�t�1D1;t(�1) 
0(ê�t (�1))�

TX
t=1

�t�1�t(�̂1)
0
t(�1)

=

TX
t=1

�t�1
�

[0t(�1)� �0t�1(�1)] 0(ê�t (�1))
�0t(�1)[ 0(ê�t (�̂1))� �� 0(ê�t+1(�̂1))]

�
=  0(ê�1(�1))�  0(ê�1(�̂1)) + �� 0(ê�2(�̂1))

+�02(�1) 
0(ê�2(�1))� �� 0(ê�2(�1))

+:::

= [ 0(ê�1(�1))� �� 0(ê�2(�1))]� [ 0(ê�1(�̂1))� �� 0(ê�1(�̂1))]

+�02(�1)[ 
0(ê�2(�1))� �� 0(ê�3(�1))]

��02(�1)[ 0(ê�2(�̂1))� �� 0(ê�3(�̂1))]

+::::

=
TX
t=1

�t�10t(�1)[�t(�1)� �t(�̂1)]:

The result then follows from Lemma 12 in Pavan, Segal, and Toikka (2009,a).

Lemma 4 Suppose that, for any t, either (a) � = 0 and the function �(�)D1;t(�) is non-increasing,

or (b)  (e) = ke2=2 for all e 2 [0; �e] and �(�)[D1;t(�) � ��D1;t+1(�)] is non-increasing [if T is

�nite, then �(�)D1;T (�) is non-increasing]. Then the e¤ort policy ê� implicitly given by (2) satis�es

condition (3), i.e., for any �1; �̂1 2 �1 :"
TX
t=1

�t�10t(�1)[�t(�1)� �t(�̂1)]
# h
�1 � �̂1

i
� 0

Proof of the lemma. We establish the result by showing that, under the assumptions in

the lemma, �t(�1) is non-decreasing in �1, for each t � 1. Consider �rst case (a). When � = 0;

�t(�1) =  0(ê�t (�1)). It then su¢ ces to show that the e¤ort policy ê
�
t (�1) implicitly given by (2) is

non-decreasing. To see that this is indeed the case, it is enough to recognize that the dynamic virtual

surplus (as de�ned in 7) has increasing di¤erences in et and ��(�1)D1;t(�1) and, by assumption,

�(�)D1;t(�) is non-increasing.16

16The relevant terms of the dynamic virtual surplus are et+
PT�t

s=1 (��)
set� (et)� �(�1)Dt(�1) 

0(et). The result
then follows from monotone comparative statics analysis (see Topkis (1998) and Milgrom and Shannon (1994)).
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Next, consider case (b). For any t < T and any �01 > �001,

�t(�
0
1)� �t(�001) =

�
 0(ê�t (�

0
1))� �� 0(ê�t+1(�01))

�
�
�
 0(ê�t (�

00
1))� �� 0(ê�t+1(�001))

�
=

"
1 +

T�tX
s=1

(��)s � �(�01)D1;t(�01)k � ��
 
1 +

T�t�1X
s=1

(��)s � �(�01)D1;t+1(�01)k
!#

�
"
1 +

T�tX
s=1

(��)s � �(�001)D1;t(�001)k � ��
 
1 +

T�t�1X
s=1

(��)s � �(�001)D1;t+1(�001)k
!#

= k
�
�(�001)

�
D1;t(�

00
1)� ��D1;t+1(�001)

�
� �(�01)

�
D1;t(�

0
1)� ��D1;t+1(�01)

��
� 0,

where the inequality follows from the assumption that �(�)[D1;t(�)� ��D1;t+1(�)] is non-increasing.

Likewise, when T is �nite, then

�T (�
0
1)� �T (�001) =  0(ê�T (�

0
1))�  0(ê�T (�001)) = k

�
�(�001)D1;T (�

00
1)� �(�01)D1;T (�01)

�
� 0,

where the inequality follows from the assumption that �(�)D1;T (�) is non-increasing. �

This completes the proof of the proposition.

Note that, because the agent is indi¤erent over the way the constant term S(�1) is distributed

over time, an equivalent (linear) implementation consists in paying the agent in each period t a

�xed wage

 (ê�t (�1)) +

Z �1

�1

D1;t(s) 
0(ê�t (s))ds� E

�
�t(�1)�̂

�
t (�1;~"

t)
�

plus a fraction �t(�1) of the current pro�ts �t, with S1(�1) now de�ned by

S1(�1) =  (ê�1(�1)) +

Z �1

�1

 0(ê�1(s))ds� �1(�1)�̂�1(�1).

While the particular way the constant term S1(�1) is distributed over time is clearly inconsequential

for incentives, certain choices may have the advantage of guaranteeing that, if the agent has the

option to leave the relationship at any point in time, he does not �nd it optimal to do so. To see

this, suppose that T = +1 and that all shocks are strictly positive, i.e. �1; "s > 0 for all s: Then

front-loading the payment

�
1X
t=1

�t�1E
�
�t(�1)�̂

�
t (�1;~"

t)
�
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and then paying in each period

 (ê�t (�1)) +

Z �1

�1

D1;t(s) 
0(ê�t (s))ds+ �t(�1)�t

guarantees participation in each period, at any truthful history.

We now turn to the properties of the optimal e¤ort policy.17 Because D1;t � 0 and  0 is convex,

the optimal e¤ort policy involves downward distortions. These distortions in turn depend on inverse

hazard rate �(�1) of the �rst-period distribution F1 and on the function D1;t, which captures the

e¤ect of �1 on both �t and �t�1, taking into account the persistent e¤ect of e¤ort. When the process

for �t satis�es condition SFC, these distortions are independent of the realizations of the shocks "t

and of their distributions Gt. Whether ê�t (�1) increases or decreases with t then depends entirely

on the dynamics of D1;t(�1) as illustrated in the following examples, where the conditions of Part

2 of Proposition 2 are clearly satis�ed.

Example 1 Suppose that T =1 and that �t evolves according to an AR(1) process

�t = ��t�1 + "t

for some � 2 (0; 1) with � > � � 0. Then D1;t(�1) = �t�2 (� � �) for all �1 2 �1. It follows that

ê�t (�1) increases over time and

lim
t!1

ê�t (�1) = 1=[1� ��] = eFB 8�1.

Example 2 Assume that each �t is i.i.d., so that D1;t(�1) = 0 for all t � 2 and all �1. Then e¤ort

is distorted only in the �rst period, i.e. ê�1(�1) < eFB1 and ê�t = eFBt for all t � 2:

Example 3 Suppose �t follows a random walk, i.e.

�t = �t�1 + "t

and that e¤ort has only a contemporaneous e¤ect on the �rm�s pro�ts (i.e. � = 0). Then ê�t (�1) is

constant over time and coincides with the static optimal e¤ort.
17Conditions similar to (2) have been derived in a two-period model by Baron and Besanko (1984) and La¤ont

and Tirole (1991). However these early work do not examine under what conditions (and under what contracts), the
e¤ort policies that solve the principal�s relaxed program are implementable.
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The result in Example 1 is actually quite general; many ARIMA(k,q,m) processes have the

property that limt!1D1;t = 0; where D1;t are nonnegative scalars decreasing in t that depend on

the parameters (k,q,m) of the ARIMA process.

Example 2 is the case considered by Edmans and Gabaix (2008) in their baseline model, where

it is also assumed that � = 0. However, contrary to the case considered here, they assume that

contracting occurs before the agent learns his �rst-period type. As discussed above, together with

risk neutrality this implies that the sequence of e¤ort decisions is always e¢ cient.

Finally, the random walk case of Example 3 is also a process that is sometimes considered in

the literature. In this case, because e¤ort is constant over time, the optimal mechanism can be

implemented by o¤ering in period one the same menu of linear contracts that the principal would

o¤er in a static relationship, and then committing to using the contract selected in period one in

each subsequent period. Each linear contract (indexed by �1) has a �xed payment of

S(�1) �  (ê�(�1)) +

Z �1

�1

 0(ê�(s))ds� �(�1)[�1 + ê�(�1)]

together with a piece-rate �(�1): These contracts are reminiscent of those derived in La¤ont and

Tirole (1986) in a static regulatory setting. Contrary to the static case, the entire linear scheme

S(�1)+�(�1)~�t � as opposed to the point S(�1)+�(�1)[�1+ ê�(�1)] � is now used over time. This

is a direct consequence of the fact that the �rm�s performance ~�t now changes stochastically over

time in response to the shocks ~"t. Also note that while the optimal mechanism can be implemented

by using in each period the static optimal contract for period one, this does not mean that the

dynamic optimal mechanism coincides with a sequence of static optimal contracts, as in Baron and

Besanko (1984). Rather the opposite. In fact, because the agent�s type �t (and its distribution)

changes over time, the sequence of static optimal contracts entails a di¤erent choice of e¤ort for

each period. What the result then implies is that, despite the lack of stationarity, it is optimal for

the principal to commit to the same reward scheme (and to induce the same e¤ort) as if the agent�s

type were constant over time.

Out of curiosity, also note that the optimal reward scheme (and the corresponding e¤ort dy-

namics) when �t follows a random walk coincide with the one that the principal would o¤er in an
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environment in which the shocks have only a transitory (as opposed to permanent) e¤ect on the

�rm�s performance. More generally, assuming E[~"t] = 0 for all t > 1 and letting (ats)s;t denote arbi-

trary scalars, the optimal contract is the same when �t = 0t�1+
Pt

s=2 a
t
s"s as when �t = 0t�1+ "t.

Seniority. While the examples above highlight interesting properties for the dynamics of

e¤ort, they also have important implications for the dynamics of the optimal reward scheme. What

these examples have in common is the fact that the e¤ect of the agent�s �rst-period type on his

future types declines over time (strictly in the �rst example). We �nd this property of �declining

correlation�to be reasonable for many stochastic processes describing the evolution of the agent�s

productivity. As anticipated in the introduction, this property has implications for the dynamics

of the optimal reward scheme. In particular, it helps understand why it may be optimal to reward

managers with a longer tenure with a more high-powered incentive scheme, e.g. by giving them

more equity in the �rm. To illustrate, consider the case presented in Example 1 above, and note

that in this case

�t(�1) = 1� �(�1) (� � �)�t�2[ 00(ê�t (�1))� ��� 00(ê�t+1(�1))]. (8)

This term, which captures the power of the incentive scheme, is typically increasing in t (it is easy

to see that this is the case, for example, when � = 0� in which case �t(�1) reduces to  0(ê�t (�1))� or

when  is quadratic).

