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Abstract

Planners of surveys and experiments that partially identify parameters of interest face

trade offs between using limited resources to reduce sampling error and using them to

reduce the extent of partial identification. I evaluate these trade offs in a simple statistical

problem with normally distributed sample data and interval partial identification using

different frequentist measures of inference precision (length of confidence intervals, minimax

mean sqaured error and mean absolute deviation, minimax regret for treatment choice) and

analogous Bayes measures with a flat prior. The relative value of collecting data with better

identification properties (e.g., increasing response rates in surveys) depends crucially on the

choice of the measure of precision. When the extent of partial identification is significant in

comparison to sampling error, the length of confidence intervals, which has been used most

often, assigns the lowest value to improving identification among the measures considered.
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1 Introduction

Many types of statistical data only partially identify parameters of interest as simple as popula-

tion means, meaning that they cannot be estimated with arbitrary precision simply by increasing

the sample size. Statisticians designing surveys and experiments which generate such data could

use limited resources either to reduce the extent of partial identification or to reduce sampling

error. The former can be accomplished, for example, by putting more effort into pursuing sam-

pled population members who did not respond to a survey. The latter by increasing sample

size. To inform these choices, I attempt here to evaluate the relative effects of both margins of

planning on the precision of inference, which the planner could then compare to their relative

costs.

The problem was first considered in the Cochran-Mosteller-Tukey report on the Kinsey

study published in 1954. Concerned with selective non-response to the study’s questions, they

advocated a conservative approach to inference that sets limits on population parameters by

allowing for any values of the variable in the part of the population that was not sampled or

refused to respond. A variety of applications of this approach, now known as partial identifica-

tion, has been developed by Manski (1995, 2007a) and other researchers. CMT calculated for

different sample sizes and refusal rates the relative effects of reducing non-response or increas-

ing the sample size on the precision of inference about the population means. They judged the

precision of inference by the length of a 95% confidence interval for the identified interval. The

same measure of precision has been used to illustrate the effects of missing data on the precision

of inference by Horowitz and Manski (1998).

Length of a confidence interval for the identified interval is not the only measure of preci-

sion. In this paper I show that other reasonable measures yield qualitatively different conclusions

about the relative merits of reducing sampling error and reducing the extent of partial identifi-

cation. First, I consider the minimax mean squared error (MSE) and minimax mean absolute

deviation (MAD) of point estimates around the true value of the parameter, which have been

widely used to measure the precision of estimators for point identified parameters. In addition

to the minimax measures, I also consider the average risk for these loss functions with a flat

prior.

Another measure considered in this paper is the minimax regret of statistical treatment rules

for choosing between two alternative policies (or treatments) when the parameter of interest
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is the difference in average returns of the two treatments. Regret is the average welfare loss

incurred from choosing an inferior treatment for the population based on the observed statistical

data. In recent years, econometricians started studying statistical treatment rules that minimize

maximum regret both when the average treatment effect of interest is point identified (Manski

2004, 2005; Hirano and Porter 2009; Stoye 2009; Schlag 2007; Manski and Tetenov 2007) and

when it is partially identified (Manski 2007a, 2007b, 2008, 2009; Stoye 2007, 2012). I also

consider the average welfare loss with a flat prior.

I apply these measures of precision to the following partial identification problem. Let the

real-valued parameter of interest θ = θO + θU be the sum of a point identified component θO

and a partially identified component θU . For the point identified component θO, the statistician

observes an unbiased normally distributed estimate with known standard error σ. The partially

identified component θU is only known to lie in a given bounded interval of length 2P . When

P/σ is relatively large (i.e., partial identification is a significant issue), all of the considered

measures of precision put a higher value on reducing the extent of partial identification than

the confidence interval measure.

The problem is deliberately simplified to demonstrate in an analytically tractable setting

the qualitative differences between the conclusions about the relative benefits of reducing sam-

pling error vs. narrowing the identified interval based on alternative measures of precision. I do

not develop here a formal asymptotic argument extending the solution to more realistic data

generating processes. Song (2010) formally establishes that midpoint of an estimated identi-

fied interval is asymptotically minimax for absolute and square loss functions by considering

sequences of problems with P → 0, σ → 0 and P/σ converging to a constant. An extension of

Song’s analysis may also be applicable to the problem considered here.

The paper proceeds as follows. Section 2 describes the statistical problem and considers the

length of confidence intervals as a measure of precision. In section 3 I derive minimax estimators

of θ under square loss, absolute loss and regret loss for treatment choice, and consider their

minimax losses as measures of precision. Section 4 considers instead the average risk with an

improper flat prior on (σ, P ). Section 5 offers a numerical illustration applying the results to

survey non-response. Section 6 concludes and the appendix collects proofs of the propositions.
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2 Statistical Setting

I will consider the following partial identification problem. The parameter of interest to the

statistician is θ = θO + θU . θO ∈ R is a point identified (observable) component, for which

the statistician could obtain an unbiased normally distributed estimate X ∼ N
(
θO, σ

2
)
with

standard error σ. θU is a partially identified (unobservable) component, which is only known to

lie in a bounded interval θU ∈ [−P, P ] of length 2P (setting P to be the half-length simplifies

notation throughout the paper). The restriction that θU lies in a symmetric interval around

zero is without loss of generality.

