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1. Introduction

In a wide range of economic situations, agents possess private information regarding some shared
uncertainty. These include choosing between competing technologies, deciding whether to invest
in a new business, deciding whether to eat at a new restaurant in town, or selecting which new
novel to read.

If actions are observable but private information is not, one agent’s behavior provides useful
information to others. Consider the example of choosing between two MP3 players recently re-
leased to the market. One is inherently better for all individuals, but agents do not know which.!
Individuals form a personal impression about the quality of each device based on information
they receive privately. They also observe the choices of others, which partly reveal the private
information of those agents.

An important characteristic of this environment has been overlooked: when choosing between
competing alternatives, an agent may not know how many individuals have faced the same de-
cision before him. Moreover, when an agent observes someone else’s decision, he also may not
know when that decision was made. For example, even when individuals know when the com-
peting MP3 players were released, they may be unaware of exactly how many individuals have
already chosen between the devices. In addition, when an agent observes someone else listen-
ing to an MP3 player on the bus, he does not know whether the person using the device bought
it that morning or on the day it was released. We study settings with position uncertainty, and
ask whether individuals eventually learn and choose the superior technology by observing the
behavior of others.

The seminal contributions to the social learning literature are Banerjee [1992] and Bikhchan-
dani, Hirshleifer, and Welch [1992]. In these papers, a set of rational agents choose sequentially
between two technologies. The payoff from this decision is identical to all, but unknown. Agents
know their position in the adoption sequence. In each period, one agent receives a signal and
observes what all agents before him have chosen. Afterwards, this agent makes a once-and-for-all
decision between the two technologies. Given that each agent knows that the signal he has re-
ceived is no better than the signal other individuals have received, agents eventually follow the

behavior of others and ignore their own signals. Consequently, Banerjee and Bikhchandani et al.

ITwe study situations where network externalities do not play a salient role, including choosing between news sites,
early search engines, computer software, MP3 players or computer brands. Our focus is on informational externalities.
We are currently working on a setting with network externalities, for which we have partial results.



show that the optimal behavior of rational agents can prevent social learning.

Smith and Serensen [2000] highlight that there is no information aggregation in the models of
Banerjee [1992] and Bikhchandani et al. [1992] because these models assume signals are of bounded
strength. In Smith and Serensen [2000], agents also know their positions in the adoption sequence
and observe the behavior of all preceding agents. In contrast to Banerjee [1992] and Bikhchandani
et al. [1992], agents receive signals of unbounded strength: signals can get arbitrarily close to being
perfectly informative. In such a context, the conventional wisdom represented by a long sequence
of agents making the same decision can always be overturned by the action of an agent with a
strong enough signal. As a result, individuals never fully disregard their own information. In
fact, Smith and Serensen [2000] show that if signals are of unbounded strength, social learning
occurs.

We take as our starting point the basic setup in the literature on social learning and introduce
position uncertainty. In our setting, agents, exogenously ordered in a sequence, choose between
two competing technologies. Agents receive a noisy private signal about the quality of each tech-
nology. We study cases of both bounded and unbounded signal strength. We depart from the
literature by assuming that agents may not know 1) their position in the sequence or 2) the posi-
tion of those they observe. We refer to both phenomena as position uncertainty. We also depart from
Banerjee [1992], Bikhchandani et al. [1992] and Smith and Serensen [2000] in that agents observe
the behavior of only a sample of preceding agents.

To understand the importance of position uncertainty, note that if an agent knows his position
in the sequence, he can condition his behavior on three pieces of information: his private signal,
his sample and his position in the sequence. In fact, he may weigh his sample and signal differently
depending on his position. The typical story of social learning is one of learning over time. Early
agents place a relatively larger weight on the signal than on the sample. As time progresses,
information is aggregated and the behavior of agents becomes a better indicator of the true state
of the world. Later agents place a relatively larger weight on the sample, which, in turn, can
lead to precise information aggregation. In contrast, if agents have no information about their
positions, such heterogeneity in play is impossible. Instead, agents place the same weight on the
sample regardless of when they play. Heterogeneous play based on positions cannot drive social

learning in this setting.

2Position uncertainty leads to an additional difficulty. Agents A and B do not know if A precedes B or vice versa.
This adds a strategic component to the game: A’s strategy affects B’s payoffs inasmuch as B’s strategy affects A’s
payoffs. Thus, the game cannot be solved recursively and, in fact, there are cases with multiple equilibria.



This paper presents a flexible framework for studying observational learning under position
uncertainty. Our framework is general in two ways. First, agents are placed in the adoption
sequence according to an arbitrary distribution. For example, some agents may, ex-ante, be more
likely to have an early position in the sequence, while others are more likely to be towards the
end. Second, our setup allows for general specifications of the information agents obtain about
their position, once it has been realized. Agents may observe their position, receive no information
about it, or have imperfect information about it. For instance, agents may know if they are early
or late adopters, even if they do not know their exact positions.

We focus on stationary sampling, which allows for a rich class of natural sampling rules. Sam-
pling rules are stationary if the probability that an agent samples a particular set of individuals is
only a function of the distance between the agent and those he observes (that is, how far back in
time those decisions were made). This assumption implies that no individual plays a decisive role
in everyone else’s samples.

We say social learning occurs if the probability that a randomly selected agent chooses the
superior technology approaches one as the number of agents grows large. We find that learning
is robust to the introduction of position uncertainty. We specify weak requirements on the infor-
mation of agents: they observe a private signal and at least an unordered sample of past play.
Agents need not have any information on their position in the sequence. Under unbounded signal
strength, social learning occurs. This is due to the fact that as the number of agents grows large,
individuals rely less on the signal. In cases with bounded signal strength, we show agents achieve
what we define as constrained efficient learning: agents expect to do at least as well as the most
informed agent would do in isolation.

In the present setting, social learning results from the combination of stationary sampling and
a modified improvement principle. First introduced by Banerjee and Fudenberg [2004], the improve-
ment principle states that since agents can copy the decisions of others, they must do at least as
well, in expectation, as those they observe. In addition, when an agent receives a very strong
signal and follows it, he must do better than those he observes. As long as the agents observed
choose the inferior technology with positive probability, the improvement is bounded away from
zero. In Banerjee and Fudenberg’s model, agents know their positions and observe others from
the preceding period. If learning did not occur, this would mean that agents choose the inferior
technology with positive probability in every period. Thus, there would be an improvement be-

tween any two consecutive periods. This would lead to an infinite sequence of improvements,



which cannot occur, since utility is bounded. In that way, Banerjee and Fudenberg show social
learning must occur in their setting. Acemoglu, Dahleh, Lobel, and Ozdaglar [Forthcoming] and
Smith and Serensen [2008] use similar arguments to show social learning in their models.

We develop an ex-ante improvement principle, which allows for position uncertainty, and so
places weaker requirements on the information that agents have. However, this ex-ante improve-
ment principle does not guarantee learning by itself. Under position uncertainty, the improvement
upon those observed is only true ex-ante (i.e. before the positions are realized). Conditional on
his position, an agent may actually do worse, on average, than those he observes.?

Stationary sampling rules have the following implication: as the number of agents grows large,
all agents become equally likely to be sampled.* This leads to a useful accounting identity. Note
that the ex-ante (expected) utility of an agent is the average over the utilities he would get in each
possible position. As all agents become equally likely to be sampled, the expected utility of an
observed agent approaches the average over all possible positions. Thus, for all stationary sampling
rules, the difference between the ex-ante utility and the expected utility of those observed must
vanish as the number of agents grows large.

To summarize, our ex-ante improvement principle states that the difference between the ex-
ante utility and the expected utility of an observed agent only goes to zero if, in the limit, agents
cannot improve upon those observed. This, combined with stationary sampling rules, implies
there is social learning if signal strength is unbounded and constrained efficient learning if signal
strength is bounded.

The result of constrained efficient learning is novel in the literature and is useful for two rea-
sons. First, it describes a lower bound on information aggregation for all information structures.
For any signal strength, agents do, in expectation, at least as well as if they were provided with
the strongest signals available. Second, it highlights the continuity of social learning, or perfect

information aggregation. Social learning becomes a limit result from constrained efficient learn-

3To see this, consider the following example. There is a large number of agents in a sequence. Everyone knows their
position exactly except for the agents in the second and last positions, who have an equal chance of being in each of
these positions. If each agent observes the decision of the agent that preceded him, then, by the standard improvement
principle, the penultimate agent in the sequence makes the correct choice with a probability approaching one. The
agent who plays last, on the other hand, is not sure that he is playing last. He does not know if he is observing the
penultimate agent, who is almost always right, or the first agent, who often makes mistakes. As a result, the agent who
plays last relies on his signal too often, causing him to make mistakes more often than the agent he observes.