Note that the reason why the power of the incentive scheme here increases over time is not

driven by variations of the manager�s preferences. It is merely a consequence of the fact that, when

he was hired, the manager possessed relevant private information about his ability to generate

pro�ts for the �rm. In the case of an AR(1) process, the correlation between the manager�s initial

type and his future types declines over time. This implies that, to minimize the informational

rents that the �rms�shareholders must leave to the manager, it is optimal to (downward) distort

the agent�s e¤ort more when he is �young� than when he is �old�. Because the manager�s e¤ort

is increasing in the sensitivity �t of his reward scheme to the �rm�s performance �t; this in turn

implies that it is optimal to give the manager a more �high powered�incentive scheme when he is

�senior�than when he is �young�.
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Clearly, as mentioned in the introduction, other explanations for seniority have been suggested

in the literature. Gibbons and Murphy (1991), for example, argue that career-concern incentives

decline over time and, by implication, managers with a higher tenure must be provided with stronger

�explicit contracts�, i.e. with more high-powered incentive schemes. In their model, explicit incen-

tives are a substitute for career-concern incentives.18

Another explanation for the correlation between seniority and the power of the incentive scheme

may come from the fact that the disutility of e¤ort may decline over time, most notably as the

result of learning by doing. While we �nd such explanations plausible in certain environments,

what our results indicate is that, even in the absence of any assumption of time-variant prefer-

ences/technologies/career concerns, seniority may arise quite naturally as the result of an optimal

intertemporal screening problem in settings in which the correlation between the manager initial

type/talent and his future ones declines over time. We believe this is a plausible assumption for

most environments of interest.

3 Fully-contingent e¤ort policies

Consider now an environment in which the process for �t does not satisfy the SFC condition. When

this is the case, the optimal e¤ort policy typically depends not only on �1 but also on the realization

of the shocks "t. In many cases of interest, the optimal mechanism can still be implemented by a

menu of linear contracts, but the agent must now be allowed to change the slope of these contracts

over time in response to the shocks. To illustrate, assume that � = 0; so that e¤ort has only a

transitory e¤ect on the �rm�s performance, that T < +1,19 that the stochastic process governing

the evolution of �t is Markov so that each kernel Ft(�j�t�1) depends on �t�1 only through �t�1.

Finally, assume that, for any t any �t�1; Ft(�j�t�1) is absolutely continuous and strictly increasing

over �t with density ft(�tj�t�1) > 0 for all �t 2 (�t;
��t), and that, for each t; there exists an

integrable function Bt : �t ! R[f�1;+1g such that, for any �t 2 �t; @Ft(�tj�t�1)=@�t�1 exists

and j@Ft(�tj�t�1)=@�t�1j � Bt(�t):
20

18For a detailed analysis of career concerns incentives, see Dewatripont, Jewitt and Tirole (1999).
19The results in this section actually extend to T = +1 under mild additional conditions.
20Throughout, if �t�1 = �t�1, then @Ft(�tj�t�1)=@�t�1 denotes the right derivative of Ft with respect to �t�1:
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Following steps similar to those used in the proof of Proposition 2, it is easy to see that the

solution to the principal�s relaxed program is an e¤ort policy ê� that is implicitly de�ned by the

following conditions21

 0(ê�t (�1; "
t)) = 1� �(�1)

@zt(�1; "
t)

@�1
 00(ê�t (�1; "

t)) (9)

where z � hzt(�)i, G � hGt(�)i is any independent shock representation for the process that corre-

sponds to the kernels F = hFt(�j�)iTt=1 :

Equivalently, this condition can be expressed in terms of the primitive representation F as

follows. Consider the mechanism 
 where in each period the agent reports �t (as opposed to "t).

Following steps similar to those in the proof of Proposition 2 (see also Proposition 2 in Pavan,

Segal, and Toikka (2009,a)), one can show that, in any IC mechanism, after almost every truthful

history22 ht�1; the value function V 

�
�t�1; �t

�
is Lipschitz continuous in �t and, for almost every

�t,

@V 
(�t)

@�t
= E~�T j�t

"
TX
�=t

���1J�t (~�
�
) 0(e� (~�

�
))

#
(10)

where for all t, J tt
�
�t
�
� 1, and for any � > t;

J�t (�
� ) �

X
K2N, l2NK+1:
t=l0<:::<lK=�

KY
k=1

I lklk�1(�
lk);

with

Iml (�
m) � �@Fm(�mj�

m�1)=@�l
fm(�mj�m�1)

:

The function J�t (�
� ) is an impulse-response function that captures the total e¤ect of a variation of

�t on the distribution of �� taking into account all e¤ects on intermediate types (�t+1; :::; ���1):

While condition (10) applies to any (di¤erentiable) process, in the case of a Markov process, be-

cause each Iml (�
m) is equal to zero for all l < m�1 and depends on �m only through (�m; �m�1); the

impulse response J�t (�
� ) reduces to a function of (�t; :::; �� ) only and can be written as J�t (�t; �t+1; :::; �� ) =

21Again, this presumes that the RHS of (9) evaluated at e = 0 is positive, which is the case when  00+(0) is not too
high. When this is not the case, then ê�t (�1; "

t) = 0:
22A truthful history ht�1 is one that is reached by reporting �t�1 truthfully and following the principal�s e¤ort

recommendations in each period s = 1; :::; t� 1. For simplicity, whenever there is no risk of confusion, we will denote
a truthful history simply by �t�1:
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��k=t+1I
k
k�1 (�k; �k�1), with each I

k
k�1 given by

Ikk�1 (�k; �k�1) =
�@Fk(�kj�k�1)=@�k�1

fk (�kj�k�1)
.

Applying condition (10) to t = 1, we then have that

V 
 (�1) = E(~�2;:::;~�T )j�1

"
TX
t=1

�t�1
Z �1

�1

J t1

�
s; ~�2; : : : ; ~�t

�
 0(et(s; ~�2; : : : ; ~�t))ds

#
+ V 
(�1).

Integrating by parts, this implies that the expected ex-ante surplus for the agent is given by

E
h
V 
(~�1)

i
= E~�T

"
�(~�1)

TX
t=1

�t�1J t1(~�
t
) 0
�
et(~�

t
)
�#
+ V 
(�1).

The principal�s expected payo¤ is thus given by

E[UP ] = E

"
TX
t=1

�t�1
n
~�t + êt(~�

t
)�  (êt(~�

t
))� �(~�1)J t1(~�

t
) 0(et(~�

t
))
o#
� V 
(�1).

Provided that J t1
�
�t
�
� 0 for each t all �t, which is the case under FOSD, the optimal e¤ort policy

can then be obtained by pointwise maximization of E[UP ] and is given by

 0(e�t
�
�t
�
) = 1� �(�1)J t1

�
�t
�
 00(e�t

�
�t
�
)

if 1� �(�1)J t1
�
�t
�
 00(0) > 0 and by e�t

�
�t
�
= 0 otherwise.

This condition is the analogue of (9) expressed in terms of the primitive representation (the

one where the agent reports �t as opposed to "t). From the same arguments as in the previous

section, it then follows that, if there exists a payment scheme s that implements the e¤ort policy

e� and gives zero expected surplus to the lowest period-one type (i.e. such that V 
(�1) = 0) then,

together with the e¤ort policy e�; such a payment scheme is part of an optimal mechanism.

Now consider the following class of payment schemes. In each period t, the principal pays the

agent a �xed amount St(�t) and a linear bonus �t(�t)�t; where both St and �t are now allowed to

depend on the entire history of reports �t (equivalently, St and �t are chosen by the agent out of

a menu, as a function of the observed shocks �t). In what follows, we show that when the desired

e¤ort policy e� satis�es a certain single-crossing condition, which is the analogue of condition (3)

in the previous section, then the policy e� can be implemented by a reward scheme in this class.

To see this, for any t; let

�t(�
t) =  0(e�t (�

t)):
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The sequence of �xed payments St(�t) is then de�ned recursively as follows. For t = T; let

ST (�
T ) �  (e�T (�

T )) +

Z �T

�T

 0(e�T (�
T�1; s))ds� �T (�T )��T (�T ),

while for any t < T ,

St(�
t) �  (e�t (�

t))� �t(�t)��t (�t) (11)

+

Z �t

�t

E
(~�t+1;:::;

~�T )js

"
TX
�=t

���tJ�t

�
s; ~�t+1; : : : ; ~��

�
 0(e�t (�

t�1; s; ~�t+1 : : : ; ~�� ))

#
ds

�E
~�
T j�t

"
TX

�=t+1

���t
�
S� (~�

�
) + �� (~�

�
)��� (~�

�
)�  (e�� (~�

�
))
�#

where, for any j = 1; :::; T; any �j 2 �j ; ��j (�j) � �j + e
�
j (�

j).

Now suppose t = T and that the history of past reports is �̂
T�1

: It is then immediate that,

irrespective of the true shocks �T , if the agent reports �̂T in period T , he then �nds it optimal

to choose e¤ort e�T (�̂
T�1

; �̂T ). Because the environment is Markov, it is also immediate that,

irrespective of whether the history of past reports �̂
T�1

was truthful, an agent whose period-T type

is �T always �nds it optimal to report truthfully in period T: This follows from arguments similar

to those used to establish Proposition 2. To see this, note that the continuation payo¤ that type

�T obtains by reporting �̂T is simply23

uT (�T ; �̂T ; �̂
T�1

) �
Z �̂T

�T

 0(e�T (�̂
T�1

; s))ds+ �T (�̂
T�1

; �̂T )[�T � �̂T ]. (12)

Now, let

uT (�T ; �̂
T�1

) � uT (�T ; �T ; �̂
T�1

)) =

Z �T

�T

 0(e�T (�̂
T�1

; s))ds (13)

denote the continuation payo¤ that type �T obtains by reporting truthfully. It is then immediate

that "
duT (�T ; �̂

T�1
)

d�T
� @uT (�T ; �̂T ; �̂

T�1
)

@�T

#
=  0(e�T (�̂

T�1
; �T ))� �T (�̂

T�1
; �̂T )

=  0(e�T (�̂
T�1

; �T ))�  0(e�T (�̂
T�1

; �̂T )),

and hence "
duT (�T ; �̂

T�1
)

d�T
� @uT (�T ; �̂T ; �̂

T�1
)

@�T

#
[�T � �̂T ] � 0 (14)

23 In what follows, by continuation payo¤, we mean the discounted sum of the future �ow payo¤s.
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if and only if e�T (�̂
T�1

; �) is increasing. As it is well known, condition (14) guarantees that

truthtelling is optimal (see, e.g. Garcia, 2005).