Survey non-response is a leading example to keep in mind. Suppose we’re interested in

the population mean of Y and survey N individuals. Let r be the proportion of respondents

(denote them by D = 1), who may have a different distribution of Y than non-respondents,

then θ = EY is identified up an interval

[rE (Y |D = 1) + (1− r)YL, rE (Y |D = 1) + (1− r)YH ] , (1)

where YL and YH are the bounds on feasible values of Y (Manski 1995, 2007a). The length of

the identified interval is 2P = (1− r) (YH − YL). It could be reduced at a cost (for example, by

driving up in person to a household that does not respond to phone calls or by offering stronger

incentives to respondents). The midpoint θO = rE (Y |D = 1) + (1− r) (YH − YL) /2 of the

identified interval could be estimated with standard error σ proportional to N−1/2, which could

be reduced by sampling more households. The statistical setup with normally distributed X is

not an exact representation of this problem, but is analytically tractable and more informative

than solving the "correct" problem computationally

In this setting the pair (σ, P ) describes the experimental design parameters. The main

question of this chapter is how do these design parameters affect the precision of inference on θ

that the statistician could carry out based on the results of the experiment (observation of X).

Formally, let the function M (σ, P ) ≥ 0 be a particular measure of maximum precision with

which the statistician can carry out inference on θ based on the data from an experiment with

design parameters (σ, P ). Lower values ofM (σ, P ) will correspond to more precise inference and

M (σ, P ) = 0 will correspond to perfect precision. Let a differentiable function b (·) ≥ 0, b′ < 0

denote the economic benefit of inference with a given level of precision and let a differentiable

function c (σ, P ) , cσ < 0, cP < 0 denote the costs of conducting an experiment with design
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parameters σ and P . Then the statistical planning problem is to maximize the net benefit of

the experiment

max
σ,P

[b (M (σ, P ))− c (σ, P )] . (2)

If M is differentiable with partial derivatives Mσ > 0 and MP > 0, a necessary condition for a

pair (σ∗, P ∗) with σ∗ > 0 and P ∗ > 0 to be a solution to the planning problem is that

Mσ (σ∗, P ∗)

MP (σ∗, P ∗)
=
cσ (σ∗, P ∗)

cP (σ∗, P ∗)
. (3)

If these ratios are unequal, then it is possible to adjust σ and P in a way that improves precision

without increasing costs. I will evaluate a few functions M (σ, P ) based on different criteria

of precision and derive the Mσ/MP ratios for them. Survey and experiment planners could

compare these ratios to the marginal cost ratio cσ/cP and see whether a proposed allocation of

resources maximizes the precision of inference for a given budget. These conclusions could be

made without specifying the benefit function b (·). Knowledge of b (·) is required, however, to

determine the optimal size of the budget.

2.1 Length of Confidence Intervals

First, let’s consider using the length of a 1−α level confidence interval for the identified interval

as the measure of precision. In this model, the identified set for θ is

θ ∈ [θO − P, θO + P ] . (4)

Given that the experimental outcome X is normally distributed with mean θO and standard

error σ, the confidence interval

[
X − P − σΦ−1 (1− α/2) , X + P + σΦ−1 (1− α/2)

]
(5)

contains the identified set (4) exactly with probability 1 − α. Φ denotes the standard normal

CDF. The precision of inference from an experiment with parameters (σ, P ), as measured by

the length of a 1− α confidence interval then equals

MCS(α) (σ, P ) ≡ 2P + 2σΦ−1 (1− α/2) . (6)
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The marginal effects of changes in σ and P (partial derivatives of MCI(α)) equal MCS(α)
σ =

2Φ−1 (1− α/2) and MCS(α)
P = 2. The ratio of these marginal effects equals

M
CS(α)
σ

M
CS(α)
P

= Φ−1 (1− α/2) . (7)

Thus, if the length of conventional 95% confidence intervals is used as a measure of precision,

then a reduction of the standard error σ by ε always brings the same improvement as a re-

duction of the half-length P of the identified interval by 1.96ε. The evaluation of the relative

effects of reducing the sampling error and the extent of partial identification depends on the

chosen confidence level 1− α. Thus, using 99% confidence level instead of 95% would imply a

relatively higher value of reducing the standard error instead of reducing the extent of partial

identification.

Imbens and Manski (2004) proposed an alternative type of confidence interval which covers

each point in the identified set with probability 1 − α, but may cover the whole identified

set with a smaller probability (see Stoye 2008 for more details). In the present problem, the

shortest Imbens-Manski confidence interval is
[
X −MCP (α) (σ, P ) , X +MCP (α) (σ, P )

]
where

MCP (α) (σ, P ) > 0 is the solution to

Φ

(
P +MCP (α) (σ, P )

σ

)
− Φ

(
P −MCP (α) (σ, P )

σ

)
= 1− α. (8)

The ratio of its partial derivatives then equals

M
CP (α)
σ

M
CP (α)
P

=
d
dσ

[
Φ
(
P+M
σ

)
− Φ

(
P−M
σ

)]
d
dP

[
Φ
(
P+M
σ

)
− Φ

(
P−M
σ

)] =
−P+M

σ φ
(
P+M
σ

)
+ P−M

σ φ
(
P−M
σ

)
φ
(
P+M
σ

)
− φ

(
P−M
σ

) . (9)

As Figure 1 illustrates, this ratio is close MCS(2α)
σ /M

CS(2α)
P for small values of σ/P .

3 Minimax Measures of Precision

3.1 Absolute and Square Loss

Suppose that the statistician is asked to provide a point estimate of θ instead of an interval.

Let the estimator θ̂ (X) be a function mapping observed experimental outcome X to a point

estimate of θ. There is a long tradition in statistics of measuring the precision of point estimators
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by their expected loss

EXL
(
θ̂ (X)− θ

)
, (10)

where the expectation is taken with respect to the distribution of X for fixed values of θO and

θU . Expected loss differs across values of θO and θU , its maximum value over the parameter

space Θ = {θO ∈ R, θU ∈ [−P, P ]}:

ML (σ, P ) ≡ sup
θO,θU

EXL
(
θ̂ (X)− (θO + θU )

)
(11)

could be used as a conservative measure of the precision of θ̂ (X). Since θ̂ (X) is optimal in

the sense of minimizing (11), ML (σ, P ) is also a measure of precision of the experimental data

itself.