“4The following example illustrates this point. Let all agents be equally likely to be placed in any position in a finite
sequence and let sampling follow a simple stationary rule: each agent observes the behavior of the preceding agent. An
agent does not know his own position and wonders about the position of the individual he observes. Since the agent
is equally likely to be in any position, the individual observed is also equally likely to be in any position (except for the
last position in the sequence).



ing: as we relax the bounds on the signal strength, the lower bound on information aggregation
approaches perfect information aggregation.

Before introducing the formal model, we describe the related literature on observational learn-
ing. Most of the literature has focused on cases in which agents know their own positions and
the positions of those they observed, and sample from past behavior. The aforementioned Baner-
jee and Fudenberg [2004], Celen and Kariv [2004], and Acemoglu et al. [Forthcoming] are among
them. Acemoglu et al. [Forthcoming] present a model on social learning with stochastic sampling.
In their model, agents know both their own position and the position of sampled individuals.
Under mild conditions on sampling, social learning occurs.” Larson [2008] focuses on the speed
of learning. He suggests a model where agents observe a weighted average of past actions and
make a choice in a continuous action space. Larson shows that if agents could choose weights,
they would place higher weights on more recent actions. Moreover, learning is faster when the
effects of early actions fade out quickly.

Several recent papers have highlighted the importance of position uncertainty. Smith and
Serensen [2008] is the first paper to allow for some uncertainty about positions. In their model,
agents know their own position but do not know the positions of the individuals sampled. Since
agents know their own positions, an improvement principle and a mild assumption on sampling
ensures that social learning occurs. In Callander and Horner [2009], each agent observes the ag-
gregate number of adopters, but does not know the order of the decisions. Callander and Horner
show the counterintuitive result that it is sometimes optimal to follow the decision of a minority.
Hendricks, Sorensen, and Wiseman [2010] present a similar model and test its predictions using
experimental data on an online music market. Herrera and Horner [2009] and Guarino, Harm-
gart, and Huck [Forthcoming] focus on the interesting case where only one decision (to invest) is
observable whereas the other one (not to invest) is not. Herrera and Horner propose a continuous
time model, with agents” arrivals determined by a Poisson arrival process. They show that when
signals are of unbounded strength, social learning occurs. In Guarino et al. [Forthcoming], time is
discrete and agents make decisions sequentially. Guarino et al. show that cascades cannot occur
on the unobservable decision. This paper differs from these recent papers in several dimensions.

First, we focus on cases where both actions are observable. Second, we allow for agents to observe

5To see why position uncertainty matters in a setup like the one described in Acemoglu et al. [Forthcoming], consider
the following example. Each agent observes the very first agent and the agent before him. However, they do not know
which is which. Since the first agent may choose the inferior technology, his incorrect choice may carry over. This
happens because individuals cannot identify who is the first agent in their sample. If agents knew the position of those
observed, social learning would occur.



a sample from past behavior. Third, we present a model where information aggregation can be
studied for any case of position uncertainty.

In the next section we explain the model and discuss the implications of stationary sampling.
In Section 3, we present our results on social learning in the case that agents are ex-ante sym-
metric and play a symmetric equilibrium. Section 4 generalizes these findings to the asymmetric
cases. We also extend our results to a non-stationary sampling rule: geometric sampling. Section 5

concludes.

2. Model

There are T players, indexed by i. Agents are exogenously ordered as follows. Letp : {1,...,T} —
{1,..., T} be a permutation and let P be the set of all possible permutations. Then, P is a random
variable with realizations p € P. The random variable P (i) specifies the period in which player i

is asked to play.

DEFINITION 1. SYMMETRIC POSITION BELIEFS. Players have symmetric position beliefs if P has

a uniform random distribution, that is Pr (P = p) = 4 forall p € P.

Initially, we assume players have symmetric position beliefs. In Section 4 we show that our
results also hold under general position beliefs.

Agents know the length T of the sequence but may not know their position in it. We are
interested in how information is transmitted and aggregated in a large society with diffuse decen-
tralized information, so we study the behavior of agents as T approaches infinity.

All agents choose one of two technologies: 2 € A = {0,1}. There are two states of the world:
6 € ® = {0,1}. The timing of the game is as follows. First, 8 € ® and p € P are chosen. The true
state of the world and the agents’ order in the sequence are not directly revealed to agents. Instead,
each individual i receives a noisy signal Z,; about the true state of the world, a second signal
Sp(i) that may include information about his position, and a sample ¢, (; of the decisions of agents
before him. With these three sources of information, each agent decides between technologies 0

and 1, collects payoffs, and dies. Thus, the decision of each individual is once-and-for-all.

2.1 Payoffs

We study situations with no payoff externalities. Let 1(a, 6) be the payoff from choosing technol-

ogy a when the state of the world is . We assume that the optimal technology depends on the



state of the world; that is, #(0,0) > u(1,0) and u(1,1) > u(0,1). We show in Appendix A.2 that
under these assumptions, any model is equivalent to a case with Pr(§ = 1) = Pr(6 = 0) = 1 and

payoffs as given in Table 1, for some A > 0.

True State (0)
0 1
Technology (a) 1 g (1)

Table 1: Payoff Function

2.2 Minimum Information Structure

We describe the information available to agents in two steps. First, we present some minimum
restrictions on the private signal Z and the sample ¢ that guarantee social learning. Next, we
describe the additional signal S, which includes other information about the game that agents

may have and that does not disrupt learning.

2.2.1 Private Signals about the State of the World

Agent i receives a private signal Zp(;), with realizations z € Z. Conditional on the true state of the
world, signals are i.i.d. across individuals and distributed according to p if 6 = 1 or o if 6 = 0.
We assume py and 1 are mutually absolutely continuous. Then, no perfectly-revealing signals
occur with positive probability, and the following likelihood ratio (Radon-Nikodym derivative)

exists:

I(z) = fl;‘;<z>

An agent’s behavior depends on the signal Z only through the likelihood ratio /. Given ¢ and S,
individuals that choose technology 1 are those that receive a likelihood ratio greater than some
threshold. For this reason, it is of special interest to define a distribution function Gy for this

likelihood ratio: Gy(I) = Pr (I(Z) < 1| 0). We define signal strength as follows.

DEFINITION 2. UNBOUNDED SIGNAL STRENGTH. Signal strength is unbounded if for all likelihood
ratios I € (0,00),
0<Go(l) <1

Since g and pq are mutually absolutely continuous, the support of Gy and G; has to coincide,



and so the previous definition also holds for G;. Let supp(G) be the support of both Gy and G;. If
Definition 2 does not hold, we assume that the convex hull of supp(G) is given by co (supp(G)) =
[L 7] ,withboth I > 0 and I < oo, and we call this the case of bounded signal strength. We study

this case in Section 3.2.°

2.2.2 The Sample

Let a; € A be the behavior of the agent playing in period t. The history of past behavior at period
t is defined by

ht = ( -,4-1,40,41,42, .. -latfl) .

Let H; be the (random) history at time ¢, with realizations h; € H;. Actions a; for t < 0 are
not chosen strategically but are instead specified exogenously by an arbitrary distribution over a
set H; of initial histories.” For example, the sample of the first agent in the sequence is always
exogenously specified by this distribution. Conditional on 8, H; is independent of P. The results
we present in this paper do not place any other restrictions on the distribution of the actions of
early agents.

Agents observe the actions of a sample of individuals from previous periods. The random set
Oy, which takes realizations o; € O, lists the positions of the agents observed by the individual
in position t. For example, if the individual in position t = 5 observes the actions of individuals
in periods 2 and 3 then 05 = {2,3}. We assume O; is nonempty® and independent of the other
random variables, except possibly Z; and S; for T > t.” We also assume sampling to be stationary.
We describe this assumption later.

At a minimum, we assume that each agent observes an unordered sample of past play, fully

5We assume that! < A < I, and so we disregard cases where one action is dominant if the only source of information
is the signal. Also, there are intermediate cases, where the bound is only in one side. They do not add much to the
understanding of the problem, so we only mention them after presenting the results from the main two cases.

Restaurants, hotels, clubs, and other establishments change hands occasionally but agents are not always aware of
this. At the same time, changes in characteristics of the options may imply significant variations in consumers’ utility
but may not always be observed. Consequently, the arbitrary distribution over initial histories may result from agents
t < 0 playing the same game when payoffs were different.

8 An agent who plays without observing the actions of anyone else chooses the inferior technology with positive
probability. Thus, if agents observe empty samples with positive probability, then there is a positive fraction of agents
who choose the inferior technology and so social learning does not occur.

9In detail, O; is independent of 6, P, and its concurrent signal Z;. Moreover, the set O; of sampled individuals must
be independent of the actual decisions of those individuals. To accomplish this, we assume that Oy is independent of
Hj, independent of Z; and S for all T < ¢, and independent of O for all T # .



determined by H; and O;. Formally, the sample § : Oy x H; — & = IN? is defined by

TEO

E(op, y) = <|ot|, Z aT> , where |o;| is the number of elements in o;.