Now, by induction, suppose that, irrespective of whether he has reported truthfully in the past,

at any period � > t, the agent �nds it optimal to report �� truthfully. Then, consider the agent�s

incentives in period t: Take any history of reports �̂
t�1

: Again, because the environment is Markov,

it is irrelevant whether this history corresponds to the truth or not. Then suppose the agent�s true

type in period t is �t and he announces �̂t: His continuation payo¤ is then given by

ut(�t; �̂t; �̂
t�1
) = ut(�̂t; �̂

t�1
) + �t(�̂

t�1
; �̂t)[�t � �̂t] (15)

+E~�t+1j�t
h
ut+1(~�t+1; �̂

t�1
; �̂t)

i
� E~�t+1j�̂t

h
ut+1(~�t+1; �̂

t�1
; �̂t)

i
where, for any period l � 1 and any (�l; �̂

l�1
),

ul(�l; �̂
l�1
) =

Z �l

�l

E(~�l+1;:::;~�T )js

"
TX
�=l

���lJ�l

�
s; ~�l+1; : : : ; ~��

�
 0(e�l (�̂

l�1
; s; ~�l+1; : : : ; ~�� ))

#
ds (16)

is the equilibrium continuation payo¤ under a truthful and obedient strategy starting from period

l onwards, given the current type �l and the history of past reports �̂
l�1
: It follows that

dut(�t; �̂
t�1
)

d�t
= E(~�t+1;:::;~�T )j�t

"
TX
�=t

���tJ�t

�
�t; ~�t+1; : : : ; ~��

�
 0(e�t (�̂

t�1
; �t; ~�t+1; : : : ; ~�� ))

#

and that24

@ut(�t; �̂t; �
t�1)

@�t
= �t(�̂

t�1
; �̂t) +

@E~�t+1j�t
h
ut+1(~�t+1; �̂

t�1
; �̂t)

i
@�t

(17)

= E(~�t+1;:::;~�T )j�t

"
TX
�=t

���tJ�t

�
�t; ~�t+1; : : : ; ~��

�
 0(e�t (�̂

t�1
; �̂t; ~�t+1 : : : ; ~�� ))

#
:

Once again, a su¢ cient condition for ut(�t; �̂
t�1
) � ut(�t; �̂t; �̂

t�1
) for any �̂t is that"

dut(�t; �̂
t�1
)

d�t
� @ut(�t; �̂t; �̂

t�1
)

@�t

#
[�t � �̂t] � 0; (18)

or equivalently that

E
(~�t+1;:::;

~�T )j�t

"
TX
�=t

���tJ�t

�
�t; ~�t+1; : : : ; ~��

�
[�� (�̂

t�1
; �t; ~�t+1 : : : ; ~�� )� �� (�̂

t�1
; �̂t; ~�t+1 : : : ; ~�� )]

#
[�t��̂t] � 0:

(19)

24The expression in (17) is obtained by integration by parts, using (16).
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This condition is the equivalent of condition (3) in the previous section. Note that, this condition

is satis�ed, for example, when the e¤ort policy is strongly monotone, i.e. when at any period t;

e�t (�
t) is nondecreasing in �t: We then have the following result.

Proposition 3 Assume the evolution of �t is governed by a Markov process satisfying the assump-

tions described above and that, for each period t; �t = �t + et.

1. Any e¤ort policy satisfying the single-crossing condition (19) for any t; any (�̂
t�1

; �̂t; �t), can

be implemented by the following linear pay package: In every period t; given any history of

reports �t and any history of observed performances �t, the principal pays the agent

st(�
t; �t) = St(�

t) + �t(�
t)�t,

where �t(�t) �  0(et(�
t)) and where the �xed payment St(�) is as in (11).

2. Let e� be the e¤ort policy implicitly de�ned, for all t and all �t 2 �t; by

 0(e�t (�
t)) = 1� �(�1)J t1

�
�t
�
 00(e�t (�

t)) (20)

unless  00(0) � 1=[�(�1)J
t
1(�

t)], in which case e�t
�
�t
�
= 0: Assume e� satis�es the single-

crossing condition of (19) for any t; any �̂
t�1

any �t. Then e�, together with the linear pay

package s� described in part (1), are part of an optimal mechanism.

A few remarks are in order. First, note that the result in Proposition 3 complements that in

Proposition 2: while Proposition 3 does not restrict the process for �t to satisfy the SFC condition,

it restricts �t to follow a Markov process, a property that is not required by Proposition 2.

Second, note that the linear scheme in Proposition 3 has the appealing property of guaranteeing

that, even if the agent has the option of leaving the relationship at any point in time, he never �nds

it optimal to do so, i.e. it guarantees participation at any period, after any history.

Third note that a key distinction between the linear scheme of Proposition 3 and that of

Proposition 2 is that the agent is now allowed to propose changes to his pay package over time.

These changes are in response to the shocks �t: This �nding is consistent with some of the recent
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literature on managerial compensation which documents that CEO compensation is often proposed

by CEOs themselves (see e.g. Bebchuck and Fried, 2004). In our setting, the �rm�s shareholders

(the principal) set in advance broad restrictions on the CEO�s pay package but then delegate to

the latter the choice of the speci�c terms of the reward scheme so as to permit him to respond to

(unveri�able) variations in the environment. In particular, the optimal mechanism involves o¤ering

the CEO a menu of linear contracts with memory, in the sense that the set of possible packages

available for period t depends on the reward packages selected in past periods (as indexed by �t�1).

Fourth, note that a form of seniority is likely to hold also in this environment, albeit only in

expectation. For example, suppose  is quadratic. Then, by inspecting (20), one can see that the

power of the incentive scheme, as captured by et increases, on average, with the manager�s tenure,

provided that E~�tj�t�1
h
J t1

�
�t�1; ~�t

�i
� J t�11

�
�t�1

�
. As discussed in the introduction, this property

is satis�ed by many stochastic processes for which the dependence of the distribution of �t on �1

declines with t:

Lastly note that, while the possibility of implementing the policy e� that solves the relaxed

program (as given by (20)) with a menu of linear schemes is certainly appealing, such a possibility

cannot be taken for granted. In fact, in many cases of interest, e� does not satisfy the single-

crossing condition of (19). To see this, assume that, for any t > 1 and any �t�1; Itt�1 (�; �t�1) is

continuous and lim�t!�t
Itt�1 (�t; �t�1) = lim�t!��t I

t
t�1 (�t; �t�1) = 0:25 Then for any 1 < s � � ;

any ���s; lim�s!�s
J�1 (�1; :::; �s; :::�� ) = lim�s!��s J

�
1 (�1; :::; �s; :::�� ) = 0: This in turn implies that

lim�s!��s e
�
�

�
���s; �s

�
= lim�s!�s

e�s
�
���s; �s

�
= eFBs . The policy e��

�
���s; �s

�
is then typically non-

monotone in �s, for any � � s any ���s; which makes it di¢ cult (if not impossible) to satisfy

(19).

Motivated by the aforementioned considerations about the possible di¢ culties of implementing

the optimal e¤ort policy with linear schemes, we now consider an alternative implementation based

on the �trick�used to establish Lemma 1 in the proof of Proposition 2. The idea is to charge the

agent a su¢ ciently large penalty L whenever, given the announcements �t, the observed pro�ts

25Note that, under our assumption of full support (i.e. Ft strictly increasing) over �t; these conditions hold, for
example, when ��t < +1 and when Ft is an atomless distribution with density strictly positive over [�t; ��t]:

31



are di¤erent from the equilibrium ones ��t (�
t). To see how this permits one to relax condition

(19), suppose that in all periods t < T the principal uses the same reward scheme as in Part 1 in

Proposition 3, whereas at t = T; she uses the following scheme

sT (�
T ; �T ) =

(
 
�
e�T (�

T )
�
+
R �T
�T

 0(e�T (�
T�1; s))ds if �T � ��T (�

T )

�L otherwise
. (21)

Note that, conditional on �meeting the target�, under the new scheme, for any sequence of reports

�T ; the agent receives exactly the same compensation he would have obtained under the original

linear scheme by choosing e¤ort in period t so as to attain pro�ts �T (�T ). Provided that L is large

enough, it is then immediate that deviations from the equilibrium strategy are less pro�table under

the new scheme than under the original linear one. In particular, the agent�s continuation payo¤

in period T , after he has reported (�̂
T
) and experienced a shock �T in period t, is now given by

ûT (�T ; �̂T ; �̂
T�1

) �
Z �̂T

�T

 0(e�T (�̂
T�1

; s))ds+  
�
�T (�̂

T�1
; �̂T )� �̂T

�
�  

�
�T

�
�̂
T�1

; �̂T

�
� �T

�
=

Z �̂T

�T

 0(e�T (�̂
T�1

; s))ds+  (e�T (�̂
T�1

; �̂T ))�  (e�T (�̂
T�1

; �̂T ) + �̂T � �T )

rather than uT (�T ; �̂T ; �̂
T�1

) as in Equation (12). Irrespective of whether �̂
T�1

was truthful or not,

incentive compatibility is then ensured in period T (i.e., the agent �nds it optimal to report �T

truthfully and then choose the equilibrium level of e¤ort e�T (�̂
T�1

; �T )) if the e¤ort policy e� satis�es

the analogue of condition (14) with uT (�T ; �̂T ; �T�1) now replaced by the function ûT (�T ; �̂T ; �T�1),

that is, if26 h
 0(e�T (�̂

T�1
; �T ))�  0(e�T (�̂

T�1
; �̂T ) + �̂T � �T )

i h
�T � �̂T

i
� 0. (22)

Note that condition (22) is clearly weaker than condition (19) which requires [ 0(e�T (�̂
T�1

; �T )) �

 0(e�T (�̂
T�1

; �̂T ))][�T � �̂T ] � 0: Moving from the linear scheme to this alternative scheme thus

permits one to implement e¤ort policies that are not necessarily monotone in the shock �T . It is

easy to see that condition (22) is equivalent to requiring that the pro�t function �T (�̂
T�1

; �) (as

opposed to the e¤ort policy e�T (�̂
T�1

; �)) being non-decreasing. Absent the dependence on history,

this is the same result found by La¤ont and Tirole (1993, A1.4) for the static case.

