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Abstract

This paper axiomatizes an intertemporal version of the Smooth Ambiguity decision model
developed in Klibano¤, Marinacci, and Mukerji (2005). A key feature of the model is that it
achieves a separation between ambiguity, identi�ed as a characteristic of the decision maker�s
subjective beliefs, and ambiguity attitude, a characteristic of the decision maker�s tastes. In
applications one may thus specify/vary these two characteristics independent of each other,
thereby facilitating richer comparative statics and modeling �exibility than possible under
other models which accomodate ambiguity sensitive preferences. Another key feature is that
the preferences are dynamically consistent and have a recursive representation. Therefore
techniques of dynamic programming can be applied when using this model.
JEL Classi�cation Numbers: D800, D810.
Keywords: Ambiguity, Uncertainty, Knightian Uncertainty, Ambiguity Aversion, Uncer-

tainty Aversion, Ellsberg Paradox, Dynamic Decision Making, Dynamic Programming under
Ambiguity, Smooth Ambiguity.



1 Introduction

This paper axiomatizes and investigates a model of recursive preferences over intertemporal
plans, extending the smooth ambiguity model developed in Klibano¤, Marinacci, andMukerji
(2005) (henceforth KMM) to a setting involving dynamic decision making.
In KMM we propose and axiomatize a model of preferences over acts such that the

decision maker prefers act  to act  if and only if E�� (E� � ) � E�� (E� � ), where E
is the expectation operator,  is a vN-M utility function, � is an increasing transformation,
and � is a subjective probability over the set � of probability measures � that the decision
maker thinks are relevant given his subjective information. A key feature of our model is
that it achieves a separation between ambiguity, identi�ed as a characteristic of the decision
maker�s subjective beliefs, and ambiguity attitude, a characteristic of the decision maker�s
tastes. We show that attitudes towards pure risk are characterized by the shape of , as
usual, while attitudes towards ambiguity are characterized by the shape of �: Ambiguity
itself is de�ned behaviorally and is shown to be characterized by properties of the subjective
set of measures �. One advantage of this model is that the well-developed machinery for
dealing with risk attitudes can be applied as well to ambiguity attitudes. The model is
also distinct from many in the literature on ambiguity in that it allows smooth, rather than
kinked, indi¤erence curves. This leads to di¤erent behavior and improved tractability, while
still sharing the main features (e.g., Ellsberg�s Paradox). The maxmin expected utility model
(e.g., Gilboa and Schmeidler (1989)) with a given set of measures may be seen as a limiting
case of our model with in�nite ambiguity aversion.1

The functional representation obtained in KMM is particularly useful in economic mod-
eling in answering comparative statics questions involving ambiguity. Take an economic
model where agents� beliefs re�ect some ambiguity. Next, without perturbing the infor-
mation structure, it is useful to know how the equilibrium would change if the extent of
ambiguity aversion were to decrease; e.g., if we were to replace ambiguity aversion with
ambiguity neutrality, holding information and risk attitude �xed. (See, for example, Gollier
(2005) for a portfolio choice application.) Another useful comparative statics exercise is
to hold ambiguity attitudes �xed and ask how the equilibrium is a¤ected if the perceived
ambiguity is varied (see Jewitt and Mukerji (2006) for a de�nition and characterization of
the notion of "more ambiguous"). Working out such comparative statics properly requires a
model which allows a conceptual/parametric separation of (possibly) ambiguous beliefs and
ambiguity attitude, analogous to the distinction usually made between risk and risk attitude.
The model and functional representation in KMM allows that, whereas such a separation
is not evident in the pioneering and most popular decision making models that incorporate
ambiguity, namely, the multiple priors/maxmin expected utility (MEU) preferences (Gilboa
and Schmeidler (1989)) and the Choquet expected utility (CEU) model of Schmeidler (1989).
While the preference model in KMM achieves the task of separating ambiguity and am-

biguity attitude, the scope of application of this model is limited by the fact that it is a
timeless framework. Yet many economic questions involving uncertain environments, es-
pecially in macroeconomics and �nance, are more intuitively modeled using intertemporal

1For alternative developments of similar models see Ergin and Gul (2004), Nau (2006), Neilson (1993)
and Seo (2006). All of these models draw inspiration from Segal (1987), the earliest paper relating ambiguity
sensitive behavior to a two-stage functional relaxing reduction.
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decision making frameworks. It is of interest to re-examine such questions by adding an
ambiguity dimension. Computation and analysis of intertemporal choices is greatly facili-
tated by applying recursive methods. For these methods to be applicable, preferences have
to satisfy a certain dynamic consistency property. A number of recent papers, including
Epstein and Schneider (2003b), Wang (2003), Hayashi (2005), and Maccheroni, Marinacci,
and Rustichini (2006b), have provided preference foundations for extending other ambigu-
ity models to an intertemporal framework while satisfying this dynamic consistency. All of
these, however, share the limitation inherent in the atemporal models they extend, of failing
to separate ambiguity from ambiguity attitude without restricting the range of ambiguity
attitudes. The present paper avoids this limitation, as does the contemporaneous work of
Hanany and Klibano¤ (2007a), the only other preference model we know of extending KMM
to a dynamic setting. A major di¤erence between the two extensions is that our model is
recursive while that in Hanany and Klibano¤ (2007a) is not. We discuss these and other
papers further in Section 7.
The present paper, then, presents the �rst recursive model of intertemporal preferences

that are ambiguity sensitive and dynamically consistent that does allow a separation of
ambiguity from ambiguity attitude. To see why a such a preference model can be useful,
recall the classic equity premium puzzle. The equity premium puzzle originally refers to
the fact that the Lucas (Lucas (1978)) intertemporal general equilibrium model can �t data
with steady consumption growth, low risk-free rates and high risk premiums only if the
coe¢ cient of (relative) risk aversion is allowed to be high in absolute value. This is a puzzle
in the sense that, given the consumption risk identi�ed in the data, the value of risk aversion
coe¢ cient required to explain the observed premium is incompatible with behavior under
risk observed in other domains, for example in experiments. Various authors (e.g., Chen
and Epstein (2002), Epstein and Wang (1994)) have shown theoretically using dynamic
extensions of the MEU model that ambiguity aversion has the potential to explain the
equity premium puzzle. They argue that ambiguity aversion adds to an agent�s aversion to
uncertainty over and above risk aversion, and so may add to the risk premium.2 To evaluate
the potential of an approach based on ambiguity, one has to be able to identify the extent
of ambiguity aversion needed in conjunction with the ambiguity consistent with the data to
explain the observed premium. Then one can check whether that value of ambiguity aversion
agrees with levels observed when examining behavior on other domains. To conduct such an
exercise, it is absolutely necessary to have a framework that allows one to separate ambiguity
from ambiguity aversion and that allows for a variable degree of ambiguity aversion and a
quanti�cation of this degree. Only then may we be able to infer from the data a measure of
ambiguity and ambiguity aversion. Indeed, recent work by Ju and Miao (2007) successfully
applies the model developed in this paper along these lines (see also Hansen (2007)).
In the present paper the basis of the dynamic model is the state space , the set of

all observation paths generated by an event tree, a graph of decision/observation nodes.
The root node of the tree, 0, branches out into a set of (immediate) successor nodes each
of which represents a stochastic contingency at time  = 1 and is generically denoted by
1 Each node 1 further branches out into (immediate) successor nodes 2 at time  = 2
and so on into the in�nite future.  is the set of all paths through this event tree; the

2However, see Gollier (2005) for caveats to this reasoning.

2



generic element of  is denoted by  The decision maker�s elements of choice are plans
 each of which associates a payo¤ to each pair ( ). The decision maker is (subjectively)
uncertain about which stochastic process gives the appropriate description of probabilities
on the event tree. The domain of this uncertainty is given by a �nite parameter space �,
each element of which (generically denoted by �) is a vector of parameters exhaustively
describing a particular stochastic process ��. We denote by �� ( j ) the probability under
distribution �� that the observation path will belong to the set , given that we have reached
node . Correspondingly, �� (+1; 

) is the probability under distribution �� that the next
observation will be +1, given we have reached node . The decision maker�s subjective prior
belief about the stochastic process, elicited from his preferences, is described by a distribution
�, de�ned on 2�, i.e., � : 2� ! [0 1]. The decision maker�s posterior belief about which
stochastic process applies at a node  is given by the Bayesian posterior distribution � (� j ).
In the formal analysis that follows we obtain assumptions and conditions on preferences

such that preferences on plans  , at a node , are represented by the following recursive
functional form:

 () = 
¬


¬

��

+ ��¬1
�Z

�

�

�Z

X+1

(+1) () d��
¬
+1; 


��

d�
¬
� j 

��


where  () is a recursively de�ned value function,  is a vN-M utility index, � is a dis-
count factor and � a function whose shape characterizes the DM�s ambiguity attitude (as in
KMM). Note that the represented preferences are recursive and dynamically consistent even
though they depart from expected utility (and are also not probabilistically sophisticated
(Machina and Schmeidler (1992))). Furthermore, there is a separation between ambiguity
and ambiguity attitude along with �exibility in the modelling of each.
The next section sets out the formal structure of the model. Section 3 describes assump-

tions on preferences that are then shown to deliver the representation in Section 4. That
section also includes a discussion of our approach and addresses some important existence
and uniqueness questions. Results characterizing Bayesian updating and learning in the
model appear in Section 5. Section 6 contains two examples: one comparing with recursive
multiple priors, and one on the equity premium. Related literature is discussed in Section
7, followed by a brief concluding section. Proofs are contained in two appendices.

2 Set-Up

2.1 Modeling Information

Denote by T an in�nite time horizon f1   g. Consider a sequence of discrete random
variables fg2T with values in �nite observation spaces X, endowed with their power sets
A = 2X. Each X consists of possible observations just before time , and  2 X denotes a
realization of the random variable . For convenience, we assume that all  are surjective,
so that X is the set of all possible realizations of each .

Let  =
Q

2T X be the set of all possible observation paths  = (1   ). Denote
by  =

Q
�=1 X� the collection of all �nite paths  = (1  ). Each �nite observation
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Figure 1: The �rst few time periods of an event tree with X = f1 2g.

path  identi�es a decision/observation node, which is the history of observations up to time
. For this reason we denote by  a generic time  node, while S denotes the set of all nodes;
i.e., S =[2T . On S there is a natural partial order, >, where  > 0 means that node 

is a successor of node 0  In particular, � () with � � , is the set of time � successors of
the node , i.e., � () = f� 2 � : � > g  Note that any node is considered a successor
of itself. We often denote a generic element of +1 () by ( +1) as it emphasizes the
way in which the successor is generated.

On  we consider the product �-algebra � =  2TA generated by all one-dimensional
cylinder sets  �

Q
6=2T X, where  2 A. For brevity, we denote by f1  g the

cylinder set with base 1 � � � � �, namely,

f1  g = 1 � � � � � � X+1 � � � �

Figure 1 illustrates the �rst few time periods in our setting.In the �gure, 1 = f(1) (2)g
and 2 = f(1 1) (1 2) (2 1) (2 2)g are the sets of time 1 and time 2 nodes, respectively.
An example of a cylinder set is the set of all observation paths with 1 = 1 and 2 = 1.
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We de�ne on � a family of probability distributions f��g�2�, where� is a �nite parameter
space. Throughout we assume that �� (1  )  0 for all �elementary� cylinder sets
f1  g.3 For each  2 �,

��
¬
 j 

�
=

(
��(\f1g)
��(1)

if  2 T
�� () if  = 0

is the conditional distribution of �� given  = (1  ). In words, �� ( j ) is the
probability under distribution �� that the observation path will belong to , given we have
reached node .4

For each  2 T , the one-step-ahead probability distribution �� (�; ) : A+1 ! [0 1] at
node  = (1  ) 2  is determined by

��
¬
+1; 


�
= ��

��
 +1

	
j 
�
=
�� (1   +1)

�� (1  )
 8+1 2 X+1,

where f +1g and  denote the elementary cylinder sets f1   +1g and f1  g,
respectively. In words, �� (+1; 

) is the probability under distribution �� that the next
observation will be +1, given we have reached node .

The prior distribution � is de�ned on 2�, i.e., � : 2� ! [0 1]. Given any suitable  2 �,
the posterior distribution � (� j ) : 2� ! [0 1] is de�ned as follows:

� ( j ) =

R

�� () d�R

�
�� () d�

 8 2 2� 8 2 �.

In particular, if  is the cylinder f1  g 2 �, then

� ( j 1  ) =

R

�� (1  ) d�R

�
�� (1  ) d�

 8 2 2�.

Example 1 Assume X = X for all  and suppose that each �� makes the sequence fg2T
i.i.d., with common marginal distribution � : A ! [0 1]. In this case, the probability
distributions �� are given by the product probabilities 1� : � ! [0 1], uniquely determined
by � as follows:

1� (1  ) =

Y

=1

� () 

3Observe the notational di¤erence between the history (1  ), an element of the Cartesian productQ
�=1 X� , and the cylinder f1  g, the subset of � given by f1g� � � � � fg�X+1 � � � �. For brevity,

we write �� (1  ) in place of �� (f1  g).
4The �niteness assumptions on both the parameter space � and the observation spaces X along with the

full support assumption on �� allow us to avoid a number of technical modeling issues as well as sidestep
the issue of preferences following zero-probability events. These issues are not central to our paper. We
believe that all but the results in Section 5 could be suitably extended to apply to non-�nite environments
and appropriately non-null events. For this reason we maintain integral notation. See Section 5 for some
discussion of the role of �niteness there.
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for each cylinder set f1  g 2 �. Hence, for each node  2  and observation +1 2
+1, we have

��
¬
+1; 


�
=

Q+1
=1 � ()Q
=1 � ()

= � (+1) 

while, for each cylinder set f1  g 2 � and each set  � �,

� ( j 1  ) =

R


1� (1  ) d�R
�

1� (1  ) d�
=

R


Q
=1 � () d�R

�

Q
=1 � () d�

.