Therefore, (o, h;) specifies the sample size and the number of observed agents that chose tech-
nology 1.1°

Agents know the sample size and how many agents in the sample chose each technology.
Choosing technology 1 with a probability equal to the proportion of agents choosing technology
1 in the sample is equivalent to picking an agent at random and following his behavior. Such
a behavior leads, in expectation, to a utility equal to the expected utility of those observed. In
other words, this minimum requirement on the information in the sample guarantees that agents
can mimic those observed and obtain at least their average expected utility. It is worth noting,
however, that agents may have more information about the positions of observed agents. This
information is included in the second signal S, as explained in the next subsection.

We impose restrictions on the stochastic set of observed agents O;. To do so, we first define the
expected weight of agent T on agent t's sample by w; = E [%} . These weights play a role in
the present model because if agents indeed pick a random agent from the sample and follow his
strategy, the ex-ante probability agent t picks agent 7 is given by w; . Now, different distributions

for Oy induce different weights w; .. We restrict the sampling rule by imposing restrictions directly

on the weights. We suppose that weights only depend on relative positions.

DEFINITION 3. STATIONARY SAMPLING. A sampling rule is stationary if the weight of agent T on

agent t's sample depends only on the distance between these agents:
Wi =w(t—71) foralltandall T.

The weights w; - depend only on the distance between agents, and so no individual plays a
predominant role in the game. A rich family of such rules can be obtained by assuming that for

allt,t and (t1,to, ..., ts), the following condition holds:

Pr(Op = {' —ti,t —to,. ¥ =t }) = Pr(Op = {t =t t =t = 1 }). (1)

19For example, if t = 5, h5 = (...,a; = 1,ap = 1,a3 = 0,a4 = 0) and 05 = {2,3} then 5 (05, /5) = (2,1); that is, the
agent in position 5 knows he observed two agents and that only one of them chose technology 1.



This condition imposes a stronger restriction than w;r = w (t — T) since it requires that only
relative positions determine the likelihood of samples.!! Some examples of stationary sampling
rules include when 1) agent t observes the set of his M predecessors, or when 2) agent ¢ observes
a uniformly random agent from the set of his M predecessors, or finally when 3) agent ¢ observes
a uniformly random subset K of the set of his M predecessors.

Section 4.3 studies an example of non-stationary sampling rules, geometric sampling, which

includes the case when agents draw uniformly from all those who have already played.

2.3 Additional Information: The Signal S

The previous subsections presented the minimum information requirements of our model. To-
gether with stationary sampling, the assumptions on the signal Z and the sample ¢ guarantee
social learning, as we show later. The random variables Z and ¢ are observable, whereas P, O, H
and of course 6 are not. Our model, however, allows agents to possess more information about
the game they play. We add a second observable signal. To allow for more general information
frameworks, each agent receives a (second) private signal Sp(;), with realizations s € S. Signal S
may provide information about the unobserved random variables, so it may depend on 0, P, O;
and H;. We require that conditional on 6, S; be independent of H; and of Z: for all 7. To simplify
our proof of existence, we also assume that S is finite for any length T of the sequence.

To illustrate how S can provide additional information, assume that agents know their posi-
tion. In such a case, S = {1,...,T} and S; = t. This setting corresponds to the model of Smith
and Serensen [2008] where agents know their position and observe an unordered sample of past
behavior. Our setup can also accommodate cases in which agents have no information about their
position, but have some information about the sample, which may be ordered.!?

If agents have imperfect information about their position in the sequence, then S specifies a
distribution over positions. Moreover, S may provide information on several unobservable vari-
ables at the same time. In Section 4 we show that S plays a critical role when allowing for general

position beliefs. To summarize, the signal S represents all information agents have that is not cap-

HThe following example shows a stationary sampling rule that violates equation (1). Every individual in an even
position ¢ observes two agents, those in positions ¢ — 1 and t — 2. Every individual in an odd position ¢ observes one of
two agents, either the agent in position ¢ — 1 or that in position t — 2. Weights are w; = % ifte {t—1,t—2} and zero
otherwise, so sampling is stationary.

12Take the example presented in the previous subsection, with t = 5, hs = (...,a1 =1,ap = 1,43 = 0,44 = 0) and
05 = {2,3}, which leads to &5 (05, h15) = (2,1). If samples are ordered, then s5 = (1,0), denoting that the first agent in
the sample chose technology 1 and the second one chose technology 0.

10



tured by Z or ¢. The results we present in this paper do not depend on the distribution of S. In

particular, social learning does not depend on the information agents possess about their position.

2.4 Strategies and Equilibrium

All information available to an agent is summarized by I = (z,¢,s), which is an element of Z =
Z x B xS. Agent i’s strategy is a function 0; : Z — [0, 1] that specifies a probability o;(I) for
choosing technology 1 given the information available. Let o_; be the strategies for all players
other than i. Then the profile of play is given by o = (03, 0_;).

The random variables in this model are

T) = (6,2, {0y {Z) Ly (S} Hh)

We focus on properties of the game before both the order of agents and the state of the world

are determined. We define the ex-ante utility as the expected utility of a player.

DEFINITION 4. EX-ANTE UTILITY. The ex-ante utility u; is given by
1
i (0) = 5 Y Pr (ap(i) (@) =0| 9) (A(1—0)+0).
0
Profile o* = (0}, 0*;) is a Bayes-Nash equilibrium of the game if:
ui (of,0%;) > u; (0;,0%;) forall o; and for all i.

Using a fixed point argument, we show that equilibria exist, for any length T of the game.
PROPOSITION 1. EXISTENCE. For each T there exists an equilibrium o*(T).

See Appendix A.3 for the proof.

When beliefs are symmetric, agents are ex-ante homogeneous; the information they obtain
depends on their position P (i) but not on their identity i. To simplify the analysis of the model
with symmetric beliefs, we focus on strategies where the agent in a given position behaves in the
same way regardless of his identity.

A profile of play ¢ is symmetric if 0; = ¢j for all i, j. A symmetric equilibrium is one in which

the profile of play is symmetric. In the model with symmetric beliefs, we focus on symmetric equi-

11



libria.!® In general, multiple equilibria may arise, and some may be asymmetric. Appendix A.1
presents an example of such equilibria.

Under symmetric profiles of play, an agent’s utility is not affected by the order of the other
agents. In other words, if o is symmetric, the utility u; (o) of any agent i in position ¢ is the same
for any permutation p with p (i) = t. Only the uncertainty over one’s own position matters, and
so when beliefs and strategies are symmetric the ex-ante utility of every player can be expressed

as follows:

For social learning, we require that the expected proportion of agents choosing the right tech-
nology approaches 1 as the number of players grows large. We can infer this expected proportion

through the average utility of the agents.

DEFINITION 5. AVERAGE UTILITY. The average utility i is given by

The expected proportion of agents choosing the right technology approaches 1 if and only if the
average utility reaches its maximum possible value, 2+1. In principle, there can be multiple equi-
libria for each length T of the game. We say social learning occurs in a particular sequence of

equilibria, {c*(T)}7_,, when the average utility approaches its maximum value.

DEFINITION 6. SOCIAL LEARNING. Social learning occurs in a sequence {c*(T)}7_; of equilibria if

A+1
lim 7 (0" (T)) = ——.
lim (o (7)) =
Our definition of social learning also applies to the asymmetric cases studied in Section 4. In
the main part of the paper we focus on the symmetric case (all players are ex-ante identical and
play symmetric strategies). In such a case, all agents have the same ex-ante utility, which of course
coincides with the average utility: u;(c) = #(c). In this symmetric setting, social learning occurs

if and only if every individual’s ex-ante utility converges to its maximum value.

13Tn Section 4, investigating general position beliefs, we consider all equilibria and construct symmetric equilibria
from possibly asymmetric equilibria. Thus, symmetric equilibria exist.

12



2.5 Average Utility of Those Observed

We present an ex-ante improvement principle in Section 3.1: as long as those observed choose the
inferior technology with positive probability, an agent’s utility can always be strictly higher than
the average utility of those observed. To accomplish this, we need to define the average utility u;
of those that agent i observes. Let & p(i) denote the action of a randomly chosen agent from those

sampled by agent i. Then, we define u; as follows.

DEFINITION 7. AVERAGE UTILITY OF THOSE OBSERVED. The average utility of those observed,

denoted u;(o_;), is given by

ilvl‘ ((T,i) =

Y Pr (Ep(i) () =0] 9) (A(1—0)+0).

0

N =

The average utility u; of those that agent i observes is the expected utility of a randomly chosen
agent from agent i’s sample.
When i is in position t the weight w; . represents the probability that agent T is selected at

random from agent i’s sample. Thus, under symmetry, u#; can be reexpressed as follows.

