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Abstract

We generalize the standard search, matching, and bargaining framework to allow
individuals to acquire productivity-enhancing schooling prior to labor market entry.
As is well-known, search frictions and weakness in bargaining position contribute to
under-investment from an efficiency perspective. In order to evaluate the sensitivity of
schooling investments to “hold up,” the model is estimated using Current Population
Survey data. We focus on the impact of bargaining power on schooling investment, and
find that the effects are large. A brief exploration of the two-sided investment model
suggests that something akin to a “Hosios condition” result regarding the socially
optimal surplus division rule may be attainable.
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1 Introduction

A large number of papers, both theoretical and applied, have examined labor market
phenomena within the search and matching framework, with some embedded in a simple
general equilibrium setting.1 Virtually all of the empirical work performed using this
framework has assumed that individual heterogeneity is exogenously determined at the
time of entry into the labor market. Perhaps the most important observable correlate of
success in the labor market is schooling attainment. In this paper we extend the standard
search and matching framework to allow for endogenous schooling decisions.2

We develop a simple model of schooling investment decisions, where higher levels of
schooling investments are (generally) associated with better labor market environments.
Individuals are differentiated in terms of initial ability, a, and the heterogeneity in this
characteristic, along with the structure of the labor market, is what generates equilibrium
schooling distributions. As is standard, we utilize axiomatic Nash bargaining to determine
the division of the surplus between workers and firms. For simplicity, and due to the nature
of the data we utilize, we assume that employed individuals do not receive alternative offers
of employment, i.e., there is no on-the-job search.3

There is a long-standing literature examining the essence of the hold-up problem and
the role contracts play to reduce, or altogether avoid, hold-up (see Malcomson 1997 and
Acemoglu 1996 and 1997 for a number of citations to the relevant literature). At the
core of the problem is the notion that investments must be made before agents meet and,
thus, greater market frictions generally lead to more serious hold-up problems. Acemoglu
and Shimer (1999) examine the potential for hold-up problems in frictional markets and
investigate the manner in which markets can internalize the resulting externalities. Their
focus is on identifying ways in which hold-up and inefficiencies can be mitigated in labor
markets characterized by ex-ante worker and firm investments and search frictions and find

1A large number of macroeconomic labor applications are cited in Pissarides (2000) and the recent
survey by Shimer et al. (2005). In terms of econometric implementations of the model, examples are Flinn
and Heckman (1982), Eckstein and Wolpin (2005), Postel-Vinay and Robin (2002), Dey and Flinn (2005),
Cahuc et al (2006), and Flinn (2006).

2There are a number of ambitious empirical papers which estimate life cycle individual decision rule
models of schooling choice and labor market behavior, such as Keane and Wolpin (1997) and Sullivan
(2010). This approach has been extended to allow for the endogenous determination of rental rates for
various types of human capital, e.g., Heckman et al. (1998), Lee (2005), and Lee and Wolpin (2006). These
frameworks do not allow investigation of surplus division issues and the hold-up problem since they are
based on a competitive labor market assumption. Eckstein and Wolpin (19995) estimate a search and
matching model for various demographic groups in order to evaluate the “return to schooling” along a
number of dimensions (e.g., contact rates, matching distributions, bargaining power), but do not explicitly
consider the schooling choice decision.

3Adding on-the-job search alters the details of what constitutes “bargaining power” in the market, but
not the fact that a lack of “generalized” bargaining power, which may include the possibility of renegotiation
of contracts as in Postel-Vinay and Robin (2002), Dey and Flinn (2005), and Cahuc et al (2006), will
negatively impact the individual’s incentive to invest in human capital.
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that this can be achieved in wage-posting models with directed search.4

The generalized Nash bargaining power parameter has a direct impact on the extent of
the hold-up problem the worker faces vis-a-vis pre-market schooling investment decisions.
While there are a number of estimates of the bargaining power parameter within models of
Nash bargaining and matching, the estimates tend to vary significantly with the assump-
tions made regarding the presence of on-the-job (OTJ) search, and given OTJ search, the
nature of the renegotiation process, as well with respect to the data set used in estimation.
In their search, matching, and Nash bargaining frameworks, Dey and Flinn (2005), Cahuc
et al. (2006), and Flinn and Mabli (2009) found that allowing for OTJ search substantially
reduced the estimate of the worker’s bargaining power parameter in comparison with the
case in which OTJ search was not introduced (e.g., Flinn 2006). To some degree, this is
a result of allowing for Bertrand competition. When competition between firms is intro-
duced, substantial wage gains over an employment spell can be generated simply from this
phenomenon, even when the individual possesses little or no bargaining power in terms of
the bargaining power parameter. Indeed, the (approximately) limiting case of this is that
considered by Postel-Vinay and Robin (2002), in which workers possessed no bargaining
power whatsoever. While the hold-up problem would seem to be particularly severe in this
case, even to the extent that individuals would have no incentive to invest in human capi-
tal, this is not the case when Bertrand competition between competing potential employers
occurs, which is when the individual can recoup some of the returns to her pre-market in-
vestment. Incentives to invest in their model are directly related to the contact rates with
other potential employers in the course of an employment spell, most importantly, as well
as the other rates of event occurrence (i.e., the offer arrival rate in the unemployed state
and the rate of exogenous separation).

As our model structure makes clear, simply estimating separate behavioral models of
the labor market for different schooling classes is at a minimum inefficient, and, more seri-
ously, may lead to misinterpretations of labor market structure. For this reason, whenever
possible, potentially endogenous individual characteristics acquired before or after entry
into the labor market should be incorporated into the structure of the search, matching, and
bargaining model. In order to do so in a tractable manner requires stringent assumptions
regarding the productivity process, bargaining, etc., as is evident in what follows. Using
our simple and reasonably tractable model, we are able to make some preliminary judge-
ments regarding the impact of hold-up on schooling investment. We find that bargaining
power has a strong impact on the incentive to invest in schooling.

Given data limitations, we are not able to estimate a version of the model in which
firms make investments just as do individuals. However, we do develop such a model and
attempt to indicate the manner in which Hosios-type (1990) conditions could be generated
in within this framework. That is, the incentives to invest in schooling depend on the

4 It is well-known that wage-posting models have their requirements of commitment to mitigate the
incentives of firms to renegotiate contracts with individual workers.
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share of the surplus given to each party, and a social planner with the ability to fix this
parameter can do so as to maximize the expected match surplus in the economy. Given
the endowment distributions, productivities of investment on each side of the market, etc.,
we expect that efficiency will require implementing a surplus sharing rule that gives each
side an incentive to invest. A future research goal is to estimate such a model, but to have
any hope of identification matched employer-employee data will have to be utilized.

The plan of the paper is as follows. In Section 2, we develop a bargaining model in a
partial equilibrium framework, with education decisions made prior to entering the labor
market. Section 3 extends the basic model to allow schooling submarkets to be charac-
terized by different vectors of primitive parameters, such as contact and dissolution rates.
In Section 4 we describe the sample used to estimate the model and discuss identifica-
tion of model parameters and the estimator used. Section 5 presents model estimates and
(empirical) comparative statics exercises. In Section 6 we extend the model to allow for
two-sided investment and holdup, where new issues arise when examining efficiency within
the context of a Nash bargaining framework. Section 7 concludes.

2 Model with Homogeneous Schooling Markets

2.1 Overview

By now there have been a number of models that have been estimated within the search,
matching, and bargaining framework (e.g., Postel-Vinay and Robin (2002), Dey and Flinn
(2005), Cahuc et al. (2006), and Flinn (2006)). These models posit random matching
between workers and firms, at least within observationally differentiated labor markets.
The flow (in continuous time) productivity of a match between worker i and firm j is
assumed to be given by

yij = ãiθij p̃j , (1)

where ãi is individual i0s time- and match-invariant productivity, p̃j is firm j0s time- and
match-invariant productivity, and θij is a random match component that is assumed to be
independently and identically distributed (i.i.d.) over all potential (i, j) matches according
to the distribution function G. Analyses that utilize worker-firm matched data (e.g., Postel-
Vinay and Robin (2002) and Cahuc et al. (2006)) typically assume that G is degenerate
with θij = 1 ∀(i, j). Analyses that have used only observations from the supply side of the
market (e.g., Dey and Flinn (2005) and Flinn (2006)) instead assume that ãi = 1 ∀ i and
p̃j = 1 ∀ j.

We can think of the specification of flow productivity in (1) terms of the standard linear
model, and this is particularly clear when we consider the logarithm of the expression

ln yij = ln ãi + ln p̃j + ln θij .

The terms ln ãi and ln p̃j represent “main effects,” in the language of linear models, while
ln θij represents a higher-order interaction effect. One common specification of flow pro-
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ductivity restricts the (logarithmic) model to include only main effects, whereas the other
specification restricts the model to include no main effects. There is no reason to think
that either restriction is entirely appropriate, so that the estimation of a model that poten-
tially includes both types of contributions to worker-firm output may produce interesting
empirical implications and a more general data generating process.