Proposition 2 shows that a simple estimator θ̂
∗

(X) = X minimizes maximum expected loss

(11) for a broad class of symmetric convex loss functions. This class includes square loss and

absolute loss, for which I derive more specific results later. Formally, suppose that the loss

function L satisfies the following conditions:

Condition 1 (a) L is symmetric, L (t) = L (−t),

(b) L is convex,

(c) L (0) = 0,

(d) L (t) > 0 for some t > 0,

(e) L (t) ≤ q · exp (rt) for all t ≥ 0 and some constants q > 0, r > 0.

Then (a)-(d) imply that L is continuous, non-negative, and non-decreasing on [0,+∞), while

(e) ensures that expected loss is finite with normally distributed X.

Proposition 2 If loss function L satisfies Condition 1, θO ∈ R, θU ∈ [−P, P ], and X ∼

N
(
θO, σ

2
)
, then the estimator θ̂

∗
(X) = X minimizes maximum expected loss (11), which

equals

ML (σ, P ) =


∫ +∞
−∞ L (t) 1

σφ
(
t−P
σ

)
dt for σ > 0,

L (P ) for σ = 0.
(12)

For square and absolute loss functions it is possible to evaluate (12) and its partial derivatives

analytically. In case of square loss L (t) = t2, the maximum mean squared error of θ̂
∗
equals

MMSE (σ, P ) =

∫ +∞

−∞
t2

1

σ
φ

(
t− P
σ

)
dt =

∫ +∞

−∞
(sσ + P )2 φ (s) ds = σ2 + P 2. (13)
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The marginal effects of changes in σ and P on the minimax MSE equal MMSE
σ = 2σ and

MMSE
P = 2P . The ratio of these marginal effects equals

MMSE
σ

MMSE
P

=
σ

P
. (14)

This ratio shows that using MMSE as a measure of precision yields qualitatively different

conclusions about the optimal choices of σ and P than using MCS(α), which does not depend

on σ/P . Whenever σ/P < Φ−1 (1− α/2), MMSE
σ /MMSE

P < M
CI(α)
σ /M

CI(α)
P and the minimax

MSE measure of precision implies that further reducing sampling error is not as important as

the length of confidence interval measure would suggest. In any experiment or survey with the

standard error smaller than the length of the identified interval (σ < 1.96P ) a planner using

the maximum MSE measure of precision would allocate more resources to reducing the extent

of partial identification than a planner measuring precision by the length of a 95% confidence

interval. The difference between the "marginal rates of substitution" produced by the two

methods could be particularly striking when considering large sample surveys in which the

extent of partial identification could greatly exceed sampling error in magnitude.

For the absolute loss function L (t) = |t|, the minimax mean absolute deviation (MAD) of

θ̂
∗
equals

MMAD (σ, P ) =

∫ +∞

−∞
|t| 1

σ
φ

(
t− P
σ

)
dt =

∫ +∞

−∞
|sσ + P |φ (s) ds =

=

∫ +∞

−P/σ
(sσ + P )φ (s) ds−

∫ −P/σ
−∞

(sσ + P )φ (s) ds =

= σφ (P/σ) + PΦ (P/σ) + σφ (P/σ)− PΦ (−P/σ) =

= 2σφ (P/σ) + P [Φ (P/σ)− Φ (−P/σ)] (15)

since
∫
sφ (s) ∂s = −φ (s).The marginal effects of changes in σ and P on the minimax MAD

are MMAD
σ = 2φ (P/σ) and MMAD

P = Φ (P/σ)−Φ (−P/σ). The ratio of these marginal effects

equals
MMAD
σ (σ, P )

MMAD
P (σ, P )

=
2φ (P/σ)

Φ (P/σ)− Φ (−P/σ)
. (16)

This is a continuous decreasing function of P/σ, which goes to infinity as P/σ → 0 and to zero

as P/σ →∞.

Similarly to the minimax MSE, for suffi ciently large values of P/σ the minimax MAD mea-
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sure of precision implies greater importance of reducing the scope of partial identification than

does the confidence interval measure. For conventional 95% confidence intervals, calculations

show that MMAD
σ /MMAD

P < M
CS(.05)
σ /M

CS(.05)
P whenever σ < 2.11P . MAD and MSE mea-

sures yield similar conclusions about the relative benefits of reducing σ and P for small values

of P/σ, since (16) ≈ σ/P when P/σ → 0.

3.2 Regret Loss in Treatment Choice Problems

The next measure of precision - minimax regret - is motivated by considering the economic loss

resulting from incorrect inference about θ when it is the difference in average returns of two

alternative policy decisions and the aim of inference is to choose which policy to implement.