26As mentioned above, note that the payo¤ under truthtelling under the new scheme is exactly the same as under

the original scheme. That is uT (�T ; �̂
T�1

) continues to be as in (13).
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Now suppose the principal replaces the entire linear scheme s� with the incentive scheme s

recursively de�ned, for each t; as follows

st(�
t; �t) =

8>><>>:
 (e�t (�

t)) +
R �t
�t
E
(~�t+1;:::;

~�T )js

hPT
�=t �

��tJ�t (s; ~�t+1; : : : ; ~�� ) 
0(e�t (�

t�1; s; ~�t+1 : : : ; ~�� ))
i
ds

�E
~�
T j�t

hPT
�=t+1 �

��t
�
s� (~�

�
; ���(~�

�
))�  (e�� (~�

�
))
�i

if �t � ��t (�
t)

�L otherwise.
(23)

where ���(�� ) = (��s(�
s))�s=1 with �

�
s(�

s) � �s + e
�
s(�

s); all s � � : Note that, for t = T; this scheme

is the same as the one in (21). Now suppose, by induction, that under the scheme s de�ned above,

truthful reporting is optimal for the agent in each period � > t, irrespective of the period-� history

(recall that, because the environment is Markov, if truthful reporting is optimal on the equilibrium

path, i.e. at a truthful period-� history, then it is optimal at all period-� histories). Provided L is

large enough, the agent�s period-t continuation payo¤ under this scheme when his period-t type is

�t, he reports �̂t, and the sequence of past reports is �̂
t�1
, is then given by

ût(�t; �̂t; �̂
t�1
) = ut(�̂t; �̂

t�1
) +  (e�t (�̂

t�1
; �̂t))�  (e�t (�̂

t�1
; �̂t) + �̂t � �t)

+E~�t+1j�t
h
ut+1(~�t+1; �̂

t�1
; �̂t)

i
� E~�t+1j�̂t

h
ut+1(~�t+1; �̂

t�1
; �̂t)

i
,

where, for any period l � 1 and any (�l; �̂
l�1
), ul(�l; �̂

l�1
) continues to denote the equilibrium

continuation payo¤, as de�ned in (16). Incentive compatibility is then guaranteed in period t if

condition (18) holds, that is, if

E
(~�t+1;:::;

~�T )j�t

2664
 0(e�t (�̂

t�1
; �t))�  0(e�t (�̂

t�1
; �̂t) + �̂t � �t)

+
PT

�=t+1 �
��tJ�t

�
�t; ~�t+1; : : : ; ~��

�
�[ 0(e�� (�̂

t�1
; �t; ~�t+1 : : : ; ~�� ))�  0(e�� (�̂

t�1
; �̂t; ~�t+1 : : : ; ~�� ))]

3775 [�t � �̂t] � 0. (24)
Note that this condition is the same as that in (19) with the initial term  0(e�t (�̂

t�1
; �t))� 0(e�t (�̂

t�1
; �̂t))

replaced by  0(e�t (�̂
t�1

; �t))�  0(e�t (�̂
t�1

; �̂t) + �̂t � �t): We then have the following result.

Proposition 4 Any e¤ort policy satisfying the single-crossing condition (24) for any t any (�̂
t�1

; �̂t; �t),

can be implemented by the non-linear pay scheme given in (23).

As an illustration of how the scheme s given in (23) may help implementing e¤ort policies e�

that solve the principal�s relaxed program but that cannot be implemented with the linear scheme

s� of Proposition 3, consider the following example.
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Example 4 Suppose that, for any e 2 [0; �e];  (e) = e2=2. Let �1 be a non-negative random variable

with distribution F strictly increasing and absolutely continuous on the interval [�1; ��1] � R++ with

hazard rate �(�1) nonincreasing and such that � (�1) � �1 for each �1.27 Now suppose that, for

any t � 2, �t = �1 � �t�=2"� , where ~"T � (~"� )
T
�=2 is a collection of jointly independent random

variables, each independent of �1, each distributed according to the function G strictly increasing

and absolutely continuous with density g strictly positive over R+. Let e� be the e¤ort policy that

solves the relaxed program as given in (20). Then the policy e� cannot be implemented by the linear

scheme of Proposition 3 but it can be implemented by the non-linear scheme of Proposition 4.

4 Risk aversion

We now show how the optimal mechanism must be adjusted to accommodate the possibility that

the agent is risk averse. We restrict attention here to the case where T is �nite. To simplify the

notation, we omit discounting, i.e. set � = 1. We start by assuming that the agent�s preferences

are represented by a Bermoulli function

UA(cT ; eT ) = V
 

TX
t=1

ct

!
�

TX
t=1

 (et)

where V is a strictly increasing and (weakly) concave function. This representation is quite common

in the literature (e.g. Holmstrom and Milgrom�s (1987) seminal paper on linearity and aggrega-

tion in dynamic contracting). As is well known, this representation permits one to introduce risk

aversion while at the same time avoiding any complication stemming from the desire of consump-

tion smoothing: it is thus appropriate for a setting where the agent cares only about his total

compensation and not the way this is distributed over time. We will come back to an alternative

representation that accommodates preferences for consumption smoothing at the end of the section.

For the stochastic process for �t, we adopt a general independent-shock representation and

assume each zt(�1; "t) is di¤erentiable and equi-Lipschitz continuous.

Since the agent�s productivity a¤ects neither the marginal contribution of e¤ort to pro�ts, nor

the agent�s disutility from it, and since the agent�s preferences over money are also separable from

27This condition is satis�ed, for instance, when �1 is distributed uniformly over the interval [1; 3=2] :
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the agent�s productivity, the �rst-best solution to the principal�s problem is constant both over

productivities and time. It is given in the following proposition.

Proposition 5 Assume, as in Proposition 1, that the agent does not possess private information.

The optimal contract for the principal implements the e¤ort policy given by êt = êFB for all t,

where êFB solves

 0
�
êFB

�
= V 0

�
V�1

�
T 
�
êFB

���
. (25)

Proposition 5 shows that the �rst-best e¤ort now depends on the agent�s marginal utility of

additional payments, evaluated at the payment V�1
�
T 
�
eFB

��
that just compensataes him for

his total disutility of e¤ort. This foreshadows one of the new roles for information rents that

we explore below � further payments to cover the agent�s information rents when the agent has

private information will lower the agent�s marginal utility of money, making incentives for e¤ort

more costly.

To examine the e¤ects of information rents, one can follow steps similar to those used to establish

Proposition 2. The characterization of incentive compatibility is una¤ected by the introduction of

risk aversion and that the agent�s value function in period one remains equal to

V 
̂(�1) = V 
̂(�1) + E

"
TX
t=1

Z �1

�1

D1;t(s;~"
t) 0(êt(s;~"

t))ds

#
;

where D1;1(�1) � 1 and, for any t > 1;

D1;t(�1; "
t) � @zt(�1; "

t)

@�1
� �@zt�1(�1; "

t�1)

@�1

with z1(�1) � �1. Note that these D1;t(�1; "t) functions reduce to the corresponding D1;t(�1)

functions of Section 2.2 when the stochastic process for �t satis�es the SFC condition.

A similar characterization applies to each period t > 1. For example, incentive compatibility

at any truthful history28 hT�1 = (�1; "T�1) implies that V 
̂(�1; "T�1; "T ) is Lipschitz continuous in

28Note that incentive compatibility at a truthful history ht means that the agent�s value function in the meachanim

̂ after reaching history ht is equal to the agent�s expected payo¤ when, starting from history ht the agent follows a
truthful and obedient strategy in each period � � t: Also recall that incentive-compatibility in period one, given �1,
implies incentive compatibility at almost all (i.e. with probability one) truthful period t-history, t = 1; :::; T:
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"T and for a.e. "T ,

@V 
̂(�1; "
T�1; "T )

@"T
=
@zT ("

T�1; "T )

@"T
 0(êT (�1; "

T�1; "T )),

which in turn implies that

V 
̂(�1; "
T�1; "T ) = V 
̂(�1; "

T�1; "̂T ) +

Z "T

"T

@zT ("
T�1; s)

@"T
 0(êT (�1; "

T�1; s))ds.

Furthermore, using the fact that incentive compatibility implies that V 
̂(�1; "T�1; "T )must coincide

with the equilibrium payo¤ with probability one, we have that, for almost every (hT�1; "T ),

V
 

TX
t=1

ĉt(�1; "
t)

!
�

TX
t=1

 (êt(�1; "
t)) = V 
̂(�1; "

T�1; "T ) +

Z "T

"T

@zT ("
T�1; s)

@"T
 0(êT (�1; "

T�1; s))ds.

This implies that in almost every state (�1; "T ) the utility V
�PT

t=1 ĉt(�1; "
t)
�
that the agent assigns

to the total payment
PT

t=1 ĉt(�1; "
t) is uniquely determined by the e¤ort policy ê up to a constant

V 
̂(�1; "
T�1; "T ) which may depend on (�1; "

T�1) but is independent of "T . Iterating backwards,

and noting that for each period t and any history ht

V 
̂(ht) = E[V 
̂(ht;~"t+1)];

the dependence of the constant V 
̂(�1; "T�1; "T ) on the history (�1; "
T�1) also turns out to be

uniquely determined by the e¤ort policy ê up to a scalar K that does not depend on anything.29

Letting Dt;t(�1; "
t) � @zt(�1; "

t)=@"t for each 1 < t � T , as well as

Dt;s(�1; "
s) � @zs(�1; "

s)

@"t
� �@zs�1(�1; "

s�1)

@"t

for any s > t, these arguments lead to Proposition 6.