The main contribution of the paper, however, is to broaden the interpretation of the
“main” effects, ãi and p̃j . The nonparametric estimation of the distributions of these is a
compelling contribution of the Postel-Vinay and Robin (2002) and the Cahuc et al. (2006)
analyses. In this paper, we attempt to extend the standard labor market search framework
to include pre-market investments.5 For empirical tractability, we limit attention to the
case in which workers and firms can decide, prior to entering the market, whether to
make a costly investment that will improve their (idiosyncratic) productivity by some fixed
amount. In the case of workers, we assume that the individual first is able to observe their
ability endowment, a. Prior to entering the labor market, the individual can either stop
their schooling at the mandatory level or continue on to more advanced competency. A
student of type a who stops schooling at the mandatory level enters the labor market with
idiosyncratic ability ãi = aih1, where we adopt the normalization h1 = 1. If they were to
complete an advanced degree program, the individual would enter the market with ability
level ãi = aih2, with h2 > h1 = 1. Similar possibilities exist on the firm side of the market,
so that a firm with a productivity endowment of pj can undertake costly investment so as to
make its productivity p̃j = pjk2 or can enter the market without undertaking productivity-
enhancing investment so that p̃j = pjk1 = pj , where we have adopted the normalization
that k2 > k1 = 1.

In our analysis we examine the role of labor market characteristics, particularly bar-
gaining power, on the investment decisions of workers, and to a much lesser degree (due to
data limitations) those of firms. One of the contributions of the analysis is to demonstrate
that when workers and firms are able to invest prior to market entry, the distributions of
worker and firm productivities cannot properly be considered as “primitives,” that is, these
distributions are responsive to changes in labor market parameters and policy interventions.

2.2 No Firm Heterogeneity

Due to data limitations, we are not able to properly consider the general case of two-sided
investment, so that the vast majority of the paper will be devoted to the situation in which
firms are homogeneous, i.e., p̃j = 1 ∀ j. In this case, the output at a match is given by

y = ahsθ,

5There has been work on the effect of the hold-up problem on pre-marital investments, with a recent
contribution being Chiappori et al. (2009). However, most contributions, such as this one, are primarily
theoretical in nature. To my knowledge, no labor market search model with bargaining that includes
pre-market investments has been estimated.
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where θ is i.i.d. with c.d.f. G, hs is the individual’s human capital level, and a is individual
ability, which is a permanent draw from the distribution Fa with corresponding density
fa, which has support (a, ā), with 0 ≤ a < ā <∞. (We now drop the individual and firm
subscripts - they are redundant since a and h refer to individuals, p and k refer to firms,
and θ is a match value.) As mentioned above, we restrict our attention to the case of
S = 2, where s = 1 corresponds to high school and partial college, roughly, and s = 2 to
college completion.6

The analysis, but theoretical and empirical, can be made much more tractable if we
make the following set of assumptions.

1. All parameters describing the labor market are independent of schooling status with
the exception of hs. (This can easily be weakened, which is done in the next section.)

2. The flow value of unemployment to a type a individual with schooling level s is given
by

b(a, s) = b0ahs.

This last assumption is similar to that made in Postel-Vinay and Robin (2002) and in
Bartolucci (2009).

Since we use data from the Current Population Survey, and thus the information only
consists of a point sample of the labor market process, we assume no on-the-job (OTJ)
search. We begin by considering the case in which, across schooling “submarkets,” all job
search environments are identical (i.e., they have identical parameters α1 = α2, η1 = η2,
etc.). In this case, the value of search to an individual of type (a, hs) can be summarized
solely in terms of the product ν ≡ ahs, and the value of unemployed search to such an
individual is given by VU (ν). In terms of the Nash bargaining problem, the worker-firm
pair solves

max
w
(VE(w, ν)− VU (ν))

αVF (w, θ)
1−α,

where

VE(w, ν) =
w + ηVU (ν)

ρ+ η

VF (w, θ, ν) =
θν − w

ρ+ η
.

6This classification was determined to some extent empirically. Our original classification scheme
grouped together all those sample members who had completed some level of schooling beyond high school.
We found that those who had attended college but not completed it were far more similar, in terms of labor
market outcomes, to those with only a high school education than to those who had completed four years
of college. As a result, we grouped together all those who had not completed at least a four-year college
degree. Even with this classification, over 1/3 of our sample of 30-34 year old males fell into schooling class
s = 2.
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Note that we have assumed that the firm’s outside option under Nash bargaining is equal
to 0, which is consistent with the common free entry condition that drives the value of an
unfilled vacancy to 0. The solution to the Nash bargaining problem yields

w(θ, ν) = αθν + (1− α)ρVU (ν),

and since
ρVU (ν) ≡ y∗(ν) = νθ∗(ν),

we have
w = ν(αθ + (1− α)θ∗(ν)). (2)

In terms of the value of unemployed search given ν, we have

ρVU (ν) = b0ν + λ

Z
θ∗(ν)

(VE(ν, θ)− VU (ν))dG(θ)

⇒ νθ∗(ν) = b0ν +
λαν

ρ+ η

Z
θ∗(ν)

(θ − θ∗(ν))dG(θ). (3)

Since this last equation is independent of ν, we have

θ∗(ν) = θ∗ for all ν,

which means that the reservation output value for an individual of ability a with schooling
level s is simply

y∗(a, s) = ahsθ
∗. (4)

This result makes the consideration of the schooling choice problem straightforward.
When an individual of type a has schooling level s and enters the labor market, the expected
value of the labor market career is given by VU (ahs). Then for a type a individual, the
value of schooling level s at the time of entry into the labor market is

VU (ahs) = ρ−1ahsθ
∗.

There is no monetary cost7 associated with completing schooling level 1, and the present
value of the monetary cost associated with completing schooling level 2 is given by c2 > 0 at
time τ1, when schooling level 1 is completed. The first time that the individual can decide
to exit school is at the completion of compulsory schooling, which is s = 1. The additional
time it takes to complete schooling level 2 is given by τ2.We assume for simplicity that the
cost c2 includes all monetary and psychic costs incurred during the completion of schooling
level 2. Then an individual of type a will choose schooling level 2 if and only if

exp(−ρτ2)ρ−1ah2θ∗ − ρ−1aθ∗ ≥ c2

⇒ a{exp(−ρτ2)h2 − 1} ≥
ρc2
θ∗

.

7At least, there is no monetary cost that is avoidable. If there is such a cost, it is fixed and has no
influence on the schooling decision.
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The left hand side is linear in a, and strictly increasing when

exp(−ρτ2)h2 > 1. (5)

Now assume that

a{exp(−ρτ2)h2 − 1} <
ρc2
θ∗

(6)

ā{exp(−ρτ2)h2 − 1} >
ρc2
θ∗

, (7)

We have the following result.

Proposition 1 Under conditions (5), (6), and (7), there exists a unique value

a∗ =
ρc2

θ∗{exp(−ρτ2)h2 − 1}
,

such that an individual of type a chooses s = 2 if and only if

a∗ ≤ a ≤ ā.

Proof. The fact that the payoff to college is linearly increasing in a and that for the least
able person choice s = 1 dominates and for the most able person choice s = 2 dominates
ensures that there exists a marginal ability type, a∗, who is indifferent between the two
choices and that the sets of individuals choosing each schooling level are connected.

There are two comments we wish to make regarding this result. First, (5) is required
for any agent to acquire schooling beyond the mandatory level. If this condition is not
satisfied, no individual completes college. Since we do see individuals completing college
in the data, a substantial number of them, this condition is required for the model to have
any prima facie validity. Second, given the satisfaction of (5), the more able individuals go
to college. In this sense, the net payoff to college attendance is supermodular in the two
arguments (a, s), where a is continuous and s is discrete (in fact, binary in the case we are
currently considering).

2.3 Comparative Statics Results

Given the simplicity of the decision rule, comparative statics results are easily derived. For
the most part, they are intuitively reasonable, which is a strength of this modeling setup.

The focus of the paper is schooling decisions. In our two schooling class model, we can
summarize the schooling distribution in terms of the probability that a population member
graduates from college, the likelihood of which is

P2 ≡ P (s = 2) = F̃a(a
∗),

where F̃a denotes the survivor function associated with the random variable a. The results
are:
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1. ∂P2/∂c2 < 0. The proportion of the population attending college is decreasing in the
direct costs of college attendance.

2. ∂P2/∂τ2 < 0. The proportion of the population attending college is decreasing in the
time it takes to complete college, which is simply another form of (opportunity) cost
associated with continuing education.

3. ∂P2/∂h2 > 0. This is perhaps the most intuitive result. The greater the impact on
labor market productivity, the more individuals complete college.