Let θ = r2 − r1, where r1 is the average return from implementing the first policy and r2

the average return from implementing the second policy. Then the economic loss from choosing

the second policy when, in fact, r1 > r2 (θ < 0) equals r1 − r2 = −θ. The economic loss from

choosing to implement the first policy when, in fact, r1 < r2 (θ > 0) equals r2 − r1 = θ. If

policy choice is denoted by a = 1 for the second policy and a = 0 for the first (the choice could

also be randomized with a ∈ (0, 1)), then the regret loss function is

L (a, θ) =

 θ [1− a] if θ > 0,

−θa if θ ≤ 0,

= θ (I [θ > 0]− a) (17)

The method by which the decision maker chooses which policy to implement based on

experimental data could be summarized by a statistical treatment rule δ (X), which is a function

mapping feasible realizations of X ∈ R into actions in the [0, 1] interval. The regret of statistical

treatment rule δ is the average (over the distribution of X) regret loss incurred by the decision

maker using rule δ. It is a function of θO and θU , and in this problem equals

R (δ, (θO, θU )) ≡

 θ [1− EθOδ (X)] if θ > 0,

−θEθOδ (X) if θ ≤ 0,
(18)

where EθOδ (X) denotes the average value of δ (X). For θ < 0, EθOδ (X) is the probability

of mistakenly choosing the inferior second policy, while for θ > 0, the probability of error is

1− EθOδ (X).
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Minimizing maximum regret is a criterion suggested by Savage (1951) as a clarification

of Wald’s minimax principle (1950). Regret is a natural reparametrization for loss functions

that are not minimized at zero by any action. A number of recent papers in Econometrics,

starting with Manski (2004), applied the criterion to treatment choice problem. Similar loss

function could also be motivated by the problem of eliciting valuation of public projects from a

sample of individuals (an "economic jury") for the purpose of deciding whether they’re effi cient

(McFadden 2012). Selective non-participation in such juries leads to partial identification of the

valuation of the project and the analysis in this paper applies to the trade off between increasing

participation and increasing sample size in such juries.

The following Proposition derives statistical treatment rules that minimize maximum regret

for given experimental parameters (σ, P ) and their minimax regret.

Proposition 3 a) For σ > 2Pφ (0), the unique minimax regret statistical treatment rule is

δ∗(X) ≡ I |X > 0|. Its maximum regret equals

MMMR (σ, P ) = max
h>0

[
hΦ

(
P − h
σ

)]
, (19)

which is greater than P/2 and is a strictly increasing function of σ for any given P .

b) For σ ≤ 2Pφ (0), statistical treatment rules

δM(σ,P ) (X) ≡


I |X > 0| if σ = 2Pφ (0) ,

Φ

(
X/
√

(2Pφ (0))2 − σ2

)
if σ < 2Pφ (0) ,

(20)

minimize maximum regret, which equals MMMR (σ, P ) = P/2.

The results of Proposition 3 are qualitatively similar to those obtained by Stoye (2012),

who studied minimax regret statistical treatment rules based on binary outcome data from

an experiment with randomized treatment assignment in which the outcomes are missing with

some probability.

First, when the extent of partial identification (in Stoye’s problem, the maximum feasible

proportion of missing outcomes) is below some threshold relative to the sampling error, the

minimax regret statistical treatment rule is the same as it would be with point identification.

In Proposition 3 the same result holds, the minimax regret statistical treatment rule δ∗ is

identical for all values of P ≤ σ/ (2φ (0)), including the point identified case P = 0.
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The second qualitative similarity is that maximum regret of the minimax regret statistical

treatment rule becomes constant with respect to the sampling error once the sampling error falls

below some threshold relative to the extent of partial identification. Thus, reducing the sampling

error below that threshold (reducing σ in this chapter, increasing sample size in Stoye’s) could

not further reduce minimax regret.

Statistical treatment rule in part (b) of Proposition 3 may not be the only one that minimizes

maximum regret, but deriving one is suffi cient to make conclusions about the minimax regret

value, and thus about the precision of inference from the data for treatment choice.

Precision of inference generated by an experiment with parameters (σ, P ), as measured by

minimax regret for treatment choice, is

MMMR (σ, P ) =


max
h>0

{
hΦ
(
P−h
σ

)}
if σ > 2Pφ (0) ,

P
2 if σ ≤ 2Pφ (0) ,

(21)

This measure of precision could yield the most drastic conclusions about the relative benefits of

reducing the extent of partial identification since MMMR
σ = 0 for σ/P ≤ 2φ (0) ≈ 0.8, implying

that reducing the extent of partial identification is not only important, but is the only way to

reduce minimax regret and improve the inferential precision of experimental or survey data for

treatment choice.

4 Average Risk Measures

One of the concerns with using minimax measures of risk is that they overemphasize extreme

parameter values. For all the measures considered above, the risk is maximized at θU = ±P ,

which may overemphasize the relative benefits of reducing partial identification. For comparison,

I consider in this section measures of precision based on average risk (for the same loss functions)

with a Uniform[−P, P ] prior on θU and an independent improper flat prior on θO (Lebesgue

measure on R). Bayesian inference in partially identified models is more sensitive to the choice

of prior (since some of its features are not "diluted" by any amount of sample data) and the

uniform prior is considered here for its conventionality (Hirano and Porter (2009) considered

average risk with a flat prior for regret loss in treatment choice problems with point identified

θ). The results would clearly be very different, for example, with a prior that places point mass

on θU = 0 (implying that there is no partial identification problem) or on θO = 0 (implying
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that there is no benefit to sampling). While the prior is improper, identical results could be

obtained by considering a sequence of proper N
(
0, τ2

)
priors on θO with τ −→∞.