PROPOSITION 2. When beliefs and strategies are symmetric, the average utility of those observed can be

rewritten as'*

1
i (o) ?Z Y. Wit (0)

t=1TT<t
See Appendix A .4 for the proof. From now on, we utilize the expression for u; given by Proposi-
tion 2.
Finally, we also use () to denote the average of u;(c_;) taken across individuals. Notice

that since players are ex-ante symmetric, when beliefs and the strategy profile are symmetric,

ui(o—;) = u(o).

2.6 Consequences of Stationary Sampling

Stationary sampling has the following useful implication: the weights that one agent places on
previous individuals can be translated into weights that subsequent individuals place on him.
The graph on the left side of Figure 1 represents the weights w;  agent t place on agent 7. For
example, wy > represents the weight agent 4 places on agent 2 and w; o represents the weight agent

2 places on agent 0. These weights are highlighted in the left-hand graph of Figure 1. Since the

14We allow agents to observe individuals from the initial history, so T can be less than 1.
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distance between agents 2 and 4 is equal to the distance between agents 2 and 0, then these weights
must be equal: wsp = w0 = w(2). The graph on the right side of Figure 1 shows the sampling

weights only as a function of the distance between agents.

T T
We,5 w (1)
Ws4 | Wea w(1)\w(2)
W43 | W53 | We3 w(1)|w(2)|w(3)

w3 I’w4,2\: Ws2 | Wep ’::(ﬁi—Z(;EZ) w (3) w_(-4—) \::,

W1 | w3, w4,; Ws,1 | We,1 z/J(i\? w (2) w—(é) w (4) a; £5-)

w10 ';412,(;\ W30 | Wa0 | W50 | We g w(l)n"w (2)“‘,w(3) w (4)|w (5)|w (6) t
w1,-1 Z(;2,:1 W3, 1|Wy,—1|Ws,—1|We,—1 w (2)jw (3){w (4) w (5)|w (6)|w(7)
W1,—2|W2,2|W3,-2|W4,—2|W5, -2 |We, 2 w (3) ‘,‘w (4)jw (5)|w (6)|w (7)|w (8)

Figure 1: Stationary Sampling

The horizontal ellipse in the right-hand side of Figure 1 includes the weights subsequent agents
place on agent 2. The vertical dashed ellipse shows the weights agent 2 places on previous agents.
Since weights are only determined by the distance between agents, the sum of the horizontal
weights must equal the sum of the vertical weights.!> By definition,'® the vertical sum of weights
is given by ) ;...;wir = 1. Thus, for any agent far enough from the end of the sequence, the
sum of horizontal weights — those subsequent agents place on him — is arbitrarily close to 1.
Intuitively, this means that all individuals in the sequence are “equally important” in the samples.

Since the weights subsequent agents place on any one agent add up to 1, the average observed
utility ultimately weights all agents equally, and the proportion of the total weight placed on

any fixed group of agents vanishes. Then, as we show next, the homogeneous role of agents

1“':’Algebraically, forany ] >0, Zl;_:lti] Wi = Zt;:ltfj w(t—1) = 2]1:1 w(j) = Zt;;]tﬂ Wit

162’[:1’<i‘ Wr = Yrr<t E {HTOE;)\[}] =E [‘(%TE [ZT:T<1‘]1{T€O[} | |Ol‘|H =E [%] =1
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under stationary sampling imposes an accounting identity: average utilities and average observed
utilities get closer as the number of agents grows large. This is not an equilibrium result but a

direct consequence of stationary sampling, as the following proposition shows.

PROPOSITION 3. Let sampling be stationary, and, for each T, let {ytT};F:_OO be an arbitrary sequence,
with0 <yl < 231 Let §(T) = 7 Ly yf and §(T) = 7 Li_q Lrerws Wiy~ Then,

lim sup [3(T) ~§(T)| =0,
(v}
See Appendix A.5 for the proof.

We use arbitrarily specified sequences to highlight that Proposition 3 holds for all possible
payoff sequences. Turning to the case of interest, let {c(T)}7_; be a sequence of symmetric strat-
egy profiles that induces average utility i (c(T)) and average utility of those observed u(c(T)).
Define the ex-ante improvement v(T) = ii(c(T)) — u(c(T)) to be the difference between the av-
erage utility and the average utility of those observed. Proposition 3 has the following immediate

corollary.

COROLLARY 1. If beliefs and strategies are symmetric and sampling is stationary, then limr_,. v(T) =

0.

The ex-ante improvement v(T) represents how much an agent in an unknown position expects
to improve upon an agent he selects at random from his sample. Corollary 1 shows that under
stationary sampling rules, the ex-ante improvement v(T) vanishes as the number of agents in the

sequence grows larger.

3. Social Learning

Previous results on social learning rely on agents knowing their own position. A common way
to show social learning is based on an improvement principle, first introduced in Banerjee and
Fudenberg [2004]. Smith and Serensen [2008] and Acemoglu et al. [Forthcoming] adopt a similar
approach. The basic idea of the improvement principle is as follows. Agents can always copy the
behavior of an agent picked at random from those observed. This behavior leads to an expected
utility equal to that of who is observed. Agents know their position, and thus know the expected
utility of those observed. Consequently, the expected utility of an agent cannot decrease with his

position. As long as the signal structure is informative enough, some agents receive signals that
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convey more information than the sample. By using this information, the expected utility of an
agent strictly increases with his position. This, together with a lower bound on the improvement,
determines that the expected utility of agents converges to the maximum possible value; that is,
agents who come later in the sequence choose the right technology with probability approaching
one.

If agents do not know their position, the improvement principle as developed by Banerjee and
Fudenberg [2004] cannot be used to show social learning. Agents cannot base their behavior on
the expected utility of those observed, conditional on their position. The expected utility of agents
need not increase over time.

We develop an improvement principle for settings with position uncertainty. Even if an agent
has no information about his own position or the position of those observed, he can still copy
the behavior of somebody picked at random from those observed. Moreover, from an ex-ante per-
spective, he can obtain an expected utility higher than that of those observed by using information
from the signal. The difference in our argument is that although the agent may not improve upon
those observed, conditional on his position, he can improve upon those observed unconditional
on his position.

In what follows, we first explain why an ex-ante improvement principle holds in the present
setting. Then, we show how this ex-ante improvement principle combines with stationary sam-

pling to show both social learning and constrained efficient learning.

3.1 The Ex-ante Improvement Principle

Because of position uncertainty, the ex-ante improvement principle we develop does not rely on
any information on positions. Let us restrict the information set in the following way. First, disre-
gard all information contained in S. Second, pick an agent at random from those agent i observes.
Let & denote the action of the selected agent. The restricted information set is defined by T = (z, g )
withl € T = Z x {0,1}.

The average utility u; of those observed by agent i depends only on the likelihood that those
observed choose the superior technology in each state of the world. Define those likelihoods by
my = Pr (Ef: 0/6= 0) and m; = Pr (5: 1160= 1). Then, copying a random agent from the

sample leads to a utility i#; = 3 (79A + 711). Moreover, the information contained in the action &
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can be summarized by the likelihood ratio L : {0,1} — (0, c0) given by

L(;f) Pr(9:1|§)

Pr(6=0¢)

Then, the information provided by Zis captured by L(1) = 7 and L(0) = lom

1— 7To 7To

Based on the restricted information set I, agents can actually do better in expectation than those
observed. Basically, if the information from the signal is more powerful than the information
contained in the action &, agents are better off following the signal than following the sample.
We use this to define a “smarter” strategy o7 that utilizes both information from & and from the
signal. If signal strength is unbounded and observed agents do not always choose the superior
technology, the “smarter” strategy does strictly better than simply copying a random agent from
the sample. In fact, fix a level U for the utility of observed agents. The thick line in Figure 2
corresponds to combinations of 77p and 717 such that #; (¢—;) = U, and the shaded area represents
combinations such that i; (¢_;) > U. Outside of the shaded area, the improvement upon those

observed is bounded below by a positive-valued function C(U).

m

7T0
Figure 2: Ex-ante Improvement Principle with Unbounded Signals
PROPOSITION 4. EX-ANTE IMPROVEMENT PRINCIPLE. If signal strength is unbounded, players

have symmetric beliefs and o_; is a symmetric strategy profile, then there exists a strategy o and a positive-

valued function C such that for all o_;

~ e A+1
U; (O’Z{,U',i) — U (0’,1’) >C (LI) >0 lfuz' (0',1') <U< %

17



See Appendix A.6 for the proof.

Proposition 4 presents a strategy that allows the agent to improve upon those observed. Then,
in any equilibrium ¢*(T), he must improve at least that much. In addition, since we focus on
symmetric equilibria, u; (0*(T)) = @ (¢*(T)) and #; (¢*,(T)) = u (¢*(T)). With this two facts, we
present the following corollary.

COROLLARY 2. If signal strength is unbounded and beliefs are symmetric, then in any symmetric equi-
librium o*(T),

7(0* (1) ~ 7 (*(T)) 2 C(U) >0 ifii(o"(T)) << T

We now present our first result.