4. ∂P2/∂θ∗ > 0. Now θ∗ is not a primitive parameter of course, but most primitive
parameters characterizing the labor market only affect the schooling decision through
θ∗, which is a determinant of the value of search for all agents (recall that the critical
output level for job acceptance is ahsθ∗). Through this value, we can determine the
impact of the most of the various labor market parameters on the schooling decision.

(a) ∂P2/∂λ > 0. Increases in the arrival rate of offers increase θ∗, and hence increase
the value of having a higher productivity distribution.

(b) ∂P2/∂η < 0. Increases in the (exogenous) separation rate decrease θ∗ and hence
the value of becoming more productive when matched with an employer.

(c) ∂P2/∂b0 > 0. Increases in the “baseline” flow value of occupying the unemploy-
ment state increase the value of that state and the value of going to college.

5. ∂P2/∂ρ < 0. To be consistent with the definitions of the utility flow associated with
employment, which is equal to the wage, the cost measure c2 is defined as

c2 =

Z τ2

0
e−ρtc̃2dt

=
c̃2
ρ
(1− exp(−ρτ2)).

Then the critical schooling ability level is given by

a∗ =
c̃2(1− exp(−ρτ2))

θ∗{exp(−ρτ2)h2 − 1}
.

It follows that

sgn

µ
∂a∗

∂ρ

¶
= sgn{τ2 exp(−ρτ2)c̃2θ∗[exp(−ρτ2)h2 − 1]

−c̃2(1− exp(−ρτ2))(exp(−ρτ2)h2 − 1)
∂θ∗

∂ρ

+c̃2(1− exp(−ρτ2))τ2 exp(−ρτ2)h2θ∗}.

The terms on the first and third line of the right hand side are unambiguously positive.
Since θ∗ is decreasing in ρ, we have our result.
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The main comparative statics result, which is the focus of the paper, concerns the effect
of bargaining power α on schooling. While the result is obvious at this point, we state it
more formally than the other results.

Proposition 2 Increases in bargaining power on the workers’ side of the market result in
increases in schooling level. or

∂P2
∂α

> 0.

2.4 Empirical Implications

Here we consider the model’s implications for the labor market outcomes of individuals in
the two schooling classes. In particular, unemployment rates and wage distributions for
the two schooling classes.

2.4.1 Unemployment Experiences

Under our modeling assumptions, the steady state unemployment rate for an individual of
type ν (= ahs) is independent of ν. This is due to the fact that the likelihood that any job
is acceptable to an individual of type ν is simply G̃(θ∗), which is obviously independent of
ν. The proportion of time and individual of type ν spends in unemployment, or the steady
state probability that they will occupy the unemployment state, is simply

P (U |ν) = η

η + λG̃(θ∗)
= P (U).

Thus, the assumption that the primitive parameters are identical across schooling groups
produces the implication that there is no difference in unemployment experiences across
schooling groups.

2.4.2 Wage Distributions

We assume that the support of the matching distribution G is the nonnegative real line,
and that G is everywhere differentiable on its support with corresponding density g. We
have established that the schooling continuation set is defined by [a∗, ā]. Now, from (2) we
know that

θ =
w
ν − (1− α)θ∗

α
,

where ν = ahs. and the lower limit of the wage distribution for an individual of type ν is
w(ν) = νθ∗. Then the cumulative distribution function of wages for a type ν individual is

Fw(w|ν) =
G(α−1(wν − (1− α)θ∗))−G(θ∗)

G̃(θ∗)
, w ≥ νθ∗,
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and the corresponding conditional wage density is given by

fw(w|ν) =
1

αν

g(α−1(wν − (1− α)θ∗))

G̃(θ∗)
, w ≥ νθ∗.

Now we consider the wage densities by schooling class. For this purpose, we write

fw|a,s(w|a, s) =
1

αahs

g(α−1( w
ahs
− (1− α)θ∗))

G̃(θ∗)
, w ≥ ahsθ

∗.

Then the marginal density of wages in schooling class s is given by

fw|s(w|s) =
1

αhsG̃(θ
∗)

Z
a−1g(α−1(

w

ahs
− (1− α)θ∗))dF (a|s), w ≥ hsa(s)θ

∗,

where a(s) denotes the lowest ability individual who makes schooling choice s. Given the
simple form of the schooling continuation decision, the density of wages among those with
a high school education is

fw|s(w|s = 1) =
1

αG̃(θ∗)

Z a∗

a
a−1g(α−1(

w

a
− (1− α)θ∗))

dF (a)

F (a∗)
, w ≥ aθ∗, (8)

while the density of wages among the college-educated population is

fw|s(w|s = 2) =
1

αh2G̃(θ
∗)

Z ā

a∗
a−1g(α−1(

w

ah2
− (1− α)θ∗))

dF (a)

F̃ (a∗)
, w ≥ a∗h2θ

∗. (9)

The conditional wage densities for the two schooling groups differ, then, not only be-
cause college education improves the productivity of any individual who acquires it, but
also through the systematic selection induced on the unobserved ability distribution Fa
by the option of going to college. In terms of the conditional (on s) wage distributions,
we note that the upper limit of the support of both distributions is ∞. The distributions
do differ in their lower supports, with this lower bound equal to aθ∗ for those with high
school education and a∗h2θ

∗ for those with college. Since a∗h2 > a, the lower support of
the distribution of the college wage distribution lies strictly to the right of the high school
wage distribution.

Proposition 3 The wage distribution of the college educated first order stochastically dom-
inates that of the high school educated.

Proof. Since h2 > h1 = 1, for any a, Fw(w|a, h2) first order stochastically dominates
Fw(w|a, h1). For any s, Fw(w|a0, s) first order stochastically dominates the distribution
Fw(w|a, s) whenever a0 > a. Since a0 ≥ a∗ > a for all a0 ∈ [a∗, ā] and a ∈ [a, a∗), the
mixture distributions are strictly ordered in the sense

Fw|1(w|1) ≥ Fw|2(w|2) for all w ≥ aθ∗.
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From this result, it immediately follows that the average wage is greater among the
college educated. More importantly, the wages of the college-educated exceed those with
a high school education at every quantile of the respective distributions.

Before proceeding to investigate some extensions of the basic model, we want to examine
some descriptive evidence regarding the empirical implications of the model. The data
used in all of the empirical analysis below will be described in more detail in the sequel.
In terms of the general characteristics of the sample, it is drawn from monthly Current
Population Survey samples from 2005, and consists of males living in CPS households
who were between the ages of 30 to 34, inclusive when interviewed. The “high schooling”
category, corresponding to s = 2, consists of individuals who have completed (at least) a
four year college program. The “low schooling” category is all others. The hourly wage
data are taken from sample members who were employed at the time of the interview,
and are the actual hourly wages if the individual is paid on this basis or are imputed by
dividing usual weekly earnings by usual weekly hours. We eliminated outliers by trimming
the lowest and highest 2.5 percent of wage observations from both schooling subsamples.

Figure 1.a and 1.b contain the plots of the wage distributions by schooling group. The
minimum wage observed (after trimming) for the low schooling group is 6.00 and for the
high schooling group is 7.50. We see from these figures that the wages of the low schooling
group members are highly concentrated in the range 6 to 20 dollars, while the high schooling
group wages show considerably more dispersion. Figure 1.c displays the distribution of total
wages. Approximately 1/3 of those in the wage sample have completed college, so that
the marginal wage distribution closely resembles the non-college wage distribution at low
values of w. This is not the case at high wage levels, where virtually all observations are
associated with college-completers.

Proposition 3 implies that the high schooling wage distribution first order stochastically
dominates the low schooling wage distribution. Figure 1.d presents evidence regarding this
implication. The figure plots

F (w(i)|s = 1)− F (w(i)|s = 2)

for an increasing sequence of wages, w(1) < ... < w(K). First order stochastic dominates
implies that all values in this sequence should be nonnegative, and the figure strongly bears
out this claim.

The homogeneous labor market assumption is not consistent with the observed unem-
ployment rate for the two education groups. From Table 1, we note that the unemployment
rate for college-completers is only .017, while among those with less schooling it is 0.041.
A simple adjustment allows the model to produce such an outcome, and we now turn to
this generalization.
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3 Separate Schooling Sub-Markets

We continue within the partial equilibrium setting of the previous section, but consider
relaxing some of the more restrictive (from an empirical perspective) features of that model.
In particular, we know from the large number of structural estimation exercises involving
search models that the primitive parameters across sub-markets are often found to be
markedly different (see, for example, Flinn (2002)). In particular, it is often noted that
the unemployment rate differs across schooling groups, with those with lower completed
schooling yields often having lengthier and more frequent unemployment spells. As we saw
above, such a result is not consistent with the assumption that all primitive labor market
parameters are the same across schooling classes.