With the prior on θO placing uniform measure on the real line and X ∼ N
(
θO, σ

2
)
, the

posterior measure is a proper normal distribution θO|X ∼ N
(
X,σ2

)
. The posterior measure on

θU remains Uniform[−P, P ]. The posterior MSE and MAD are minimized by θ̂B = X, which is

both the mean and the median of the posterior distribution of θ. The posterior mean squared

error equals

∫ P

−P

[∫
R

(θO + θU −X)2φ

(
θO −X

σ

)
dθO

]
1

2P
dθU

=

∫ P

−P

[∫
R

(tO + θU )2φ

(
tO
σ

)
dtO

]
1

2P
dθU =

=

∫ P

−P

[
σ2 + θ2

U

] 1

2P
dθU = σ2 +

P 2

3
. (22)

Since it is constant inX, the average MSE (with respect to the prior) also equalsMAMSE (σ, P ) =

σ2 + P 2/3, and the ratio of its partial derivatives is

MAMSE
σ

MAMSE
P

= 3
σ

P
. (23)

For regret loss (17), it is optimal to adopt the second policy if the posterior mean is positive,

which happens if X > 0, hence δ∗(X) ≡ I |X > 0|. The average regret with respect to the prior

then equals

MAR =

∫
R

∫ P

−P
(θO + θU ) (I [θO + θU > 0]− EθOδ (X))

1

2P
dθUdθO

=

∫
R

∫ P

−P
(θO + θU )

(
I [θO + θU > 0]− Φ

(
θO
σ

))
1

2P
dθUdθO. (24)

The partial derivatives of MAR equal

MAR
σ = σ and MAR

P = P/3 (25)

(see Appendix), hence their ratio MAR
σ /MAR

P = 3σ/P is the same as for average square loss,

while the two loss functions yield starkly different results when minimax measures are consid-

ered. Predictably, the average regret loss always implies that reducing P and σ always has some

positive value, while the minimax regret value didn’t vary with σ at all for small values of σ/P .
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Figure 1: Mσ/MP as a function of σ/P under different measures of precision.

Figure 1 summarizes the findings, displaying the ratios Mσ/MP as a function of σ/P for

different measures of precision. The left pane shows the ratios when the length of frequentist

confidence intervals, minimax MSE, MAD and regret loss are used as measures of precision. The

right pane displays the same ratios for Bayesian precision measures with a flat prior. The ratios

for measures based on the length of the 95% Highest Posterior Density interval and absolute

loss are computed numerically. The graph shows the extent to which conclusions depend on the

measure of precision used. The disagreement in conclusions for frequentist measures could be

infinite when partial identification is relatively important (σ/P is small), when the length of the

confidence interval responds to changes in σ more than any other measure, while minimax regret

does not change in σ at all. While all the measures based on the flat prior converge for large

σ/P is large, when σ/P is smaller they also display substantial disagreement (up to 3.8 times

between 95% HPD interval length and average absolute loss). The following section illustrates

what range of values σ/P may be relevant in practice for problems of survey non-response.

5 Illustration: Survey Non-Response

The statistical setup of the previous sections is purposefully simplified to get clean analytical

results. Here we will consider it as an informal approximation to the problem of survey non-

response. Suppose that a survey samples N individuals, has response rate r and the variance

13



Response rate r 90% 90% 90% 90% 80% 80% 80%
Total sample size N 100 500 2000 10000 500 2000 10000

σ/P 1.054 0.471 0.236 0.105 0.25 0.125 0.056
Measures of precision:
Length of 95% confidence interval 10.7 22.6 44.3 97.8 21.4 41.8 92.3
Length of 95% Imbens-Manski C.I. 12.3 26.8 52.6 116.4 25.3 49.6 109.8
Minimax MSE 19 91 361 1801 161 641 3201
Minimax MAD 25.5 488.4 > 105 > 105 > 105 > 105 > 105

Minimax regret (treatment choice) 119.8 +∞ +∞ +∞ +∞ +∞ +∞
Measures with flat prior:
Length of 95% HPD interval 6.6 23.1 65.8 244.4 30.6 91.4 439.1
Average MSE or average regret 7 31 121 601 54.3 214.3 1067
Average MAD 7.3 37.8 171.1 890.4 76 316 1596

Table 1: Value of "converting" one non-respondent relative to an additional observation from
the same subpopulation of respondents according to different measures of precision.

of the measured outcome among respondents is σ2
0. Let θO stand for the mean outcome among

respondents, which could be estimated with variance σ2 ≈ σ2
0/ (rN) . Let θU be the mean

outcome among non-respondents, which is partially identified up to an interval of length 2P =

(1− r) (YH − YL), where YH and YL are the highest and lowest feasible outcome values. Then

P

σ
≈ YH − YL

2σ0

√
rN (1− r) . (26)

If outcomes of interest are binary, then YH −YL = 1 and if the mean among respondents equals

θO = 1/2, then σ0 = 1/2 (it isn’t very different for a large range of values of θO). Then

(YH − YL) / (2σ0) = 1 and P/σ ≈
√
rN (1− r).

To make the differences in Mσ/MP under various criteria more concrete, they could be

translated into the ratio of values of two alternative marginal changes to the sample. One

option is increase the response rate by 1/N , that is, to "convert" one non-respondent to a

respondent, which would reduce σ by ∆σ ≈ d
dN

(
σ0/
√
rN
)

= −σ0/
(

2N
√
rN
)
and reduce P

by ∆P ≈ − (YH − YL) / (2N). An alternative option is to increase the overall sample size by

1/r, thus adding one more respondent, which would reduce σ by ∆σ but leave P unchanged.

The value of one non-respondent observation is then

∆σMσ + ∆PMP

∆σMσ
= 1 +

∆P

∆σ

MP

Mσ
= 1 +

√
rN

YH − YL
σ0

MP

Mσ
(27)

times higher than the value of one from the existing population of respondents. For binary

outcomes this ratio simplifies to 1 + 2
√
rNMP /Mσ.
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Table 1 shows the value of this ratio under different measures of precision for a range of

common sample sizes and response rates. Response rates of 80%-90% are common in major

surveys like the NLSY, the HRS and the CPS. While their national sample sizes are greater than

those in Table 1, the sample sizes for subpopulations in which researchers may be interested are

smaller. The relative value of non-respondents rises with sample size regardless of the measure

of precision used, because ∆P is proportional to N−1, while ∆σ is proportional to N−3/2, hence

optimal response rates should be increasing with sample size. The value of non-respondents also

rises with sample size and with the non-response rate because of the changes in MP /Mσ under

all measures of precision except for frequentist confidence interval lengths.