N

Example 2 Assume againX = X for all  and suppose now that each �� makes the sequence
fg2T a homogeneous Markov chain with transition function � : X¬1 � A ! [0 1] for
 � 2, where � ( �) : A ! [0 1] is a probability measure on A for each  2 X¬1,
and � (� ) : X¬1 ! [0 1] is an A¬1-measurable function for each  2 A. Given an
initial probability distribution � (

0) on A1, the probability distributions �� are uniquely
determined by � as follows:

�� (1  ) = �
¬
0
�
(1)

¬1Y

=1

Z



� ( +1)

for each cylinder set f1  g 2 �. Hence, for each  = (1  ) 2  and +1 2 X+1,

��
¬
+1; 


�
=

� (
0) (1)

Q
=1 � ( +1)

� (0) (1)
Q¬1

=1 � ( +1)
= � ( +1) 

while, for each f1  g 2 � and each  � �,

� ( j 1  ) =

R


� (
0) (1)

�Q¬1
=1

R


� ( +1)
�
d�

R
�

� (0) (1)
�Q¬1

=1

R


� ( +1)
�
d�



N

2.2 Plans

At the initial time ( = 0) and at each subsequent time , the decision maker (DM) chooses
a �consumption�plan, detailing current and future consumption. The available information
at  is given by the realizations of the random variables 1  . At the initial time  = 0,
the DM has not yet observed any realizations.
Let C be a payo¤ space, which is assumed to be a compact interval in R endowed with

the standard topology of the real line. Consider a map  : T [ f0g�  ! C that associates
a payo¤ to each pair ( ). We can represent  as a collection fg2T [f0g, with  :  ! C
for each  � 0.
We say that  is a plan if 0 is f? g-measurable (i.e., it is a constant) and each  is

� (1  )-measurable for each  2 T . In other words, setting � = � (1  ) for each
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 2 T and �0 = f? g,  is a plan whenever it is a payo¤ stream adapted to the �ltration
f�g2T [f0g. As � (1  ) is the �-algebra generated by the cylinder sets f1  g,
each  actually depends only on the �nite paths  2  and  (1  ) reads as follows:
� (1  ) 2 C is the time  payo¤ the DM receives if he arrives at the node identi�ed by
 = (1  ).�Here we adopt the convention 0 = f?g.
For this reason we can regard a plan  as a function  : S ! C de�ned over the set of

nodes S. For convenience, this is the way we will view plans throughout the paper. Denote
the set of all such plans by F .
A subset of plans of special interest are the deterministic plans. Let  2 F denote a

deterministic plan, i.e., a payo¤ stream such that the payo¤ obtained at each time  does
not depend on the particular node reached at that time. Formally, for each  there is  2 C,
denoted by  (), such that () =  (), 8 2 . Finally, given  2 C, with a (standard)
slight abuse of notation we will also use  to denote the constant stream that pays o¤  at
each node.

2.3 Continuation Plans

It will be important to have a notion of a continuation plan that speci�es payo¤s only from
a node  onward. We de�ne the set of continuation plans at node  to be the restriction
of the set of plans F to successors of , i.e., to [��

� (), and denoted it by F with
generic element . Given a plan  , the continuation plan induced by  at , denoted j,
is the restriction of  to successors of . Observe that while  is a generic function from
[��

� () to C, j is a speci�c such function determined by  .
We next introduce the concept of mixed continuation plans. An -mixed continuation

plan is a probability distribution on F. For example, given a �nite collection fg
=1 of

continuation plans in F, and a corresponding set of probabilities fg
=1, f g

=1 denotes
the -mixed continuation plan given by the lottery

8
><

>:

1 (
� ) for each � >  with probability 1
...

...
 (

� ) for each � >  with probability 

In words, the -mixed continuation plan corresponds to a randomization at node  over the
continuation plans fg

=1 in F, such that with (an objective) probability  the continua-
tion plan  is followed on all nodes that succeed 
Though these mixed plans can be studied in full generality, for our purposes it is enough

to consider mixing over deterministic plans. Let D be the subset of F consisting of the
deterministic continuation plans at  As D =

Y
��

C, we can endow D with the product

topology. Below, we make use of the set of -mixed deterministic continuation plans given
by the set P of all countably additive Borel probability measures de�ned on (D  B) 
where B is the Borel �-algebra induced by the product topology.
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2.4 Second Order Acts

De�nition 1 A second order act is any function f : � ! C that associates an element of
� to a payo¤. We denote by F the set of all second order acts.

We introduced second-order acts in KMM and used preferences over them to reveal the
DM�s subjective uncertainty about the probabilities of the observations. They will play
a similar role in this paper. There is a question whether preferences over these acts are
observable, and thus, the extent to which assumptions on such preferences are behaviorally
meaningful. For example, in what sense can one check that the DM prefers a bet paying o¤
if ��1 is the process governing the observations to a bet paying o¤ if ��2 is the true process?
The only sense in which this could be more di¢ cult than observing choices among usual
Savage acts is that one could doubt that the true process could be veri�ed. However, in a
dynamic environment as in the current paper, given enough time and su¢ cient stationarity
of the processes, one can discriminate as �nely as desired among the �nite set of parameters
�. This follows from recent results in the literature on Bayesian consistency (see Lijoi,
Prunster, and Walker (2007)) which imply that under stationarity assumptions the estimator
constructed by updating a strictly positive (e.g., uniform) distribution over � by Bayes�rule
is a consistent estimator of the true parameter.
In this sense, a bet that this estimator will assign su¢ ciently high weight to �1 at a date

su¢ ciently far in the future, is approximately a bet on �1 (i.e., a bet that the true process
is ��1). Further informative discussion of the nature and veri�ability of second order acts is
contained in KMM, pp. 1854 and 1856.

2.5 Preferences

We will be concerned with preferences over two domains. Of primary interest are the DM�s
preferences at each node  over plans and mixtures over deterministic continuation plans,
F [P. At each , this is denoted by the binary relation <. The second order acts, F, are
the other domain of interest. Let <2

 denote the DM�s preference ordering over F at node
.

3 Assumptions on Preferences

Our assumptions on preferences fall naturally into two major categories. First are four as-
sumptions that are quite standard for an intertemporal setting and are not tied in any special
way to the smooth ambiguity model. They are followed by four assumptions analogous to
the three assumptions KMM used to derive the (atemporal) smooth ambiguity model. It
is how these last assumptions are integrated into the intertemporal setting that is key in
determining the sense in which the current theory is an extension of the earlier one.

3.1 Four Standard assumptions

The assumptions in this section are imposed on preferences over plans at each time  and
each node  2 .
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Assumption 1 (Weak Order) < on F is complete and transitive.

Assumption 2 (Monotonicity) Given any   2 F , if  () �  () for all  � , then
 < . If, in addition,  and  are deterministic and (�)  (�) for at least some � � 
then  � .5

Assumption 3 (Archimedean) Given any  2 F and 1 2 2 C, if 1 �  � 2, then
there exist � � 2 (0 1) such that �1 + (1 ¬ �)2 �  � �1 + (1 ¬ �)2.

Note, in the above assumption, �1+(1¬�)2 is simply a constant plan yielding the real
number �1 + (1 ¬ �)2 at each node.

Assumption 4 (Dynamic Consistency) Given any   2 F , if () = () then

 <(+1)  for all +1 =)  < 

The �rst three assumptions are standard and are clearly necessary for any monotonic,
real-valued and suitably continuous representation. Observe that monotonicity immediately
implies consequentialism, i.e., given any   2 F

j = j =)  �  (1)

In words, in evaluating plans at a node only payo¤s from that point onward matter.6 This
rules out past realized payo¤s or payo¤s at unrealized nodes a¤ecting preference. There
are a number of circumstances in which it may be plausible for consequentialism to be
violated (see e.g., Machina (1989) concerning risk and Pollak (1970) or Abel (1990) from
the large literature on habit formation in consumption). However, it is quite useful in
practice as it ensures that each problem may be approached and analyzed at the time it is
encountered without regard to what occurred or did not occur in the (often unknown and
possibly complex) past.7

Of the four assumptions above, the only one that imposes conditions relating preferences
at di¤erent nodes is dynamic consistency. Some condition across preferences at di¤erent
nodes is needed to pin down dynamic behavior. Dynamic consistency is the standard way
of doing this in the economics literature, as some variation of it is inherent in any recursive
functional form. Informally, dynamic consistency says that if two plans give the same payo¤
today, and, no matter what happens in between, one of the plans is always preferred to
the other at the next time, then that plan should also be preferred today. It�s essence is
that today�s preference over plans that may di¤er only from tomorrow onward should agree
with "tomorrow�s preference" over those plans in cases where "tomorrow�s preference" is
unanimous (i.e., does not depend on what is observed between today and tomorrow).

5In the second part of the axiom, time is the only argument of the acts as they are deterministic.
6Note that (1) is, as Hanany and Klibano¤ (2007b) emphasize, only part of consequentialism. The

assumption that preferences are conditioned only on nodes, and not, for example, on other aspects of the
choice problem such as the feasible set of plans available at the initial node, is also part of consequentialism.
This aspect of consequentialism is built in to our framework by the fact that the collection of preferences
over acts we examine is subscripted only by nodes, .

7It would be messy, but not conceptually di¢ cult, to extend our analysis to cover the case where past
payo¤s may a¤ect preferences. Essentially the functions in our representation would all need to have the past
payo¤ history as an additional argument. See e.g., Kreps and Porteus (1978) and Johnsen and Donaldson
(1985) for examples of recursive structures with history-dependence.
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3.2 Embedding the (Atemporal) KMM Representation

We now lay out the additional assumptions that, together the standard four above, will
deliver recursive smooth ambiguity preferences. To help motivate these additional assump-
tions and to elucidate the sense in which the recursive theory extends the smooth ambiguity
model, it is useful to brie�y review the three assumptions used to derive the smooth am-
biguity model in KMM. The �rst KMM assumption is that preferences over a subclass of
acts called lottery acts (which may be thought of as essentially lotteries over outcomes) are
continuous expected utility preferences. A natural analogue to lottery acts in the setting of
the current paper are the -mixed deterministic continuation plans, P, that were de�ned in
section 2.3. Rather than lotteries over single outcomes, these are lotteries over deterministic
streams of outcomes, as is appropriate to our intertemporal setting. Our �rst assumption
in this section will be that at each node  preferences over P are continuous expected
discounted utility preferences. Our second assumption in this section guarantees that in-
tertemporal and risk trade-o¤s are stable across nodes. In terms of the representation, this
will be equivalent to constancy across nodes of the discount factor and the utility function.
These two assumptions together form a natural intertemporal analogue to the �rst assump-
tion in KMM. The second KMM assumption states that preferences over second order acts
are continuous subjective expected utility preferences. In the present context, second order
acts are functions from the parameter space, �, to the outcome space, C. Therefore, our
third assumption will be that, at each node, preferences over second order acts are continuous
subjective expected utility preferences. Moreover, we will assume that the utility function
is stable across nodes. KMM also proposes a natural association between acts and second
order acts that works as follows: given an act, for each parameter value, the associated
second order act yields the certainty equivalent of the act under the distribution implied by
the parameter value. Finally, the third KMM assumption requires preference over acts to
agree with preference over the associated second order acts. In our dynamic setting, our last
assumption is also of this form. However, the role of acts is played by continuation plans at
 that are constant from time +1 onward but where that constant may depend on the node
reached at +1 (�one-step-ahead continuation plans�) and the role of certainty equivalent of
such a continuation plan given a parameter value is played by the outcome that, if received
from +1 onward in place of what the continuation plan would give from then on leaves the
DM indi¤erent. This fourth assumption makes clear the sense in which the intertemporal
model extends the KMM model: KMM applies at time  when considering plans where all
the uncertainty is resolved between  and  + 1. We now make all of this more formal.
From the above discussion, it is clear that we need to consider preferences over -mixed

deterministic continuation plans in addition to preferences over plans. The next assumption
says that < on P is continuous expected discounted utility and identi�es, from the point
of view of preference, a degenerate mixtures in P with a corresponding plan. In reading it
recall that a deterministic continuation plan  might well be induced by a plan which is
deterministic from  onwards but not deterministic overall.

Assumption 5 (Discounting) For each  2 D, there exists a plan  2 F with j = 

such that  � f  1g. At each node  2  < on P is represented by the expectation
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of a von Neumann-Morgenstern utility index  : D ! R which has the form

 () =
X

��

��¬
 ( (�)) (2)

for � 2 (0 1)   continuous and not constant on C. Moreover, � is unique and  is
unique up to positive linear transformations.

Note that this assumption is not stated purely in terms of preferences, as the preceding
ones are. This should not be bothersome, however, as a purely preference-based foundation
for the utility indices, , can be done exactly as in Theorem 2 of Epstein (1983).
Next is the invariance assumption that will guarantee that � and  in Assumption 5

do not depend on the node . To state it we need some notation: given any  0 00 2 C, we
denote by (0 00 ) the deterministic continuation plan that pays o¤ 0 at , 00 at +1, and
 from  + 2 onwards.