Proposition 6 In any incentive-compatible mechanism 
̂, the total payment to the agent in each

state (�1; "T ) is given by:

TX
t=1

ĉt(�1; "
t) = V�1

 PT
t=1  (êt(�1; "

t)) + V 
̂(�1) + E~"T
hR �1
�1

PT
t=1D1;t(s;~"

t) 0
�
êt
�
s;~"t

��
ds
i

+
PT

t=2 Ĥt(�1; "
t)

!
29See Proposition 9 in PST for a similar result for quasi-linear settings.
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with

Ĥt

�
�1; "

t
�
� E(~"t+1;:::;~"T )

"Z "t

"t

TX
�=t

Dt;�

�
�1; "

t�1; s;~"t+1; : : : ;~"�
�
 0
�
ê�
�
�1; "

t�1; s;~"t+1; : : : ;~"�
��
ds

#

�E(~"t;~"t+1;:::;~"T )

"Z ~"t

"t

TX
�=t

Dt;�

�
�1; "

t�1; s;~"t+1; : : : ;~"�
�
 0
�
ê�
�
�1; "

t�1; s;~"t+1; : : : ;~"�
��
ds

#

Using the characterization in Proposition 6, we then have that, in any incentive-compatible

mechanism, the principal�s expected payo¤ can be expressed as:

E[ÛP ] = E

"
TX
t=1

�̂t(~�1;~"
t)

#
� E

"
TX
t=1

ĉt(~�1;~"
t)

#
(26)

= E

"
TX
t=1

�
zt(~�1;~"

t) + êt(~�1;~"
t)
�#

�E

264V�1
0B@

TP
t=1

 (êt(~�1;~"
t)) + V 
̂(�1)

+E~"T
hR ~�1
�1

PT
t=1D1;t

�
s;~"t

�
 0
�
êt
�
s;~"t

��
ds
i
+
PT

t=2 Ĥt(~�1;~"
t)

1CA
375

The expression in (26) is the analogue of dynamic virtual surplus for the case of a risk-averse

agent (it is easy to see that, when V is the identity function and the process for �t satis�es the SFC

condition, (26) reduces to the same expression as in (7) by standard integration by parts).

We now turn to the possibility of using �quasi-linear�schemes (i.e. pay packages that are convex

in a linear aggregator of the �rm�s pro�ts) to implement a desired e¤ort policy. We start with the

following result.

Proposition 7 Let ê be any policy that depends only on time t and on the agent�s �rst-period type

�1. Suppose that ED1;t(�1;~"t) � 0 for any t any �1, and that the policy ê satis�es the following

single-crossing condition "
TX
t=1

ED1;t(�1;~"t)[�t(�1)� �t(�̂1)]
#
[�1 � �̂1] � 0 (27)

for any �1; �̂1 2 �1, where for any t < T and any �1,

�t(�1) �  0(ê�t (�1))� � 0(ê�t+1(�1)),

while for t = T; �T (�1) �  0(ê�T (�1)). Then the e¤ort policy ê can be implemented by a �quasi-

linear�payment scheme ŝ� according to which the total payment the agent receives when he reports
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(�1; "
T ) and the sequence of observed pro�ts is �T is given by

TX
t=1

ŝ�t (�1; "
t; �t) = V�1

 
S(�1) +

TX
t=1

�t(�1)�t

!
, (28)

where

S1(�1) �
TX
t=1

"
 (ê�t (�1)) +

Z �1

�1

ED1;t(s;~"t) 0(ê�t (s))ds� �t(�1)E
�
�̂t(�1;~"

t)
�#
,

with �̂t(�1; "t) � zt(�1; "
t) + êt(�1) +

Pt�1
�=1 �

� êt�� (�1):

The proof follows from steps similar to those that establish Proposition 2, adjusted for the fact

that the stochastic process for �t is here not restricted to satisfy the SFC condition and for the fact

that the agent�s payo¤ is now allowed to be concave in his total reward.

The value of the proposition is twofold. Firstly, it guarantees a form of continuity in the optimal

mechanism and in the players�payo¤with respect to the agent�s preferences. In particular, it implies

that when V is su¢ ciently close to the identity function, the principal can guarantee herself a payo¤

arbitrarily close to the one she obtains under risk neutrality by choosing to implement the same

e¤ort policy as in Proposition 2 and by adjusting the reward scheme as indicated in (28). More

generally, the proposition shows how one can adjust the linear reward scheme identi�ed in the

baseline model to implement any e¤ort policy that depends only on time t and the agent�s �rst

period report �1, provided that such a policy satis�es the single-crossing condition of (27).

We now turn to the characterization of the optimal e¤ort policy. We start by considering

policies that depend only on �1, and then turn to general policies. To facilitate the characterization

of the necessary conditions, we consider an example in which �t follows an ARIMA process (in

which case the Dt;s functions are scalars) and where the inverse of the agent�s utility function over

consumption is quadratic.

Example 5 Suppose that T < 1 and that � = 0 so that �t = �t + et, t = 1; :::; T: In addition,

suppose that the process governing the evolution of �t is ARIMA. Suppose, further, that for any

t � 2,

�t = zt(�1; "
t) = D1;t�1 +

tX
s=2

Ds;t"s
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with D�;t � 0, for any � ; t. Suppose also that �1 is distributed according to the c.d.f. F1, strictly

increasing on an interval �1 = [�1;
��1] � R, and each "t distributed according to the c.d.f. Gt,

strictly increasing on a compact interval Et � R: Let the agent�s utility function over consumption

be given by V(c) = 1
�

p
2�c+ �2 � �

� with �; � > 0 and note that this function is chosen so that

V�1 (u) = �
2u

2 + �u. Let K > 1=� and assume that, in addition to the assumptions stated above,

the function  is such that log 0 is strictly concave on (0; �e), and that for any e � �e,  (e) =

 (�e) + (e� �e)K. There exists an essentially unique30 policy ê� that maximizes the principal�s

expected payo¤ (as given in 26) among those that depend on �1 only. This policy satis�es, for any

t = 1; : : : ; T , almost any �1,

 0(ê�t (�1))

"
�

 
TX
s=1

 (ê�s (�1)) +

Z �1

�1

TX
s=1

D1;s 
0 (ê�s(q)) dq

!
+ �

#
(29)

� 1�  00(ê�t (�1))D1;t
f (�1)

Z ��1

�1

"
�

 
TX
s=1

 (ê�s (q)) +

Z q

�1

TX
s=1

D1;s 
0 (ê�s(r)) dr

!
+ �

#
f (q) dq

��
tX

s=2

" 
TX
�=s

Ds;� 
0(ê�� (�1))

!
Ds;t 

00(ê�t (�1))

#
V ar("s),

with the inequality holding as equality if ê�t (�1) > 0. When this policy satis�es the single-crossing

condition (27), it can be implemented by the �quasi-linear�payment scheme of Proposition 7.

To shed light on what lies behind Condition (29), recall that the choice of the optimal e¤ort

policy trades o¤ two concerns: (1) limiting the agent�s intertemporal informational rent (as per-

ceived from a period-1 perspective) and (2) insuring the agent against the risk associated with

variations in his reward that are necessary to guarantee incentive-compatibility. To see this more

clearly, consider the case where T = 2: When applied to t = 1 (and assuming an interior solution),

Condition (29) becomes

 0(ê�1 (�1))

"
�

 
2X
s=1

 (ê�s (�1)) +

Z �1

�1

2X
s=1

D1;s 
0 (ê�s(q)) dq

!
+ �

#
(30)

= 1�  00(ê�1 (�1))

f (�1)

Z ��1

�1

"
�

 
2X
s=1

 (ê�s (q)) +

Z q

�1

2X
s=1

D1;s 
0 (ê�s(r)) dr

!
+ �

#
f (q) dq.

Because �1 is known at the time of contracting, the agent does not face any risk concerning his

period-one performance and hence the optimal choice of e¤ort for period one is determined uniquely
30The quali�er �essentially� is due to the fact that the optimal policy is determined only almost everywhere.
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by the desire to limit the agent�s informational rent. It is easy to see that Condition (30) reduces

to Condition (2) for the risk-neutral case when � = 0 and � = 1. Note that, as in the risk-neutral

case, the policy ê�1 is increasing in �1. This simply follows from the fact that the (measure of the)

set of types (�1; ��1) to whom the principal must give a higher rent when he increases e1 (�1) is

decreasing in �1: However, contrary to the risk-neutral case, distortions do not vanish �at the top�.

In fact, when applied to ��1; Condition (30) becomes

 0(ê�1
�
��1
�
)

"
�

 
2X
s=1

 
�
ê�s
�
��1
��
+

Z ��1

�1

2X
s=1

D1;s 
0 (ê�s(q)) dq

!
+ �

#
= 1, (31)

while e¢ ciency (under risk aversion) requires that

 0(ê�1
�
��1
�
)

"
�

 
2X
s=1

 
�
ê�s
�
��1
��!

+ �

#
= 1.

The reason is that, with risk aversion, the rent the principal must pay to type ��1 to discourage him

from mimicking a lower type reduces ��1�s marginal utility of money; this in turn makes higher e¤ort

more costly to sustain which explains why the principal �nds it optimal to distort (downwards)

��1�s e¤ort (see also Battaglini and Coate, 2008, for a similar result in a two-type model).

Next, consider the optimal e¤ort policy for t = 2: When applied to t = 2; Condition (29)

becomes (assuming again an interior solution):

 0(ê�2 (�1))

"
�

 
2X
s=1

 (ê�s (�1)) +

Z �1

�1

2X
s=1

D1;s 
0 (ê�s(q)) dq

!
+ �

#
(32)

= 1�  00(ê�2 (�1))D1;2
f (�1)

Z ��1

�1

"
�

 
2X
s=1

 (ê�s (q)) +

Z q

�1

2X
s=1

D1;s 
0 (ê�s(r)) dr

!
+ �

#
f (q) dq

�� 0(ê�2 (�1)) 00(ê�2 (�1))V ar("2).