6 Conclusion

I have compared what different measures of inferential precision for partially identified parame-

ters about optimal economic trade off between reducing sampling error and reducing the extent

of partial identification in the data when the researcher could control both (for example, when

choosing the size of a study and the level of effort to reduce non-response). The length of confi-

dence intervals for the identified interval is the most apparent measure of precision, but it turns

out to be an outlier. When the extent of partial identification is relatively important, all other

measures of precision considered here (mean sqaured error, mean absolute deviation, regret loss

for treatment choice) would lead the researcher to reallocate the budget more strongly towards

reducing the identification problem at the expense of sampling error.

The statistical problem with a normal sampling distribution considered in the paper is simple

in comparison to many practical problems. However, it is suffi ciently rich to capture some of

the main features of partial identification problems and to concisely illustrate how choosing

different criteria for measuring the precision of inference qualitatively impacts the conclusions

about the relative value of reducing the extent of partial identification and reducing sampling

error. The results could serve both as a rough practical approximation for problems with similar

structure and as a useful indicator of potential findings for future research that considers partial

identification problems in greater generality.
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7 Appendix: Proofs

Proof of Proposition 2

The proof relies on a well-known result (e.g., Berger 1985, p. 350, Theorem 18) that deci-

sion rule δ∗ is minimax if there exists a sequence of proper priors {πk} such that R (δ∗, θ) ≤

lim
k→∞

r (πk) < ∞, where r (πk) is the Bayes risk of Bayes rule δk with respect to prior πk. I

will consider a sequence of such priors with πk (θO) = N
(
0, k2

)
, πk (θU ) = .5I [|θU | = P ], and

θO ⊥ θU .

Since X ∼ N
(
θO, σ

2
)
, the posterior distributions of θO and θU conditional on X are inde-

pendent and equal

πk (θO|X) = N
(
ckX, ckσ

2
)
,

and πk (θU |X) = .5I [|θU | = P ] ,

where ck = k2/
(
k2 + σ2

)
, lim
k→∞

ck = 1. Since the loss function L is convex and symmetric, the

posterior Bayes estimator of θ is θ̂k (X) = ckX. Conditional on X, the variable y = ckX − θO

has a N
(
0, ckσ

2
)
distribution. The posterior risk of θ̂k (X), then, equals

∫
L (ckX − (θO + θU )) dπk (θO, θU |X) =

=

∫ [
1

2
L (ckX − θO − P ) +

1

2
L (ckX − θO + P )

]
dπk (θO|X) =

=

∫ [
1

2
L (y − P ) +

1

2
L (y + P )

]
dπk (y|X) =

∫
L (y + P ) dπk (y|X) =

=

∫ +∞

−∞
L (y + P )

1

σ
√
ck
φ

(
y

σ
√
ck

)
dy =

∫ +∞

−∞
L (t)

1

σ
√
ck
φ

(
t− P
σ
√
ck

)
dt

The third equality holds because L and πk (y|X) are symmetric. Condition 1(e) ensures that

this and other improper integrals in the proof are finite. Since the posterior risk is constant in

X, it is equal to the Bayes risk with prior πk:

r (πk) =

∫ +∞

−∞
L (t)

1

σ
√
ck
φ

(
t− P
σ
√
ck

)
dt.

Functions L (t)
(
σ
√
ck
)−1

φ
(
(t− P ) /

(
σ
√
ck
))
converge pointwise in t to L (t)σ−1φ ((t− P ) /σ)
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as k →∞. Due to Condition 1(e), Lebesgue dominated convergence theorem applies and

lim
k→∞

r (πk) =

∫ +∞

−∞
L (t)

1

σ
φ

(
t− P
σ

)
dt.

It remains to verify that the maximum risk of θ̂
∗
over (θO, θU ) is equal to this limit. The

risk equals

R
(
θ̂
∗
, (θO, θU )

)
= EXL (X − (θO + θU )) =

=

∫ +∞

−∞
L (x− θO − θU )

1

σ
φ

(
x− θO
σ

)
dx =

=

∫ +∞

−∞
L (y − θU )

1

σ
φ
( y
σ

)
dy = (28)

=

∫ +∞

0
[L (y − θU ) + L (y + θU )]

1

σ
φ
( y
σ

)
dy,

where the last equality is due to symmetry of L and φ. The sum L (y − θU ) + L (y + θU ) is

non-decreasing in θU for θU > 0 due to convexity of L, hence the risk is maximized at |θU | = P

for any value of θO. Substituting θU = −P and t = y + P in (28) yields

R
(
θ̂
∗
, (θO, θU )

)
≤
∫ +∞

−∞
L (t)

1

σ
φ

(
t− P
σ

)
dt = lim

k→∞
r (πk) ,

thus θ̂
∗

(X) = X is a minimax estimator of θ under loss function L with maximum expected

loss equal to
∫ +∞
−∞ L (t) 1

σφ
(
t−P
σ

)
dt. �

Proof of Proposition 3(a)

The proof of part (a) relies on a well known result (e.g., Berger 1985, p. 350, Theorem 17)

that decision rule δ∗ is minimax if it is Bayes with respect to some proper prior π∗ and for all

(θO, θU ) ∈ Θ

R (δ∗, (θO, θU )) ≤ r (π∗) =

∫
R (δ∗, (θO, θU )) ∂π∗ (θO, θU ) . (29)

This result applies as well when R denotes regret, then δ∗ is a minimax-regret rule.