PROPOSITION 5. SOCIAL LEARNING UNDER SYMMETRY WITH UNBOUNDED SIGNALS. If
signal strength is unbounded, players’ beliefs are symmetric and sampling is stationary, then social learning

occurs in any sequence of symmetric equilibria.

See Appendix A.7 for the proof.

Figure 3 depicts the proof of Proposition 5. On the horizontal axis is the average utility of
those observed, while on the vertical axis is players” ex-ante utility. We focus on the behavior
of the average utility i (c* (T)) as the number of players T approaches infinity. First, agents
do at least as well as those observed, so any equilibrium must correspond to a point above the
45° line. Second, because of stationary sampling, v(T) = # (¢ (T)) — i (¢* (T)) must vanish as
the number of players T grows large. The dashed lines in Figure 3 represent how as T grows
large, equilibria must approach the 45° line. Finally, the improvement principle guarantees that
i (c*(T)) > u(c*(T))+ C (i (c*(T))). In any equilibrium the value of i (¢*(T)) must be above
the thick curve depicted in Figure 3. These conditions together imply that as the number of players
T grows large, any sequence of equilibria must lead to a sequence of payoffs that approach the
northeast corner of the square. In particular, social learning occurs: i (c* (T)) approaches %

This completes our discussion of the case of unbounded signal strength. As shown in Proposi-
tion 5, social learning occurs even without any information on positions. Of course, if individuals
do have some information on their own position or the position of others, they may use it. How-
ever, in any case, information gets aggregated and social learning occurs: position certainty is not

a requirement for information aggregation.
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Figure 3: Proof of Social Learning

3.2 Bounded Signals: Constrained Efficient Learning

So far, we have studied social learning when signal strength is unbounded. However, one can
imagine settings in which this assumption may be too strong, that is, there may be a lower bound
I and a upper bound ! to the likelihood ratio I(Z). If signal strength is bounded, social learning
cannot be guaranteed. We can define, however, a constrained efficient learning concept that is
satisfied in this setting.

Imagine there is an agent in isolation who only receives the strongest signals, those yielding
likelihoods [ and I. Under such a signal structure the likelihood ratios determine how often each
signal occurs in each state. Let 1., denote the maximum utility in isolation, that is the expected utility
this agent would obtain by following his signal. We show that in the limit, the expected utility of
a random agent cannot be lower than u.!”

In order to show that constrained efficient learning occurs, we present an ex-ante improvement
principle when signal strength is bounded. Based on the restricted information set I = {z, & }
defined before, an agent follows his signal when its information is stronger than the information
from ¢. An agent chooses technology 1if [ (Z) L (é‘v) > A and technology 0 otherwise. Now, the
agent improves in expectation upon those observed only if the informational content from the

sample does not exceed the informational content of the best possible signals. In other words, if

L(1)I > Aand L(0)] < A both hold, all possible signals lead to the same outcome: copy the person

17 A policy implication may be that if a regulator is no more informed than the most informed agents in the sequence,
she would not be able to outperform the result of a social learning algorithm.
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observed, and no improvement can be obtained using I. The dotted lines in Figure 4 correspond to
combinations of 7ty and 711 such that L(1)] = A or L(0)I = A. Consequently, outside of the shaded

area in Figure 4, signals can be used to improve upon those observed, as Proposition 6 shows.

m
1=

— U = Uel

1 7o

Figure 4: Ex-ante Improvement Principle with Bounded Signals

PROPOSITION 6. EX-ANTE IMPROVEMENT PRINCIPLE WITH BOUNDED SIGNALS. If signal
strength is bounded, players have symmetric beliefs and o_; is a symmetric strategy profile, then there

exists a strategy o and a positive-valued function C such that for all o_;
Uu; (0'1-/,0',1‘) — U (O',i) >C (U) >0 ifﬁi (O',i) < U < ug.

See Appendix A.8 for the proof.
We say that a model of observational learning satisfies constrained efficient learning if agents

receive at least u,; in the limit.

PROPOSITION 7. CONSTRAINED EFFICIENT LEARNING UNDER SYMMETRY. If signal strength
is bounded, players’ beliefs are symmetric and sampling is stationary, then constrained efficient learning

occurs in any sequence of symmetric equilibria.

See Appendix A.9 for the proof.

The novel concept of constrained efficient learning provides a lower bound for information
aggregation in contexts of bounded signal strength. This result highlights that learning is not
restricted to the extreme case of unbounded signal strength. Moreover, the bound on information

aggregation depends only on the most informative signals. Finally, Figure 4 can be used to explain
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how the case of unbounded signal strength can be understood as a limit result of the case of
bounded signal strength. If [ approaches 0 and ! approaches oo, the constraints represented by the

dotted lines become less binding, and 1 approaches 31.18

4. General Position Beliefs and Asymmetric Equilibria

This section extends our results to settings where individuals may have asymmetric position be-
liefs and to asymmetric equilibria. The generalization to asymmetric position beliefs is necessary
to analyze position beliefs in their most general form. Naturally, when the players themselves are
not symmetric one must also analyze asymmetric equilibria. In addition, as Appendix A.1 shows,
asymmetric equilibria can arise even when players have symmetric beliefs. This section shows
information aggregates in the most general setting, leading to learning.

Studying asymmetric settings creates a new difficulty: agents are not ex-ante identical. The ex-
ante utility u; and the utility of those observed u; vary across individuals. The average utilities i
and # do not reflect the individual magnitudes. To address this difficulty, we construct an auxiliary
game where agents behave in the same way as in the original game but are ex-ante identical.
Since the auxiliary game is symmetric, we can use the tools developed in Section 3 to show social
learning or constrained efficient learning, depending on the signal strength.

The intuition behind this construction is simple. For any game with an arbitrary distribution
over permutations we can construct an analogous one in which players are ex-ante symmetric but
have interim beliefs corresponding to those with an arbitrary distribution over permutations. We
do this by adding information through the additional signal. Likewise, when agents are allowed
to have extra information, the assumption of a symmetric equilibrium is without loss of generality.
To see this, suppose that some players do not react in the same way to the same information. Then,
we simply take them as different types. Since their type is part of the information they receive,
they react in the same way to the same information. Before agents are assigned their type, they act

symmetrically.

18The reasoning presented in this section can also be used to study cases where the signal strength is bounded only
on one side. For example, if | = 0 but [ < oo, constrained efficient learning implies that agents always choose the right
action in state of the world 0 but might not do so in state of the world 1.
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4.1 Construction of Auxiliary Symmetric Game

From the primitives of the game with general position beliefs, we construct an auxiliary game
with symmetric beliefs. Let I'; denote the original game and I'; denote the auxiliary game. We
construct an alternative random ordering P and signal S for T'. The other primitives are identical
across the two games.

To construct P we first shuffle the agents according to a uniform random ordering Q, and then
order them according to P, the ordering of I';, so that P=Po Q. The additional set of signals in
I, is formally given by S; = (P~(t), S;).

As constructed, I'; is an observational learning game with symmetric beliefs. First, players
have symmetric position beliefs, Pr (13 = ﬁ) = % Second, conditional on 6, S~t is independent of
Z. Since all other primitives are identical to those in I';, I'; is an observational learning game with
symmetric beliefs, as described in Section 2.

The players of I'; have the same information as those in I'1. For any symmetric profile of play
in T, if agent i knows the realization of Q(i), then the remaining uncertainty in the ordering is
identical to that in I';. Since the profile of play is symmetric in I';, all other information contained
in Q is irrelevant. Agent i in I'; is told S Bli) = (Q(i), S B( i)) , which is the same information player
Q(i) hasin I'y.

4.2 Relationship Between I'; and I',

The following proposition completes the description of the relationship between these games,
showing that for any equilibrium of I'; there is a corresponding symmetric equilibrium of I'; that

leads to the same average utility.

PROPOSITION 8. For any equilibrium o™ of I'1, there exists a symmetric equilibrium ¢ of I'y such that
i(c*,T1) =i(co,T).

Proof. We construct ¢ first. Letting j = (i), notice that agent i plays in position p(i) =

p(q(i)) = p(j) and receives p~1(p(i)) = p~(p(j)) = j as part of his signal. The information

that player i receives in Iy is I; = <Zr7(i)' oti)s Sili) p! (p(z))) = (zp(j), Coli)r sp(]-),j) while a player

jin Ty receives [; = (zp(j), Cp(j)rSp(j) )- Then we can construct 0 from o* by setting

i (Z/ (_:,(,S,j) = 0}* (Z/ (S,S)
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for all i, j, z, ¢ and s. Notice that 0; does not vary with i and so ¢ is a symmetric profile of play.