Assumption 6 (Invariance) Given any  0 2 T [ f0g, any  2 [0 1], and any set of
consequences  

0
 

00
   

0
 

00
 with  = 1 2, we have:

f(01 001 1)  ; (
0
1 

00
1  1)  1 ¬ g < f(02 002 2)  ; (

0
2 

00
2  2)  1 ¬ g

if and only if

f(01 001 1)0  ; (
0
1 

00
1  1)0  1 ¬ g <0 f(02 002 2)0  ; (

0
2 

00
2  2)0  1 ¬ g 

This has the stated consequence:

Lemma 1 Under Assumption 6, there is � 2 (0 1) and  : C ! R continuous and not
constant such that in Assumption 5, � = � and  =  for all .

Our next assumption states that preferences over second order acts have a continuous
subjective expected utility representation.

Assumption 7 (SEU on Second Order Acts) There exists a unique (additive) proba-
bility � : 2� ! [0 1] and a continuous, strictly increasing  : C ! R such that, for all
f g 2 F,

f <2
 g ()

Z

�

 (f (�)) d� �
Z

�

 (g (�)) d�.

Moreover,  is unique up to positive a¢ ne transformations, provided 0  � ()  1 for
some  � �.

Remark 1 As is true for Assumption 5 (Discounting), more primitive axioms, such as
those used in Theorem V.6.1 of Wakker (1989), could be applied to <2

 to deliver this
assumption. Notice, as  does not have the subscript  Assumption 7 implicitly assumes
that <2

 restricted to constant elements of F does not vary with  Moreover, observe if
there is no  � � such that 0  � ()  1, then  can be unique up to only monotone
transformations.
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To state our �nal assumption, we �rst need to de�ne one-step-ahead continuation plans
and one-step-ahead certainty equivalents. Let F�

 be the subset of continuation plans in
F that yield a stream, constant from  + 1 onwards, that only depends on the immediate
successor node of . These are one-step-ahead continuation plans. Formally, F�

 is the set�
 2 F : (� ) = (+1) 8 +1 2 +1

¬

�
,8 � 2 �

¬
+1

�
 8�   + 1

	


Given any continuation plan  2 F , consider for each +1 2 X+1 the deterministic
continuation plan

 (+1) =
¬


¬

�
 ( +1) ( +1)  ( +1) 

�


Formally,  (+1) 2 F�
 is given by  (+1) () =  () and  (+1) (�) = ( +1)

for all � �  + 1

De�nition 2 Given any one-step-ahead continuation plan  2 F�
, the one-step-ahead

certainty equivalent of  given �,  (�), is a payo¤  such that, for any  2 F , if
j = ( ()      ), then

 �

�
 (+1)  ��

¬
+1; 


�	

+12X+1
.

In other words, the one-step-ahead certainty equivalent of the one-step-ahead continua-
tion plan  is the payo¤ making the DM indi¤erent at  between the continuation plan
having that payo¤ from time + 1 onwards and the -mixed plan which pays o¤  (+1)
with probability �� (+1; 

). Observe that such a mixed plan is indeed an element of P.

De�nition 3 Given  2 F�
,  2 2 F denotes a second order act associated with  

de�ned as follows
 2 (�) =  (�) for all � 2 �

Assumption 8 (Consistency with Associated Second Order Acts) Given    2
F�

 and associated  2 2 2 F, if  () =  (),

 <  ()  2 <2
 2

for some   2 F with j =  and j = .

4 Main Representation Theorem

In this section, we show that our assumptions yield a recursive smooth ambiguity represen-
tation of < over plans. To do this, it will be helpful to be able to refer directly to induced
preferences over continuation plans rather than always referring back to preferences over
plans. To this end, consider for each  and , induced preference relations <� on F [ P,
the union of continuation plans at node  and -mixed deterministic continuation plans.
We call these induced preferences because they are fully determined by <. On P de�ne
<�=<. On the set of continuation plans, F, de�ne <� as follows:
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j <� j ()  <  8j  j 2 F 

Observe that each element of F can be represented as j, where  is a suitable plan in the
sense of having that element of F as continuation at . By consequentialism, as expressed
in (1), the particular plan  used for such representation is immaterial, and so <� is well
de�ned on F. Finally, when comparing elements of F and P, complete the speci�cation
of <� from < in the obvious manner:

j <�  ()  <  and  <� j ()  <  8 2 F   2 P.

We begin by using the assumptions to get a representation of <� restricted to plans in F�


sharing the same payo¤ at  This will be a key step in deriving the main representation
theorem. Denote by U the range of (1 ¬ �)¬1 .

Proposition 1 Suppose Assumptions 1-8 hold. Then there exist continuous and strictly
increasing functions  : C ! R and � : U ! R, and an additive probability � : 2� ! [0 1]
such that, given any    2 F�

 with  () =  (), we have  <�  if and only if
Z

�

�

�Z

X+1

(( +1))

1 ¬ �
d��

¬
+1; 


��

d�

�
Z

�

�

�Z

X+1

(( +1))

1 ¬ �
d��

¬
+1; 


��

d� 

The probability � is unique and the function  is unique up to positive a¢ ne transforma-
tions. Moreover, given , the function � is unique up to positive a¢ ne transformations,
provided 0  � ()  1 for some  � �. If ~ = � + �, �  0, then the associated ~� is
such that ~�(� + �

1¬� ) = � (), where  2 U .

Given  2 C and  2 , let  2 F be the deterministic continuation plan such that
 (�) =  for all � � .

De�nition 4 Given  2 F and  2 , the continuation certainty equivalent, , of
 at  is a payo¤  2 C such that  �� j.

Lemma 2 For each  and , there exists a continuation certainty equivalent.

Denote by  the constant continuation plan in F paying o¤  at  and at all nodes
that follow it.

De�nition 5 The continuation value of  at  is given by  () =  ().

Given our assumptions, the function  : F ! R represents < on plans. In fact, by
de�nition and by Assumption 5, we have:

 <  () j <� j ()  <� 

()  () �  () ()  () �  () 
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TheMonotonicity assumption implies that if  () �  () for all  � , then  () �  ().
If, in addition,  and  are deterministic and ()  () for at least some  �  then
Monotonicity implies  ()   (). We refer to a functional  as monotonic if it
satis�es these two properties given by Monotonicity.
We can now state our main representation result:

Theorem 1 For each  and , let < be a binary relation on F [ P and <2
 be a binary

relation on F. Assumptions 1-8 hold if and only if there exists an additive probability � :
2� ! [0 1] for each  and continuous and strictly increasing functions  : C ! R and
� : U ! R, such that

(i) On F , each preference < is represented by the monotonic recursive functional  :
F ! R given by

 () = 
¬


¬

��

+ ��¬1
�Z

�

�

�Z

X+1

(+1) () d��
¬
�; 
��

d�

�
; (3)

(ii) On P, each preference < is represented by the expected discounted utility functional
 : P ! R given by

 () =

Z

D

"
1X

�=

��¬ ( (�))

#
;

(iii) On F, each preference <2
 is represented by the subjective expected utility functional

 2
 : F ! R given by

 2
 (f) =

Z

�

�

�
 (f (�))

1 ¬ �

�
d�.

The uniqueness properties of �,  and � are as stated in Proposition 1.

Equation (3) in (i) is our desired recursive representation of preferences over plans at
each node and is the main result of this theorem. The representations in parts (ii) and
(iii) over mixed deterministic continuation plans and second order acts, respectively, fol-
low quite directly from the discounting and invariance assumptions and the assumption
of SEU on second order acts. Notice that in equation (3), the aggregation across pos-
sible time  + 1 continuation values is done according to the KMM smooth ambiguity
functional � this links the dynamic and timeless smooth ambiguity models. The term
�¬1

hR
�
�
�R
X+1

(+1) () d�� (�; )
�
d�

i
should be interpreted as the utility equivalent

of the possibly ambiguous (in the sense that each � may induce a di¤erent distribution over)
continuation values.
Although it may not be immediately apparent, in the case of ambiguity neutrality (i.e.,

� a¢ ne), (3) reduces to subjective expected discounted utility with Bayesian updating. We
show this formally in the next proposition, where we make explicit the corresponding prior
belief. We also show that this belief is relevant to and recoverable from preferences with any
ambiguity attitude, as long as � is di¤erentiable.
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To state the proposition, it is helpful to de�ne the standard notion of a predictive dis-
tribution as in Bayesian statistics (i.e., the �-average of the ���s). Given �, de�ne the
predictive distribution  : � ! [0 1] by:

 () =

Z

�

��
¬
 j 

�
d� (�)  8 2 �

In particular, using � to denote �0, 0 () =
R
�
�� () d� (�). Observe that  () =

 ( \ ). We denote by  (+1  +) the probability of the cylinder set determined
by ( +1  +) (i.e.,  (f +1  +g)). In particular, the one-step-ahead pre-
dictive distribution at  is the marginal on X+1 of , and the probability it assigns to
+1 = +1 is denoted (+1).

Proposition 2 Given, for each , a  as in (3), there exists a unique countably additive
probability � : � ! [0 1] such that,

(i) if � is a¢ ne, then

 () =

Z



"
1X

�=

��¬ ( (� ))

#
d� (4)

where the measure � is related to the ���s and the ��s (via the predictive distributions)
through the formula

� (f1     g) = 0 (1)(1) (2) � � � (1¬ 1) ()  (5)

for each  � 1 and 1     , and � is the Bayesian update of �.8

(ii) if � is di¤erentiable, then

 ()  [�((( +1     +)))]

 ()  [(())]

����
=

= �

��
 +1     +

	�
for each  � 1   +1     + and deterministic plan .

Part (i) of the above result veri�es that when � is a¢ ne we get discounted expected
utility with Bayesian updating of a unique measure on paths, �. This measure is uniquely
determined by the product of one-step-ahead predictive distributions. Equation (5) implies
that the one-step-ahead predictive distribution at any node is exactly the one-step-ahead
marginal of the Bayesian update of �.
Part (ii) of the proposition shows that the marginal rate of substitution

 ()  [�((( +1     +)))]

 ()  [(())]

����
=

at  between utility at  and the present discounted utility at ( +1     +), when eval-
uated at any deterministic plan , is the Bayesian conditional probability � (f +1     +g)

8That is, � () � � ( \ ) =� () for all  2 S and  2 �
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of f +1     +g given  according to �. This shows that � can be meaningfully char-
acterized solely in terms of behavior toward plans even when preferences are ambiguity
sensitive, as long as � is di¤erentiable (i.e., preferences are smooth). Under expected util-
ity (with monetary payo¤s and di¤erentiable utility) subjective probability measures the
trade-o¤s at the margin, evaluated at a riskless position, between sure payo¤s and payo¤s
contingent on a speci�c event. As the proposition shows, analogously, � measures the trade-
o¤s at the margin between utility at  and (discounted) utility at successor nodes, when
these trade-o¤s are evaluated at a deterministic plan.
In addition to �, we have the predictive distributions, , which are determined from

preferences over second order acts. It is natural to ask whether the � agree with the 

everywhere, and not simply for the one-step-ahead marginals. As we will show in Section 5,
this question is equivalent to the question of whether the � are the Bayesian updates of �.

4.1 Discussion of Our Approach

To give some additional insight into the derivation of the model, we present an alternative
approach using a di¤erent �nal consistency assumption and show why it runs into di¢ culty.
One might have thought that Assumption 8 could be formulated as follows:
First, some modi�ed de�nitions. Given any continuation plan  2 F , consider for

each  = ( +1 +2     +   ) 2  \ f1  g the deterministic continuation plan

 () =
¬


¬

�
 ( +1) ( +1 +2)  ( +1 +2     +) 

�
.

De�nition 6 Given any continuation plan  2 F, the certainty equivalent of  given
�,  (�), is a payo¤  such that

¬


¬

�
     

�
��

�
 ()  ��

¬
 j 

�	
2\f1g

.

