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Abstract

This paper axiomatizes an intertemporal version of the Smooth Ambiguity decision model
developed in Klibanoff, Marinacci, and Mukerji (2005). A key feature of the model is that it
achieves a separation between ambiguity, identified as a characteristic of the decision maker’s
subjective beliefs, and ambiguity attitude, a characteristic of the decision maker’s tastes. In
applications one may thus specify/vary these two characteristics independent of each other,
thereby facilitating richer comparative statics and modeling flexibility than possible under
other models which accomodate ambiguity sensitive preferences. Another key feature is that
the preferences are dynamically consistent and have a recursive representation. Therefore
techniques of dynamic programming can be applied when using this model.

JEL Classification Numbers: D800, D810.

Keywords: Ambiguity, Uncertainty, Knightian Uncertainty, Ambiguity Aversion, Uncer-
tainty Aversion, Ellsberg Paradox, Dynamic Decision Making, Dynamic Programming under
Ambiguity, Smooth Ambiguity.



1 Introduction

This paper axiomatizes and investigates a model of recursive preferences over intertemporal
plans, extending the smooth ambiguity model developed in Klibanoff, Marinacci, and Mukerji
(2005) (henceforth KMM) to a setting involving dynamic decision making.

In KMM we propose and axiomatize a model of preferences over acts such that the
decision maker prefers act f to act g if and only if E,¢ (Eruo f) > E,¢ (E,uo g), where E
is the expectation operator, u is a vIN-M utility function, ¢ is an increasing transformation,
and p is a subjective probability over the set Il of probability measures 7 that the decision
maker thinks are relevant given his subjective information. A key feature of our model is
that it achieves a separation between ambiguity, identified as a characteristic of the decision
maker’s subjective beliefs, and ambiguity attitude, a characteristic of the decision maker’s
tastes. We show that attitudes towards pure risk are characterized by the shape of u, as
usual, while attitudes towards ambiguity are characterized by the shape of ¢. Ambiguity
itself is defined behaviorally and is shown to be characterized by properties of the subjective
set of measures II. One advantage of this model is that the well-developed machinery for
dealing with risk attitudes can be applied as well to ambiguity attitudes. The model is
also distinct from many in the literature on ambiguity in that it allows smooth, rather than
kinked, indifference curves. This leads to different behavior and improved tractability, while
still sharing the main features (e.g., Ellsberg’s Paradox). The maxmin expected utility model
(e.g., Gilboa and Schmeidler (1989)) with a given set of measures may be seen as a limiting
case of our model with infinite ambiguity aversion.!

The functional representation obtained in KMM is particularly useful in economic mod-
eling in answering comparative statics questions involving ambiguity. Take an economic
model where agents’ beliefs reflect some ambiguity. Next, without perturbing the infor-
mation structure, it is useful to know how the equilibrium would change if the extent of
ambiguity aversion were to decrease; e.g., if we were to replace ambiguity aversion with
ambiguity neutrality, holding information and risk attitude fixed. (See, for example, Gollier
(2005) for a portfolio choice application.) Another useful comparative statics exercise is
to hold ambiguity attitudes fixed and ask how the equilibrium is affected if the perceived
ambiguity is varied (see Jewitt and Mukerji (2006) for a definition and characterization of
the notion of "more ambiguous"). Working out such comparative statics properly requires a
model which allows a conceptual /parametric separation of (possibly) ambiguous beliefs and
ambiguity attitude, analogous to the distinction usually made between risk and risk attitude.
The model and functional representation in KMM allows that, whereas such a separation
is not evident in the pioneering and most popular decision making models that incorporate
ambiguity, namely, the multiple priors/maxmin expected utility (MEU) preferences (Gilboa
and Schmeidler (1989)) and the Choquet expected utility (CEU) model of Schmeidler (1989).

While the preference model in KMM achieves the task of separating ambiguity and am-
biguity attitude, the scope of application of this model is limited by the fact that it is a
timeless framework. Yet many economic questions involving uncertain environments, es-
pecially in macroeconomics and finance, are more intuitively modeled using intertemporal

'For alternative developments of similar models see Ergin and Gul (2004), Nau (2006), Neilson (1993)
and Seo (2006). All of these models draw inspiration from Segal (1987), the earliest paper relating ambiguity
sensitive behavior to a two-stage functional relaxing reduction.



decision making frameworks. It is of interest to re-examine such questions by adding an
ambiguity dimension. Computation and analysis of intertemporal choices is greatly facili-
tated by applying recursive methods. For these methods to be applicable, preferences have
to satisfy a certain dynamic consistency property. A number of recent papers, including
Epstein and Schneider (2003b), Wang (2003), Hayashi (2005), and Maccheroni, Marinacci,
and Rustichini (2006b), have provided preference foundations for extending other ambigu-
ity models to an intertemporal framework while satisfying this dynamic consistency. All of
these, however, share the limitation inherent in the atemporal models they extend, of failing
to separate ambiguity from ambiguity attitude without restricting the range of ambiguity
attitudes. The present paper avoids this limitation, as does the contemporaneous work of
Hanany and Klibanoff (2007a), the only other preference model we know of extending KMM
to a dynamic setting. A major difference between the two extensions is that our model is
recursive while that in Hanany and Klibanoff (2007a) is not. We discuss these and other
papers further in Section 7.

The present paper, then, presents the first recursive model of intertemporal preferences
that are ambiguity sensitive and dynamically consistent that does allow a separation of
ambiguity from ambiguity attitude. To see why a such a preference model can be useful,
recall the classic equity premium puzzle. The equity premium puzzle originally refers to
the fact that the Lucas (Lucas (1978)) intertemporal general equilibrium model can fit data
with steady consumption growth, low risk-free rates and high risk premiums only if the
coefficient of (relative) risk aversion is allowed to be high in absolute value. This is a puzzle
in the sense that, given the consumption risk identified in the data, the value of risk aversion
coefficient required to explain the observed premium is incompatible with behavior under
risk observed in other domains, for example in experiments. Various authors (e.g., Chen
and Epstein (2002), Epstein and Wang (1994)) have shown theoretically using dynamic
extensions of the MEU model that ambiguity aversion has the potential to explain the
equity premium puzzle. They argue that ambiguity aversion adds to an agent’s aversion to
uncertainty over and above risk aversion, and so may add to the risk premium.? To evaluate
the potential of an approach based on ambiguity, one has to be able to identify the extent
of ambiguity aversion needed in conjunction with the ambiguity consistent with the data to
explain the observed premium. Then one can check whether that value of ambiguity aversion
agrees with levels observed when examining behavior on other domains. To conduct such an
exercise, it is absolutely necessary to have a framework that allows one to separate ambiguity
from ambiguity aversion and that allows for a variable degree of ambiguity aversion and a
quantification of this degree. Only then may we be able to infer from the data a measure of
ambiguity and ambiguity aversion. Indeed, recent work by Ju and Miao (2007) successfully
applies the model developed in this paper along these lines (see also Hansen (2007)).