Next, we show that when the two games are realized on the same probability space, the action
sample paths always coincide. When realized on the same probability space, the two games have
identical initial histories /1. Position by position, in every realization, the players use the same
strategy in both games. Then, the action sample paths coincide and the sum of the utilities must
also be the same: ii(c*,T'1) = (o, I>).

We show next that ¢ is an equilibrium. To do so, we argue that in I'; a player cannot achieve
a higher average utility than i1(¢*,T'1) when others follow . Suppose to the contrary that there is
some o} such that u;(0],0_;,T2) > (c*,T1) and let u;(0],0_;,T2, j) be the expected payoff to this
player when q(i) = j. Since all permutations of Q are equally likely,

T

1T
,0_;,1>, r — F
Jgulalal 2,7) > (0™, Tq) T; c*,T1)

ui(of,0-;,I2) = %
There must be some agent j in I'y with u; (0%, T'1) < u; (¢7,0_;,T2,j). If agent i in I'; can do better,
there is some agent j in I'; that is not playing a best response. Agent j in I'y can copy the behavior
of agent i in I'; when ¢(i) = j by playing 0/, given by 07’ (z,{,s) = 07 (z,¢, s, ). In this way, agent
j gets the same utility as agent i: u](a * ], I'1) = ui(0,0_;,T5,j). To see this, notice that for each
realization of p, player i of I'1 and player j of I'; play in the same position, i.e. p(i) = p(q(i)) =
p(j). For reasons identical to those explained above, since the other players are still following ¢
and ¢ in I'; and I'; respectively, the players are facing identical distributions over action histories,
and since they are following the same strategy they must receive the same utility.

If ¢ is not an equilibrium of Ty, agent j has a profitable deviation in I';, so ¢* cannot an equi-

librium of I'y. Equivalently, if ¢* is an equilibrium of I'; then ¢ must be an equilibrium of I';.

With this proposition, extending results from symmetric position uncertainty to general posi-
tion uncertainty is straightforward. The average utilities under general position uncertainty must

exhibit the same behavior as average utilities under symmetric position uncertainty.

PROPOSITION 9. SOCIAL LEARNING WITH UNBOUNDED SIGNALS. If signal strength is un-

bounded and sampling is stationary, then social learning occurs in any sequence of equilibria.

PROPOSITION 10. CONSTRAINED EFFICIENT LEARNING. If signal strength is bounded and sam-

pling is stationary, then constrained efficient learning occurs in any sequence of equilibria.
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4.3 Finite Geometric Sampling

An interesting family of non-stationary sampling rules is characterized by geometric weights,
defined by
Wt = %’YT r=0 withy > 0and v # 1.
0 ift <0
In this case, agent 0 is the only non-strategic agent who is observed.!’

Geometric sampling encompasses two interesting cases. When v > 1, agents are more likely
to sample from the recent play whereas when v < 1 agents are more likely to sample from the
distant past. The case v = 1, which lies in between, corresponds to agents sampling uniformly
from past play.

If v < 1, early agents outweigh late ones, so learning cannot be guaranteed. But, when ¢y > 1,

the sampling rule is approximately stationary and so an analog to Proposition 3 can be shown.

PROPOSITION 11. Let sampling be stationary and let {y] }Z—':foo be any arbitrarily specified sequence
foreach T, with 0 < y[ < ML Let (T) = L oyl and §(T) = L 1 Yooy wi eyl Then,

lim sup  [7(T) = F(T)| = 0.
{y;[v}t=—oo

See Appendix A.10 for the proof.

Proposition 11 guarantees that the results from Section 3 also hold when sampling is geometric
and agents are more likely to sample from the recent past. These results hold for any value of y >
1. Sampling uniformly from the past is a limit case; social learning holds for geometric sampling as
it gets arbitrarily close to uniform, but it is not guaranteed to hold for uniform sampling. Finally,

if agents are more likely to sample from the distant past, social learning need not occur.

5. Conclusion

In many real-world economic activities, each agent observes the behavior of others but does not
know how many individuals have faced the same decision before him, or when those observed

actually made their decisions. We present a model that allows for position uncertainty. Agents,

9For this sampling rule, we can think about agent 0 as receiving no sample. He knows he is the first agent, and so
he follows his signal. Consequently, we do not need to specify a prehistory of play in this case.
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exogenously ordered in a sequence, choose between two competing technologies. They receive a
noisy private signal about the quality of each technology and observe a sample of past play.

We present a flexible framework for studying observational learning under position uncer-
tainty: agents are placed in the adoption sequence according to an arbitrary distribution and re-
ceive information about their positions that can be arbitrarily specified. We focus on stationary
sampling, which allows for a rich class of natural sampling rules and guarantees that no individ-
ual plays a decisive role in everyone else’s sample.

We first show that even under complete position uncertainty social learning occurs. In fact, for
any information on positions, under unbounded signal strength, the fraction of adopters of the
superior technology goes to one as the number of agents grows.

Next, we show that information also aggregates in cases of bounded signal strength. Con-
strained efficient learning holds; individuals do at least as well as the most informed agent would
do in isolation. This novel result is useful for two reasons. First, it describes a lower bound on
information aggregation for all information structures. Second, social learning becomes a limit
result from constrained efficient learning: as we relax the bounds on the signal strength, the lower
bound on information aggregation approaches perfect information aggregation.

Finally, we discuss how position uncertainty may lead to asymmetric and multiple equilibria,
even if agents are symmetric ex-ante. We then show how to translate any asymmetric case into a
symmetric one, and so we are able to show that learning occurs for all equilibria.

Our results are driven by two factors. First, the homogeneous role of agents under station-
ary sampling results in a useful accounting identity: as the number of agents grows large, the
difference between the ex-ante utility and the utility of observed agents must vanish. Second,
our minimum information requirement guarantees that an ex-ante improvement principle holds: on
average, agents must do better than those they observe.

Future work should address environments with network externalities. In some economic sit-
uations, payoffs depend both on an uncertain state of the world and on the proportion of agents
choosing each technology. Agents are interested in learning about both the state of the world and
the aggregate profile of play. In such situations, informational externalities get confounded with
coordination motives. Agents do not know the true state of nature, so it is not obvious on what
outcome they should coordinate. In addition, since they do not observe the aggregate play, even if
they knew the state of nature, they would not know which action to choose. Finally, this environ-

ment is interesting because agents may take into consideration that their behavior provides others
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with information. As a result, agents may change their behavior in order to influence others.

A. Proofs and Examples

A.1 Example of Multiple and Asymmetric Equilibria

We present an example with T > 3 agents. Each agent observes the behavior of his immediate
predecessor. The agent in the first position knows his own position. There are two relevant agents
in this example: John and Paul. They believe (correctly) that they are equally likely to be in
positions 2 and 3 and know they are not placed elsewhere. The beliefs of agents in positions 4
to T do not play a role in this example and are therefore not specified.

The signal structure is simple: each agent receives one of three possible signals Z € Z =

{0,1,1}.20 The distribution of the signals is given by

mo(z) = qq ifz=1 and 1 (2) =qgq ifz=0  withp>g.
1-p—9g ifz:% 1-p—q ifZ:%

The behavior of the first agent does not depend on the strategies employed by other agents.
He simply follows his signal when it is informative and randomizes with equal probability when
he receives the uninformative signal z = 1.2! The behavior of agents in positions 4 to T does not

affect John and Paul. Before presenting the result, we define biased strategies 0y and oy as follows:

0 ifé=0 1 ifg=1
00(§,z) =40 ifé=1landz=0 and  01(6,z)=q1 ifé=0andz=1
1 if¢=1landze {11} 0 if¢=0andze {0,3}.

PROPOSITION 12. MULTIPLE ASYMMETRIC EQUILIBRIA. There are three possible equilibria among

John and Paul for parameters p > q and (p —q) (2+ p*+¢*) =3 (p*> +4*) < 0. First, there is a

20We include only three possible signals for simplicity. Signals are of bounded strength, since there are finitely many
realizations of the signals. The equilibria we present are strict, so a small probability of receiving arbitrarily informative
signals can be added without changing any of the analysis.

21Having the first player randomize symmetrically simplifies the example. However, this example does not rely on
the first player being indifferent. We could instead assume that there are two approximately uninformative signals that
occur with equal probability. This would make the first player strictly prefer to take each action.

26



symmetric equilibrium in which John and Paul follow the signal when it is informative and the sample
otherwise. Also, there are two asymmetric equilibria: John playing oy and Paul playing o1, or John playing
oy and Paul playing oy.

In the asymmetric equilibria, the biases reinforce one another. To see this, consider the equi-
librium when John plays ¢ and Paul plays 01 and assume uninformative signals z = 3 are highly
unlikely. When John observes somebody choosing technology 0, he does not know whether the
observed agent is the first agent or Paul. If Paul is observed, Paul himself observed a sample
¢ = 0and a signal z € {O, %} Then, disregarding the unlikely cases of uninformative signals,
both the first agent and Paul observed signals z = 0. In this way, when John observes somebody
choosing 0, he chooses to disregard his own signal. Note that this in contrast to the symmetric
equilibrium, in which a sample never overpowers an informative signal. It is the fact that John
and Paul might observe each other that allows these biases to reinforce one another, and thus the
asymmetric equilibria arise.