In other words, the certainty equivalent of the continuation plan  is the payo¤making the
DM indi¤erent between the continuation plan having that payo¤ from time +1 onwards and
the -mixed plan which pays o¤ according to  () with probability �� ( j ). Observe
that such a mixed plan is an element of P and so via Assumption 5 it is in the domain of
the induced preference <� 

De�nition 7 Given  2 F, ̂ 2 2 F denotes a (hatted) second order act associated
with   de�ned as follows

̂ 2 (�) =  (�) for all � 2 �

Assumption 9 (Consistency with Hatted Second Order Acts) Given    2 F

and ̂ 2 ̂2 2 F, if  () =  () 

 <  () ̂ 2 <2
 ̂2

for some   2 F with j =  and j = .
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Notice the di¤erence between this approach and the one we have taken. In our ap-
proach, the consistency assumption applied only to one-step-ahead continuation plans. In
this approach it applies to all continuation plans. One can show, along the lines of the
proof of Theorem 1, that substituting this new assumption for Assumption 8 and dropping
dynamic consistency (Assumption 4) implies that there exists the following �reduced-form�
representation for � on plans:

̂ () = 
¬


¬

��

+ ��¬1

2

4
Z

�

�

0

@
X

2\fg

��
¬
 j 

� X

��+1

��¬(+1)( () (�))

1

A d�

3

5 (6)

where �� ( j ) is the probability of the path  given history  and given that the true para-
meter is � and  () (�) is the time � payo¤according to plan  along path . A comparison of
equation (6) with equation (3) reveals that, though they agree in evaluating one-step-ahead
continuation plans, in general they are quite distinct. In particular, (6) will generally violate
dynamic consistency, while (3) will generally violate the modi�ed consistency assumption
(Assumption 9).
Generally, one can think of two ways of relating preferences in a dynamic model to those

in an atemporal setting. The �rst is by viewing the atemporal model as the special case of
the dynamic model with one-period of uncertainty. This is the nature of our recursive exten-
sion of the smooth ambiguity model �the atemporal model corresponds to preferences over
one-step-ahead continuation plans sharing the same current payo¤. The second is by viewing
the atemporal model as a reduced-form of the dynamic model, abstracting away from the
dynamic structure yet representing the same preferences. The alternative dynamic represen-
tation in equation (6) bears this type of relation to the atemporal model for continuation
plans sharing the same current payo¤.
It would certainly be an elegant result to have a dynamic model that related to the atem-

poral model in both ways. We do not generally have this. In this regard, we suggest that
the modi�ed consistency assumption used in deriving the reduced form may not be com-
pelling, in that it requires the DM to behave as if all uncertainty were resolving immediately
when, in fact, this would be true only for one-step-ahead continuation plans. Why does this
matter in our set-up? It matters because our DM is both ambiguity sensitive and respects
consequentialism (as noted in Section 3.1, the latter property follows from Monotonicity
(Assumption 2)). Ambiguity sensitivity will, in general, result in non-separabilities in the
evaluation of payo¤s across mutually exclusive future events. Consequentialism requires
that, once a given node has been reached, payo¤s at unrealized events cannot in�uence pref-
erences. When all uncertainty resolves immediately, there is no tension between these two.
When it resolves gradually, however, there will generally be a strong tension. Consider, for
example, a DM who obeys the reduced-form consistency assumption evaluating, at , a
trade-o¤ between utility at node ( +1 +2) and utility at node ( +1 

0
+2). Because

of ambiguity and the DM�s sensitivity to it, this trade-o¤ may well depend on the utility at
a third, mutually exclusive, node, say, ( 00+1). However, if this DM reaches node ( +1),
then consequentialism demands that the outcome at ( 00+1) not matter in evaluating the
same trade-o¤. This is why there is a con�ict between the reduced-form consistency and
dynamic consistency. It seems reasonable that a DM who is aware of the full implications
of the dynamic setting will anticipate the decision opportunity at node ( +1), and want
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to evaluate the consumption possibilities (implied by ) that obtain beyond ( +1) us-
ing the view of ambiguity that will become available at ( +1) rather than the view of
ambiguity expressed through �. Thus it is not obvious that the DM think the evaluation
of  is on par with evaluating an associated second order act for which all uncertainty,
by de�nition, resolves immediately upon taking the decision. But this is exactly what the
reduced-form approach described in this section assumes. In other words, a di¢ culty with
the reduced-form approach is that ambiguity present at , and re�ected in �, would �gure
in the (current) evaluation of the associated second order act, whereas this ambiguity is not
relevant to evaluating the part of the consumption stream that comes beyond ( +1) if
that node were to be reached.
Although the recursive and reduced-form approaches con�ict in general, there are two im-

portant special cases in which they can be reconciled. First, if � is a¢ ne, so that preferences
are ambiguity neutral, there is no con�ict between the two. Second, if � is di¤erentiable
and we restrict attention to local behavior at deterministic plans, again the two approaches
are compatible. When exploring updating in Section 5.1, these domains of agreement prove
quite useful. In both these domains, the tension discussed above is absent because the DM
is ambiguity neutral either globally (� a¢ ne) or locally around deterministic plans (� dif-
ferentiable). Therefore the marginal trade-o¤ between two nodes is independent from the
outcome at any mutually exclusive third node.
From the point of view of dynamic applications, it is worth noting that even if both

a reduced form and a recursive representation were available, it is the recursive form that
will be of far more use because of its tractability. The only potential disadvantage of a
recursive relative to a reduced form representation, is that existence and uniqueness of the
representation becomes a more subtle issue. This is the subject of the next section.

4.2 Existence and Uniqueness

If our preferences obeyed the �reduced-form� representation discussed above, they would
be explicitly determined once the elements , �, �, � and � are speci�ed. However, the
preference functional, , that by Theorem 1 represents the preference < on plans, is only
implicitly de�ned by the recursive equation (3). Therefore, an important issue is whether,
for a given speci�cation of the elements , �, �, � and �, such recursive equation admits a
unique monotonic solution. Otherwise, Theorem 1 would be of little use; without uniqueness,
it is di¢ cult to understand what it is beyond , �, �, � and � that determines preference.
Approachability of this solution through iterative methods is also of practical interest.
Our �rst result in this section shows that there always exists a solution to the recursive

equation (3) in the representation. We then provide two sets of su¢ cient conditions for
uniqueness and monotonicity of the solution. Proposition 3 shows that any solution is unique
and monotonic when restricted to plans that eventually become deterministic. Theorem 3
shows that uniqueness and monotonicity for all plans holds under conditions on � weak
enough to encompass many cases of interest. Under the same conditions, iterative methods
for �nding  are guaranteed to converge.
The general existence result is the following:
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Theorem 2 For each  there exists a  () satisfying the recursive equation (3) in Theorem
1.

If the time horizon were �nite, a simple backward induction argument would be enough
to solve equation (3), and the solution would be unique and monotonic. In our in�nite hori-
zon set-up this is no longer possible, but we can still prove a very general uniqueness and
monotonicity result for eventually deterministic plans, that is, plans that become determin-
istic after a �nite time.

Proposition 3 When restricted to eventually deterministic plans, the recursive equation (3)
has a unique and monotonic solution.

We nowmove to explore the case of more general plans. For our uniqueness results, we will
need to refer to several classes of functions �: functions with a non-decreasing coe¢ cient of
absolute ambiguity aversion, functions with a non-increasing coe¢ cient of relative ambiguity
aversion and functions with a strong form of a decreasing coe¢ cient of absolute ambiguity
aversion.9 We will denote these classes as IAAA, IRAA and SDAAA, respectively.
Formally, we will say that a continuous and strictly increasing function � : U ! R is

IAAA if it is twice continuously di¤erentiable and is such that the function

� () = ¬�
00 ()

�0 ()

is non-decreasing, while it is IRAA if the function

 () = ¬x�
00 ()

�0 ()
= x� ()

is non-decreasing and is SDAAA if the function

 () = ¬ �00 ()

[�0 ()]
2 =

� ()

�0 ()

is non-increasing. Of note for applications, the union of these classes includes, among others,
the following classic cases:

1. The class of constant absolute ambiguity aversion (CAAA) functions:

� () =

�
 +  if � () = 0 for all  2 U

¬¬�x +  if � () = �  0 for all  2 U

where   0 and  2 R. KMM showed that these functions may be thought of as
displaying constant ambiguity attitude.

9This terminology follows that used in KMM. In particular, KMM relates the Arrow-Pratt coe¢ cient of
� to ambiguity attitude.
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2. The class of constant relative ambiguity aversion (CRAA) functions:

� () =

�
1¬  

1¬ 
+  if  () =  6= 1 for all  2 U

 ln  +  if  () = 1 for all  2 U

where   0 and  2 R. By analogy, one might view these functions as displaying
constant relative ambiguity attitude.

3. Quadratic functions that are increasing on the relevant domain.

We can now state a result showing uniqueness and monotonicity if � is either IAAA,
IRAA or a subset of SDAAA.

Theorem 3 Assume U � R+ and � is twice di¤erentiable on R++. There are unique
and monotonic  satisfying the recursive equation (3) in Theorem 1 if at least one of the
following holds:

(i) � is IAAA; or

(ii) 0 2 U and � is IRAA; or

(iii) � is SDAAA and concave and sup�0  ()  1.

It is worth noting that under conditions (i), (ii) or (iii) the unique solution can be
found via contraction arguments and this provides uniform convergence of iterative methods
of �nding a solution. See Appendix B for a formal statement. We emphasize that the
above conditions are su¢ ciency conditions only and we have not been able to construct a
counterexample failing uniqueness or monotonicity. We also note that the di¢ culty in �nding
complete conditions for uniqueness is not unique to our model. Other, far older and quite
popular non-linear recursive models, for example those of Epstein and Zin (1989), are in a
similar situation (see Marinacci and Montrucchio (2007)).

5 Bayesian Updating and Learning

5.1 Bayesian Updating of �

At the end of Section 4 we raised the issue of whether the beliefs � derived in Proposition 2
agree with the predictive distributions . Recall that Proposition 2 guaranteed that their
one-step ahead marginals agree. We remarked that the question of overall agreement was
equivalent to the question of whether the � were the Bayesian updates of �. In this section,
we make precise the conditions under which this is true and discuss the signi�cance of this
result.
Consider the DM�s marginal trade-o¤ between utility at  and (discounted) utility at a

successor node ( +1     +), when evaluated at a deterministic plan. One could imag-
ine, because this trade-o¤ is being made given only information available at , the trade-o¤
could be recoverable from preferences over second order acts at  alone, in particular from
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�. If the DM were expected utility over plans with beliefs given by the �-average of the
��, the trade-o¤ would indeed be identi�ed by the �-step-ahead� predictive distribution
 (+1     +). Clearly, assuming such global ambiguity neutrality is very strong, and
would defeat the whole purpose of our modeling exercise. This is where the limitation to eval-
uating trade-o¤s at deterministic plans comes in. All that is needed for  (+1     +)
to identify these trade-o¤s is that the DM is ambiguity neutral �locally around determinism�
with beliefs given there by the �-average of the ��. If our model is truly smooth (i.e., �
di¤erentiable), such local ambiguity neutrality is perfectly compatible with overall sensitivity
to ambiguity, just as local risk-neutrality is compatible with global risk aversion or love in
the standard expected utility model.
This motivates the following assumption which says exactly that the marginal trade-o¤

between utility at  and (discounted) utility at a successor node ( +1     +), when
evaluated at a deterministic plan is given by  (+1     +), which, recall, is completely
determined by <2

 through �.

Assumption 10 (MRS) For each deterministic plan ,

 ()  [�((( +1     +)))]

 ()  [(())]

����
=

=  (+1     +) (7)

for each  � 1   +1     +.

We will show that with � di¤erentiable, if � is updated by Bayes�rule then our model
implies Assumption MRS, and furthermore, under mild conditions, Assumption MRS implies
� must be updated by Bayes�rule in our model.
It is informative to note that Assumption MRS is implied by the reduced-form dynamic

smooth ambiguity model with discounted utility (as in (6)) when � is di¤erentiable. Why is
this true? Any such model is locally ambiguity neutral (i.e., locally expected utility) around
any deterministic plan. Under ambiguity neutrality, �-average probabilities precisely reveal
utility trade-o¤s at the margin. In this sense, Assumption MRS is a very limited version of
the closure sometimes assumed for recursive models �here we are not demanding that each
< on plans is represented by a reduced-form dynamic smooth ambiguity model, but simply
that it shares the relationship between the predictive distributions and marginal rates of
substitution around determinacy with that model.
Observe that closure is (in combination with recursion) what delivers anything that dy-

namic recursive models have to say about updating �for expected utility it delivers Bayes�
rule applied to the overall prior, for recursive multiple priors (Epstein and Schneider (2003b))
it delivers prior�by-prior Bayesian updating applied to the overall rectangular set of priors,
for recursive variational preferences (Maccheroni, Marinacci, and Rustichini (2006b)) it de-
livers a condition on how the ambiguity index must be updated. Our next result shows
that adding limited closure in the form of Assumption MRS to our earlier assumptions is
equivalent to Bayesian updating of the predictive distributions.

Theorem 4 Assume each < satis�es Assumptions 1-8 and that � is di¤erentiable. Then,
Assumption MRS is equivalent to the predictive distributions being related by Bayes� rule
(i.e.,  () = 0 ( \ ) 0 (

) for each    2 �.)
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To sketch why this holds, recall that under our model, as was shown in Proposition 2,
the expression on the left-hand-side of Assumption MRS is given by the product of one-step-
ahead predictive distributions. In this way, this trade-o¤ among plans is decomposed into
the product of a series of one-step-ahead tradeo¤s, each of which is determined (through
the � �(+1)    �(+1+) respectively) by preferences over second order acts at
di¤erent nodes. This stringing together of one-step-ahead trade-o¤s re�ects the dynamic
consistency imposed on the model. Assumption MRS says that the same expression is given
by  (+1     +), the -step-ahead predictive distribution at , which is determined
(through �) by preferences over second order acts at  alone. The consistency between
this sequence of one-step-ahead distributions and the single -step-ahead distribution can
be achieved only when the predictive distributions are related by Bayes�rule.
Bayesian updating of the predictive distributions is easily seen to be implied by the �

being derived from � by Bayes� rule, however the converse is not always true. We now
provide a condition under which the two are equivalent. This condition requires a certain
diversity among the distributions ��. We subsequently show that this condition is commonly
satis�ed.

De�nition 8 The full rank condition holds if, for each node , there exist ¬1 elementary
cylinder sets 

1      

¬1 such that the � matrix

 �

2

6664

1    1

��1
¬


1 j 
�

   ��
¬


1 j 
�

...
...

...
��1

¬


¬1 j 
�

   ��
¬


¬1 j 
�
3

7775

is of full rank, where � = f�1     �g.

Corollary 1 Assume each < satis�es Assumptions 1-8 and that � is di¤erentiable. If the
full rank condition holds, then the MRS condition (7) is equivalent to Bayesian updating of
the � (i.e., � (�) = � (�) �� (

) 
R
�
�� (

) d� for all   �).

Observe that for each , since the event tree and observations continue forever, there is
an in�nite number of ways to select  ¬ 1 elementary cylinder sets. The full rank condition
requires simply that one such selection yields a non-singular matrix. As singularity of a
matrix is a non-generic property,10 one should expect that the full rank condition would
generally be satis�ed. In any case, our next result shows that when the �� correspond to
homogenous Markov processes, as is likely to be assumed in many applications, the full rank
condition is naturally and easily satis�ed.