The situation we consider is one in which each schooling class inhabits a sub-labor
market, which has its own market-specific parameters (λs, ηs, αs). The parameter ρ, being
a characteristic of individual agents (individuals and firms), is assumed to be homogeneous
across labor markets, as is the baseline unemployment utility flow parameter b0. The match
productivity distribution G is also identical across markets. In terms of the productivity
of an individual, nothing has changed from the previous case, since y(a, s, θ) = ahsθ = νθ,
so that the distribution of y is a function of the scalar ν and the common (to all matches)
distribution G. However, it is no longer the case that the critical match value will be the
same across schooling sub-markets. Because primitive parameters differ across markets, ν
is no longer a sufficient statistic for the value of search of an individual; instead a minimal
sufficient statistics is the pair (ν, s). This is clear if we reconsider the functional equation
determining the value of search in the homogeneous sub-markets case, which was given in
(3), adapted to the heterogeneous case. Then we have

νθ∗(ν, s) = b0ν +
λsαsν

ρ+ ηs

Z
θ∗(ν,s)

(θ − θ∗(ν, s))dG(θ).

The solution θ∗(ν, s) now clearly is independent of ν, but is not independent of s. Thus
there is a common critical value θ∗(s) shared by all individuals with schooling choice s,
which is independent of their ability a.

We now turn to the schooling choice decision in this case. The critical match value for
an individual of type a in schooling market s is given by ahsθ

∗(s) = νθ∗(s), so that the
value of unemployed search in this submarket is given by ρ−1νθ∗(s). Then the net value of
college education to an individual of type a is

exp(−ρτ2)ρ−1ah2θ∗(2)− c2 − ρ−1aθ∗(1).

We have the following result.

Proposition 4 In the heterogeneous schooling submarkets case, a necessary and sufficient
condition for a measurable set of individuals to go to college is

exp(−ρτ2)h2θ∗(2) > θ∗(1). (10)
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Given this condition, if

a{exp(−ρτ2)h2θ∗(2)− θ∗(1)} < ρc2

ā{exp(−ρτ2)h2θ∗(2)− θ∗(1)} > ρc2,

then there exists a unique value of a∗ such that

exp(−ρτ2)ρ−1a∗h2θ∗(2)− c2 − ρ−1a∗θ∗(1) = 0,

and an individual of type a chooses college if and only if a ∈ [a∗, ā].

The proof is an obvious extension of the homogeneous schooling sub-markets case that
we have just discussed.

The condition (10) is required for anyone, of any ability, to go to college. Note that
in terms of primitive labor market parameters, we could have that the “normalized” value
of search, determined solely from θ∗(s), was worse in the college market than in the high
school market so long as the length of college completion was not too long, direct costs
of attending college are not too large, and the productivity enhancement of college, h2,
is sufficiently large. We think of the condition (10) as representing a restriction on the
parameter space involving the labor market parameters that make the model consistent
with our model of schooling selection. If this condition is not satisfied, then clearly our
model is fundamentally misspecified.

3.1 Comparative Statics Results

We can rewrite the critical value property in a more transparent manner to investigate
comparative statics,

a∗ =
ρc2

{exp(−ρτ2)h2θ∗(2)− θ∗(1)} .

Comparative statics results are fundamentally different in this case in the sense that certain
market-specific primitive parameters only impact the value of unemployed search within
their particular submarket. By simple extension of the homogeneous results above, the
results regarding ∂P2/∂c2 < 0 and ∂P2/∂τ2 < 0 remain the same, since the cost structure of
acquiring schooling is identical in the two cases. It is also clearly the case that ∂P2/∂h2 > 0.
The main departure from the previous case regards the presence of θ∗(1) and θ∗(2). We
note that

1. ∂P2/∂θ∗(1) < 0. As before, θ∗(1) is not a primitive parameter, but the primitive
parameters specific to submarket 1 only affect the schooling decision through θ∗(1).
Then

(a) ∂P2/∂λ1 < 0. Increases in the arrival rate of offers in the low-schooling market
increase θ∗(1), and increase the relative value of a low schooling level.
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(b) ∂P2/∂η1 > 0. Such an increase decreases the value of a low schooling level.

2. ∂P2/∂θ∗(2) > 0.

(a) ∂P2/∂λ1 > 0

(b) ∂P2/∂η1 < 0

3. Perhaps most interesting is the impact of market-specific bargaining powers αs on
the schooling decision. When there is one bargaining power parameter that holds
throughout all educational labor markets, the meaning of hold-up is relatively un-
ambiguous. When there are market-specific bargaining power parameters, a relative
notion of hold-up is more appropriate. Clearly we have

∂P2
∂α1

< 0.

∂P2
∂α2

> 0.

It is important to note that α2 could be quite low, and yet a substantial proportion
of agents may choose the high schooling level if α1 is significantly lower yet.

3.2 Empirical Implications

There are a few obvious differences in the empirical implications of the homogeneous and
heterogeneous labor market models.

3.2.1 Unemployment

The characteristic scalar ν is no longer sufficient for describing an individual’s probability of
labor market events, in general, except when ν implies a unique value of s.While this may
be the case as long as there exists a unique a∗ that determines the schooling continuation
set and h2 > 1, we will condition on both ν and s to make the situation a bit more
transparent. Now, in general, we will have different steady state unemployment rates for
the two schooling groups, since

P (U |ν, s) = ηs
ηs + λsG̃(θ

∗
s)
= Ps(U), s = 1, 2.

As before, within a schooling group unemployment probabilities are homogeneous. Without
further restrictions on the event rate parameters and the bargaining power parameters, it
is not possible to order the unemployment probabilities across schooling sectors.
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3.2.2 Wage Distributions

The lower bound on the support of the wage distribution associated with schooling type s
is now given by w(1) =aθ∗(1) for the low schooling group and by w(2) = a∗h2θ

∗(2) for the
college completers. The conditional density of wages for the low schooling group is given
by

fw|a,1(w|a, 1) =
1

α1a

g(α−11 (
w
a − (1− α1)θ

∗(1)))

G̃(θ∗(1))
, w ≥ aθ∗(1),

while the wage density for the high schooling group is

fw|a,2(w|a, 2) =
1

α2h2a

g(α−12 (
w
ah2
− (1− α2)θ

∗(2)))

G̃(θ∗(2))
, w ≥ a∗h2θ

∗(2).

Since the model with heterogeneous schooling submarkets continues to imply that those
who continue to schooling level s = 2 form a connected set [a∗, a], the unconditional (on
a) wage densities have the simple forms

fw|s(w|s = 1) =
1

α1G̃(θ
∗(1))

Z a∗

a
a−1g(α−11 (

w

a
− (1− α1)θ

∗(1)))
dF (a)

F (a∗)
, w ≥ aθ∗(1),

and

fw|s(w|s = 2) =
1

α2h2G̃(θ
∗(2))

Z ā

a∗
a−1g(α−12 (

w

ah2
− (1− α2)θ

∗(2)))
dF (a)

F̃ (a∗)
, w ≥ a∗h2θ

∗(2).

4 Econometric Issues

We begin this section by discussing the data utilized to estimate the model(s). We then
proceed to a discussion of the estimation method and identification of model parameters
given the nature of the data available. Model estimates and comparative statics exercises
are presented in the following section.

4.1 Data

Because identification of model parameters hinges on rather “fine” features of the condi-
tional (on schooling) and unconditional empirical wage distributions, it is essential to have
precise estimates of these distributions which can only be obtained using samples with large
numbers of observations. For this reason, we utilize the Current Population Survey Outgo-
ing Rotation Groups (CPS-ORG) from all of the months in the calendar year 2005. ORGs
include households in their 4th or 8th survey month, and in these months detailed earnings
and employment information is ascertained. We selected males between the ages of 30 to
34, inclusive. We made no further restrictions on sample inclusion that were unrelated to
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missing information or labor market status. In particular, we did not exclude individuals
based on race, ethnicity, or region of residence. Thus, while our sample inclusion criteria
are relatively restrictive, a considerable amount of heterogeneity remains.

To be included in the final sample, an individual had to either be employed or un-
employed, and had to have valid schooling completion information. If an individual was
employed, to be included in the final sample there had to have been enough information
available that would allow an hourly wage rate to at least be imputed.8 If an individual
was unemployed, we required that they report the weeks of the on-going search spell to be
included in the estimation sample. Our final sample consists of 9,985 individuals.

After experimenting with various schooling classifications systems, we determined the
one that seemed to maximize differences in schooling group outcomes. This involved as-
signing all those who had completed college to the high schooling group and all those with
partial college or less to the low schooling group. We began by assigning all of those with
any college to one group, but found that those with less than four years of college were far
more similar in their labor market outcomes to those who had not attended college at all
than they were to those who had completed at least four years of college.