The key di¤erence between (32) and (30) is the last term on the right-hand side of the equality.

This term captures the principal�s concern about exposing the agent to the risk associated with the

uncertainty the latter faces about his second period�s productivity. Other things equal, this term

contributes to reducing e¤ort, as anticipated in the introduction.

To further appreciate the distinctions/similarities between the risk-neutral and the risk-averse

case, take the speci�cation of the example, and suppose that �t = �t�1 + "t,  2 (0; 1], with
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Figure 1: Optimal (shock-independent) e¤ort policies: AR1

�1 uniformly distributed over [0; 1]. In addition, assume that � = 1, and that  (e) = e2

4 for all

e 2 (0; �e); with �e > 4 and K = �e
2 . Then note that, under risk-neutrality (� = 0; � = 1), the

(fully)31 optimal policies are given by ê�1 (�1) = 2 � (1 � �1) and ê�2 (�1) = 2 � (1 � �1), with

eFB1 = eFB2 = 2: As discussed in Section 2.2, to minimize the agent�s informational rents, the

principal �nds it optimal to distort both e1 and e2 downward. Furthermore, because the e¤ect of

the agent�s initial type on the distribution of his future types declines over time, it is optimal to

distort more in the early stages of the relationship than in the later ones. This property leads to the

seniority e¤ect discussed in the previous sections. This e¤ect can be seen easily within the context

of this example: the smaller  is (i.e. the smaller the e¤ect of �1 on �2) the stronger the seniority

e¤ect, with ê�2 (�1) = ê�1 (�1) [i.e. no seniority] when  = 1 [random walk case] and ê�2 (�1) = êFB

when  = 0 [�1 and �2 independent].

Now, to see how risk aversion a¤ects the choice of e¤ort, Figure 1 depicts the optimal (shock-

independent) policies for the aforementioned speci�cation with � = � = 1;  = 1
2 , and "2 uniformly

distributed over [0; 1]:32

While a form of seniority continues to hold (ê�2 is on average higher than ê�1), risk aver-

sion tends to depress ê�2, thus reducing the optimality of seniority-based reward schemes. Fur-

31Recall, from Proposition 2, that with risk-neutrality restricting the policy ê to depend only on �1 is without loss
of optimality.
32We approximated the solution using a sixth-order polynomial.
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thermore, now there exist values of �1 for which ê�2 (�1) < ê�1 (�1) : To see the reason for this,

note that, when evaluated at ��1, equations (30) and (32) are symmetric except for the term

�� 00
�
ê�2
�
��1
��
 0
�
ê�2
�
��1
��
V ar("2). As discussed above, this term captures the additional cost

associated with a high second-period e¤ort, stemming from the volatility of the agent�s payment

generated by the shock "2 to his second-period productivity. To better appreciate where this term

comes from, recall, from Proposition 6, that incentive-compatibility requires that the total payment

to the agent in each state (�1; "2) be given by

C(�1; "2) = V�1
 X2

t=1
 (êt (�1)) +  

0(ê2(�1))["2 � E[~"2]] +
Z �1

�1

hX2

t=1
D1;t 

0 (êt(s))
i
ds

!
.

(33)

It is then immediate that reducing ê2(�1) permits the principal to reduce the agent�s exposure to

the risk generated by "2: For high values of �1, this new e¤ect dominates the rent-extraction e¤ect

documented in the previous section, thus resulting in ê2 (�1) < ê1 (�1).

When the e¤ect of �1 on �2 is small (i.e., for low values of ), this new e¤ect mitigates but does

not overturn the optimality of seniority-based incentive schemes. When instead the e¤ect of �1 on

�2 is strong (i.e., for high values of ) then this new e¤ect can completely reverse the optimality of

incentive schemes whose power increases with time. In the limit, when the shocks to the agent�s

productivity become fully persistent (�t follows a random walk, i.e.  = 1), one can then easily see

from (30) and (32) that ê2 (�1) < ê1 (�1) for all �1.

The aforemtioned properties extend to T > 2: Figure 2 depicts the optimal policies for the same

speci�cation considered above but now letting T = 3: The left-hand side is for the case  = 1=2 ,

while the right-hand side is for the case  = 1 (random walk).

When  = 1, e¤ort decreases over time, for all �1. As anticipated in the introduction, this re�ects

the fact that reducing e¤ort in period t is more e¤ective in reducing the agent�s exposure to risk

than reducing e¤ort in period s < t. When instead  = 1=2 then, on average, e¤ort is higher in the

early periods than in later ones, but, the opposite is true for high values of �1, as in the T = 2 case.

Furthermore, e¤ort in later periods can now be decreasing in �1. This follows from the fact that,

when t is high, reducing the agent�s e¤ort in period t has little e¤ect on the agent�s informational
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Figure 2: Optimal (shock-independent) e¤ort policies: AR1 and random walk

rent and a strong e¤ect on the agent�s exposure to risk (while the opposite is true when t is small).

Now, distorting e¤ort in any period t to reduce the agent�s rent is always relatively more e¤ective

for low types than for high ones (the reason is the same as in static settings): this explains why the

optimal e¤ort policy is increasing in �1 in the early stages of the relationship. Together with the

fact that a reduction in e¤ort in period s is an (imperfect) substitute for a reduction of e¤ort in

period t > s on the agent�s total exposure to risk, this implies that the optimal e¤ort policy must

eventually become decreasing for t su¢ ciently large.

Another way the principal could mitigate the e¤ect of the volatility of the shocks to the agent�s

productivity is by conditioning the e¤ort policy on the realization of these shocks. To gauge the

e¤ect of this additional �exibility, consider again the same speci�cation assumed above. While a

complete analytical characterization of the fully-optimal policy escapes us because of the complexity

of the optimization problem, we could approximate the optimal policy with 6th-degree polynomials.

The result for the T = 2 is depicted in Figure 3, where we considered the same parametrization as
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Figure 3: Fully optimal �rst-period and average second-period e¤ort policies

in Figure 1, but now allowed the second-period e¤ort to depend on the shock "2. Again, when the

correlation between �1 and �2 is not too high (in the example, � = 1=2), the optimality of seniority-

based schemes is maintained: Eê2 (�1;~"2) is on average higher than ê1 (�1) ; with the inequality

reversed for su¢ ciently high values of �1.

Also note that the second-period e¤ort is typically decreasing in the shock "2, as illustrated in

Figure 4. This negative correlation permits the principal to further reduce the agent�s exposure to

risk, as one can see directly from (33).

The negative correlation between ê�2 and "2 also suggests that, in certain environments such

as the one considered in this example, it may be di¢ cult to sustain the fully-optimal policy with

linear or even �quasi-linear� schemes such as those of Proposition 7. When this is the case, one

may need to resort to the type of schemes introduced in Proposition 4, adapted to the presence of

risk aversion as indicated in Proposition 8 below. To facilitate the comparison with the results in

the previous section, we revert here to the primitive representation where the agent reports �t, as

opposed to the shocks "t. The following proposition then generalizes the results in Propositions 3

and 4 to the case of a (weakly) risk averse agent.

Proposition 8 Suppose the agent�s type �t evolves according to a Markov process and that e¤ort
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Figure 4: Fully-optimal second-period e¤ort

has only a transitory e¤ect on performance, so that �t = �t + et, all t.

1. Any policy e satisfying the single-crossing condition of (19) for any t; any (�̂
t�1

; �̂t; �t); can

be implemented by the following �quasi-linear�scheme: given the reports �T and the observed

performances �T , the principal pays the agent a total reward

TX
t=1

sQLt (�t; �t) = V�1
 

TX
t=1

[St(�
t) + �t(�

t)�t]

!
,

where the functions St(�) are as in (11) and where �t(�t) �  0(et(�
t)):

2. Any e¤ort policy e satisfying the single-crossing condition (24) for any t; any (�̂
t�1

; �̂t; �t),

can be implemented by the following �bonus� scheme: given the reports �T and the observed

performances �T , the principal pays the agent a total reward

TX
t=1

sBt (�
t; �t) = V�1

0B@
PT

t=1  (et(�
t))

+E(~�2;:::;~�T )j�1
hR �1
�1

PT
t=1 J

t
1(s;

~�2; : : : ; ~�t) 
0
�
et

�
s; ~�2; : : : ; ~�t

��
ds
i

+
PT

t=2Ht(�
t)

1CA
if �t � ��t (�

t) � �t + et(�
t) 8 t; and

PT
t=1 st(�

t; �t) = �L otherwise, where, for any t � 2;

any �t;

Ht

�
�t
�
� E(~�t+1;:::;~�T )j�t

"Z �t

�t

TX
�=t

J�t

�
�t�1; s; ~�t+1; : : : ; ~��

�
 0
�
e�

�
�t�1; s; ~�t+1; : : : ; ~��

��
ds

#

�E
(~�t;:::;~�T )j�t�1

"Z ~�t

�t

TX
�=t

J�t

�
�t�1; s; ~�t+1; : : : ; ~��

�
 0
�
e�

�
�t�1; s; ~�t+1; : : : ; ~��

��
ds

#
.
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Depending on whether the desired e¤ort policy satis�es the stronger single-crossing condition of

(24) or the weaker single-crossing condition of (19), it can be implemented either by the quasi-linear

scheme of part (1) where the agent�s compensation is a convex function of the linear aggregatorPT
t=1[St(�

t) + �t(�
t)�t], or by the bonus scheme of part (2) according to which the agent receives

a positive bonus only upon meeting the �rm�s targets in each period.

Note that a third possibility is to pay the agent according to a linear scheme. Consider paying

the agent

TX
t=1

sLt (�
t; �t) = W

 
TX
t=1

[St(�
t) + �t(�

t)��t
�
�t
�
]

!

+W 0

 
TX
t=1

[St(�
t) + �t(�

t)��t
�
�t
�
]

! 
TX
t=1

�t(�
t)
�
�t � ��t

�
�t
��!

.