Proposition 4 Assume X = X for all  and suppose that each �� makes the sequence
fg2T a homogeneous Markov chain with transition function � : X � A ! [0 1]. Then,
the full rank condition holds provided there is an initial outcome 0 2 X so that � (

0) (�) =
� (

0 �) for all � and there is no redundancy in � with respect to the transition functions on
the diagonal.11

10That is, the set of � singular matrices has zero Lebesgue measure in R�.
11That is, if �0 6= �00, then there exist  2 X such that �0 ( ) 6= �00 ( ).
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It is worth noting that in the classic i.i.d. case, a special case of homogeneous Markov, the
no redundancy requirement simply says that each � corresponds to a di¤erent i.i.d. process
and the initial outcome requirement is irrelevant.
Assumption MRS is the key to justifying Bayesian updating of beliefs in our model.

Under mild conditions, we have shown the two are equivalent. Any rationale for Assumption
MRS is thus a rationale (in conjunction with the other assumptions underlying our model,
especially dynamic consistency) for applying Bayes�rule to �.
To conclude this section, we summarize the argument for Assumption MRS. Consider a

DM whose preferences < and <2
 satisfy Assumptions 1-8 and whose � is revealed to be

a¢ ne. This DM is ambiguity neutral and evaluates plans according to discounted expected
utility. How does such a DM trade-o¤, at a deterministic plan given information at node ,
marginal utility obtainable at  with (discounted) marginal utility obtainable at a future
node further down the event tree? This trade-o¤ is determined by nothing but the DM�s
belief (conditional on information at ) about the chances of reaching the future node. Given
expected utility preferences on plans, it is natural that this belief is the �-average of the
�� (� j ) probabilities of reaching the future node, where � is inferred from the DM�s <2



preferences. Next we recall from (ii) of Proposition 2, that for a DM with any di¤erentiable
�, this trade-o¤, given that it is measured at determinacy, is the same as that obtained under
ambiguity neutrality, so again it wouldSHOULD be described by the �-average of the
�� (� j ). This is precisely Assumption MRS. So why would it make sense to update � by
Bayes�rule? First, because the predictive distributions would then also be updated by Bayes�
rule, hence ensuring that Assumption MRS held. Second, under the easily satis�ed full rank
condition, this is the only updating rule that would be consistent with both Assumption
MRS and our dynamically consistent model.

5.2 Learning About �

Bayesian updating of � generates a theory of learning under ambiguity, enabling us to under-
stand the conditions under which the e¤ect of ambiguity on preferences would (or would not)
eventually fade away with progressive accumulation of observations. We explore this issue
by giving conditions under which ambiguity may be �learned away�followed by an example
of a growth model where those conditions do not hold and ambiguity never completely fades
away, despite learning.

Proposition 5 Assume Bayesian updating of �. Suppose �0 2 supp (�) is the true parame-
ter and suppose that each �� makes the process fg2T stationary and ergodic.

12 If �¬1 is
Lipschitz, then

lim
!1

���� () ¬ 
¬


¬

��

¬ �

Z

X+1

(+1) () d��0
¬
+1; 


����� = 0 ��0 ¬  (8)

for all  2 F , and the convergence is uniform over F .
12The terms �stationary�and �ergodic�here follow their standard usage in the probability and statistics

literature; see e.g. Durrett (1991), p. 291.
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In words, as observations build up, the approximate recursive representation

 () � 
¬


¬

��

+ �

Z

X+1

(+1) () d��0
¬
+1; 


�

(9)

of the function  () is more and more accurate, provided the process is ergodic and sta-
tionary. This is a large class of processes which includes, for instance, i.i.d., exchangeable
and ARCH(1) models (see Lijoi, Prunster, and Walker (2007)). In particular, in our setting
all stationary Markov processes are in this class.
In Section 2.2 we observed that a plan  can be viewed as a collection fg2T [f0g, where

each  :  ! C is a � (1  )-measurable function. From this standpoint, (9) means
that the value function  () looks more and more similar to

Z



X

��

��¬ ( ()) d��0
¬
 j 

�


Summing up, the DM is more and more choosing as if he knew the true parameter.
It is important to note that this result depends in a strong way on our assumption that the

parameter space � is �nite. In more general environments, such convergence of preference
to preference under knowledge of the true parameter need not occur. A simple example of
this is given below.

Example 3 Consider a Markov switching model for the growth process for an economy
(similar to e.g., Hamilton (1989)). Let  denote the GDP of the economy at time . The
growth of the economy is determined by the equation  = ¬1 where  is the gross
growth rate of GDP between ¬1 and . This growth rate is stochastic and has a distribution
determined by a Markov binary state variable .  = 1 corresponds to a relatively favorable
growth rate distribution (a �boom�) and  = 0 corresponds to a relatively unfavorable
growth rate distribution (a �bust�).
Given the value of , the growth rate of the economy is determined by

 j  � (�
�2

) if  = 0 (10)

where (�
�2

) denotes a lognormal distribution with parameters (�
�2

).
Finally, the state process follows a Markov chain with initial state 1 and transition

matrix

P=
�
�0 1 ¬ �0
1 ¬ �1 �1

�
where �0 = (+1 = 0j = 0) and �1 = (+1 = 1j = 1). We assume, for simplicity,
that �0�

2
0�1 and �

2
1 are known to the DM.

In the language of our model, let a parameter � = fg1=1 2 � = f0 1g1. Each period
what is observed is GDP, . Thus, the observation space is  = + for each time . Note
that both the parameter space and the observation space in this example are in�nite, in
contrast to our assumption above that both of these spaces are �nite. The in�nite parameter
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space is crucial to the learning behavior in the example, but the observation space could just
as well be �nite (with the growth rate process appropriately discretized) and the message
of the example would not change. Given �, �� (+1 j ) = �� (+1 j  ¬1     0).
Given our assumptions, this can be computed as follows: �� (+1 j  ¬1     0) =

�� (+1 j ) = 
�

+1


;��+1

�2�+1

�
where  is the lognormal density and �+1 = +1 is

the ( + 1)st ordinate of �.
Suppose that the DM perceives ambiguity about the process generating the growth rate.

This must be re�ected in the initial beliefs, �0, over �. On �, consider the product �-
algebra � =  2T 2

f01g generated by all one-dimensional cylinder sets  �
Q

6=2T f0 1g,
where  2 2f01g. Suppose �0 on � is as follows: for all  2  = f1 2   g,

 
�0

 
f0g�

Y

2T  6=

f0 1g

!
�0

 
f1g�

Y

2T  6=

f0 1g

!!
= ( 1 ¬ ) ¬1

where  2 [0 1] is a belief that the initial 1 = 0 and  is the transition matrix given earlier.

Because �� (+1 j ) = �� (+1 j  ¬1     0) = 
�

+1


;��+1

�2�+1

�
depends on �

only through �+1, the relevant conditionals for � will be
 
�

 
f0g�

Y

2T  6=+1

f0 1g

!
�

 
f1g�

Y

2T  6=+1

f0 1g
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=

 
�0

 
f0g�

Y

2T  6=+1

f0 1g j  ¬1     0

!
�0

 
f1g�

Y

2T  6=+1

f0 1g j  ¬1     0

!!

�
¬
+1

¬

�
 1 ¬ +1

¬

��

The expression for the above may be found recursively by applying Bayes rule. Speci�-
cally,

1
¬
0
�

= 

1
¬
1
�

=

�

1

0
;�0�

2
0

�

�

1

0
;�0�

2
0

�
+ (1 ¬ )

�
1

0
;�1�

2
1

�
and, for  = 1 2    

+1

¬

�

= 

¬

�
�0 +

¬
1 ¬ 

¬

��

(1 ¬ �1) 

+1

¬
+1

�
=

+1 (
) 
�

+1


;�0�

2
0

�
+1 () 

�
+1


;�0�

2
0

�
+ (1 ¬ +1 ())

�
+1


;�1�

2
1

� .
So, ¬

+1

¬

�
 1 ¬ +1

¬

��

=
¬


¬

�
 1 ¬ 

¬

��

 .
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The important feature is that, as long as �0 and �1 are strictly between 0 and 1, beliefs
about the relevant part of � never approach degeneracy. This implies that ambiguity remains
relevant to preferences even in the limit, in contrast to the result in Proposition 5. What
drives the example is the DM views the environment as one in which some new and relevant
ambiguity arrives each period. From this perspective, the important feature of the example is
that the DM perceives ambiguity about +1 no matter howmany periods have been observed.
One special case of our example occurs when �0 = 1 ¬ �1. In this case past observations
are completely uninformative about state �+1 and thus +1 and so no reduction in relevant
ambiguity occurs through learning.
Why isn�t an example like this one possible when the parameter space � is �nite? The
intuition is that either knowledge of � becomes eventually irrelevant to payo¤s or, to the
extent that it remains relevant, the DM will observe more and more data, and thus will
eventually be able to learn the relevant aspects of �.

The above example showing how ambiguity may persist in our model when the parameter
space is rich complements �ndings on the persistence of ambiguity in earlier models (see e.g.,
Epstein and Schneider (2003a), Maccheroni and Marinacci (2005)).

6 Examples

We present an example adapted from one in the section on dynamic ambiguity in the excellent
survey paper by Backus, Routledge, and Zin (2004) along with an example looking at the
implications for asset prices.

6.1 Event Tree Example

This example serves to explicitly illustrate the mechanics of calculating with the model.
Moreover, the results of these calculations illustrate an important relationship between our
model and the recursive multiple priors model of Epstein and Schneider (2003b). As was the
case (see Klibano¤, Marinacci, and Mukerji (2005)) with the timeless versions of the smooth
ambiguity model and the multiple priors model, the recursive multiple priors form may be
viewed as a limiting case of recursive smooth ambiguity as ambiguity aversion is taken to
in�nity.
The example (drawn from Backus, Routledge, and Zin (2004), p. 38, an elaboration on

an example from Seidenfeld and Wasserman (1993)) is based on the information structure
depicted in Figure 1 from Section 2.1.
There is an asset,  , that yields the following payo¤s, at time  = 2, as a function of the

time 2 node realized in the tree:
 (1 1) = 1 + 
 (1 2) = 
 (2 1) = 1
 (2 2) = 0

, where  is a non-negative constant. Assume that  yields 0 at all

other time periods. The realizations of the random variables that determine the paths in
the tree are governed by a process with two parameters, � and �. The parameter space is
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� = f(� �) : � 2 f¬�� ��g � 2 f¬��; ��gg where �� 2 [0 1) and �� 2 [0 1] are constants. As a
function of the parameters, the path probabilities are given by:

�(�;�)(1 1) =
(1 + �)(1 + �)

4


�(�;�)(1 2) =
(1 + �)(1 ¬ �)

4


�(�;�)(2 1) =
(1 ¬ �)(1 ¬ �)

4


�(�;�)(2 2) =
(1 ¬ �)(1 + �)

4


It follows that

�(�;�)(1) =
(1 + �)

2


�(�;�)(2) =
(1 ¬ �)

2


�(�;�)(1; 
1 = (1)) =

(1 + �)

2


�(�;�)(2; 
1 = (1)) =

(1 ¬ �)

2


�(�;�)(1; 
1 = (2)) =

(1 ¬ �)

2


�(�;�)(2; 
1 = (2)) =

(1 + �)

2


For simplicity and ease of comparison with Backus, Routledge, and Zin (2004), assume
 is the identity and there is no discounting (i.e., � = 1).13 Normalize � so that � (1) = 1
and � (0) = 0.
How is  evaluated? Given that the payo¤ is zero from time 3 onward, we can solve

backwards starting from time 2. (11)() = (1 + ) = 1 +  (12)() =  (21)() = 1 and
(22)() = 0. Now we write the valuations at the time 1 nodes:

(1)() = �¬1
�
�(�j1=(1))�

�
(1 + �)

2
(1 + ) +

(1 ¬ �)

2


��
= �¬1

�
�(�j1=1)�

�
(1 + �)

2
+ 

��
and

(2)() = �¬1
�
�(�j1=(2))�

�
(1 ¬ �)

2
(1) +

(1 + �)

2
(0)

��
= �¬1

�
�(�j1=(2))�

�
(1 ¬ �)

2

��
13This does not strictly satisfy our assumptions, as Assumption 5 requires � 2 (0 1)
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 Finally,

0() = �¬1
�
��

�
(1 + �)

2
(1)() +

(1 ¬ �)

2
(2)()

��
.
Now take � to be uniform across the four parameter con�gurations and assume Bayesian

updating. For tractability let

� () =

�
1¬¬�

1¬¬�
 �  0

  � = 0

We set the same values for �� �� and  as Backus, Routledge, and Zin (2004): �� = �� = 1
2

and  = 1. This yields 0() = 1
�
ln

�
4

3
2�

(1+
�
2 )

2

�
= ln 4

�
+ 3

2
¬ 2

�
ln

¬
1 + 

�
2

�
when �  0

(ambiguity aversion) and 0() = 1 when ambiguity neutrality (� = 0) prevails. Backus,
Routledge, and Zin (2004) calculate the valuation using the recursive multiple priors model
of Epstein and Schneider (2003b) to be 1

2
. This is the valuation obtained in our model in

the in�nitely ambiguity averse limit. Speci�cally, lim�!1 0() =
1
2
. For more moderate

ambiguity aversion, 0() will lie between 1
2
and 1 as displayed in Figure 2.
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Figure 2: Plot of 0() as the coe¢ cient of ambiguity aversion, �, increases from 0 to 20.