Decision rule δ∗(X) = I [X > 0] is Bayes with respect to any symmetric two-point prior

distribution π with π (θ∗O, θ
∗
U ) = 1/2 and π (−θ∗O,−θ∗U ) = 1/2, if θ∗O > 0 and θ∗O + θ∗U > 0. We

will first find values of (θO, θU ) that maximize R (δ∗, (θO, θU )), then verify that δ∗ is Bayes with

respect to a two-point prior using these values, and then verify that equation (29) holds.

If θ = θO+θU ≥ 0, regret equals R (δ∗, (θO, θU )) = (θO + θU ) [1− EθOδ∗ (X)]. For any value

17



of θO it is maximized at θ∗U = P , since EθOδ
∗ (X) doesn’t depend on θU . Since EθOδ

∗ (X) =

1−Φ (−θO/σ), maximum regret of δ∗ over θ ≥ 0 then equals (with the substitution h = θO+P )

max
θO+θU≥0

R (δ∗, (θO, θU )) = max
θO≥−P

[
(θO + P ) Φ

(
−θO
σ

)]
= max

h>0

[
hΦ

(
P − h
σ

)]
.

The maximum is attained at

θ∗O = arg max
h>0

[
hΦ

(
P − h
σ

)]
− P .

Similarly, maximum regret over θ < 0 also equals max
h>0

[hΦ ((P − h) /σ)] and it is attained

at θO = −θ∗O and θU = −P .

The function hΦ
(
P−h
σ

)
is continuous in h with derivative

d

dh

[
hΦ

(
P − h
σ

)]
= Φ

(
P − h
σ

)
− h

σ
φ

(
P − h
σ

)
= Φ

(
P − h
σ

)[
1− h

σ

φ ((P − h) /σ)

Φ ((P − h) /σ)

]
.

At h = 0, d
dh

[
hΦ
(
P−h
σ

)]
= Φ

(
P
σ

)
> 0. The function φ(y)

Φ(y) is positive and decreasing in y, hence

h
σ
φ((P−h)/σ)
Φ((P−h)/σ) is positive and increasing in h for h ≥ 0 with lim

h→∞
h
σ
φ((P−h)/σ)
Φ((P−h)/σ) = +∞, therefore

hΦ
(
P−h
σ

)
has a unique maximum over h > 0 at some point h∗.

The derivative of hΦ
(
P−h
σ

)
at h = P equals Φ (0) − P

σ φ (0) = 1
2 −

Pφ(0)
σ . By assumption

σ > 2Pφ (0), hence it is positive, h∗ > P and θ∗O = h∗ − P > 0.

Since θ∗O > 0 and θ∗O + P > 0, δ∗ is a Bayes rule with respect to prior π∗ with π∗ (θ∗O, P ) =

1/2, π∗ (−θ∗O,−P ) = 1/2 and

r (π∗) =
1

2
R (δ∗, (θ∗O, P )) +

1

2
R (δ∗, (−θ∗O,−P )) = max

θO,θU
R (δ∗, (θO, θU )) ,

δ∗ minimizes maximum regret. Furthermore, since δ∗ is a unique Bayes rule up to randomization

at X = 0, which does not affect R (δ, (θO, θU )) for any values of (θO, θU ), it is admissible.

Maximum regret of δ∗ exceeds P
2 because hΦ

(
P−h
σ

)
is not maximized at h = P , hence

h∗Φ

(
P − h∗
σ

)
> PΦ

(
P − P
σ

)
=
P

2
.

To verify that minimax regret max
h>0

[
hΦ
(
P−h
σ

)]
is a decreasing function of σ for a given P ,
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observe that since h∗ > P ,

max
h>0

[
hΦ

(
P − h
σ

)]
= max

h>P

[
hΦ

(
P − h
σ

)]
.

For any h > P , hΦ
(
P−h
σ

)
is strictly decreasing in σ, thus max

h>P

[
hΦ
(
P−h
σ

)]
is also strictly

decreasing in σ. �

Proof of Proposition 3(b)

Maximum regret of any decision rule is at least P/2 because

max
θO,θU

R (δ, (θO, θU )) ≥ max (R (δ, (0, P )) , R (δ, (0,−P ))) =

= max (P (1− EθO=0δ (X)) , PEθO=0δ (X)) ≥ P

2
.

I will first show that any rule δ for which EθOδ (X) lies within the bounds

EθOδ (X) ≥ 1− P
2(P+θO) for θO ≥ −P

2 ,

and EθOδ (X) ≤ P
2(P−θO) for θO ≤ P

2

(30)

has maximum regret of P/2 (hence minimizes maximum regret), then show that δM(σ,P ) (X)

satisfies this condition.

For all (θO, θU ) such that θ ≥ 0, R (δ, (θO, θU )) = (θO + θU ) (1− EθOδ (X)) is increasing in

θU , so

R (δ, (θO, θU )) ≤ R (δ, (θO, P )) = (θO + P ) (1− EθOδ (X)) .

If θO ≥ −P/2, the lower bound in (30) implies that

(θO + P ) (1− EθOδ (X)) ≤ (θO + P )
P

2 (P + θO)
=
P

2
.

If θO ∈ [−P,−P/2], then since (1− EθOδ (X)) ≤ 1,

(θO + P ) (1− EθOδ (X)) ≤ θO + P ≤ P

2
.

Hence for θ ≥ 0, R (δ, (θO, θU )) ≤ 1/2. The proof for θ < 0 is analogous.
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Second, I will show that any decision rule δ with EθOδ (X) = q∗ (θO), where

q∗ (θO) ≡ Φ

(
θO

2Pφ (0)

)

satisfies inequalities (30). The proof verifies this for θO ≥ 0, it is symmetric for θO < 0.