In the present paper the basis of the dynamic model is the state space S, the set of
all observation paths generated by an event tree, a graph of decision/observation nodes.
The root node of the tree, s, branches out into a set of (immediate) successor nodes each
of which represents a stochastic contingency at time ¢ = 1 and is generically denoted by
st. Each node s! further branches out into (immediate) successor nodes s? at time t = 2
and so on into the infinite future. S is the set of all paths through this event tree; the

2However, see Gollier (2005) for caveats to this reasoning.



generic element of S is denoted by s. The decision maker’s elements of choice are plans
f each of which associates a payoff to each pair (¢,s). The decision maker is (subjectively)
uncertain about which stochastic process gives the appropriate description of probabilities
on the event tree. The domain of this uncertainty is given by a finite parameter space O,
each element of which (generically denoted by 6) is a vector of parameters exhaustively
describing a particular stochastic process my. We denote by 74 (B | s) the probability under
distribution my that the observation path will belong to the set B, given that we have reached
node s'. Correspondingly, 74 (z;11; ") is the probability under distribution 7y that the next
observation will be x;, 1, given we have reached node s*. The decision maker’s subjective prior
belief about the stochastic process, elicited from his preferences, is described by a distribution
u, defined on 29, ie., u : 22 — [0,1]. The decision maker’s posterior belief about which
stochastic process applies at a node s’ is given by the Bayesian posterior distribution j (- | s').

In the formal analysis that follows we obtain assumptions and conditions on preferences
such that preferences on plans f, at a node s, are represented by the following recursive
functional form:

0 [ [
Ve () =u f ) + 86" { / ¢>( / Vi (f) dro :cﬁl;sf))du 9|sf)},
S} Xig1

where Vi (f) is a recursively defined value function, u is a vN-M utility index, [ is a dis-
count factor and ¢ a function whose shape characterizes the DM’s ambiguity attitude (as in
KMM). Note that the represented preferences are recursive and dynamically consistent even
though they depart from expected utility (and are also not probabilistically sophisticated
(Machina and Schmeidler (1992))). Furthermore, there is a separation between ambiguity
and ambiguity attitude along with flexibility in the modelling of each.

The next section sets out the formal structure of the model. Section 3 describes assump-
tions on preferences that are then shown to deliver the representation in Section 4. That
section also includes a discussion of our approach and addresses some important existence
and uniqueness questions. Results characterizing Bayesian updating and learning in the
model appear in Section 5. Section 6 contains two examples: one comparing with recursive
multiple priors, and one on the equity premium. Related literature is discussed in Section
7, followed by a brief concluding section. Proofs are contained in two appendices.

2 Set-Up

2.1 Modeling Information

Denote by 7 an infinite time horizon {1,...,¢,...}. Consider a sequence of discrete random
variables {X;}, ., with values in finite observation spaces X;, endowed with their power sets
A, = 2%, Each X, consists of possible observations just before time ¢, and x; € &, denotes a
realization of the random variable X;. For convenience, we assume that all X, are surjective,
so that A&} is the set of all possible realizations of each Xj.

Let S = [],.7 & be the set of all possible observation paths s = (21, ..., 24, ...). Denote
by St = [['_, &: the collection of all finite paths s' = (xy,...,2;). Each finite observation



s*=(11)

s*=(12)

s? =(2])

s*=(2,2)

Figure 1: The first few time periods of an event tree with X; = {1, 2}.

path s' identifies a decision/observation node, which is the history of observations up to time
t. For this reason we denote by s* a generic time ¢t node, while S denotes the set of all nodes;
i.e., S =Uer S. On S there is a natural partial order, >, where s* > s* means that node s'
is a successor of node s*. In particular, S™ (s') with 7 > ¢, is the set of time 7 successors of
the node s, i.e., ST (s') = {s™ € S7 : s™ > s'}. Note that any node is considered a successor
of itself. We often denote a generic element of S**1 (s') by (s!,z;,1) as it emphasizes the
way in which the successor is generated.

On S we consider the product o-algebra ¥ = ,7.A; generated by all one-dimensional
cylinder sets By x [], 2ee1 Xs, where By € A;. For brevity, we denote by {B4, ..., B;} the
cylinder set with base By X - - - X By, namely,

{By,...;Bi} =By X -+ X By X Xpyq1 X -~

Figure 1 illustrates the first few time periods in our setting.In the figure, S* = {(1), (2)}
and S? = {(1,1),(1,2),(2,1),(2,2)} are the sets of time 1 and time 2 nodes, respectively.
An example of a cylinder set is the set of all observation paths with X; =1 and X, = 1.
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We define on ¥ a family of probability distributions {74} ,.g, where © is a finite parameter

space. Throughout we assume that my (xy,...,2;) > 0 for all “elementary” cylinder sets
{x1,...,2:}.> For each B € &,

0 mo(BM1,wi})
Ty B|s') = molany L€ T

is the conditional distribution of my given s' = (x1,...,2;). In words, m (B | s') is the
probability under distribution 7y that the observation path will belong to B, given we have
reached node s'.*

For each t € 7, the one-step-ahead probability distribution 74 (+; s*) : A1 — [0,1] at
node s' = (z1,...,x;) € S* is determined by

O o (T1, ., Ty, T
Ty Tiy1; St) = Ty ({Stuxt—&-l} | St) = 7(@1(;1’ t’x t)ﬂ), Vi € Xy,
5 sy UL

where {s', 2,1} and s' denote the elementary cylinder sets {z1, ..., xs, 2411} and {z1, ..., 2:},
respectively. In words, g (z,41;s") is the probability under distribution 7 that the next
observation will be 7, given we have reached node s’.

The prior distribution y is defined on 29, i.e., y : 22 — [0, 1]. Given any suitable B € %,
the posterior distribution (- | B) : 2% — [0,1] is defined as follows:

_ fATFG (B) dlu
feﬂ'g (B) d,u’

In particular, if B is the cylinder {B, ..., By} € X, then

_ fA Uy (Bla ey Bt) d/'L
f@ To (Bla "'7Bt) dlu,

1(A | B) VA €2° VB c %

w(A| By, ..., B) VA € 2°.