Formally, let Paul play ¢q. In that case, it is straightforward to show that John follows an
informative signal when he observes & = 1. The condition (p — q) (2+ p*+¢?) =3 (p* +4%) <0,
which is satisfied, for example, by p = 1 and q = %, guarantees that John chooses action 0 after
observing ¢ = 0, disregarding his own signal. These two facts imply that o7 is a best response to
0p. The fact that oy is a best response to o7 can be seen in an analogous way. Thus there are two

asymmetric equilibria in which each player is playing one of the biased strategies.

A.2 General Payoffs

Each agent chooses technology 1 as long as:

ua=11)>u(a=0|1)
w(1,1)Pr(0 =1 1)+ u(1,0)Pr(0 = 0| I) > u(0,1) Pr(8 =1 | I) + u(0,0) Pr(6 =0 | I)
Pr(0=1|1) _ u(0,0) —u(1,0)
Pr(0=01)  u(1,1)—u(0,1)
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Note that any combination of payoffs and probabilities that result in A lead to the same behavior.

In particular, the following combination works:

A.3 Equilibrium Existence

Agent i’s strategy 0; € % =[], ¢5)ezxzxs[0, 1]. We can collapse the strategy ¢; into the probabil-
ity of choosing technology 1, conditional on ¢, S and 6, as follows

Pi (5/519) =E [U'i (Zp(i),C,S> | 9} .

Then p; : Ex S x ® — [0,1] defines a many to one mapping 0; — p;. Let p be the profile of
such functions. Any two strategy profiles ¢ that lead to the same p give the same probability
distribution over histories and also lead to the same utilities. It is without loss of generality then

to consider agents choosing p; directly from the feasible set R; defined by

{pl pi(&,s,0) =E [ (Zp ) | 9] for some 0; € Zi}.

The advantage of dealing with p; is that R; is a subset of an Euclidean space with finite dimen-
sion |Z| - |S]| - |®|. The set R; is bounded since all elements are positive and less than one. To see
that R; is also closed, consider a sequence p} € R; for each n, with p!' — p;. For each p¥, pick a ¢’

which yields p!'. Since ¥; is sequentially compact in the product topology, there is a subsequence

Mm Nm

o;" with ;" — 0; pointwise. By the dominated convergence theorem,

0i(E,5,0) = lim p"(&,s,0) = lim E[ (zp(i),g,s) |9} —E [ai (zp(i),g,s) \9],

Ny — 00 Ny — 00

and so R; is closed, which implies that it is compact. Let R = [/, R;. Then R is a compact set in
an Euclidean space of dimension |Z| - [S]| - |©] - T.

Next, we rewrite the ex-ante utility of agent i as follows,

ui (pi,0—i) = ZZPI | 6) Z r(P (i) =t]s,0) ) Pr(Hi(p—i) =h|s,0)

96@ seS hy€H;

x ) Pr(Z | hy,s) [0pi(C,s,0) + A (1—0) (1—pi(E,s,0))].

=)
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Utility is continuous in one’s own strategy p;. Next, utility only depends on the strategies of others
through the distribution over histories. This distribution is continuous in p_;. Therefore payoffs
are continuous in p.

We define BR;(p_;) = argmax,,er, Ui(pi,0—i). Since payoffs are continuous, this correspon-
dence is u.h.c. Next, let BR(p) = [T, BR;(p_;), and note that BR(p) is also u.h.c. By Kakutani’s
fixed point theorem, there is a p* € R such that p* € BR(p*). Thus if each player plays a strategy
o/ that maps to p; they all play a best response. Then, there exists an equilibrium ¢* of the game.

A.4 Average Utility of Those Observed

We present first the following proposition, which verifies that the set of sampled individuals Oy is

independent of the actual decisions H; of those individuals.

PROPOSITION 13. The random variable Oy is independent of the history of play H. for all T < t.

Similarly, the random variable Z; is independent of the history of play H. for all T < t, conditional on 6.

Proof. We show this by induction. First, let hy;1 = hy @ 1ifa; = 1 and hyq = hy @ 0if a; = 0.
By assumption, O; is independent of H; for all £. Then, it suffices to show that for all T < ¢, if H is
independent of Oy, then so is H; 1. To see this, note that H;1 = h; ® 1 if and only if both H; = h-
and a. = 1. Consequently, it suffices to show that a; = 1 is independent of O; for all T < t. Now,
note that a. is a function of 6, P, o, O, Z+, S and H;. Since all of them are independent of O,
then H;; is independent of O;.

Next, regarding Z;, note that it is i.i.d., conditional on 0. Following the same argument as with
Oy, note that conditional on 0, Z; is independent of all the determinants of a;. Consequently, if Z;

is independent of H+, conditional on 6, then it is also independent of H.1, conditional on 6. W

With Proposition 13 in hand, we can simplify #;. Let O; denote the position of a randomly
chosen agent from O; and let i;i denote the action of that agent, that is, {;i = ag,. Since beliefs and
strategies are symmetric, then

~ 1. ~
Pr (gp(i) () =0] 9) =Y (gt () =8| 9) .

t=1
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Then, by definition,

1 1 & ~
Lo )==-Y =Y Pr(&(c))=0|0)(A(1-0)+8
(00) Z;flep (&@n=018)(A(1-0)+0)
;; ;iTT<tPr<Ot U_ _T|9)Pr<aT<U_i):9|9’6t:1—) ()\(1_9)_*—9)
_1 T ~
[ L e miea-aa-ore

The last step holds because the distribution of O; is a function only of the distribution of O,

and Oy is independent of the state of the world and the strategy profile. In fact, Pr (@ = T) =

E P{T&C‘)t}} = wy,r. Then, note that the action a. of the individual in position T is a function of Z,

St and ¢, with ¢ itself being a function of O, and Hr. Now, for all T < ¢, Z+, S¢, O and H; are
independent of O; and thus also independent of O;. Consequently, Pr (aT (0_;)) =106, O; = T) =
Pr(a; (0_;) =6 |0). As aresult,

T
ui (0-;) ;;[;Xg thterr(aT( ) =1010) (A( 0) +0)
:;i w, ZPraT (0_)=016)(A(1—8)+8)
t=1T1T<t
1T
:?igr:r<twt,rur(0;i) -

A.5 Vanishing Improvement with Stationary Sampling

We need to show that for all € > 0 there exists a T* < oo such that for all T > T*, it is true that

sup [7(T) —y(T)| <&
{v}__..

We define T’ so that at most ¢ of the weight is placed outside of a range of T” agents:

t+T'(e)

Z wie >1—¢
T=t+1
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In order to see that the difference must vanish, we split the expression of interest in three parts,

1 1< T
W_y’: fz fzzwt‘ry‘r == Z Z Z Wt rYr
=1 t=1T:T<t t= T=—00t=7+1
1 T T
~HEn- £ (£ ]
= =—0c0 \T=
T T T 0 T
= Z ( ). wtr) yi— ) ( ) wm> Yi
= t=1 \1t=t+1 t=—oc0 \T=t+1
1 )\-|-1 T T-T' T T T
<z || X (Zwt,T)Jr Z(l— Zwm>+ Y (1— Zwm)]
t=—o0 \7=t+1 t=1 T=t+1 t=T-T'+1 T=t+1

(2)

The first part of equation (2) represents the difference between i and y given by the fact that some
observed agents are non-strategic (those indexed from —co to 0). These non-strategic agents enter
in y but are not part of j7. As the number of agents grows large, the non-strategic agents form
a smaller part of y. Consequently, the first part can be as small as needed. The second part of
equation (2) is comprised of agents that are strategic and whose sum of weights is close enough
to 1, since the number of agents is large. Finally, the third part of equation (2) includes the last
agents, those that have not been observed by many agents yet. We show next that these three parts

can be as small as needed. Regarding the first part,?

Z Zth—Z Z th—Z Z w7+ Z Z th§21+ Z e<T +Te (3)

t=—oc0 7= t=1T=—00 t=1T=—0c0 t=T'4+1T=—00 t=T'+1

Next, regarding the second part, note that Y7 _, jw;r > YT w,r > 1—eforallt < T—T.