6.2 Asset pricing example

The point of this example is to illustrate the empirical scope of the recursive smooth am-
biguity model in an asset pricing context, such as the case of the equity premium puzzle,
discussed in the introductory section. The example draws heavily on the recent work of Ju
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and Miao (2007) who apply our model. The setting is a Lucas-type intertemporal general
equilibrium model of an exchange economy with a single representative agent. The agent
trades a stock with uncertain returns with unit supply (a Lucas tree) and a risk-free bond
with zero supply. The stock pays dividends  in period  = 0 1 2 . The dividend process
is

ln

�
+1



�
= �� + ��+1 (11)

where  is i.i.d. standard normal. However, the agent is uncertain about � � (�� ��)  and
has a prior �0 over � the set of possible ��s. The agent has recursive smooth ambiguity
preferences over contingent consumption streams, , represented as:

() = () + ��¬1
�Z

�

�

�Z

X+1

(+1) () d��(+1j)

�
d�(�j)

�


where  =  and �� is a dividend process as described in (11) and �(�j) is the Bayesian
update of �0 given observations of dividends up to time . Suppose  () = ln  and
� () = ¬ exp(¬�)
Let +1 and +1 denote the gross returns on the stock and bond, respectively, be-

tween periods  and  + 1. Let  denote the period  �nancial wealth and let   be the
proportion of wealth after consumption invested in the uncertain asset. The agent�s budget
constraint is given by

+1 = ( ¬ )+1 (12)

where the market return +1 is given by

+1 =  +1 + (1 ¬  )+1

One may formulate the agent�s problem using a standard dynamic programming argu-
ment, showing that it satis�es the following Bellman equation :

(�) =  
ln() + � ln[�

(exp(¬���((+1�+1))))]

subject to the budget constraint (12).
Denoting the bond price as 

 and the stock price , the FOC (for the case where
 () = log  and � () = ¬ exp(¬�)) is:

��

[�� (

0(+1))] = 
 
0()

��

[�� ((+1 + +1)

0(+1))] = 
0()

where �
 is a measure absolutely continuous w.r.t. � having Radon-Nikodym derivative

d�


d�
(�) = �(�) �

�0(�� ((+1;�+1)))

� [�0(�� ((+1;�+1)))]
. Using these conditions, it may be shown that the

pricing kernel, +1;�, is given by,

+1;� = �

�


+1

�
� (�) = �

�


+1

�
exp(¬���((+1�+1)))

�

�
exp(¬���((+1�+1)))

�
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and the risk free rate by,

1

+1

= �

[+1;�] = ��



�
��

�


+1

)

��


� is key to understanding why ambiguity aversion may raise the predicted equity pre-
mium; it e¤ectively changes the posterior from � to �


  with the latter overweighting ��s

associated with lower continuation values. It is as if there were more weight on dividend
processes with high variances and low means. This may lower the risk free rate and increase
the equity premium. The extent of overweighting increases as the coe¢ cient of ambiguity
aversion, �, rises. We may assess a plausible range for � by, for instance, looking at the
experimental data on ambiguity premiums in Ellsberg-like experiments. Camerer (1999)
suggests an ambiguity premium on the order of 10-20% of the expected value of a bet. For
the log-exponential speci�cation with a uniform �, for example, a 10% premium corresponds
to an � t 61.
How much e¤ect ambiguity aversion has depends, of course, on the ambiguity re�ected

in �. One approach to identifying this is what Hansen (2007) calls �statistical ambiguity.�
Starting with a uniform prior and updating it on the basis of the data () would yield
posteriors that are largely data driven. There is more ambiguity the �fatter� the poste-
rior, i.e., the less informative the data is about the statistical process driving the future
outcomes. While � in this example must eventually be statistically learned, a speci�cation
which includes �hidden states�will allow ambiguity to persist, as explored in Hansen (2007)
and suggested in our Example 3. Ju and Miao (2007) pursue this suggestion and show that
ambiguity aversion with a power-power speci�cation for � and  may explain a signi�cant
part of the equity premium along with related empirical phenomena.
Thus the recursive smooth ambiguity model provides a framework which one may use

to assess whether ambiguity may plausibly and signi�cantly a¤ect the equity premium, and
more generally, asset market equilibria.

7 Related literature

A number of recent papers have proposed dynamic preference models allowing for ambigu-
ity. The most obvious di¤erence between our model and all others is that only ours is a
recursive extension of the smooth ambiguity model of KMM. The only other work we know
of proposing any dynamic extension of the smooth ambiguity model is the recent model of
updating smooth ambiguity preferences developed in Hanany and Klibano¤ (2007a). Their
approach is fundamentally di¤erent, in that the KMM model is taken to determine prefer-
ences over plans and conditional preferences are found by updating beliefs, �. This method
of extension is shown to be incompatible with the dynamic consistency assumed in this pa-
per, thus leading to a non-recursive model. Imposing a dynamic consistency property that
weakens consequentialism, they derive an update rule. Since their dynamic consistency is
enough so that plans chosen according to the KMM model are carried out, the Hanany and
Klibano¤ (2007a) model allows for di¤erent behavior than our recursive approach, including,
for example, plausible behavior in some natural dynamic extensions of the Ellsberg Paradox.
On the other hand, their update rule is non-consequentialist in that it generally requires
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updating to depend on past choices, and the lack of recursion may make solving problems
more di¢ cult.
Many of the existing dynamic ambiguity models extend the MEU and/or CEU models.

We brie�y discuss some of these models here. We focus on those models that display at least
some form of dynamic consistency. The tension between non-expected utility and dynamic
consistency (e.g., Machina (1989), Karni and Schmeidler (1991), and Ghirardato (2002))
and, more speci�cally, non-probabilistically sophisticated behavior (such as sensitivity to
ambiguity) and dynamic consistency (e.g., Epstein and LeBreton (1993)) is well known. For
example, the best known proposals for extending MEU or CEU by applying updating pro-
cedures (e.g., Dempster-Shafer updating or Full Bayesian updating or Maximum Likelihood
updating) to the sets of measures or non-additive measures appearing in those theories all
fail to generally satisfy dynamic consistency. As mentioned in the Introduction, Epstein
and Schneider (2003b), Wang (2003), Hayashi (2005) have provided preference foundations
for extending the MEU model to an intertemporal framework while preserving the dynamic
consistency needed for recursion. Epstein and Schneider (2003b) characterize the recursive
subclass of the MEU model. It builds on the insight of Sarin and Wakker (1998) that limiting
attention to particular �ltrations or decision trees may relax the force of dynamic consistency
enough to allow the consistent extension of some MEU preferences. The Wang (2003) model
satis�es a stronger dynamic consistency condition and maintains recursivity while allowing
for attitudes towards the timing of the resolution of uncertainty (a la Kreps and Porteus
(1978), Epstein and Zin (1989)) and departing from the MEU class of preferences. Hayashi
(2005) provides a generalization of Epstein and Schneider (2003b) also in the direction of
allowing for attitudes towards the timing of the resolution of uncertainty, also maintaining
recursivity and, except where it coincides with Epstein and Schneider (2003b), leaving the
MEU class. The essential lack of reduction to MEU over plans in these two papers is analo-
gous to the lack of reduction of our model to the KMM smooth ambiguity model over plans.
In all three cases it is this lack of reduction that is key to accommodating the dynamic
consistency satis�ed by recursive models. Hansen and Sargent (2001) describes a robust
control approach to model uncertainty. One formulation of their model may be viewed as a
dynamic extension of a subset of MEU. As described by Epstein and Schneider (2003b), this
extension satis�es a version of dynamic consistency that requires consistency only relative
to a given optimal plan and updates sets of measures in a way that is non-consequentialist.
Hanany and Klibano¤(2007b) is not recursive in general, but provides a way of extending the
entire class of MEU preferences by requiring dynamic consistency but, as mentioned above
when discussing Hanany and Klibano¤ (2007a), allowing updating of the set of measures
to depend on non-consequentialist aspects of the choice problem. It extends Epstein and
Schneider�s recursive multiple priors model in the sense that for the subset of MEU prefer-
ences de�ned by that model, both approaches are equivalent to Full Bayesian updating (i.e.,
applying Bayes�rule to each measure in the set of measures). All of these approaches, how-
ever, share the limitation inherent to the MEU model of failing to separate ambiguity from
ambiguity attitude without restricting the range of ambiguity attitudes. A similar limitation
also applies to some recent extensions of CEU proposed by Eichberger, Grant, and Kelsey
(2005) and Nishimura and Ozaki (2003). Recently, Maccheroni, Marinacci, and Rustichini
(2006a) developed a class of preferences called variational preferences, which include both
MEU preferences and a version of Hansen and Sargent (2001) preferences known as multi-
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plier preferences as special cases. In Maccheroni, Marinacci, and Rustichini (2006b), they
extend variational preferences to an intertemporal setting and also characterize when this
extension is dynamically consistent, thus generalizing the characterization of Epstein and
Schneider (2003b) for MEU. However, as with MEU and CEU, variational preferences are
also subject to the limitation mentioned above concerning the separation of ambiguity from
ambiguity attitude.
One view of the model in the present paper is as representing the preferences of a DM

concerned with robustness to model/parameter uncertainty. As we discussed in Section 5, the
model allows for learning through updating beliefs concerning this uncertainty. The combi-
nation of robustness concerns with learning has been mentioned as an important challenge for
the literature on model uncertainty by Hansen and Sargent (2006) who also investigate these
issues. As mentioned in the application section, Ju and Miao (2007) uses log-exponential
and power-power speci�cations of our model to examine asset prices under ambiguity or
concern for robustness and learning, while Hansen (2007) looks at these concerns using a
continuous-time version of a log-exponential speci�cation.
Siniscalchi (2004) takes a di¤erent approach to dynamic behavior than the rest of the

literature we have discussed. Rather than focusing on dynamic consistency of preferences
over acts, following the literature starting from Strotz (1955-6) he accepts the fact that
preferences over acts may be dynamically inconsistent and investigates behavior that is
sophisticated in the sense that when the DM is considering a decision tree that involves
future choices, it is assumed that the DM can correctly anticipate those choices (which will
be governed by conditional preferences). Then the unconditional preferences are applied in
comparing the acts that result from replacing the future choice nodes with the future choices.
His framework is not tied to a speci�c model. In principle, this could form the basis of an
alternative strategy for extending smooth ambiguity preferences to dynamic settings.

8 Conclusion

We have proposed, axiomatized and investigated a model of recursive preferences over in-
tertemporal plans, extending the smooth ambiguity model developed in Klibano¤, Marinacci,
and Mukerji (2005) to a setting involving dynamic decision making. The model has the de-
sirable properties of allowing sensitivity to ambiguity, of separating ambiguity attitude from
ambiguity perception, of dynamic consistency and consequentialism, of a well-founded theory
of updating beliefs via Bayes�rule, thereby generating a theory of learning under ambiguity
and, �nally, of nesting the standard discounted expected utility model as a special case. One
notable bene�t of the separation provided is the ability to do comparative statics in am-
biguity attitude for dynamic problems while holding information and ambiguity perception
unchanged. A full range of ambiguity attitudes, including ambiguity neutrality, is available
for any given beliefs.

9 Appendix A: Proofs

Proof of Lemma 1. Let  0 2 T [ f0g. Set 01 = 001 = 1 � 0, 01 = 001 = 1 � 00,
02 = 002 = 2 = 02 = 002 = 2 � . Given  2 C and  2 , let  2 F be the deterministic
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continuation plan such that  (�) =  for all � � . Then, Assumption 6 means that, for all
 2 [0 1] and all  0 00 2 C, we have:

f0  ; 00  1 ¬ g �  ()
�
0
0  ; 

00
0  1 ¬ 

	
�0 0  (13)

Then, Assumption 5 implies that, for all  2 [0 1] and all  0 00 2 C,

 (0)

1 ¬ �

 +
 (00)

1 ¬ �

(1 ¬ ) =
 ()

1 ¬ �

(14)

() 0 (0)

1 ¬ �0
 +

0 (00)

1 ¬ �0
(1 ¬ ) =

0 ()

1 ¬ �0
,

and so, for all  2 [0 1] and all  0 00 2 C,

 (0)  +  (00) (1 ¬ ) =  () (15)

() 0 (0)  + 0 (00) (1 ¬ ) = 0 () .

Normalize  and 0 so that

 (�) = 0 (�) = 1 and  (��) = 0 (��) = 0 (16)

for some � �� 2 C. Taking  = 1, there exists a strictly increasing  such that

 () =  (0 ())  8 2 C. (17)

In particular,  (1) = 1 because 1 =  (�) =  (0 (�)) =  (1). By (15) and (17), for all
 2 [0 1] and all 0 00 2 C we have:

 (0 (0))  +  (0 (00)) (1 ¬ ) =  (0 (0)  + 0 (00) (1 ¬ )) 

Hence,  (1)  =  () for all  2 [0 1], and so (17) implies  () = 0 () for all  2 C.
Set  = 0 � . When  = 1 and 1 = 2 � , Assumption 6 means that, for all

 0 
00
 2 C with  = 1 2,

f(01 001 )  1g < f(02 002 )  1g () f(01 001 )0  1g <0 f(02 002 )0  1g 

By Assumption 5,

 (01) + � (001) �  (02) + � (002) (18)

()  (01) + �0 (001) �  (02) + �0 (002) .