Example 1 Assume &; = X for all ¢ and suppose that each 7y makes the sequence {X;},
i.i.d., with common marginal distribution ¢ : A; — [0,1]. In this case, the probability
distributions 7y are given by the product probabilities ¢g° : ¥ — [0, 1], uniquely determined

by qy as follows:
t

qé"’ (Bl, ey Bt) = HCIG (Bz) )

=1

3Observe the notational difference between the history (zy,...,¢), an element of the Cartesian product
H::1 X-, and the cylinder {x1, ..., x;}, the subset of ¥ given by {z1} x -+ x {&s} X X1 X - - -. For brevity,
we write g (21, ..., z¢) in place of mg ({z1,...,x¢}).

4The finiteness assumptions on both the parameter space © and the observation spaces X; along with the
full support assumption on 7y allow us to avoid a number of technical modeling issues as well as sidestep
the issue of preferences following zero-probability events. These issues are not central to our paper. We
believe that all but the results in Section 5 could be suitably extended to apply to non-finite environments
and appropriately non-null events. For this reason we maintain integral notation. See Section 5 for some
discussion of the role of finiteness there.



for each cylinder set {By, ..., B;} € . Hence, for each node s € S* and observation z;,; €

X1, we have
1
N t\ H;H_l qo ()

Ty $t+1§3) = Ht % (22)
i=1 i

while, for each cylinder set {Bj, ..., B;} € ¥ and each set A C O,

qugo (Bla"'aBt)d,u fA = 1(]9 )d:u
f@qeoo (B17”'7Bt>d:u f@ 1Q9 )dﬂ

] ($t+1) )

W(A| By, B) =

A

Example 2 Assume again X; = X for all t and suppose now that each my makes the sequence
{Xi},er a homogeneous Markov chain with transition function gy : X;1 x A, — [0, 1] for
t > 2, where gy (z,-) : A, — [0,1] is a probability measure on A; for each x € X},
and g (-, By) : X;n1 — [0,1] is an A;-;-measurable function for each B; € A;. Given an
initial probability distribution gy (s°) on A;, the probability distributions my are uniquely
determined by gy as follows:

th1

W9(31,-~-7B)—qe 5 Bl H/ qo dl’z, z+1

for each cylinder set {By, ..., B;} € X.. Hence, for each s' = (xy,...,7;) € S" and x,1 € Xpp1,

- Loty 4 (50) (1) H§:1 Qo (@i, Tig1)
To Tt+41,5 ) - 0 1
qo (s°) (1) I T,z ao (i, wita)

while, for each {Bj, ..., B;} € ¥ and each A C ©,

= (o (-Tta $t+1) )

fAQG Bl ( t‘lfB do dmz;Bz—i-l) dlvb

)
N(A ’ B1,...,B) f@ QQ( )(31) <HZD1 o (diUz,BHl)) dlu.

2.2 Plans

At the initial time (¢ = 0) and at each subsequent time ¢, the decision maker (DM) chooses
a “consumption” plan, detailing current and future consumption. The available information
at t is given by the realizations of the random variables X7, ..., X;. At the initial time ¢t = 0,
the DM has not yet observed any realizations.

Let C be a payoft space, which is assumed to be a compact interval in R endowed with
the standard topology of the real line. Consider a map f : 7 U {0} x S — C that associates
a payoff to each pair (¢, s). We can represent f as a collection {f;}, 7 oy With f;: S = C
for each t > 0.

We say that f is a plan if fy is {&, S}-measurable (i.e., it is a constant) and each f; is
o (X, ..., X;)-measurable for each ¢ € 7. In other words, setting ¥; = o (X, ..., X}) for each
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t €T and Xy = {@, S}, f is a plan whenever it is a payoff stream adapted to the filtration
{Eihierugey- As o (X1, .., Xy) is the o-algebra generated by the cylinder sets {z1, ...z},
each f; actually depends only on the finite paths s € S* and f; (z1, ..., x;) reads as follows:
“fi (z1,...,m;) € C is the time ¢ payoff the DM receives if he arrives at the node identified by
st = (xq,...,2;).” Here we adopt the convention s® = {&}.

For this reason we can regard a plan f as a function f : & — C defined over the set of
nodes S. For convenience, this is the way we will view plans throughout the paper. Denote
the set of all such plans by F.

A subset of plans of special interest are the deterministic plans. Let d € F denote a
deterministic plan, i.e., a payoff stream such that the payoff obtained at each time ¢ does
not depend on the particular node reached at that time. Formally, for each ¢ there is ¢ € C,
denoted by ¢ (t), such that d(s') = ¢(t), Vs' € S*. Finally, given ¢ € C, with a (standard)
slight abuse of notation we will also use ¢ to denote the constant stream that pays off ¢ at
each node.

2.3 Continuation Plans

It will be important to have a notion of a continuation plan that specifies payoffs only from
a node s' onward. We define the set of continuation plans at node s' to be the restriction
of the set of plans F to successors of s', i.e., to U;>S7 (s'), and denoted it by Fy with
generic element fi. Given a plan f, the continuation plan induced by f at s*, denoted fs,
is the restriction of f to successors of s'. Observe that while f,: is a generic function from
Ur>S7 (s%) to C, fist is a specific such function determined by f.

We next introduce the concept of mized continuation plans. An s'-mixed continuation
plan is a probability distribution on F,:. For example, given a finite collection {f;} , of

continuation plans in Fy, and a corresponding set of probabilities {p;};_,, { fi, pi}._, denotes
the s'-mixed continuation plan given by the lottery

f1(s7) for each s™ > s' with probability p,

fn(s7) for each s™ > s' with probability p,.

In words, the s'-mixed continuation plan corresponds to a randomization at node s' over the
continuation plans {f;}"_; in Fg, such that with (an objective) probability p; the continua-
tion plan f; is followed on all nodes that succeed s.

Though these mixed plans can be studied in full generality, for our purposes it is enough
to consider mixing over deterministic plans. Let Dy be the subset of F: consisting of the
deterministic continuation plans at s'. As Dy = H7->t C, we can endow D, with the product
topology. Below, we make use of the set of s-mixed deterministic continuation plans given

by the set Py of all countably additive Borel probability measures defined on (D, Byt),
where B, is the Borel g-algebra induced by the product topology.