T= t+
Consequently,
T-T' T T-T'
Y (1— Y wt,T> < ) e<Te (4)
t=1 T=t+1 t=1

Finally, regarding the third part,

T T T
Y (1 -y wt,T> < ) 1<T (5)
=1

t=T-T'+1 t=T-T'+1

!
22Note that Zt’Lt 7 Wi = ZEF’;{H wir > 1—¢and so _ZHt e > YET T/wtr+er<t wir — e Then,
Yoot Wt <&
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Then, given (3), (4) and (5), we can express (2) as follows,

~ 1A+1
-9 < oo (T +Te+ Tet T)

A+1 T T

Now, for all € > 0 we can define ¢ = 2(A17+1)5 and T" = @ Consequently,

o T'(¢) T" "\ § "\
Y y\_(A+1)< T +8> (7\+1)<Te+s> (/\+1)s<1+ T) 2(1+ T)_s
foralT>T". N

A.6 Ex-ante Improvement Principle with Unbounded Signals

We present first the following auxiliary proposition.

PROPOSITION 14. Foralll € <L7), Go(1) satisfies:

G o _1-Gl)

Go(l) < T=Gol) ©)

I >
Moreover, if k' > k then,

[1—Gi (k)] —k[1—Go (k)] >

]>[1-Gi(K)] —K[1-Go(K)] )
Go (K') = G1 (K') (K') ™" = Go (k) — Gi (k) (k)" ®)

The proof of equation (6) follows Lemma A.1 of Smith and Serensen [2000]. Let Z (L) =
{Z € Z:1(Z) < L}. By the definition of Radon-Nikodym derivative,

GL:/d:/ 1(Z)d </ Ldpo = LGo (L).
1 (L) L (Z)duo 20 LMo o(L)
With respect to (7) and (8), note that:

1= G (k)] = [1-G1 (k)] = Gi (K) = G1 (k) = | 1(Z) dpo

dyl = /
(zezk<I(2)<K} (Zezk<I(2)<K}
>k [Go (K') — Go (k)] =k[1—Go (k)] —k[1—Go(K)]
>k[1—Go (k)] —K [1—Go(K)] and also,
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o (K) — Go(K) = L [¥ (Go (K) — Go ()] = [ /{ RN I L
1

=% d [G1 (K') — Gi (k)] > - . B
[/{ZEZKZ Z)<k'} m] 1 G (k)] = K k

In order to show that an ex-ante improvement principle holds, we first define a smart strategy

o/: “Follow the behavior of a random agent in the sample if the likelihood ratio from the signal lies
between [k, ﬂ . Otherwise, follow the signal.” Cutoffs k and k are optimal given the information
provided by the only agent picked at random from the sample. Thus, k (79, 11) = A=

k(T[o, 7'(1) = )\1;[7?0

and

17'[1

This smart strategy has an advantage over copying a random agent in that sometimes a strong
signal overrides an incorrect sample. At the same time, this also represents a disadvantage, since
sometimes a strong and incorrect signal overrides a correct sample. Since O; and Z; are indepen-

dent, the improvement A from following strategy ¢/ can be expressed as follows

A (71'0, 7'[1) = U; (0’1'/, 0'_1') — ﬁi (U_i)
=Pr(0=1)(1—-m)Pr(I>k|0=1)+Pr(d=0)(1—7m)Pr(l <k|0=0)A
—Pr(0=1)mPr(I<k|0=1)—Pr(6d =0)moPr(l > k|0 =0)A
[(1 — ) [1 e (E)] + (1 - 1) Go(k)A — 711Gy (k) — 0 [1 — Go (E)} A}

{a=m)A G~ ® 7 G ()] +(1—m) [[1- G (k)] ~k[1-Go (k) ]]}

NI DN =

The lower bound on A (719, 711) is constructed as follows. Pick any U < 2! and define 7, =
o= (%) U, the sample distribution where the other agents perform equally well in both
states and corresponds to an average observed utility of U. Let K=k (re§, t}) and k* = k (7§, 7t5)

and define the lower bound on the improvement as follows:
1 . * * *\ — *
cu) = 2m1n{(1—7ro)/\ [Go(k )— (k)7 Gy (k )} ;

o= [[1-a (€)] - 1= (7))} 0

As a direct implication of Proposition 14, C (U) is strictly positive. Next, note that a bigger U leads
to a higher 7, a higher 717, a higher k" and a lower k*. Consequently, by equations (7) and (8),
C (U) is decreasing in U.
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Next, pick any sample distribution (719, 711 ), corresponding to i1 (0_;) = U, thatis % =Uu.
There are two possible cases. The first is when 71y < 7r§. Then k (710, 11) > k. 23 Consequently,

by (8),

(1= m) A | Go (k (o, m)) = (k (70, 70)) ™ G (k (o, m)) |

> (1= 75) A [Go (k") = (k) Gr (k)|
The second is when 71y > 7. Then 711 < 7} and k (719, 711) < k. Consequently, by (7),

(1-m) [1 ~G (E(no, 7T1)>] ) {1 ~Go (E(no, nl))}
> (1—m) [1-@1 (E)} K [1-@0 (E)}
Then, A (7o, 711) = u; (0], 0-;) — u; (0—;) > C(U).

A.7 Social Learning with Unbounded Signals

First, fix U < L. Corollary 1 states that limr_. v (T) = 0. Let T(U) be such that v (T) < C(U)
for all T > T(U). By Corollary 2, this implies i (¢*(T)) > U. Consequently, i (¢c*(T)) — 2L

Finally, since i (¢*(T)) > u (¢*(T)), social learning must occur. W

A.8 Ex-ante Improvement Principle with Bounded Signals

Assume that the agent follows the smart strategy o/ defined in Appendix A.6 for the case of un-
bounded signal strength. Figure 5 presents the case of bounded signal strength. The shaded area

in the top-right corner corresponds to combinations such that no improvement is possible with

strategy o/. The combination (7o, 1) = (% )l‘—ll, ﬁ) yields the lowest possible utility in that area,

uq.** To construct the lower bound on A (719, 711), pick any U < ug. Let (75, 7t}) = (7‘[0 u%, 7‘[}%)

be the only combination that 1) lies on the straight line that links (0,0) and (7o, 777) and 2) yields
an average expected utility of U. Let k* = k (7§, 7t}) and K=k (71§, 7). We show next that k* > [

23 To see that k (79, 711) > k* note that an isoutility line is characterized by 19 = A~! (2U 711). Then, along the

isoutility line, k (7o, 711) = P (2u M) (2U M) =1 zul/\ Finally, note U > 2 A (otherwise, those observed

are doing worse than followmg no mformatlon at all) and so an increase in 771 leads to an increase in k.

24With <A< 1, the minimum utility such that no improvement is possible is attained at the intersection of condi-
tions L(0)] = Aand L(1)l = A.
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and k' < I. Since U < u.;, then

1-ml 1 1l 1=
u 7to
K= A—gt = A—— > A =A—— =] and
Lig lug Lig m
— o 0, 0, 7T -
*_/\ Oucl _/\ Ul )\ Uel _)\ 0 _l
BT S W e W
1 Uep u 1 Ul Ul 1 Ugl

Define, as before, the lower bound C(U) on the improvement by equation (9). Since k* >
lLand k¥ < 1, Proposition 14 implies that C (U) is strictly positive. By the same argument as
in the case of unbounded signal strength, C (U) is decreasing in U. Finally, equations (7) and
(8) again guarantee that any sample distribution (719, 711) corresponding to u (0—;) = U leads to

A (7'(0, 7'[1) = U; (0’1-/,0'_,‘) — 171‘ (0'_,‘) > C(U)

Amo+m
4 —5 = Ug

(75, 717)

Ao+
== =U

Figure 5: Bound on the Improvement

A.9 Constrained Efficient Learning with Bounded Signals

First, fix U < u. Corollary 1 states that limr_.. v (T) = 0. Let T(U) be such that v (T) < C(U)
forall T > T(U). By Proposition 6, this implies # (¢*;(T)) > U. Consequently, i (¢*,(T)) — u.

Finally, since i (¢*(T)) > i (¢*;(T)), constrained efficient learning must occur. W
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A.10 Vanishing Improvement with Geometric Sampling

We want to show that for all € > 0, there exists T (¢) such that |7 — y| < eforall T > T (e).

T T
£ )
t=T-T" T=t+1

Now, rearranging and taking into account that w; - = 0 for all T < 0, then

t=T'+1 T=t+1

Equation (2) in Appendix A.5 shows that,

£ (fe) o[£ (£

t=—00 =t+1 t=1 =t+1

+ -

A+1

- 1
|y—y|§f7 T +1+ + 1"

Next, let T'(¢) = 1+ —— max {—log (v — 1), —log (¢)} and let T"(¢) = —%5¢) Then, it can be

log(7) Tog(7)
shown that
T
(2 wm>—1 <e if T(e)<t<T-T'(e)
t=71+1
and so
o 1A+1, T-T"-1 ,
7l < =
7-0l< 7 T+1+t_; el +T
=T'+1
1A+1 ., " A+1 /T +1 T
< —— (T 1+T Te) < —— -
_T2(++ +£)_2 Tt e

Now, let T be such that T > max { T } Then, forall T > T,

e 7 ¢

- _A+1 A+1
791 < (e+ete) =35

e=¢
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