The wage distribution is a complicated function of the underlying sources of hetero-
geneity in match values and ability. While it is surely the case that reported wage data
contain considerable amounts of measurement error9, how this measurement error should
be introduced into an econometric model is controversial. Moreover, adding another ran-
dom variable to the two already determining the “actual” wage further complicates the
deconvolution problem. For this reason, we have utilized symmetric trimming as a partial
solution to deleting some forms of measurement error that are likely to severely distort
model estimates. Originally, there were 6,416 employed individuals at the low schooling
level and 3,238 at the high schooling level. From each set, we eliminated the top and
bottom 2.5 percent of wage observations. All the wage information used in the estimator
was taken from the trimmed samples. We weight the likelihood contributions of the high
school and college employed to compensate for the cases that were trimmed from the final
sample.

Table 1 contains the descriptive statistics from the final estimation sample. We see that
33 percent of males in this age range have completed at least a four year college program.
In the year 2005, well before the “Great Recession,” the unemployment rate of this group
was quite low, at 3.3 percent, with a significant difference between the unemployment rates
of the low school group (4.1 percent) and of the high schooling group (1.7 percent), upon

8That is, an individual who reported being paid on an hourly basis and who reported their hourly wage
rate would be included in the sample. Most males of this age range are not paid on an hourly basis, however.
In these cases, if usual weekly hours and usual weekly earnings were reported, we could impute a “usual”
hourly wage rate. Thus both types of individuals were included in the employed subsample.

9For one validation study using the Panel Study of Income Dynamics (PSID) survey, see Bound et
al (1994). The authors find evidence of substantial amounts of measurement error, although there are
a number of methodological problems with the validation sample that raise some concerns regarding the
numerical results.
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which we have already commented. On average, an unemployed sample member had been
searching for work for 5.122 months, and those who have finished college on average have
searched 0.8 months less.

The average hourly wage (imputed for most observations) in the sample is $18.38, with
a substantial difference between those with less than college completion ($15.13) and those
who have completed college ($24.83). There is also a substantial degree of dispersion in
these distributions (even after having trimmed the lowest and highest 2.5 percent of wage
observations from each conditional wage distribution). As we shall see below, the minimum
observed wages in the conditional wage distributions will be important to our identification
strategy. We see that the minimum observed wage for the less-than-college-completion
group is $6.00, while the minimum wage among the college completers is $7.50.

4.1.1 Supplemental Data

Due to the challenges of identifying the underlying match value and ability distributions,
even under strong parametric assumptions, we utilize some additional data sources when
estimating the two specifications of the model. The first is simply information on the labor
share of the surplus. We will utilize this information in the same way as it was used in Flinn
(2006); he showed that this information was virtually essential to enable identification of the
bargaining power parameter, α. The discussion in Krueger (1999) led us to believe that 0.67
was a reasonable value to use for labor’s share for this group of labor market participants.
In Flinn’s (2006) study of minimum wage effects on labor market outcomes, labor’s share
was computed from the Consolidated Income Statement of McDonald’s corporation for
1996 and was found to be about 53 percent. This was deemed reasonable since the CPS
data used were for workers between the ages of 16 to 24, inclusive. Thus for workers in the
age range 30 to 34, the value of 0.67 seems to be in the right range of values.

The CPS-ORG can be used to construct short-panels. Each household is a member
of the ORG subsample in their 4th and 8th month in the sample. Given the rotation
design of the CPS, the 4th and 8th sample months are separated by one year. Thus,
in principle, we have up to two observations on the earnings and wages of each sample
member. A problematic feature of the data is that we do not know with certainty whether
an individual occupies the same job or not at the two points in time.10 For the moment,
assume that we know that the an individual who is employed in sample month 4 and sample
month 8 is not in the same job. Then, under the model, the difference in the log wage

10 In fact, we do not even know with certainty the identify of the household members at the two points
in time. We must rely on a statistical matching procedure, which looks at age, race, sex, and education at
the two points in time, to determine which records should be paired. While the procedure should work in
most cases, there almost certainly are some erroneous matches.
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rates is given by

lnwi,j0,t+12 − lnwi,j,t = ln(aihi[αθi,j0 + (1− α)θ∗])

− ln(aihi[αθi,j + (1− α) θ∗])

= ln(αθi,j0 + (1− α)θ∗)− ln(αθi,j + (1− α) θ∗),

so that the distribution of the log wage differences is only a function of α, θ∗, and the
parameters describing the distribution of θ, which under our lognormal assumption are μθ
and σθ. Note that

E∆ lnwi = 0

since the successive θ draws are assumed to be identically and independently distributed.
However,

E (∆ lnwi)
2 = 2E[ln(αθ + (1− α)θ∗)]2 > 0,

and we also find that the fourth noncentral moment of the log wage differences takes a
positive value. Then we have

E (∆ lnwi)
2 = d1(μθ, σθ;α, θ

∗) > 0

E(∆ lnwi)
4 = d2(μθ, σθ;α, θ

∗) > 0.

We utilize the analogous second and fourth noncentral sample moments to consistently
estimate the left hand side of this function. Given values for α and θ∗, we can then solve
the two equation system for unique values of μθ and σθ.

In order to maintain independence from our cross-sectional (2005) sample, we use CPS
data from the years 2006 and 2007, adjusted for inflation. As we have noted, we do not
access to information that would allow us to determine with certainty whether an individual
is at the same job or not at the two points in time. Instead, we utilize information on the
characteristics of the individual’s job as a crude indicator of whether the job has changed.
In particular, only individuals in the CPS-ORG who are employed in the 4th and 8th
sample months and who do not work in the same 3-digit occupation at those two sampling
times are assumed to have changed jobs. Undoubtedly some people who change jobs over
the one year interval remain in the same 3-digit industry, so ours would seem to be a
conservative criterion upon which to define a job-changing sample. On the other hand,
there are certainly response and coding errors that result in our including individuals in
this sample who have not changed jobs. We hope the misclassification errors are not too
large, though there is no validating information available in the CPS that allow us to say
anything further on this point.

4.2 Identification

The primitive parameters in the homogeneous markets case are ρ, b, λ, η, Fa, G, h2, and c̃2.
Much of the identification analysis can be conducted using results from Flinn and Heckman
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(1982) after noting which of the parameters determine labor market outcomes explicitly
once we condition on the observed value of schooling, s. For most of our discussion, we
assume that the distribution of flow costs of schooling, c̃, is degenerate. At the end of this
section, we consider the case in which it is not.

As we showed above, conditional on s, randomness in labor market outcomes (across
individuals and over time) is generated by the two independent random variables ν and θ.
As we have shown, under our model assumptions the critical match value θ∗ is independent
of s. We also showed that the model implies that all individuals with an ability level less
than a∗ chose s = 1, while all others choose s = 2 (college completion). Under the
normalization h1 = 1, the lower bound of the support of the wage distribution of the
low-schooling group is

w1 = θ∗a,

while the corresponding value for the high-schooling group is

w2 = θ∗a∗h2.

Just as Flinn and Heckman (1982) showed that parametric assumptions were, in general,
necessary to recover the parameters of the wage offer distribution in the partial-partial
equilibrium search case, they will also be necessary here for similar reasons. Parametric
assumptions on Fa also include the specification of the support of the distribution, of course.
In this case, we assume that a = 1, so that w1 = θ∗. Then from Flinn and Heckman (1982),
we know that

θ̂
∗
= min{wi}i∈S1 ,

where S1 is the set of sample members in the low-schooling group, is a superconsistent
estimator of θ∗ when there is no measurement error in wages.

The value of a∗, which characterizes the schooling decision rule, is a function of all
of the parameters in the model, including the the flow cost of attending school, c̃2. It is
clear that this “free” primitive parameter only enters the schooling decision directly, and
thus for estimation purposes we can treat a∗ as a parameter to be estimated. If all other
parameters determining a∗ are identified, then the estimated value of a∗ can be inverted
to yield an estimate of c̃2 since a∗ is monotone in c̃2.

Identification discussions are typically facilitated when a likelihood function is avail-
able, and we utilize a likelihood-based estimation method. We really have three separate
groups of observations defined in terms of likelihood contributions in the homogeneous
labor market case. Since the unemployment experiences of individuals are independent of
their schooling level, the likelihood contribution of a sample member from this group is
given by

Lk(t̃U,k, Uk) = hU exp(−hU t̃U,k)×
η

η + hU
, k ∈ SU ,

where the first term on the right hand side of the expression is the likelihood of being in an
on-going search spell of duration t̃U,k given the individual is unemployed at the sampling
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time and the second term in the product is the probability of being unemployed at a
random sampling time in the steady state, SU is the set of unemployed individuals in the
point sample, and the hazard of leaving unemployment is

hU = λG̃(θ∗).