2.4 Second Order Acts

Definition 1 A second order act is any function { : © — C that associates an element of
O to a payoff. We denote by § the set of all second order acts.

We introduced second-order acts in KMM and used preferences over them to reveal the
DM’s subjective uncertainty about the probabilities of the observations. They will play
a similar role in this paper. There is a question whether preferences over these acts are
observable, and thus, the extent to which assumptions on such preferences are behaviorally
meaningful. For example, in what sense can one check that the DM prefers a bet paying off
if mp, is the process governing the observations to a bet paying off if 7y, is the true process?
The only sense in which this could be more difficult than observing choices among usual
Savage acts is that one could doubt that the true process could be verified. However, in a
dynamic environment as in the current paper, given enough time and sufficient stationarity
of the processes, one can discriminate as finely as desired among the finite set of parameters
©. This follows from recent results in the literature on Bayesian consistency (see Lijoi,
Prunster, and Walker (2007)) which imply that under stationarity assumptions the estimator
constructed by updating a strictly positive (e.g., uniform) distribution over © by Bayes’ rule
is a consistent estimator of the true parameter.

In this sense, a bet that this estimator will assign sufficiently high weight to 6, at a date
sufficiently far in the future, is approximately a bet on 6 (i.e., a bet that the true process
is 7y, ). Further informative discussion of the nature and verifiability of second order acts is
contained in KMM, pp. 1854 and 1856.

2.5 Preferences

We will be concerned with preferences over two domains. Of primary interest are the DM’s
preferences at each node s’ over plans and mixtures over deterministic continuation plans,
FUP,:. At each st, this is denoted by the binary relation $=,:. The second order acts, §, are
the other domain of interest. Let =2, denote the DM’s preference ordering over § at node

st.

3 Assumptions on Preferences

Our assumptions on preferences fall naturally into two major categories. First are four as-
sumptions that are quite standard for an intertemporal setting and are not tied in any special
way to the smooth ambiguity model. They are followed by four assumptions analogous to
the three assumptions KMM used to derive the (atemporal) smooth ambiguity model. It
is how these last assumptions are integrated into the intertemporal setting that is key in
determining the sense in which the current theory is an extension of the earlier one.

3.1 Four Standard assumptions

The assumptions in this section are imposed on preferences over plans at each time t and
each node s' € S*.



Assumption 1 (Weak Order) =, on F is complete and transitive.

Assumption 2 (Monotonicity) Given any f,g € F, if f(s) > g(s) for all s > s*, then
f =st g. If, in addition, f and g are deterministic and f(1) > g(7) for at least some T > t,
then f =4 g.°

Assumption 3 (Archimedean) Given any f € F and c1,c5 € C, if ¢ =g [ =4t c2, then
there exist o, 5 € (0,1) such that ey + (1 0 a)cg =g f =5 Bey + (110 B)es.

Note, in the above assumption, aec; + (10 a)cy is simply a constant plan yielding the real
number ac; + (1 [ a)ey at each node.

Assumption 4 (Dynamic Consistency) Given any f,g € F, if f(s') = g(s') then

[ F(sta) 9 for all zp oy = f =g g.

The first three assumptions are standard and are clearly necessary for any monotonic,
real-valued and suitably continuous representation. Observe that monotonicity immediately
implies consequentialism, i.e., given any f,g € F

f\st = g|st =—> f ~st . (1)

In words, in evaluating plans at a node only payoffs from that point onward matter.® This
rules out past realized payoffs or payoffs at unrealized nodes affecting preference. There
are a number of circumstances in which it may be plausible for consequentialism to be
violated (see e.g., Machina (1989) concerning risk and Pollak (1970) or Abel (1990) from
the large literature on habit formation in consumption). However, it is quite useful in
practice as it ensures that each problem may be approached and analyzed at the time it is
encountered without regard to what occurred or did not occur in the (often unknown and
possibly complex) past.”

Of the four assumptions above, the only one that imposes conditions relating preferences
at different nodes is dynamic consistency. Some condition across preferences at different
nodes is needed to pin down dynamic behavior. Dynamic consistency is the standard way
of doing this in the economics literature, as some variation of it is inherent in any recursive
functional form. Informally, dynamic consistency says that if two plans give the same payoff
today, and, no matter what happens in between, one of the plans is always preferred to
the other at the next time, then that plan should also be preferred today. It’s essence is
that today’s preference over plans that may differ only from tomorrow onward should agree
with "tomorrow’s preference" over those plans in cases where "tomorrow’s preference" is
unanimous (i.e., does not depend on what is observed between today and tomorrow).

°In the second part of the axiom, time is the only argument of the acts as they are deterministic.

®Note that (1) is, as Hanany and Klibanoff (2007b) emphasize, only part of consequentialism. The
assumption that preferences are conditioned only on nodes, and not, for example, on other aspects of the
choice problem such as the feasible set of plans available at the initial node, is also part of consequentialism.
This aspect of consequentialism is built in to our framework by the fact that the collection of preferences
over acts we examine is subscripted only by nodes, s.

"It would be messy, but not conceptually difficult, to extend our analysis to cover the case where past
payoffs may affect preferences. Essentially the functions in our representation would all need to have the past
payoff history as an additional argument. See e.g., Kreps and Porteus (1978) and Johnsen and Donaldson
(1985) for examples of recursive structures with history-dependence.
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3.2 Embedding the (Atemporal) KMM Representation