Since W is strictly convex,
TX
t=1

sLt (�
t; �t) �

TX
t=1

sQLt (�t; �t),

with equality if and only if
PT

t=1 �t(�
t)
�
�t � ��t

�
�t
��
= 0. Since the most the agent could obtain

was by reporting truthfully and following e¤ort recommendations under the quasi-linear scheme, it

must also be the case under the linear scheme. Note, however, that an e¤ort policy implemented

by the linear scheme need not be implementable by the quasi-linear scheme.

4.1 Consumption smoothing

Finally, to see how the results in the previous sections may be a¤ected by the agent�s preferences

for consumption smoothing, consider an alternative setting where the agent�s payo¤ is given by

UA(cT ; eT ) =
TX
t=1

�t�1[v(ct)�  (et)].

For simplicity, assume here that e¤ort has only a transitory e¤ect on the �rm�s performance,

i.e. �t = �t + et for all t, and that �t evolves according to a Markov process as in the previous

section. Following the same steps used to establish Proposition 6, one can show that, in each state

�T �equivalently, (�1; "T ) �the utility of the total payment to the agent is uniquely pinned down

by the policy e up to a constant V 
(�1). The characterization of the optimal reward scheme in this
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environment then proceeds as follows. Given any e¤ort policy e, for each state �T , let

TX
t=1

�t�1v(ct(�
t)) =

TX
t=1

�t�1 (et(�
t)) + V 
(�1) (34)

+E~�T j�1

"Z �1

�1

TX
t=1

�t�1J t1(~�
t
) 0
�
et(~�

t
�
)ds

#

+

TX
t=2

Ht(�
t)

denote the total utility of money that is necessary to sustain the policy e; where for all t � 2, all �t

Ht

�
�t
�
� E~�T j�t

"Z �t

�t

TX
�=t

�t�1J�t (~�
�
) 0(e� (~�

�
))ds

#
� E~�T j�t�1

"Z ~�t

�t

TX
�=t

�t�1J�t (~�
�
) 0(e� (~�

�
))ds

#
.

Then let copt(�; e) denote the reward scheme that minimizes the expected payment to the principal,

among all schemes that satisfy conditions (34), naturally adapted to the �ltration generated by the

history of reports �t: We then have the following result.

Proposition 9 Suppose the agent�s type �t evolves according to a Markov process and that e¤ort

has only a transitory e¤ect on performance so that �t = �t+et; all t: Let e� denote any e¤ort policy

that maximizes

E~�T

"
TX
t=1

�t�1
�
~�t + e(~�

t
)� coptt (~�

t
; e)
�#

1. For any t any �t; let �t(�t) �  0(e�t (�
t)). Suppose the policy e� satis�es the single-crossing

condition of (19) for any t any (�̂
t�1

; �̂t; �t). Then e� together with the �quasi-linear�reward

scheme s� de�ned below are part of an optimal mechanism. The scheme s� is such that, in

each period t; given the reports �t and the observed performances �t, the principal pays the

agent a reward s�t (�
t; �t) = v�1

�
S�t (�

t) + �t(�
t)�t

�
, where the �xed payment S�t (�

t) is now

implicitly de�ned by

v�1
�
S�t (�

t) + �t(�
t)��t (�

t)
�
= coptt (�t; e�)

with ��t (�
t) � �t + e

�
t (�

t) for any t any �t:

2. Suppose instead that the policy e� does not satisfy the single-crossing condition of (19) but

satis�es the single-crossing condition of (24) for any t; any (�̂
t�1

; �̂t; �t). Then e� can be
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implemented by the following �bonus� scheme s�: in each period t; given the reports �t and

the observed performances �t, the principal pays the agent a reward s�t (�
t; �t) = coptt (�t; e�) if

�t = ��t (�
t) and charges the agent a penalty L > 0 otherwise.

Both parts (1) and (2) follow directly from the preceding results along with the de�nition of

copt(�; e). The only di¤erence between this environment and the one examined at the beginning

of this section is that, while in that setting the way the total payment is distributed over time

is irrelevant for the agent (and hence for the principal), in the environment considered here it is

essential to distribute the payments optimally over the entire relationship. The payment schemes in

Proposition 9 guarantee that the agent has the right incentives to report his information truthfully

and then exert the right level of e¤ort, while at the same time inducing the level of intertemporal

consumption smoothing that maximizes the agent�s utility and hence minimizes the cost for the

principal.

To get a sense of how the principal allocates optimally the agent�s consumption over time (which

is instrumental to the characterization of the optimal e¤ort policy) one can use Rogerson�s (1985)

necessary conditions for optimality. Adapted to our environment, these conditions can be stated

as follows.

Proposition 10 Suppose that the e¤ort policy e can be implemented by the reward scheme s and

let c be the corresponding consumption policy. If s implements e at minimum cost for the principal,

then the following inverse Euler equation must hold for any two adjacent periods 1 � t; t+ 1 � T ,

almost every �t,

1

v0
�
ct
�
�t
�� = E~�t+1j�t

24 �

v0
�
ct+1

�
�t; ~�t+1

��
35 . (35)

We now show how one can calculate the optimal e¤ort policies. The payo¤ equivalence result of

condition (34) permits one to determine the total utility of consumption (up to a constant V 
(�1))

that must be given to the agent in each state �T , for any given e¤ort policy e. However, because

the agent�s payo¤ now depends on the timing of the payments, the principal must now span the

payments optimally over time, adding an additional dimension to the problem. One way to arrive
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to the optimal policy e� is the one indicated in Proposition 9; using (34) and (35) one determines

the optimal payment scheme for each possible e¤ort policy e and then chooses the policy e� that

maximizes the principal�s expected payo¤. An alternative route, described below, involves using the

utility of consumption as an additional control and then maximizing the principal�s expected payo¤

with respect to e¤ort and utility of consumption, subject to (34). This alternative approach often

facilitates the computation, for it does not require computation of the cost-minimizing payment

scheme for each possible e¤ort policy e:

To illustrate, suppose for simplicity that T = 2 and � = 1. Denote the utility of consumption

in each period by u1 (�1) = v (c1 (�1)) and u2 (�1; �2) = v (c2 (�1; �2)). Then, for any �T = (�1; �2),

equation (34), evaluated at both (�1; �2) and (�1; �2), allows us to express each u1 (�1) and u2 (�1; �2)

as functions of the e¤ort policy, the constant V 
(�1), and the function u2 (�; �2). Speci�cally, for all

(�1; �2),

u1 (�1) = �u2 (�1; �2) +  (e2 (�1; �2)) +  (e1 (�1)) + V 
(�1) (36)

+E~�2j�1

"Z �1

�1

 0 (e1 (s)) + J
2
1 (s;

~�2)e2

�
s; ~�2

�
ds

#

�E~�2j�1

"Z ~�2

�2

 0 (e2 (�1; s)) ds

#
,

and

u2 (�1; �2) = u2 (�1; �2) +  (e2 (�1; �2))�  (e2 (�1; �2)) (37)

+

Z �2

�2

 0 (e2 (�1; s)) ds.

The optimal mechanism can then be obtained by maximizing the principal�s expected payo¤

E(~�1;~�2)
h
~�1 + ~�2 + e1

�
~�1

�
+ e2

�
~�1; ~�2

�
� v�1

�
u1

�
~�1

��
� v�1

�
u2

�
~�1; ~�2

��i
,

with respect to e1 (�), e2 (�; �), u2 (�; �2), and the constant V 
(�1), where u1 and u2 are given by (36)

and (37).

As in previous problems, at any optimum, V 
(�1) = 0: As an illustration, consider the same

speci�cation as in Example 5, i.e. let v(c) = 1
�

p
2�c+ �2 � �

� for �; � > 0, and assume that
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J21 (�1; �2) =
1
2 (an equivalent choice was made for Figures 3 and 4 in the previous subsection).

Using again sixth-order polynomials, we can then compute numerically the optimal e¤ort policies.

These policies have the same qualitative features as in Example 5. In particular, both e1 (�1) and

E~�1j�1
h
e2

�
�1; ~�2

�i
are increasing in �1, and e2 (�1; �2) is decreasing in �2 (because of the similarity,

the �gures for the present case are not displayed).

5 Appendix

Proof of Proposition 1. Because the agent�s participation constraint clearly binds at the

optimum, the principal�s payo¤ coincides with the total surplus generated by the relationship,

which is given by

W =
TX
t=1

�t�1
�
�t(�t; e

t)�  (et)
�
=

TX
t=1

�t�1

"
�t + et +

t�1X
�=1

��et�� �  (et)
#

The result then follows from pointwise maximization of E[W ] with respect to each et(�1; "t):

Proof of Example 4. First note that this environment satis�es all the conditions on the kernels

F assumed at the beginning of the section and that, for any t � 2; any �t 2 �t = R+; any �t�1;

Ft (�tj�t�1) = G

�
�t
�t�1

�
.

Therefore, for each k � 2, each (�k; �k�1);

Ikk�1 (�k; �k�1) =
�@G

�
�k
�k�1

�
=@�k�1

1
�k�1

g
�

�k
�k�1

� =
�k
�k�1

.

It follows that, for each � > t,

J�t (�t; :::; �� ) =
��
�t
.

In each period t, the e¤ort policy that solves the relaxed program is thus given by

e�t
�
�t
�
= max

�
1� � (�1)

�t
�1
; 0

�
.
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It is immediate to see that, because e�t
�
�t
�
is decreasing in �t, it violates condition (19). Further-

more, by taking e.g. t = T , one can easily see that, for any �̂1 and any �̂T < �T < �̂1=�(�̂1),

uT (�T ; �̂T ; �̂
T�1

) > uT (�T ; �̂
T�1

) � uT (�T ; �T ; �̂
T�1

),

where

uT (�T ; �̂
T�1

) =

Z �T

0
 0
�
e�T

�
�̂
T�1

; s
��

ds =

Z �T

0

�
1� �

�
�̂1

� s

�̂1

�
ds

and

uT (�T ; �̂T ; �̂
T�1

) =

Z �̂T

�T

 0(e�T

�
�̂
T�1

; s
�
)ds+ �T (�̂

T�1
; �̂T )[�T � �̂T ]

=

Z �̂T

0
[1� �

�
�̂1

� s

�̂1
]ds+

"
1� �

�
�̂1

� �̂T
�̂1

#
[�T � �̂T ]

are, respectively, the continuation payo¤ that type �T obtains by reporting �T truthfully and the

continuation payo¤ he obtains by reporting �̂T < �T ; under the linear scheme s� of Proposition 3.