The second group of contributors to the likelihood function are those in the low-
schooling group who are employed at the time of the sample. For these individuals, we
know their wage rate, their schooling level, and the fact that they were employed, with
their likelihood contribution given by

Lk(wk, sk = 1, Ek) = fW |S=1(wk|sk = 1, Ek)× p(sk = 2|Ek)× p(Ek)

= fW |S=1(wk|sk = 1)× p(sk = 2)× p(Ek)

=
1

αG̃(θ∗)

Z a∗

1
a−1g(α−1(

w

a
− (1− α)θ∗))

dF (a)

F (a∗)
× F (a∗)× hU

η + hU

=
1

αG̃(θ∗)

Z a∗

1
a−1g(α−1(

w

a
− (1− α)θ∗))dF (a)× hU

η + hU
, w ≥ aθ∗, k ∈ SE ∩ S1.

Note that there is an additional restriction on the limits of integration. If the value w is
observed for an individual at schooling level 1, then the value of a for that individual can
be no larger than ā(w, s = 1), which is given by

w = ā(w, s = 1)θ∗

⇒ ā(w, s = 1) =
w

θ∗
.

We can either adjust the upper limit of integration directly or multiply the integrand by
the indicator function χ[a ≤ w/θ∗].

The third group of contributors to the likelihood function are those in the high-schooling
group who are employed at the time they are sampled. The construction of the likelihood
contribution for this group is analogous to that of the low-schooling group, so that

Lk(wk, sk = 2, Ek) =
1

αh2G̃(θ
∗)

Z ā

a∗
a−1g(α−1(

w

ah2
−(1−α)θ∗))dF (a)× hU

η + hU
, w ≥ a∗h2θ

∗, k ∈ SE∩S2.

Also for this group there is a restriction on the limits of integration of a, with the upper
bound on a given by

w = ā(w, s = 2)h2θ
∗

⇒ ā(w, s = 2) =
w

h2θ
∗ .

As shown in Flinn (2006), for example, knowledge of the proportion unemployed and
the average duration of unemployed search from a point sample sufficient to identify the
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rate parameter η and the hazard function hU . Now the hazard rate associated with the
unemployment state can be inverted to yield is given by

λ =
hU

G̃(θ∗)
.

Since we have a superconsistent estimator of θ∗ and a
√
N consistent estimator of hU ,

if consistent estimators of the finite-dimensional parameter vector characterizing G are
available, then

λ̂ =
ĥU

1− Ĝ( bθ∗)
is a consistent estimator of λ.

The identification of α is primarily achieved through the use of labor share information,
so for purposes of discussion we will assume that a consistent estimator of α is available.
Identification of the distributions of the components determining total match productivity
is extremely challenging using only point sample wage data. As is evident from (8) and
(9), the schooling-specific wage distributions are mixtures of a truncated lognormal distri-
butions, G(θ|θ ≥ θ∗) with the mixing distribution, Fa, representing the (truncated, under
the model) distribution of abilities within schooling level s. As stated above, parametric
assumptions are required for the identification of G(θ), and in the empirical work below we
make the common assumption that the match values are lognormally distributed, so that

G(θ;μθ, σθ) = Φ(
ln θ − μθ

σθ
), θ ∈ R+,

where Φ is the standard normal c.d.f. Thus G is assumed to be completely characterized
given knowledge of the two parameters μθ and σθ.

It is a practical necessity to make parametric assumptions regarding what is essentially
a mixing distribution, Fa. The literature on the estimation of models that involve mixing
without parametric assumptions on the mixing distribution (e.g., Heckman and Singer
(1984)) make clear that in general the task is enormously difficult even when there exist
vast quantities of data. Experimentation with various assumptions on Fa led us to a
two-parameter power distribution with support [1, 1 +m], m > 0, where

Fa(a) =

µ
a− 1
m

¶γ

,

fa(a) =
γ

m

µ
a− 1
m

¶γ−1
, with 1 ≤ a ≤ 1 +m, γ > 0, m > 0.

Under our model specification and the nature of the decision rules used by agents, the
distribution of wages by schooling level are functions of the parameters (both primitives
and decision rules): μθ, σθ, γ,m, α, h2, θ

∗, a∗. We already have access to a superconsistent
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estimator of θ∗ and we are assuming that a consistent estimator of α is available. We
find that even with access to a relatively large number of wage observations (over 9000),
identification of the parameters and decision rules characterizing the wage distributions is
not possible without using additional information. In particular, we use the fact that a
superconsistent estimator of the product a∗h2 is given by

da∗h2 =
min{wi}i∈S2
min{wi}i∈S1

(11)

≡ ∇minw (12)

to reduce the dimensionality of the parameter space by one. Then we will define the
estimator of a∗ by ba∗ = ∇minw

ĥ2
.

Even using after reducing the dimensionality of the parameter space, identification of
the parameters characterizing G and Fa is problematic with wage samples of our size. It is
for this reason that we employ the information on wage change information for those in the
CPS-ORG who change their jobs between the 4th and 8th sample month and which was
discussed in the previous subsection. Given consistent estimators for θ∗ and α, we saw that
noncentral sample moments involving the wage differences could be used to identify μθ and
σθ. Then we can further reduce the dimensionality of the parameters to be estimated by
maximum likelihood by substituting

μ̂θ = d01(ζ2, ζ4;
bθ∗, α̂) (13)

σ̂θ = d02(ζ2, ζ4;
bθ∗, α̂), (14)

where ζ2 and ζ4 are the sample analogs of the noncentral second and fourth moments of
log wage changes among those changing jobs.

After making all of these substitutions into the log likelihood function, we are left with
the task of estimating γ,m, h2 and α. In order to estimate α, we follow the procedure
utilized in Flinn (2006). This involves conditioning on a value of α, α̂, and determining μ̂θ
and σ̂θ using d01 and d

0
2, and then estimating the parameters γ,m, h2, and a∗(h2,∇minw).

Given the values of the maximum likelihood estimates, we then use the labor share equation
to solve for the implied value of α. The estimate of α is updated to this new value, and
the maximum likelihood estimates are obtained given this value. The process is repeated
until convergence of the sequence of α̂ values.

4.2.1 An Alternative Specification

Even with all of the substitutions and use of superconsistent estimators, estimates of model
parameters are very sensitive to the specification of the mixing distribution Fa. For this
reason, we also estimated a second model in which the distribution of ability is degenerate
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with all mass at a = 1. In this case, to have a well-defined schooling decision rule, it is
necessary to assume that the instantaneous cost of schooling is nondegenerate. We denote
the distribution of these schooling values by Fc̃.

In this case, the decision to attend school is simply given by

c ≤ exp(−ρτ2)ρ−1h2θ∗ − ρ−1θ∗,

where c = c̃ × 1
ρ [1 − exp(−ρτ2)]. Thus, there exists a critical value of the instantaneous

cost, c̃∗, such that all individuals with c̃ ≤ c̃∗ invest in higher education and all those with
c̃ > c̃∗ do not.

We assume that the distribution of costs, which are not observable, is exponential, with

F (c̃) = 1− exp(−ξc̃), c̃ ≥ 0, ξ > 0.

The probability of completing higher education is then given by

P2 = F (c̃∗)

= 1− exp(−ξc̃∗).

The wage distribution is now simply generated by the lognormal draws from the dis-
tribution G and the human capital level h2. This simplifies the identification of μθ and σθ,
which can now be precisely estimated simply from the cross-section CPS-ORG observa-
tions. In terms of identification of the cost distribution, we recover the parameter ξ in the
following way. First of all, without any ability heterogeneity, we have

plim
N→∞

∇ lnw = h2,

and we have a superconsistent estimator of h2. Then note that

c̃∗ = θ∗ × h2 exp(−ρτ2)− 1
1− exp(−ρτ2)

.

Given that we have access to superconsistent estimators of θ∗ and h2, and given knowledge
of ρ and τ2 (which is 48 months in our application), we have access to consistent estimators
of all unknown parameters or decision rules appearing on the right hand side, and thus
we can consistently estimate c̃∗. The distribution of c̃ only influences the likelihood of
completion of college completion, so that the (conditional) maximum likelihood estimator
of ξ is

ξ̂ = − ln(1− P̂2)b̃c∗ .

Estimation of α depends crucially on the labor share information, as before, and the esti-
mation method iterates between solution of the labor share equation and conditional (on
α̂) maximum likelihood estimation of the remaining parameters.
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5 Model Estimates

We begin by describing the estimates from the heterogeneous ability model. Due to the
sensitivity of the estimates to the specification of the distribution of a, we will quickly move
on to consider the homogeneous ability model estimates, and we will be conducting the
comparative statics exercises using those estimates. We will be able to see, from inspection
of the fitted wage distributions under the homogeneous ability specification, why adding
heterogeneous ability is somewhat “gratuitous,” at least under our distributional assump-
tions. As we have mentioned previously, we only estimate the homogeneous labor market
model given the severe identification problems we face using the data at our disposal.