We now lay out the additional assumptions that, together the standard four above, will
deliver recursive smooth ambiguity preferences. To help motivate these additional assump-
tions and to elucidate the sense in which the recursive theory extends the smooth ambiguity
model, it is useful to briefly review the three assumptions used to derive the smooth am-
biguity model in KMM. The first KMM assumption is that preferences over a subclass of
acts called lottery acts (which may be thought of as essentially lotteries over outcomes) are
continuous expected utility preferences. A natural analogue to lottery acts in the setting of
the current paper are the s-mixed deterministic continuation plans, Py, that were defined in
section 2.3. Rather than lotteries over single outcomes, these are lotteries over deterministic
streams of outcomes, as is appropriate to our intertemporal setting. Our first assumption
in this section will be that at each node s' preferences over P, are continuous expected
discounted utility preferences. Our second assumption in this section guarantees that in-
tertemporal and risk trade-offs are stable across nodes. In terms of the representation, this
will be equivalent to constancy across nodes of the discount factor and the utility function.
These two assumptions together form a natural intertemporal analogue to the first assump-
tion in KMM. The second KMM assumption states that preferences over second order acts
are continuous subjective expected utility preferences. In the present context, second order
acts are functions from the parameter space, ©, to the outcome space, C. Therefore, our
third assumption will be that, at each node, preferences over second order acts are continuous
subjective expected utility preferences. Moreover, we will assume that the utility function
is stable across nodes. KMM also proposes a natural association between acts and second
order acts that works as follows: given an act, for each parameter value, the associated
second order act yields the certainty equivalent of the act under the distribution implied by
the parameter value. Finally, the third KMM assumption requires preference over acts to
agree with preference over the associated second order acts. In our dynamic setting, our last
assumption is also of this form. However, the role of acts is played by continuation plans at
s' that are constant from time ¢+ 1 onward but where that constant may depend on the node
reached at t +1 (“one-step-ahead continuation plans”) and the role of certainty equivalent of
such a continuation plan given a parameter value is played by the outcome that, if received
from ¢ + 1 onward in place of what the continuation plan would give from then on leaves the
DM indifferent. This fourth assumption makes clear the sense in which the intertemporal
model extends the KMM model: KMM applies at time ¢ when considering plans where all
the uncertainty is resolved between t and ¢ + 1. We now make all of this more formal.

From the above discussion, it is clear that we need to consider preferences over st-mixed
deterministic continuation plans in addition to preferences over plans. The next assumption
says that =4 on Pg is continuous expected discounted utility and identifies, from the point
of view of preference, a degenerate mixtures in Py with a corresponding plan. In reading it
recall that a deterministic continuation plan ds might well be induced by a plan which is
deterministic from s' onwards but not deterministic overall.

Assumption 5 (Discounting) For each dy € Dy, there exists a plan f € F with fis = dg
such that f ~g {ds,1}. At each node s* € S, =4 on Py is represented by the expectation
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of a von Neumann-Morgenstern utility index Ug : Dg — R which has the form

=D B e (d (7)) (2)

T>t

for Bu € (0,1), ug continuous and not constant on C. Moreover, B, is unique and ug is
unique up to positive linear transformations.

Note that this assumption is not stated purely in terms of preferences, as the preceding
ones are. This should not be bothersome, however, as a purely preference-based foundation
for the utility indices, Uy, can be done exactly as in Theorem 2 of Epstein (1983).

Next is the invariance assumption that will guarantee that 5, and ug in Assumption 5
do not depend on the node st. To state it we need some notation: given any c,c,c” € C, we
denote by (¢, ", c), the deterministic continuation plan that pays off ¢’ at ¢, ¢’ at t + 1, and
¢ from t 4+ 2 onwards.

Assumption 6 (Invariance) Given any t,t' € T U {0}, any p € [0,1], and any set of
consequences ¢;, c., ! ki, ki k! with i = 1,2, we have:

729 T TPy e MY

{(c1,cf,er)y ps (KL Y Ky 10 pY iz {(ch, €5, c2), s (K, Ky, k), 100 p}
if and only if
{(di ey ps (R KY k) 10 pY oz {(ch, €5, c2)y 3 (Ko, g, 2)y s 10 p}-
This has the stated consequence:

Lemma 1 Under Assumption 6, there is f € (0,1) and u : C — R continuous and not
constant such that in Assumption 5, S, = 8 and ug = u for all s'.

Our next assumption states that preferences over second order acts have a continuous
subjective expected utility representation.

Assumption 7 (SEU on Second Order Acts) There exists a unique (additive) proba-
bility pge : 2° — [0,1] and a continuous, strictly increasing v : C — R such that, for all

f7g S S:
>;2t = 0))d st 0))d ste

Moreover, v is unique up to positive affine transformations, provided 0 < py (J) < 1 for
some J C O.

Remark 1 As is true for Assumption 5 (Discounting), more primitive axioms, such as
those used in Theorem V.6.1 of Wakker (1989), could be applied to =2 to deliver this
assumption. Notice, as v does not have the subscript s!, Assumption 7 implicitly assumes
that kgt restricted to constant elements of § does not vary with s'. Moreover, observe if
there is no J C O, such that 0 < pg (J) < 1, then v can be unique up to only monotone
transformations.
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To state our final assumption, we first need to define one-step-ahead continuation plans
and one-step-ahead certainty equivalents. Let FJ, be the subset of continuation plans in
Fg that yield a stream, constant from ¢ + 1 onwards, that only depends on the immediate
successor node of s*. These are one-step-ahead continuation plans. Formally, F7 is the set

] U
{fo € For: for(sT) = fu(s™h) Vst eSH ) Vs es™ ) vr>t+1}.

Given any continuation plan fi € Fg , consider for each z;,1 € A;y; the deterministic
continuation plan

b Dt t t t
dfst (:Et-&-l) = fst S ) 7fst(5 7xt+1)7fst(3 7$t+1)a ---:fst(s 7xt+1)’ ) :

Formally, dy , (2441) € FJ isgiven by dy, (z411) (t) = fo (s') and dy, (x141) (1) = for(s', 2441)
for all = > ¢+ 1.

Definition 2 Given any one-step-ahead continuation plan fs € FJ, the one-step-ahead
certainty equivalent of f. given 0, c;, (0), is a payoff ¢ such that, for any g € F, if
gist = (fst (s"),¢,¢,...,¢,...), then
U
o gy @) 70 2issi) ),
In other words, the one-step-ahead certainty equivalent of the one-step-ahead continua-
tion plan f is the payoff making the DM indifferent at s’ between the continuation plan
having that payoff from time ¢ + 1 onwards and the s*-mixed plan which pays off dy, (z;41)
with probability g (z;11; s'). Observe that such a mixed plan is indeed an element of Pi:.

Definition 3 Given fs € FZ, f* € § denotes a second order act associated with f,
defined as follows
f20) =cp, (0) for all 6 € O.

Assumption 8 (Consistency with Associated Second Order Acts) Given fg,gs €
* and associated f%, g% € F, if fs (s') = gst ('),

[ms 9= [P0 ¢

for some f,g € F with fis& = fs and g5 = gst.