This proves that e� cannot be implemented with the linear scheme.

Finally, to see that e� can be implemented by the scheme s of Proposition 4, it su¢ ces to show

that the single-crossing condition (24) holds for any t; any (�̂
t�1

; �̂t; �t): To see this, note that, when

t = 1; (24) is equivalent to

E~�2;:::;~�T j�1

24 max f1� � (�1) ; 0g �maxnmaxn1� � ��̂1� ; 0o+ �̂1 � �1; 0o
+
PT

t=2 �
t�1 ~�t

�1

h
max

n
1� � (�1)

~�t
�1
; 0
o
�max

n
1� �

�
�̂1

�
~�t
�̂1
; 0
oi 35 [�1 � �̂1] � 0.

This holds by the assumption that � is non-increasing. Now take any period t > 1: Condition (24)

then requires that"
max

�
1� �

�
�̂1

� �t
�̂1
; 0

�
�max

(
max

(
1� �

�
�̂1

� �̂t
�̂1
; 0

)
+ �̂1 � �1; 0

)#
[�t � �̂t] � 0

which holds because, by assumption, �
�
�̂1

�
� �̂1 for each �̂1.

Proof of Proposition 5. Let W � V�1. The principal maximizes, by choice of functions

(êt (�))Tt=1 and (ĉt (�))
T
t=1

E
h
~UP
i
= E

"
TX
t=1

h
zt

�
~�1;~"t

�
+ êt

�
~�1;~"

t
�
� ct

�
~�1;~"

t
�i#
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subject to the agent�s (period-1 interim) participation constraint

E

"
V
 

TX
t=1

ct
�
�1;~"

t
�!
�

TX
t=1

 (êt
�
�1;~"

t
�
) j �1

#
� 0

It is immediate by the concavity of V and the convexity of  that the (almost-unique) solution to

the above problem consists in paying the agent in each state (�1;~"T ) a �xed total reward
PT

t=1 ct =

W
�PT

t=1  (êt)
�
and asking in each period the agent to exert a level of e¤ort êt implicitly de�ned

by

W 0 (T (ê� )) 
0 (êt) = 1,

Using the inverse-function theorem then gives the result.

Proof of Proposition 6. We prove the result by backward induction, starting from t = T .

Using the characterization of the necessary conditions for incentive compatibility in the main text,

we have that (to ease the exposition, hereafter we drop the quali�cation �for almost every truthful

history�):
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Using the fact that
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we then have that
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This establishes the �rst step of the induction. Now suppose that there exists a t � T � 1 such

that the following representation holds for all periods s, t � s < T :
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We then want to show that it holds also for s = t� 1. Note that, by incentive compatibility,
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and that, again by incentive compatibility,
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ê�
�
�1; "

t�1; x;~"t+1; : : : ;~"�
��
dx

#
Using (38) for s = t and combining it with (39), we then have that
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ê�
�
�1; "

t�2; x;~"t; : : : ;~"�
��
ds

#

+

TX
�=t
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which proves that the representation in (38) holds also for s = t�1. The result then follows directly

from the fact that the agent�s payo¤under truthtelling must coincide with the value function almost

surely.

Proof of Example 5. Using (26), the principal�s expected payo¤ in any incentive-compatible

mechanism 
̂ implementing a policy ê that is contingent on �1 only (i.e. such that there exists a
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sequence of functions êt : �1 ! R, t = 2; : : : ; T , such that êt(�1; "t) = êt(�1) for all "t) is given by

E[W (~�1)], where, for any �1 2 �1;

W (�1) � E

"
TX
s=1

 
D1;s�1 +

sX
�=2

D�;s~"�

!#
+

TX
s=1

ês (�1)

��
2
E

264
0B@ TP

s=1
 (ês(�1)) + V


̂(�1)

+
R �1
�1

PT
s=1D1;s 

0 (ês (z)) dz +
PT
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where, for s = 2; : : : ; T ,
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The principal�s relaxed program then consists of choosing a vector of e¤ort functions êt : �1 ! R;

t = 1; :::; T , along with a scalar V 
̂(�1) � 0, so as to maximize E[W (~�1)]: It is immediate that,

at the optimum, V 
̂(�1) = 0: Furthermore, given that  
0(�e) > 1=�; it is also immediate that any

policy ê = (êt(�))Tt=1 that maximizes E[W (~�1)] must have the property that, for any t; êt(�1) 2 [0; �e]

for almost every �1 2 �1:

Now let g : [0;K]! R be the function de�ned by g(0) = 0, g(y) =  0�1(y); all y 2 (0;K);

and g(K) = �e. For any t = 1; : : : ; T , any �1 2 �1, then let ut(�1) �  0 (êt(�1)) and xt (�1) �R �1
�1
ut (z) dz. Omitting the �rst term, which does not depend on the e¤ort policy, the principal�s
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relaxed problem thus consists in choosing functions u : �1 ! [0;K]T and x : �1 ! RT+ that

maximize Z ��1

�1

L (�1; u(�1); x (�1)) d�1

where, for any (�1; u; x) 2 �1 � [0;K]T � RT+;

L (�1; u; x) � f (�1)
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under the constraint that

xt (�1) =

Z �1

�1

ut(z)dz; 8t = 1; :::; T; 8�1 2 �1. (40)

We solve this problem with optimal control treating u as the vector of control variables and x as

the vector of state variables. First we verify that a solution to this optimal control problem exists by

applying the Tonelli existence theorem.33 To this aim, we �rst show that, for any (�1; x) 2 �1�RT+;

the function L (�1; �; x) is strictly concave. Note that, for any y 2 (0;K);

g00 (y) =
d

dy

�
1

 00 (g (y))

�
=
� 000 (g (y))
[ 00 (g (y))]3

< 0.

This implies that
PT

s=1 g (us) is strictly concave in u. Next, note that, for any y 2 (0;K);
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> 0, since log 0 is concave.

Hence  (g (y)) is convex. Therefore,
TP
s=1

 (g (us)) is convex in u. Moreover, since (�)2 is convex and

is increasing whenever its argument is non-negative, �
�

TP
s=1

 (g (us)) +
PT

s=1D1;sxs

�2
is concave in

u as well. The same argument implies that, for any s, the function �
�PT

�=sDs;�u�

�2
is concave in

u so that ��
2

PT
s=2 �

2
s

�PT
�=sDs;�u�

�2
is weakly concave. Together these observations imply that L

is strictly concave in u, as required. Moreover, L is continuous.34 Finally, that u is bounded renders

33See, for example, Theorem 3.7 of Buttazzo, Giaquinta and Hildebrandt (1998).
34All that is required for a Tonelli-type existence theorem is that L be measurable in �1 for all admissible x and

u 2 [0;K]T , and continuous in (x; u) for almost every �1. See Theorem 3.6 of Buttazzo, Giaquinta and Hildebrandt
(1998).
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the �coercivity�condition of Tonelli�s theorem unnecessary.35 Thus a solution exists. Finally, that

L is weakly jointly concave in (u; x) and strictly concave in u implies that the solution is essentially

unique.

By Proposition 2.1 of Clarke (1989), that u is bounded and that L is strictly concave in u

for each x; then guarantees that each xt (�) is continuously di¤erentiable and that the Pontryagin

principle applies.

The Hamiltonian function is given by

H = L (�1; u (�1) ; x (�1)) + �(�1)
>u (�1) .

where � is the vector of co-state variables associated with the law of motions given by

_x (�1) = u(�1) a.e. �1: (41)

Pointwise maximization of the Hamiltonian then requires that for almost every �1 2 �1; all t =

1; : : : ; T ,36
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(42)

with inequality satis�ed as equality if ut(�1) > 0. Furthermore, for almost every �1 2 �1, any

t = 1; : : : ; T , the adjoint equations

_�t (�1) = f (�1)D1;t

h
�
�PT

s=1  (g (us(�1))) +
PT

s=1D1;sxs(�1)
�
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i
(43)

must hold. Finally, the following boundary and transversality conditions must be satis�ed:

�t
�
��1
�
= xt (�1) = 0; t = 1; : : : ; T: (44)

Combining together( 42)-(44), and using absolute continuity of the co-state variables, gives (30).

35See, for instance, Theorem 3.7 of Buttazzo, Giaquinta and Hildebrandt (1998). The role of the coercivity condition
in Tonelli�s result is exactly to guarantee that the controls u are essentially bounded.
36We abstract from the constraints that ut � K. It is in fact immediate from the fact that K =  0(�e) > 1=� that

these constraints never bind.
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Proof of Proposition 10. First note that if s implements e; then e can also be implemented by

the following �bonus�scheme:

ŝt(�
t; �t) =

�
ct(�

t) if �t = �t + et(�
t)

�L otherwise (45)

with L > 0 arbitrarily large. So, without loss, assume s itself satis�es condition (45).

Now, suppose there exists a period t and a (positive measure) set Q � �t such that, for any

�t 2 �t,
1

v0
�
ct
�
�t
�� > E~�t+1j�t

24 �

v0
�
ct+1

�
�t; ~�t+1

��
35 .

The argument for the case where the inequality is reversed is symmetric. Then consider the following
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Clearly, this scheme preserves incentives for both truthful revelation and obedience and, in equilib-

rium, gives the agent the same payo¤ as the original scheme s:37 The di¤erence between the ex-ante

expected cost to the principal under this scheme and under the original scheme s is given by
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where F (~�

t 2 Q) denotes the ex-ante probability that ~�
t 2 Q and Ef~�t:~�t2Qg[�] denotes the condi-

tional expectation of [�] over �t given the sigma-algebra generated by the event that ~�t 2 Q:

Clearly, �(0) = 0 and
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The principal can then reduce her expected payment to the agent by switching to a scheme s# with

k < 0 arbitrarily small, contradicting the assumption that s is cost-minimizing.
37Since the choice of L in the scheme s was arbitrary, it may be chosen large enough that incentives are still

preserved in s#.
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