Since C is an interval of R and  is continuous, the normalization (16) we chose is such that
[0 1] �  (C). Hence, we can choose 01 

00
1 

0
2 

00
2 2 C so that  (002) �  (001), and

� =
 (01) ¬  (02)

 (002) ¬  (001)


Thus, (18) implies � � �0 . A similar argument proves the converse inequality, and so
� = �0 . �
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Proof of Lemma 2. Consider the ordering <� restricted to F. W.l.o.g., set C = [ ].
By Assumption 2,  <� j <�  Suppose  �� j �� , otherwise the result is
trivially true. Set

�� = sup
�
� 2 [0 1] : j <� � + (1 ¬ �)

	


Suppose �� = 0, i.e., � + (1 ¬ �) �� j for all � 2 (0 1]. As  �� j �� ,
by Assumption 3, there is � 2 (0 1) such that j �� � + (1 ¬ �), a contradiction.
Next, suppose �� = 1. This means that j <� � + (1 ¬ �) for all � 2 [0 1). As
 �� j �� , by Assumption 3, there is � 2 (0 1) such that � + (1 ¬ �) �� j, a
contradiction.
Finally, suppose �� 2 (0 1). If � 2 (�� 1], by the de�nition of �� we have � +

(1 ¬ �) �� j. If � 2 [0��), Assumption 2 implies �� + (1 ¬ ��) �� � +
(1 ¬ �). Hence, j <� �+(1 ¬ �). For, suppose per contra that �+(1 ¬ �) ��

j. Then, Assumption 2 implies �+(1 ¬ �) �� j for all � 2 [� 1], which contradicts
the de�nition of ��.
It remains to prove that �� + (1 ¬ ��) �� j. Suppose j �� �� + (1 ¬ ��).

By Assumption 3 and consequentialism, there is � 2 (0 1) such that

j �� � (�� + (1 ¬ ��)) + (1 ¬ �)

That is, j �� (��� + (1 ¬ �)) + � (1 ¬ ��). This implies j �� � +(1 ¬ �) for
all � 2 [0��� + (1 ¬ �)], which contradicts the de�nition of �� since ��� + (1 ¬ �)  ��.
Suppose �� + (1 ¬ ��) �� j. By Assumptions 3 and consequentialism, there is

� 2 (0 1) such that
� (�� + (1 ¬ ��)) + (1 ¬ �) �� j 

That is, ��� + (� (1 ¬ ��) + (1 ¬ �)) �� j. This implies � + (1 ¬ �) �� j for
all � 2 [��� 1], which contradicts the de�nition of �� since ���  ��. �

Proof of Proposition 1. We begin by showing that the function  is strictly increasing.
Let 1 2 2 F be two constant plans, with 1 () = 1 and 2 () = 2 8 � 0. Then, by
Assumptions 2, 5, Lemma 1, and by the de�nition of <�, we have:

1  2 ) 1 � 2 ) 1j �� 2j

) 
¬
1j

�
 

¬
2j

�
)  (1)

1 ¬ �


 (2)

1 ¬ �
)  (1)   (2) 

Next consider  2 F�
 and the associated  (�). By de�nition,

¬


¬

�
  (�)   (�)    (�)  

�
��

�
 (+1)  ��

¬
+1; 


�	

+12X+1

By Assumption 5,

(()) +
�( (�)))

1 ¬ �

=
X

+12X+1

��
¬
+1; 


� �

(()) +
�(( +1))

1 ¬ �

�

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Hence,
( (�)) =

X

+12X+1

��
¬
+1; 


�
(( +1)) (19)

By Assumption 8,  <�  ()  2 <2
 2. By Assumption 7,  2 <2

 2 ,
R
�


¬
 (�)

�
d� �R

�


¬
 (�)

�
d�. Hence,

 <�  ()
Z

�


¬
 (�)

�
d� �

Z

�


¬
 (�)

�
d�  (20)

Since  and  are strictly increasing, 
¬
 (�)

�
= �

�

�



(�)
�

1¬�

�
for some strictly increasing

�. In particular, � =  � ¬1 � (1 ¬ �). Since  and  are continuous, so is �. Substituting
for 

¬
 (�)

�
in (20) and using (19), we get

 <� 

()
Z
�

 


¬
 (�)

�
1 ¬ �

!
d� �

Z
�

 


¬
 (�)

�
1 ¬ �

!
d�

()
Z
�

�Z

X+1

(( +1))

1 ¬ �
d��

¬
+1; 


��

d�

�
Z
�

�Z

X+1

(( +1))

1 ¬ �
d��

¬
+1; 


��

d�

which proves the representation claim in the Proposition. The uniqueness claims follow
straightforwardly from the uniqueness in Assumptions 5 and 7. �

Proof of Theorem 1. We begin by showing that the assumptions imply the represen-
tations. Using Lemma 1, Assumption 5 and Assumption 6 imply the representation .
Assumption 7 and setting � =  � ¬1 � (1 ¬ �) delivers the representation  2

 over second
order acts. The argument for the representation  of preferences over plans is more in-
volved. By De�nition 5, j+1 ��(+1)

(+1) for any +1 2 X+1 and any plan  2 F .
De�ne a continuation plan ~ 2 F as follows:

~

�
0
�
=

�
() if 0 = 

(+1)(
0) if 0 > ( +1)

By Assumption 4, given any   2 F ,

j+1 <
�
(+1)

j+1 for all +1 =) j <� j (21)

whenever () = (). By (21), j ��
~. Moreover, the continuation plan ~ belongs to

F�
.
The function  : F ! R de�ned by  () =  () represents< on plans. Moreover,

by Assumption 5 and Assumption 6,

 () =  () =
X

��

��¬ () =
 ()

1 ¬ �
. (22)
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Assumption 2 ensures that  is monotonic in the sense mentioned in the text before the
statement of Theorem 1.
Suppose   2 F are such that () = () By de�nition,

(+1)(
0) = (+1)

and
(+1)(

0) = (+1) for all 
0 �  + 1

By (22),
(+1) () (1 ¬ �) = ((+1))

and
(+1) () (1 ¬ �) = ((+1))

for each ( +1). By Proposition 1,

 < 

() j <� j () ~ <� ~

()
Z

�

�

�Z

X+1

((+1))

1 ¬ �
d��

¬
+1; 


��

d�

�
Z

�

�

�Z

X+1

((+1))

1 ¬ �
d��

¬
+1; 


��

d�

()
Z

�

�

�Z

X+1

(1 ¬ �)(+1) ()

1 ¬ �
d��

¬
+1; 


��

d�

�
Z

�

�

�Z

X+1

(1 ¬ �)(+1) ()

1 ¬ �
d��

¬
+1; 


��

d�

() �¬1
�Z

�

�

�Z

X+1

(+1) () d��
¬
+1; 


��

d�

�
� �¬1

�Z
�

�

�Z

X+1

(+1) () d��
¬
+1; 


��

d�

�


All this implies that  ( ()) + ��¬1
hR
�
�
�R
X+1

(+1) () d�� (+1; 
)
�
d�

i
repre-

sents < over plans sharing the same payo¤ at 
To extend the representation to all plans, de�ne  � 2 F as follows:14

 �

�
0
�
=

8
><

>:


¬
0
�

if 0 � 

¬1 � (1 ¬ �)�¬1

 
R
�

�

 
R
X+1

(+1) () d�� (�; )

!
d�

!
if 0 > 

and 0 �  + 1

Note that  � shares the same payo¤ with  at  and that the outer inverse in the bottom
term exists because � is de�ned over the range of 

1¬� . Now we show that  �  �. Observe

14Note � is a plan, not a continuation plan; to this extent there is here some abuse of notation.
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that,
Z

�

�

�Z

X+1

(+1) (
�
) d��

¬
+1; 


��

d�

=
R
�

�

0

BBBB@

Z

X+1



 
¬1 � (1 ¬ �)�¬1

 
R
�

�

 
R
X+1

(+1) () d�� (+1; 
)

!
d�

!!

1 ¬ �
d��

¬
+1; 


�
1

CCCCA
d�

=

Z

�

�

�Z

X+1

(+1) () d��
¬
+1; 


��

d�.

Therefore,


¬
 �

¬

��

+ ��¬1
�Z

�

�

�Z

X+1

(+1) (
�
) d��

¬
+1; 


��

d�

�
= 

¬


¬

��

+ ��¬1
�Z

�

�

�Z

X+1

(+1) () d��
¬
+1; 


��

d�

�
.

So, by what we proved before,  �  �. Note that any  � has a deterministic continuation
plan  �j at . Hence, by Assumption 5,

 () =  ( �) = 
¬
 �j

�
= 

¬


¬

��

+
�

1 ¬ �
 � ¬1 � (1 ¬ �)�¬1

�Z

�

�

�Z

X+1

(+1) () d��
¬
+1; 


��

d�)

�
= 

¬


¬

��

+ ��¬1
�Z

�

�

�Z

X+1

(+1) () d��
¬
+1; 


��

d�

�


as desired.
Now we show that the representations imply the assumptions. Assumptions 1 and 3 follow

from the real-valued nature of the representations . Assumption 2 follows from the stated
monotonicity of the . Assumption 4 follows from the recursivity of . That for each  2
D, there exists a plan  2 F with j =  such that  � f  1g follows from observing
that  collapses to discounted expected utility as in  for plans deterministic from 

onward (that this is the unique solution for  in such a case follows from Proposition 3).
The remainder of Assumption 5 and Assumption 6 may be veri�ed from the representation
. Substituting  = �

�


1¬�

�
in the representation  2

 yields Assumption 7. To verify
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Assumption 8, observe that for    2 F�
 and associated  2 2 2 F, if  () =  (),

 2 <2
 2

()
Z

�

�

�
( (�))

1 ¬ �

�
d�

�
Z

�

�

�
( (�))

1 ¬ �

�
d�

()
Z
�

�Z

X+1

(( +1))

1 ¬ �
d��

¬
+1; 


��

d�

�
Z
�

�Z

X+1

(( +1))

1 ¬ �
d��

¬
+1; 


��

d�

() 
¬
()

�
+ ��¬1

�Z
�

�Z

X+1

(( +1))

1 ¬ �
d��

¬
+1; 


��

d�

�
� 

¬
()

�
+ ��¬1

�Z
�

�Z

X+1

(( +1))

1 ¬ �
d��

¬
+1; 


��

d�

�
()  () �  () for   with j =  and j = .

�
The next lemma is a standard result (see e.g., page 401 of Durrett (1991).)

Lemma 3 Suppose 1 2 : � ! [0 1] are countably additive probabilities. If 1 () =
2 ()  0 for all elementary cylinder sets , then 1 = 2.

Proof of Proposition 2. De�ne � on elementary cylinder sets by (5). Lemma 3 says � is
the unique countably additive extension to �. We next show that () holds by calculating
 ()[(((+1+)))]

 ()[(())]

����
=

.

By Theorem 1,  () =  ( ()) + ��¬1
hR
�
�
�R
X+1

(+1) () d�� (�; )
�
d�

i
. Di¤er-

entiating  () with respect to (()) yields  ()  [(())] = 1.
Straightforward but tedious calculations, omitted for brevity, may be used to show that,

for general , when evaluated at any deterministic  ,

 () 
�
((

¬
 �+1     

�
+

�
))
�

 ()  [(())]

�����
=

= �

¬
�+1

�
�+1

¬
�+2

�
�    � �+1

�
+¬ 1

¬
�+

�
(24)

= ��
¬
 �+1     

�
+

�
� ()

= ��

¬
�+1     

�
+

�
.

This proves (). To show (), suppose � is a¢ ne, so that � () � + for some   0  2 R.
Substituting into (3) yields,

 () = 
¬


¬

��

+ �

�
1



�


Z

�

�Z

X+1

(+1) () d��
¬
+1; 


��

d� (�) + 

�
¬ 



�
= 

¬


¬

��

+ �

Z

X+1

(+1) ()  (+1) 
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By Theorem 3, such a recursive functional has a unique and monotonic solution. We now
check that (4) is that solution. Substituting for (+1) () yields

 () = 
¬


¬

��

+ �

Z

X+1

 Z



"
1X

�=+1

��¬(+1) ( (� ))

#
d�(+1) (

� )

!
 (+1)

= 
¬


¬

��

+ �

Z



"
1X

�=+1

��¬(+1) ( (� ))

#


�Z

X+1

�(+1) (
� )  (+1)

�

= 
¬


¬

��

+ �

Z



"
1X

�=+1

��¬(+1) ( (� ))

#


�Z

X+1

� (� \ ( +1))

� ( +1)
 (+1)

�

= 
¬


¬

��

+ �

Z



"
1X

�=+1

��¬(+1) ( (� ))

#


�
� (� \ )

� ()

�

=

Z



"
1X

�=

��¬ ( (� ))

#
d� (� ) .

This proves () and completes the proof.. �

Proof of Theorem 4. Assume the predictive distributions are related by Bayes�rule. From
Proposition 2,

 ()  [((( +1     +)))]

 ()  [(())]

����
=

= ��

��
 +1     +

	�
= � (+1) �    � 1+¬ 1 (+)

= � 0 (
 +1)

0 ()

0 (
 +1 +2)

0 ( +1)
  

0 (
 +1     +)

0 ( +1     +¬1)

= � 0 (
 +1     +)

0 ()

= � (+1     +) .

This proves the direction of the proposition going from Bayesian updating of the predictive
distributions to the MRS condition.
Now, for the other direction, assume the MRS condition (7) holds. Combining the MRS

condition and Proposition 2 yields

 (+1     +) = �

��
 +1     +

	�
for each  � 1   +1     + where � () � �(\)

�()
 8 2 S 8 2 �. Therefore,

by Lemma 3,
 () = � ()  8 2 S 8 2 �.

Observe that

 () = � () =
� ( \ )

� ()
=

0 ( \ )

0 ()
.
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This proves Bayes�rule holds for the predictive distributions.. �

Proof of Corollary 1. Assume the existence of the sets 

1      

¬1 in the statement of
the full rank condition for each . From Theorem 4, the MRS condition (7) is equivalent to
Bayesian updating for predictive distributions. Therefore, for each ,



2

6664

� (�1)
� (�2)
...