4 Main Representation Theorem

In this section, we show that our assumptions yield a recursive smooth ambiguity represen-
tation of =, over plans. To do this, it will be helpful to be able to refer directly to induced
preferences over continuation plans rather than always referring back to preferences over
plans. To this end, consider for each ¢ and s*, induced preference relations =* on Fy U Py,
the union of continuation plans at node s* and s‘-mixed deterministic continuation plans.
We call these induced preferences because they are fully determined by =,. On Py define
=r=r=s. On the set of continuation plans, F:, define =¥, as follows:

12



f|st >F:t J|st < f st 9, vf|st>g|st € «7:-81~

Observe that each element of F,: can be represented as f|s:, where f is a suitable plan in the
sense of having that element of F,: as continuation at s'. By consequentialism, as expressed
in (1), the particular plan f used for such representation is immaterial, and so =% is well
defined on F,:. Finally, when comparing elements of F, and P, complete the specification
of =% from »=4 in the obvious manner:

Jist mae 0= [lzap, and p =4 fla <= piza [, VfeF,p€Ps.

We begin by using the assumptions to get a representation of »=%; restricted to plans in F7
sharing the same payoff at s'. This will be a key step in deriving the main representation
theorem. Denote by U the range of (10 5)"" u.

Proposition 1 Suppose Assumptions 1-8 hold. Then there exist continuous and strictly
increasing functions u : C — R and ¢ : U — R, and an additive probability pi,. : 2° — [0,1]
such that, given any fg,gs € Fl with fs (s') = gs (s), we have fs =% gs if and only if

u(fuls o)) 0,

/@QS(/X tog ”““’S))d”st
u(ge(sho)) 0,

- /(9¢(/X tog ‘””“S))d“st‘

The probability pa s unique and the function u is unique up to positive affine transforma-
tions. Moreover, given u, the function ¢ is unique up to positive affine tmnsformatigns,
provided 0 < pg (J) < 1 for some J C ©. If i = au + 6, a > 0, then the associated ¢ is

such that ¢(ay + 25) = ¢ (y), where y € U.

Given ¢ € C and st € S, let ¢+ € Fy be the deterministic continuation plan such that
cst (1) = cfor all T > t.

Definition 4 Given f € F and s' € S, the continuation certainty equivalent, c; ., of
fat s" is a payoff ¢ € C such that cg ~% fi.

Lemma 2 For each f and s', there exists a continuation certainty equivalent.

Denote by ¢} ¢ the constant continuation plan in Fy paying off ¢; ¢ at s* and at all nodes
that follow it.

Definition 5 The continuation value of f at s' is given by Vi (f) = U (Crst)-

Given our assumptions, the function Vi : F — R represents =, on plans. In fact, by
definition and by Assumption 5, we have:

f = st = flst %:t g|st <= Ef’si %:r Eg’st
e U () 2 U (Gpur) = Vit (f) 2 Vi ).
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The Monotonicity assumption implies that if f (s) > g (s) for all s > s*, then Vi« (f) > Vi (g).
If, in addition, f and ¢ are deterministic and f(s) > g(s) for at least some s > s’ then
Monotonicity implies Vi (f) > Vi (g). We refer to a functional Vi as monotonic if it
satisfies these two properties given by Monotonicity.

We can now state our main representation result:

Theorem 1 For each t and s, let =4 be a binary relation on F U Py and kit be a binary
relation on §. Assumptions 1-8 hold if and only if there exists an additive probability pg :
29 — [0,1] for each s' and continuous and strictly increasing functions u : C — R and
¢:U — R, such that

(i) On F, each preference =g is represented by the monotonic recursive functional Vi :
F — R given by

V() =u f 1))+ 86" { X ( / Vit (1) g st)) dust} G

(ii) On Py, each preference =4 is represented by the expected discounted utility functional
EUy : Pe — R given by

EUy (p) = / [Z B tu(d (r))] dp;
Dot | 7=t
(iii)) On §, each preference =% is represented by the subjective expected utility functional

V3:§ — R given by
_ u (f(9))

The uniqueness properties of ji., u and ¢ are as stated in Proposition 1.

Equation (3) in (i) is our desired recursive representation of preferences over plans at
each node and is the main result of this theorem. The representations in parts (ii) and
(iii) over mixed deterministic continuation plans and second order acts, respectively, fol-
low quite directly from the discounting and invariance assumptions and the assumption
of SEU on second order acts. Notice that in equation (3), the aggregation across pos-
sible time t + 1 continuation values is done according to the KMM smooth ambiguity
functional — this links the dynamic and timeless smooth ambiguity models. The term

o ! [fe ) (th+1 Vistzenr) () dmo (55 st)> d,ust} should be interpreted as the utility equivalent

of the possibly ambiguous (in the sense that each # may induce a different distribution over)
continuation values.

Although it may not be immediately apparent, in the case of ambiguity neutrality (i.e.,
¢ affine), (3) reduces to subjective expected discounted utility with Bayesian updating. We
show this formally in the next proposition, where we make explicit the corresponding prior
belief. We also show that this belief is relevant to and recoverable from preferences with any
ambiguity attitude, as long as ¢ is differentiable.
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To state the proposition, it is helpful to define the standard notion of a predictive dis-
tribution as in Bayesian statistics (i.e., the ug-average of the my’s). Given pg, define the
predictive distribution Py : % — [0, 1] by:

0
Py (B):/ﬂ'g B|St)d[118t (9), VB € X.
©

In particular, using j to denote fi0, Py (B) = [y 7 (B)du(f). Observe that Py (B) =
Ps (BNs'). We denote by Pyt (2411, ..., T+1)) the probability of the cylinder set determined
by (', Zev1y ooy Tork) (€, P ({8' @11, .o, Tk })). In particular, the one-step-ahead pre-
dictive distribution at s' is the marginal on X, ; of Py, and the probability it assigns to
Xi11 = 2441 is denoted Pyt (x441).

Proposition 2 Given, for each s', a Vi as in (3), there exists a unique countably additive
probability n : X — [0, 1] such that,

(i) if ¢ is affine, then
Ve () = /S [Z BTt (f <sT>>] di (4)

where the measure 1 is related to the wy’s and the g ’s (via the predictive distributions)
through the formula

n({z, . wm}) = Po (21) Py (22) -+ Ploy ez ) (Tm) (5)
for each m > 1 and x1, ..., Z,,, and n, is the Bayesian update of n.3
(ii) if ¢ is differentiable, then

Ve (f) 018" u(f (", w41, - - Tryn)))]
OV (f) /O [u(f(s"))] f=d

for eachn > 1,t,s", 2441, ..., 71, and deterministic plan d.

= Tt ({St7 Tet1s--- axt+n})

Part (i) of the above result verifies that when ¢ is affine we get discounted expected
utility with Bayesian updating of a unique measure on paths, 7. This measure is uniquely
determined by the product of one-step-ahead predictive distributions. Equation (5) implies
that the one-step-ahead predictive distribution at any node is exactly the one-step-ahead
marginal of the Bayesian update of 7.