5.1 Estimates of the Heterogeneous Ability Model

The estimates of this model appear in Table 2. A few things to bear in mind before
examining the estimates are the following. Throughout the entire estimation exercise, the
(super) consistent estimate of θ∗ is 6.00, obtained after trimming the data. The (super)
consistent estimate of α∗h2 is equal to ∇minw = 7.50/6.00 = 1.25. Thus given the manner
in which the model is estimated, it will always be the case that ba∗ × ĥ2 = 1.25. Since for
the model to make sense it is necessary for h2 > 1, this means that the estimated value
of a∗ cannot be be greater than 1.25. This imposes some restriction on the distributions
of a that can be considered. This led us to the choice of a (truncated) power distribution
with support [1, 1 +m]. Since a∗ must be strictly less than 1.25, and since approximately
1/3 of sample members are college graduates, we should have an estimate of 1 − F̂a( ba∗)
in the vicinity of 1/3 if we are to fit the education margin reasonably well. This imposes
some restrictions on the value of m and γ. Of course, the shape of the distribution of a has
ramifications for the wage distribution as well as the schooling distribution, which is what
makes the estimation of this specification so challenging.

The estimated arrival rate of job offers (0.195) implies that the average wait for a con-
tact is approximately 5 months, and the estimated rate of job destruction (0.006) implies
that jobs last almost 14 years on average.11 The estimated values of the parameters char-
acterizing the lognormal match distribution are reasonable, as well, though we should bear
in mind that they are mainly determined by the values of the supplementary information
contained in the wage change information for job leavers. When we attempted to estimate
this model without using this information, we were not able to find well-behaved maximum
likelihood estimates of the matching and ability distributions.

Although imprecisely estimated, the point estimate of the upper support of the ability
distribution is 1.213 (recall that the lower support point is normalized to 1). The estimated
value of the power distribution parameter is 0.812 with an asymptotic standard error of

11The estimated destruction rate would be much higher, of course, if more recent CPS data were used.
Moreover, this group of males between 30 and 34 years of age can be expected to experience relatively
stable employment.
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0.155. At conventional significance levels, one could not reject the null hypothesis that
ability was uniformly distributed.

The estimated impact on match productivity of college completion (h2) is 13.4 percent,
and this productivity enhancement is estimated reasonably precisely. Of course, not all of
this enhancement passes through to the worker, with the point estimate of the bargaining
power equal to 0.571. As we have noted previously, this value is heavily influenced by the
labor share value we use in the estimation, which is equal to 0.67. The point estimate of
a∗ is equal to 1.102. Given the point estimates of Fa and a∗, the predicted probability of
college completion is 0.450, while the sample value is 0.330. This poor fit is most likely due
to the fact that a serves dual roles in the model. One is as an important determinant of the
wage distribution, and the other is as the only determinant of the schooling decision (at
the individual level). In the next model, without individual heterogeneity in a, the model
fit on the school dimension will be “perfect,” by construction, with little loss in the ability
to fit the schooling-specific wage distributions.

5.2 Estimates of the Homogeneous Ability Model

The estimates of the model in which schooling costs are heterogeneous in the population
while ai = 1 ∀ i are given in Table 3. Once again, θ∗ is estimated to be 6.000, though in this
case the estimated value of h2 is ∇minw = 1.25, since the shift in the wage distribution
is attributed solely to human capital improvements instead of being a “mixture” of these
improvements and composition effects.

The rate parameters λ and η are estimated from essentially the same sample information
as was the case in the heterogeneous ability model, so that the point estimates of these
parameters change little. The estimated bargaining power parameter also changes little
from the previous specification, in large part due to the labor share information having
such a dominant influence on the estimate.

The biggest changes relate to the estimates of the match and schooling cost distri-
butions. Of course, the match distribution now has to supply all of the heterogeneity
to generate the observed wage distributions, so in principle the fit of these distributions
could be substantially worse than was the case when ability heterogeneity was also present.
We see from Figure 2 that there is not a substantial cost to pay in terms of fitting the
cross-sectional wage distributions by restricting ability to be homogeneous. The top panel
contains the distribution of wages for individuals who have not completed a college edu-
cation and the fitted wage distribution. The fit is extremely good for such a parsimonious
model. The bottom panel contains the wage distribution and the fitted one for the college-
educated subsample. Here the fit is not as good, though we still might deem it reasonably
acceptable given the simplicity of the model structure. The fitted distribution places too
much mass in the left tail of the distribution. Allowing a limited amount of heterogeneity
in ability has the potential of shifting some of this mass to the right, though if inappropri-
ate distributional assumptions are made there is the downside risk of worsening the fit in
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terms of its generic “shape.”
The main gain in this specification is the ability to fit the educational decision precisely,

since the distribution of the costs of schooling only determine this decision, and the single
parameter of this distribution is estimated from the sample proportion of college completers.
Though the units are largely meaningless, the point estimate of the parameter of the
schooling cost distribution is ξ̂ = 0.517, and the estimated critical cost value is 0.775.
These estimates must imply the sample college completion rate of .330. In assessing the
impact of bargaining power on the schooling decision, we use estimates from this model in
large part because of its (built-in) consistency with schooling investment choices.

5.3 The Impact of Bargaining Power on Educational Investment

In order to look at the impact of changes in bargaining power on schooling investment,
we first must use the estimates reported in Table 3 to retrieve the remaining primitive
parameter required to solve the educational choice problem, b0. We estimate b0 given the
point estimates of all of the primitive parameters (and the assumed value of the discount
rate, ρ) as

b̂0 = θ̂
∗ − λ̂α̂

ρ+ η̂

Z
θ̂
∗
(θ − θ̂

∗
)dĜ(θ).

Given consistency of these parameter estimates, our estimator for b0 is consistent as well.
Given the estimates of all of the primitive parameters required to solve for the decisions

in the labor market and schooling choice, we vary the bargaining power parameter from
0.01 to 0.99. For any given “counterfactual” value of bargaining power, α0 say, we compute
θ∗(α0), which is then used to compute c̃∗(α0). Using this decision rule and the estimated
schooling cost distribution, we then have

P2(α
0) = 1− exp(−ξ̂c̃∗(α0)).

The results of the exercise are presented in Figure 3. They show that, under our
model assumptions, the college completion rate is very sensitive to the bargaining power
parameter. In particular, we see that when bargaining power drops below 0.42, no one
completes college. By the structure of the estimator, we know that at α = 0.565, 33
percent of the population completes college (the sample proportion). To obtain a college
completion rate of 50 percent, the bargaining power of workers would have to increase to
approximately 0.78. Given the structure of the cost distribution, even as α → 1 not all
individuals will complete college. This seems to be a reasonable implication.

We have only conducted this comparative statics exercise for the parameter α. Of
course, all of the parameters of the model will impact the college completion rate through
their impact on c̃∗, as we saw when deriving comparative statics results from the model.
The model estimates can be used to determine the quantitative impact of changes in the
contact rate, the distribution G, etc., in an obvious manner.
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6 Two-Sided Investment

As we have just seen, the proportion of individuals investing in a college education is a
function of all labor market parameters, in particular the bargaining power parameter α.
No matter what the values of the other parameters (given that there is some positive gain to
employment), investment in college education will be a monotonically increasing function
of α.This leads to the conclusion that, in the absence of the possibility of firm investment,
efficiency would require that α = 1.12

Of course, this implication will only hold, in general, as long as firms do not have the
opportunity to invest themselves. This is clearly not the case. Just as individuals can make
investments in general education, firms can invest in infrastructure, technology, and other
types of capital goods to make any match generically more productive. In such a case, it
will not generally be efficient to assign the entire surplus of the match to either party. We
sketch the manner in which an optimal bargaining power parameter would be determined
in such a case.

We return to the original specification of match productivity, that is,

yij = aihiθijpjkj

= ãiθij p̃j ,

with p̃j = pjkj . The most significant modeling change from the previous sections involves
the heterogeneity among firms in their productive contributions. Our earlier analysis pro-
duced heterogeneity in the value of unemployed search of individual labor supplies, denoted
VU (ã). Firms instead occupy two states, one in which they are “unemployed” in the sense
of holding a vacant position, and the other when the position is occupied, where the value
of a vacancy to a type p̃ firm is denoted VV (p̃). We attempt to make the problem facing
the firm and individual as symmetric as possible, so that we assume the flow value to a
firm of type p̃ when it is holding a vacant position is given by l0p̃. Now the Nash bargaining
problem is stated as

max
w
(VE(w, ã)− VU (ã))

α(VF (y,w)− VV (p̃))
1−α,

which becomes

(ρ+ η)−1max
w
(w + ηVU (ã)− (ρ+ η)VU (ã))

α(y − w + ηVV (p̃)− (ρ+ η)VV (p̃))
1−α.