When θO = 0, q∗ (0) = Φ (0) = 1/2, which coincides with both bounds. For θO ∈ [0, P/2],

q∗ satisfies the upper bound (30) because

Φ

(
θO

2Pφ (0)

)
≤ 1

2
+

θO
2Pφ (0)

φ (0) =
P + θO

2P
≤ P

2 (P − θO)
.

The first inequality follows from using φ (0) as an upper bound for the derivative of Φ on

[0, θO
2Pφ(0) ]. The second one follows from (P + θO) (P − θO) = P 2 − θ2

O ≤ P 2.

The proof that q∗ satisfies the lower bound is split into two cases: θO ∈ [0, P ] and θO ≥ P .

For θO ∈ [0, P ], I will prove that q∗ has a higher derivative than the bound 1 − P
2(P+θO) ,

which implies the needed inequality since both are equal at θO = 0. The derivative of q∗ is

d

dθO
q∗ (θO) =

1

2Pφ (0)
φ

(
θO

2Pφ (0)

)
=

1

2P
exp

(
−π

4

(
θO
P

)2
)

Since the function exp (y) is convex with exp (0) = 1 and exp (1) < 3, exp (y) ≤ 1 + 2y for y ∈

[0, 1], therefore exp (y) ≥ 1
1−2y for y ∈ [−1, 0]. Since π/4 < 1 and (θO/P )2 ≤ 1, −π

4 (θO/P )2 ∈

[−1, 0], therefore

1

2P
exp

(
−π

4

(
θO
P

)2
)
≥ 1

2P

1

1 + π
2 (θO/P )2 =

=
P

2P 2 + πθ2
O

≥ P

2P 2 + 4PθO + 2θ2
O

=
P

2 (P + θO)2 .

The second inequality uses the fact that πθO ≤ 4P and 2θ2
O ≥ 0. On the other hand,

d

dθO

[
1− P

2 (P + θO)

]
=

P

2 (P + θO)2 ,

hence q∗ grows faster than the bound.

For θO ≥ P , I will use two inequalities. First, for the normal distribution Φ (t) > 1 − φ(t)
t

for t > 0 (cf. Feller 1968, Chapter VII, Lemma 2). Second, for y ≥ 0, exp (y) ≥ 1 + y, thus for
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y ≤ 0, exp (y) ≤ 1
1−y .

q∗ (θO) = Φ

(
θO

2Pφ (0)

)
> 1− 2Pφ (0)

θO
φ

(
θO

2Pφ (0)

)
=

= 1− P

πθO
exp

(
−π

4

(
θO
P

)2
)
> 1− P

πθO

1

1 + π
4 (θO/P )2 =

= 1− P

πθO + π2

4 θO (θO/P )2
> 1− P

2 (P + θO)
.

The last inequality relies on observations that πθO > 2P , π2/4 > 2, and (θO/P )2 ≥ 1.

It remains to show that the decision rule δM(σ,P ) satisfies EθOδM(σ,P ) (X) = q∗, hence has

maximum regret P/2.

For σ = 2Pφ (0), δM(σ,P ) (X) = I |X > 0|, thus EθOδM(σ,P ) (X) = Φ
(

θO
2Pφ(0)

)
= q∗ (θO).

For σ < 2Pφ (0), it is simplest to derive δM(σ,P ) (X) using the following construction. Define

an auxiliary random variable

Y ∼ N
(

0, (2Pφ (0))2 − σ2
)

independent of the observed outcome X ∼ N
(
θO, σ

2
)
. Then X + Y ∼ N

(
θO, (2Pφ (0))2

)
.

Define the randomized statistical treatment rule δ̃ (X,Y ) as a function of both X and Y

δ̃ (X,Y ) ≡ I |X + Y > 0| ,

then clearly

EθOδM(σ,P ) (X) = Φ

(
θO

2Pφ (0)

)
= q∗ (θO) .

Integrating δ̃ (X,Y ) with respect to the distribution of Y yields

δM(σ,P ) (X) ≡ E (1 |X + Y > 0|) = Φ

(
X/

√
(2Pφ (0))2 − σ2

)
,

which thus satisfies EθOδM(σ,P ) (X) = q∗ (θO) by construction and minimizes maximum regret,

which equals P/2. �

Proof of Equation 25
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Let’s denote the inner integral over θU by J (θO, σ, P ) and evaluate it

J (θO, σ, P ) ≡ 1

2P

∫ P

−P
(θO + θU )

(
I [θO + θU > 0]− Φ

(
θO
σ

))
dθU

=
1

2P

(
−Φ

(
θO
σ

)∫ P

−P
(θO + θU ) dθU +

∫ P

−P
(θO + θU ) I [θU > −θO] dθU

)

= −θOΦ

(
θO
σ

)
+


0 for θO < −P,
P
4 + θO

2 +
θ2O
4P for θO ∈ [−P, P ] ,

θO for θO > P .

Differentiating it with respect to σ and P for a given θO yields

d

dP
J (θO, σ, P ) = I [|θO| ≤ P ] ·

[
1

4
− θ2

O

4P 2

]
,

d

dσ
J (θO, σ, P ) =

(
θO
σ

)2

φ

(
θO
σ

)
.

Integrating the derivatives over θO, we get

d

dP

∫
R
J (θO, σ, P ) dθO =

∫ P

−P

[
1

4
− θ2

O

4P 2

]
dθO =

P

3
,

d

dσ

∫
R
J (θO, σ, P ) dθO =

∫
R

(
θO
σ

)2

φ

(
θO
σ

)
dθO = σ.

�
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