Part (ii) of the proposition shows that the marginal rate of substitution

WV (f) 1O B " u(f((S" Teg1s - Tegn)))]

Ve (f) /0 [ulf(s"))] f=d
at s' between utility at s’ and the present discounted utility at (s*, 2441, ..., Z¢1n), when eval-
uated at any deterministic plan d, is the Bayesian conditional probability 1. ({s, 2411, ..., Ztin})

8That is, ny (B) =n (BN st) /n(st) for all s € S and B € X.
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of {s', x¢y1,...,2¢1n} given s’ according to 7. This shows that n can be meaningfully char-
acterized solely in terms of behavior toward plans even when preferences are ambiguity
sensitive, as long as ¢ is differentiable (i.e., preferences are smooth). Under expected util-
ity (with monetary payoffs and differentiable utility) subjective probability measures the
trade-offs at the margin, evaluated at a riskless position, between sure payoffs and payoffs
contingent on a specific event. As the proposition shows, analogously,  measures the trade-
offs at the margin between utility at s' and (discounted) utility at successor nodes, when
these trade-offs are evaluated at a deterministic plan.

In addition to 7, we have the predictive distributions, Py, which are determined from
preferences over second order acts. It is natural to ask whether the 7, agree with the Pj
everywhere, and not simply for the one-step-ahead marginals. As we will show in Section 5,
this question is equivalent to the question of whether the p  are the Bayesian updates of p.

4.1 Discussion of Our Approach

To give some additional insight into the derivation of the model, we present an alternative
approach using a different final consistency assumption and show why it runs into difficulty.
One might have thought that Assumption 8 could be formulated as follows:

First, some modified definitions. Given any continuation plan fs € Fy, consider for
each s = (8", 2411, Tyyoy oo Toan, . .) € SN{x1,..., 24} the deterministic continuation plan

N Dt t t t
dfst (8)= foa s ) s fst (85 wer1), [t (85, Toqns Tega)s oo fst (87 Tegn, Togs -+, Tegm), ) .

Definition 6 Given any continuation plan fs € Fg, the certainty equivalent of f. given
0, e, (0), is a payoff e such that

0 0O l
foo s') ee e, ) ~h {dfst (s),mg s | St)}SESﬂ{ml,...,xt} .

In other words, the certainty equivalent of the continuation plan f,: is the payoff making the
DM indifferent between the continuation plan having that payoff from time ¢+ 1 onwards and
the s'-mixed plan which pays off according to dy, (s) with probability 7 (s | s*). Observe
that such a mixed plan is an element of P, and so via Assumption 5 it is in the domain of
the induced preference =%, .

Definition 7 Given fy € Fy, f2 € § denotes a (hatted) second order act associated
with f, defined as follows

A

f7(0) = er, (0) for all 6 € ©.

Assumption 9 (Consistency with Hatted Second Order Acts) Given fy, g € Fi
and f2ag2 € 8/7 Zf fst (St) = gst (St) )
f%stg<:’\>f2 %zt 92

S

for some f,g € F with fis& = fs and g5 = gst.
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Notice the difference between this approach and the one we have taken. In our ap-
proach, the consistency assumption applied only to one-step-ahead continuation plans. In
this approach it applies to all continuation plans. One can show, along the lines of the
proof of Theorem 1, that substituting this new assumption for Assumption 8 and dropping
dynamic consistency (Assumption 4) implies that there exists the following “reduced-form”
representation for >, on plans:

Vi(f)=u f &)+ 8" / o 3w sls) S A (5) (1) | du | (6)

seSN{st} T2>t+1

where 7y (s | s') is the probability of the path s given history s’ and given that the true para-
meter is 6 and f (s) (7) is the time 7 payoff according to plan f along path s. A comparison of
equation (6) with equation (3) reveals that, though they agree in evaluating one-step-ahead
continuation plans, in general they are quite distinct. In particular, (6) will generally violate
dynamic consistency, while (3) will generally violate the modified consistency assumption
(Assumption 9).

Generally, one can think of two ways of relating preferences in a dynamic model to those
in an atemporal setting. The first is by viewing the atemporal model as the special case of
the dynamic model with one-period of uncertainty. This is the nature of our recursive exten-
sion of the smooth ambiguity model — the atemporal model corresponds to preferences over
one-step-ahead continuation plans sharing the same current payoff. The second is by viewing
the atemporal model as a reduced-form of the dynamic model, abstracting away from the
dynamic structure yet representing the same preferences. The alternative dynamic represen-
tation in equation (6) bears this type of relation to the atemporal model for continuation
plans sharing the same current payoff.

It would certainly be an elegant result to have a dynamic model that related to the atem-
poral model in both ways. We do not generally have this. In this regard, we suggest that
the modified consistency assumption used in deriving the reduced form may not be com-
pelling, in that it requires the DM to behave as if all uncertainty were resolving immediately
when, in fact, this would be true only for one-step-ahead continuation plans. Why does this
matter in our set-up? It matters because our DM is both ambiguity sensitive and respects
consequentialism (as noted in Section 3.1, the latter property follows from Monotonicity
(Assumption 2)). Ambiguity sensitivity will, in general, result in non-separabilities in the
evaluation of payoffs across mutually exclusive future events. Consequentialism requires
that, once a given node has been reached, payoffs at unrealized events cannot influence pref-
erences. When all uncertainty resolves immediately, there is no tension between these two.
When it resolves gradually, however, there will generally be a strong tension. Consider, for
example, a DM who obeys the reduced-form consistency assumption evaluating, at s, a
trade-off between utility at node (s*, 2441, 2412) and utility at node (s*, z411,2},,). Because
of ambiguity and the DM’s sensitivity to it, this trade-off may well depend on the utility at
a third, mutually exclusive, node, say, (s*,z},,). However, if this DM reaches node (s, z;41),
then consequentialism demands that the outcome at (s*,z}, ;) not matter in evaluating the
same trade-off. This is why there is a conflict between the reduced-form consistency and
dynamic consistency. It seems reasonable that a DM who is aware of the full implications
of the dynamic setting will anticipate the decision opportunity at node (s, z;,1), and want
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to evaluate the consumption possibilities (implied by f,) that obtain beyond (s, z:y1) us-
ing the view of ambiguity that will become available at (s', ;1) rather than the view of
ambiguity expressed through p.. Thus it is not obvious that the DM think the evaluation
of fi is on par with evaluating an associated second order act for which all uncertainty,
by definition, resolves immediately upon taking the decision. But this is exactly what the
reduced-form approach described in this section assumes. In other words, a difficulty with
the reduced-form approach is that ambiguity present at s, and reflected in ., would figure
in the (current) evaluation of the associated second order act, whereas this ambiguity is not
relevant to evaluating the part of the consumption stream that comes beyond (s*,x,11) if
that node were to be reached.