After some simplification, the wage equation is given by

w∗(ã, p̃, θ) = α(ãθp̃− ρVV (p̃)) + (1− α)ρVU (ã). (15)

12This point was originally raised in Fabien Postel-Vinay’s discussion of this paper.
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Using this expression for w∗, the values of unemployed search and unfilled positions are
given by

ρVU (ã) = b0ã+
αλ

ρ+ η

Z Z
θ∗(ã,z)

{ãθz − ρVU (ã)− ρVV (z)}dG(θ)dFP̃ (z) (16)

ρVV (p̃) = l0p̃+
(1− α)λ

ρ+ η

Z Z
θ∗(z,p̃)

{zθp̃− ρVU (z)− ρVV (p̃)}dG(θ)dFÃ(z), (17)

respectively. The lower limit of integration with respect to θ in both integrals has been
denoted θ∗(ã, p̃). A match is formed whenever the flow productivity exceeds the sum of the
outside options of the worker and the firm, or

y ≥ ρVU (ã) + ρVV (p̃)

⇒ ãθp̃ ≥ ρVU (ã) + ρVV (p̃),

so that

θ∗(ã, p̃) =
ρVU (ã) + ρVV (p̃)

ãp̃
.

Let X(ã, p̃) = ρVU (ã) + ρVV (p̃). Then sum (16) and (17) to get

X(ã, p̃) = b0ã+ τ0p̃+
αλ

ρ+ η

Z Z
X(ã,z)
ãz

{ãθz −X (ã, z)}dG(θ)dFP̃ (z)

+
(1− α)λ

ρ+ η

Z Z
X(z,p̃)
zp̃

{zθp̃−X (z, p̃)}dG(θ)dFÃ(z).

Given a unique solution for X(ã, p̃) it is straightforward to determine the individual valu-
ations for the two sides of the market, since

ρVU (ã) = b0ã+
αλ

ρ+ η

Z Z
X(ã,z)
ãz

{ãθz −X(ã, z)}dG(θ)dFP̃ (z)

ρVV (p̃) = τ0p̃+
(1− α)λ

ρ+ η

Z Z
X(z,p̃)
zp̃

{zθp̃−X(z, p̃)}dG(θ)dFÃ(z).

Given these values, the wage function (15) follows immediately.
By the structure of the model, the value of investment is increasing in endowments for

each side of the market, so that there exist conditional investment rules on each side of the
market that possess a critical value property, with these critical values given by

a∗ = a∗(p∗, α,Ω)

p∗ = p∗(a∗, α,Ω),

29



where Ω is the vector containing all of the primitive parameters of the model with the
exception of the bargaining power parameter α. A Nash equilibrium is characterized by

a∗NE = a∗(p∗NE, α,Ω)

p∗NE = p∗(a∗NE, α,Ω).

For purposes of discussion, we assume that there exists such an equilibrium though
we do not assume uniqueness. The sum of worker and firm expected values of market
participation is given by X(ã, p̃), so an efficient equilibrium corresponds to

max
α

Z Z
X(ã(a, a∗(p∗NE, α,Ω)), p̃(p, p

∗(a∗NE, α,Ω)))dFP (p)dFA(a). (18)

This way of selecting a value of α is reminiscent of the Hosios condition (1990), though given
the simplicity of the matching function formulation, that condition can be represented in
a much more elegant and transparent manner. Given the matching function set-up, the
Hosios condition proposes rewarding each side of the market (in terms of α) as a function
of their contribution to match formation. In our case, we could think of the parties being
rewarded as a function of the productivity of their investments. For example, if k1 = 1 (as
h1 = 1), b0 = τ0, and if FP (p) = FA(a), the worker should be rewarded with a value of
α > 0.5 if h2 > k2. That is, the side for which investment is most valuable to the match
should be given the greatest encouragement to invest. In fact, when the firm was incapable
of making investments, it was optimal to set α = 1.

While we have only sketched an argument in support of a social planner’s solution to
the surplus division problem that would yield an optimal value of α, much remains to be
done in terms of proving existence and (possibly) uniqueness of investment strategies and in
terms of characterizing the solution to (18). However, it seems a promising avenue to pursue
since productivity-enhancing investments are potentially more amenable to measurement
than is the degree of search effort on the supply side or vacancy creation on the demand
side of the market.13

7 Conclusion

In this paper we have developed a labor market model of search, matching, and bargaining
that allows for pre-entry productivity enhancing investments by workers and firms. Given
data limitations, the bulk of the discussion was devoted to the case in which only workers
were able to make such investments, and their investment choices were restricted to be
binary: college completion or not. The model estimates allowed us to examine the impact
of hold-up (which was generated by search frictions) on the investment choices of agents,
and in particular we focused on the impact of the Nash bargaining power parameter on

13For some of the difficulties of measuring vacancies, see Petrongolo and Pissarides (2001).
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college completion. We found that the investment decision of workers was highly sensitive
to the bargaining power parameter value. At values less than 0.42, our prediction was
that no one would have completed college. A value of 0.78, on the other hand, would have
resulted in a 50 percent college completion rate, which is to be contrasted with the 33
percent completion rate in the data.

By analyzing the schooling investment decision within such a highly structured and
stylized model, we were able to derive a number of comparative statics results from the
theory. These strong assumptions are quite restrictive when taking the model to data. In
particular, the preeminent role of ability as a determinant of wages (particularly over the
life cycle) and in the schooling decision makes it difficult to simultaneously fit both. More-
over, the fact that the wage distribution must be “deconvoluted” to determine the ability
and matching distributions adds a further complication to model identification. This led
us to estimate a simpler version of the model in which individuals all had the same abil-
ity endowment but differed in their costs of schooling investment. For the purposes of
conducting an initial quantitative assessment of the sensitivity of schooling investment on
bargaining power given the value of the other estimates of primitive parameters, we found
this specification adequate. However, ruling out initial ability differences did not permit us
to demonstrate empirically our point that the distribution of individual (or firm) produc-
tivities is endogenous in a general setting. Of course, it is still the case that the schooling
distribution is endogenous, so that changes in primitive parameters or economic policy will
change the schooling type distribution as well as labor market outcomes conditional on
schooling type.

Given the difficulty of identifying the model parameters even in the homogeneous labor
markets case, we were not able to estimate the heterogeneous labor markets model. This
is a future research goal, since some of the descriptive evidence (e.g., unemployment rates
by schooling level) points to the inadequacy of the homogeneous markets assumption. One
particularly interesting feature of the heterogeneous labor markets assumption is that col-
lege completion rates may be high even if bargaining power among college graduates (α2) is
low when bargaining power among those with low schooling is even lower. Then the school-
ing decision is influenced also by the relative amounts of bargaining in the different labor
markets. Pursuing the goal of estimating such a model will probably entail using matched
employer-employee data. This will also have the advantage of investigating the two-sided
investment problem in a more satisfactory manner at the theoretical and empirical level.

While the models estimated are very stylized, we think that there are potentially im-
portant policy lessons to be learned from the approach adopted here. In recent years we
have seen large changes in the unemployment rates among all demographic groups. To the
extent that these reflect long-lasting declines in arrival rates of job offers or increases in
job destruction rates, there may be a significant impact on the value of schooling and the
resulting schooling distribution. It is appears that a model with search unemployment is
necessary to examine these impacts.
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Table 1
Descriptive Statistics

(Entire Sample and by Schooling Level)

Schooling Level
Characteristic All H C

P (s = C) 0.330 0.000 1.000

P (U) 0.033 0.041 0.017

E(tU |U) 5.122 5.270 4.412
SD(tU |U) 6.249 6.254 6.233

min{wi} 6.000∗ 6.000∗ 7.500∗

E(w|E) 18.384∗ 15.128∗ 24.833∗

SD(w|E) 9.524∗ 5.981∗ 11.704∗

N 9985

Supplemental Data

E(lnw) 0.013
E(lnw)2 0.191
E(lnw)4 0.143

N 788

Note: ∗ denotes that the sample statistic was computed after trimming

the top and bottom 2.5 percent from the conditional (on schooling)

wage distributions for the cross-sectional CPS-ORG data
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Table 2
Maximum Likelihood Estimates of Model with Ability Heterogeneity

(Asymptotic Standard Errors)

Parameter Estimate

λ 0.195
(0.012)

η 0.006
(0.001)

μθ 2.765
(0.103)

σθ 0.488
(0.096)

γ 0.812
(0.155)

m 0.213
(0.101)

h2 1.134
(0.021)

α 0.565
-

a∗ 1.102
(0.038)

θ∗ 6.000
-

lnL -3.572
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Table 3
Maximum Likelihood Estimates of Model with No Ability Heterogeneity

(Asymptotic Standard Errors)

Parameter Estimate

λ 0.197
(0.011)

η 0.007
(0.001)

μθ 3.065
(0.005)

σθ 0.549
(0.005)

h2 1.250
-

α 0.565
-

ξ 0.517
(0.058)

c̃∗ 0.775
-

θ∗ 6.000
-

b -179.348

lnL -3.318
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