Although the recursive and reduced-form approaches conflict in general, there are two im-
portant special cases in which they can be reconciled. First, if ¢ is affine, so that preferences
are ambiguity neutral, there is no conflict between the two. Second, if ¢ is differentiable
and we restrict attention to local behavior at deterministic plans, again the two approaches
are compatible. When exploring updating in Section 5.1, these domains of agreement prove
quite useful. In both these domains, the tension discussed above is absent because the DM
is ambiguity neutral either globally (¢ affine) or locally around deterministic plans (¢ dif-
ferentiable). Therefore the marginal trade-off between two nodes is independent from the
outcome at any mutually exclusive third node.

From the point of view of dynamic applications, it is worth noting that even if both
a reduced form and a recursive representation were available, it is the recursive form that
will be of far more use because of its tractability. The only potential disadvantage of a
recursive relative to a reduced form representation, is that existence and uniqueness of the
representation becomes a more subtle issue. This is the subject of the next section.

4.2 Existence and Uniqueness

If our preferences obeyed the “reduced-form” representation discussed above, they would
be explicitly determined once the elements u, 3, ¢, m and u are specified. However, the
preference functional, V,, that by Theorem 1 represents the preference =, on plans, is only
implicitly defined by the recursive equation (3). Therefore, an important issue is whether,
for a given specification of the elements u, 3, ¢, m and u, such recursive equation admits a
unique monotonic solution. Otherwise, Theorem 1 would be of little use; without uniqueness,
it is difficult to understand what it is beyond u, 3, ¢, 7 and p that determines preference.
Approachability of this solution through iterative methods is also of practical interest.

Our first result in this section shows that there always exists a solution to the recursive
equation (3) in the representation. We then provide two sets of sufficient conditions for
uniqueness and monotonicity of the solution. Proposition 3 shows that any solution is unique
and monotonic when restricted to plans that eventually become deterministic. Theorem 3
shows that uniqueness and monotonicity for all plans holds under conditions on ¢ weak
enough to encompass many cases of interest. Under the same conditions, iterative methods
for finding V;: are guaranteed to converge.

The general existence result is the following:
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Theorem 2 For each f there exists a Vi (f) satisfying the recursive equation (3) in Theorem
1.

If the time horizon were finite, a simple backward induction argument would be enough
to solve equation (3), and the solution would be unique and monotonic. In our infinite hori-
zon set-up this is no longer possible, but we can still prove a very general uniqueness and
monotonicity result for eventually deterministic plans, that is, plans that become determin-
istic after a finite time.

Proposition 3 When restricted to eventually deterministic plans, the recursive equation (3)
has a unique and monotonic solution.

We now move to explore the case of more general plans. For our uniqueness results, we will
need to refer to several classes of functions ¢: functions with a non-decreasing coefficient of
absolute ambiguity aversion, functions with a non-increasing coefficient of relative ambiguity
aversion and functions with a strong form of a decreasing coefficient of absolute ambiguity
aversion.” We will denote these classes as IAAA, IRAA and SDAAA, respectively.

Formally, we will say that a continuous and strictly increasing function ¢ : 4 — R is
TAAA if it is twice continuously differentiable and is such that the function

¢" (z)
¢ (x)
is non-decreasing, while it is IRAA if the function
v (x)
¢ (z)
is non-decreasing and is SDAAA if the function

P AW
e TP

Az) =0

() =1 =z (2)

is non-increasing. Of note for applications, the union of these classes includes, among others,
the following classic cases:

1. The class of constant absolute ambiguity aversion (CAAA) functions:

6 () = ar +b if \(z)=0forall z el
Y7\ Oae ™ +b ifA(z)=A>0forallz el

where a > 0 and b € R. KMM showed that these functions may be thought of as
displaying constant ambiguity attitude.

9This terminology follows that used in KMM. In particular, KMM relates the Arrow-Pratt coefficient of
¢ to ambiguity attitude.
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2. The class of constant relative ambiguity aversion (CRAA) functions:

$(z) =4 T +b 1f.($)= #1forallz eld
alnz +b if (z)=1forallzel

where ¢ > 0 and b € R. By analogy, one might view these functions as displaying
constant relative ambiguity attitude.

3. Quadratic functions that are increasing on the relevant domain.

We can now state a result showing uniqueness and monotonicity if ¢ is either IAAA,
IRAA or a subset of SDAAA.

Theorem 3 Assume U C R, and ¢ is twice differentiable on R, ,. There are unique
and monotonic Vi satisfying the recursive equation (3) in Theorem 1 if at least one of the
following holds:

(i) ¢ is [AAA; or
(1)) 0 ¢ U and ¢ is IRAA; or
(iii) ¢ is SDAAA and concave and sup,>, (x) < 1.

It is worth noting that under conditions (i), (ii) or (iii) the unique solution can be
found via contraction arguments and this provides uniform convergence of iterative methods
of finding a solution. See Appendix B for a formal statement. We emphasize that the
above conditions are sufficiency conditions only and we have not been able to construct a
counterexample failing uniqueness or monotonicity. We also note that the difficulty in finding
complete conditions for uniqueness is not unique to our model. Other, far older and quite
popular non-linear recursive models, for example those of Epstein and Zin (1989), are in a
similar situation (see Marinacci and Montrucchio (2007)).

5 Bayesian Updating and Learning

5.1 Bayesian Updating of u

At the end of Section 4 we raised the issue of whether the beliefs 7,: derived in Proposition 2
agree with the predictive distributions Ps. Recall that Proposition 2 guaranteed that their
one-step ahead marginals agree. We remarked that the question of overall agreement was
equivalent to the question of whether the .+ were the Bayesian updates of p. In this section,
we make precise the conditions under which this is true and discuss the significance of this
result.

Consider the DM’s marginal trade-off between utility at s and (discounted) utility at a
successor node (s', 411, ..., Ti1n), when evaluated at a deterministic plan. One could imag-
ine, because this trade-off is being made given only information available at s, the trade-off
could be recoverable from preferences over second order acts at s’ alone, in particular from
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. If the DM were expected ut