� (�)

3

7775 =

2

6664

1



¬


1

�
...



¬


¬1
�
3

7775 . (25)

Observe that Equation (25) has a unique solution � since 
is of full rank. Calculation

shows that � (�) =
�(�)��()

0 (
)

=
�(�)��()
� ��(

)d�
for  = 1     is a solution, and thus the

unique solution. This proves the MRS condition implies Bayesian updating of the �.

For the other direction, assume � (�) =
�(�)��()
� ��(

)d�
for  = 1    . For any  2 �,

 () =

Z

�

��
¬
 j 

�
d� =

X

=1

�� ( \ )

�� (
)

� (�)

=
X

=1

�� ( \ )

�� (
)

� (�) �� (
)P

=1 ��
()� (�)

=

P
=1 �� ( \ )� (�)P

=1 �� (
)� (�)

=

R
�
�� ( \ ) d�R
�
�� () d�

=
0 ( \ )

0 ()
.

Thus, the predictive distributions are updated by Bayes�rule on  2 �, which, by Theorem
4, implies the MRS condition (7).. �

Proof of Proposition 4. Fix any . Since X and � are �nite, let jX j =  and j�j =  and
index their elements as 1     and �1     �, respectively with 1 =  (if  = 0 adopt
the convention that  = 0). We use  to denote �

( ). Our maintained assumption
that each elementary cylinder set is given positive weight by each ��

implies 0    1
for all   .

Claim. Given any , there is an elementary cylinder f +1     +�g, with  = +1 =
+� , such that

��0
��

 +1     +�

	
j 
�

6= ��00
��

 +1     +�

	
j 
�
 8�0 �00 2 � (26)

Proof of the Claim. Observe that any f+1     +�g can be identi�ed with a unique
�  matrix  = () of non-negative integers, where  is the number of times the pair
( ) occurs in the sequence f+1     +�g. In particular, for each  2 f1    g,

��

��
 +1     +�

	
j 
�
= �

( +1)
�Y

=1

�Y

=1




 .
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Though it is not true that every such matrix has an associated sequence f+1     +�g,
the following restrictions are su¢ cient to ensure it:  is symmetric, written 2  ( ),
and its all entries are strictly positive (i.e.,  � 1). This follows from a well known property
of strongly connected directed multigraphs: there is a path traversing each edge exactly once
and starting and ending at the same vertex (known as an Eulerian circuit) if and only if each
vertex has the same number of outgoing edges as incoming edges (e.g., Theorem 1.4.24 in
West (2001)). To relate this to the matrix, think of the directed multigraph with  vertices,
corresponding to the  elements 1    , and with  edges going from vertex  to vertex
 for each  . Since  � 1 this multigraph is strongly connected. Symmetry implies that
each vertex has the same number of outgoing edges as incoming edges. Given an Eulerian
circuit, one may start at any vertex and, by following the circuit, traverse every edge exactly
once and end at that same vertex. If we start from the vertex corresponding to (= 1), the
+1     +� is simply an ordered list of the vertices visited along the path corresponding
to the Eulerian circuit. Observe that without loss of generality we can set  = +1 = +� .

We now show that there exists f +1     +�g with  = +1 = +� such that, for
each 0 00 with 0 6= 00,

�0
( +1)

�Y

=1

�Y

=1




0 6= �00
( +1)

�Y

=1

�Y

=1




00  (27)

Since 0    1, (27) is equivalent to

ln
¬
�0

( )
�
+

�X

=1

�X

=1

 ln (0) 6= ln
¬
�00

( )
�
+

�X

=1

�X

=1

 ln (00) .

Any  2  ( ) that does not satisfy (27) must have, for some 0 6= 00,

ln
¬
�0

( )
�

¬ ln
¬
�00

( )
�
+

�X

=1

�X

=1

 (ln (0) ¬ ln (00)) = 0. (28)

Denote by ¬ the, possibly empty, set of all  2  ( ) that satisfy (28). It is convex
and closed. Moreover, (28) can be written as,

�� =
ln

¬
�00

( )
�

¬ ln
¬
�0

( )
�

ln (��0) ¬ ln (��00)

¬

P
6=�

�P
=1

 (ln (0) ¬ ln (00)) +
P
 6=�

� (ln (�0) ¬ ln (�00))

ln (��0) ¬ ln (��00)

where � is chosen so that ��0 6= ��00 . No redundancy in � with respect to the transition
functions on the diagonal implies such an � exists (notice that diagonal elements are not
restricted by the symmetry requirement). Therefore, ¬has dimension at most 2¬1 ( + 1)¬
1, where dim ( ( )) = 2¬1 ( + 1). We conclude that ¬ is a nowhere dense subset of
R

(+1)
2 .
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Since there are
¬


2

�
distinct pairs 0 00, the set of all  2  ( ) that solve (28) for

at least one pair is the union of
¬


2

�
nowhere dense subsets of R

(+1)
2 . Hence, it is still a

nowhere dense subset of R
(+1)

2 , and so there exists a symmetric  with strictly positive
rational entries such that (27) is satis�ed for all distinct pairs 0 00. Multiplying this matrix
by the product of the denominators,  , and adding  ¬ 1 to 11 yields an integer valued
 2  ( ) also satisfying (27) since both sides of (27) are taken to the power  . Any
cylinder f +1     +�g with  = +1 = +� associated with such a matrix is assigned
distinct ��

(f +1     +�g j ), as desired. �

Let f ̂+1     ̂+�g be the elementary cylinder set that satis�es (26), with  = ̂+1 =
̂+� . Setting 

1 = f ̂+1     ̂+�g, 

2 = f ̂+1     ̂+�  ̂+1     ̂+�g, and so on,
delivers 

of the form 2

666664

1    1
1    

21    2
...

...
...

¬1
1    ¬1



3

777775

where  = �
( )

Q�
=1

Q�
=1 



 2 (0 1). Given an -tuple f�g
=1 � R, supposeP¬1

=0 �

 = 0 for all  = 1 . If some of the � are not zero, then the equationP¬1

=0 �

 = 0 has degree at least 1 and at most  ¬ 1, and so it has at most  ¬ 1

solutions. But, fg
=1 is a set of  distinct solutions of the this equation, a contradiction.

We conclude that all � must be zero. Hence, the transpose of 
(and so 

itself) has
full rank. �
The following Bayesian consistency result is a special case of that shown by Lijoi, Prun-

ster, and Walker (2007).

Lemma 4 Suppose that each �� makes the process fg2T stationary and ergodic. Given
any �0 2 supp (�)  we have

lim
!1

� (� j 1  ) = ��0 (�)  ��0 

for all � 2 �

Proof of Proposition 5. By Lemma 4, ��0 ¬  we have

lim
!1

j� (� j 1  ) ¬ ��0 (�)j = 0 8� 2 � (29)

Let � be the subset of , with ��0 (
�) = 1, for which (29) holds. Fix a path (1   ) 2

�. Now  will denote the time  node reached on the �xed path.
Since � is �nite, given any   0 there is  � 1 such that for all  �  we have:

max
�2�

j� (� j 1  ) ¬ ��0 (�)j � .

As �¬1 is Lipschitz, there is   0 such that���¬1 () ¬ �¬1 ()
�� �  j ¬ j 8  2 � (U) .
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Hence, for all  �  we have:���� () ¬
�


¬


¬

��

+ �

Z

X+1

(+1) () d��0
¬
+1; 


������

= �

������¬1
 

X

�2�

�

�Z

X+1

(+1) () d��
¬
+1; 


��

�
¬
� j 

�!
¬

Z

X+1

(+1) () d��0
¬
+1; 


������

� �

�����X
�2�

�

�Z

X+1

(+1) () d��
¬
+1; 


��

�
¬
� j 

�
¬ �

�Z

X+1

(+1) () d��0
¬
+1; 


�������

= �

�����X
�2�

�

�Z

X+1

(+1) () d��
¬
+1; 


��¬

�
¬
� j 

�
¬ ��0 (�)

������
� �

X

�2�

������Z

X+1

(+1) () d��
¬
+1; 


������ ���¬

� j 
�

¬ ��0 (�)
��

� �
X

�2�

(max fj� ( ())j  j� ( ())jg)  = � (max fj� ( ())j  j� ( ())jg) j�j .

As  was arbitrary, we conclude that for the �xed path (1   ) 2 � it holds

lim
!1

���� () ¬ 
¬


¬

��

¬ �

Z

X+1

(+1) () d��0
¬
+1; 


����� = 0

Since the path (1   ) 2 � was arbitrary and �0 (�) = 1, in turn this implies the
result.
Observe that  is only a function of � and �0, and in particular is not a function of  .

Moreover, the bound on the di¤erence���� () ¬
�


¬


¬

��

+ �

Z

X+1

(+1) () d��0
¬
+1; 


������

derived above is also independent of  . Therefore this bound holds for all  simultaneously.
Thus, the di¤erence converges to zero uniformly over  . Speci�cally, for any   0, there
exists  � 1 such that for all  � , and all plans  ,���� () ¬

�


¬


¬

��

+ �

Z

X+1

(+1) () d��0
¬
+1; 


������

� � (max fj� ( ())j  j� ( ())jg) j�j .

�

10 Appendix B: Recursive Equations and Proofs for
Section 4.2

In this Appendix we will present some results on recursive equations that will imply the
results of Section 4.2, as shown at the end of this Appendix.
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10.1 Functions

Consider the set  (S) of all bounded real-valued functions on S, endowed with the supnorm
k�k1. The pair ( (S)  k�k1) is a Banach space.
Given a subset  of R, set  (S ) = f 2  (S) :  () 2  for all  2 Sg. When  =

[0 1), we just write + (S). If  is closed, the pair ( (S )  1) is a complete metric
space, where 1 is the supnorm metric.

10.2 Existence

Given  2  (S) and � 2 (0 1), set

 =

�
inf2S  ()

1 ¬ �

sup2S  ()

1 ¬ �

�


Observe that  � R+ if and only if  2 + (S).
Consider the recursive equation:


¬

�
=  

¬

�
+ ��¬1

�Z

�

�

�Z

X+1


¬
 +1

�
d��

¬
+1; 


��

d�

�
 (30)

where  2  (S ), � :  ! R+ is a strictly monotone function, and � : 2� ! [0 1] is any
probability measure on the power set of � at node .
Our purpose is to show that (30) has a solution, possibly unique. In fact, if we set

 =  �  , then any solution of (30) would be a solution for (3).
In order to solve (30), we need to consider the operator  on  (S ) given by

 ()
¬

�
=  

¬

�
+ ��¬1

�Z

�

�

�Z

X+1


¬
 +1

�
d��

¬
+1; 


��

d�

�
(31)

Lemma 5 We have  () 2  (S ) whenever  2  (S ).

Proof. Since � is strictly monotone,  is non-decreasing, i.e.,  (1) �  (2) if 1 � 2.
Consider the functions � 

� 2  (S ) respectively given by � () =
inf2S  ()

1¬� and � () =
sup2S  ()

1¬� for all  2 S. By the monotonicity of  , we have

inf2S  ()

1 ¬ �
= inf

2S
 () + �

inf2S  ()

1 ¬ �
�  (�) �  ()

�  (�) � sup
2S

 () + �
sup2S  ()

1 ¬ �
=

sup2S  ()

1 ¬ �

for all  2  (S ). Hence,  () 2  (S ). �

By Lemma 5, we can write  :  (S ) !  (S ). Moreover, it is easy to see that the
recursive equation (30) has a solution if and only if  has a �xed point.
We begin with a general existence result for �xed points.
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Proposition 6 The operator  :  (S ) !  (S ) given by (31) has a �xed point provided
 2  (S) and � :  ! R is strictly monotone.

Proof. Observe that  (S ) is a complete lattice with respect to the pointwise order �.
In fact, given any subset  of  (S ), de�ne � � 2  (S ) by � () = sup2  () and
� () = inf2  () for each  2 , respectively. It is easy to check that � and � are,
respectively, the least upper bound and the greatest lower bound of  under the order �.
Since the operator  :  (S ) !  (S ) is monotone, by the Tarski Fixed Point

Theorem (see Tarski (1955, Thm 1)), we conclude that  has a �xed point. �

10.3 Uniqueness and Monotonicity

Proposition 7 The operator  :  (S ) !  (S ) given by (31) has a unique �xed point
provided  is eventually deterministic, i.e., for each 0 2 S there exist a node 00 2 S with
00 � 0 and a function �00 : N ! R such that  () = �00 () for all  2 S with  � 00.
In this case, such �xed point is such that  () =

X
��0

���00 ( + �) for all  2 S with

 � 00.

Proof. Let 00 2 S and �00 : N ! R such that  () = �00 () for all  2 S with  � 00 .
By hypothesis,

 ()
¬

�
= �00 () + ��¬1

�Z

�

�

�Z

X+1


¬
 +1

�
d��

¬
+1; 


��

d�

�


for all  2 S with  � 00 , and it is easy to check that there exists a �xed point b such that
b () =

X
��0

���00 ( + �) for all  2 S with  � 00 .15

Suppose there exists a �xed point  2  (S ) with  6= b on all  2 S with  � 00 .
Then, there exists  � 00 such that  () 6=

X
��0

���00 ( + �). As  is a �xed point, we

have


¬

�
= �00 () + ��¬1

�Z

�

�

�Z

X+1


¬
 +1

�
d��

¬
+1; 


��

d�

�


and so

�

�
 () ¬ �00 ()

�

�
=

Z

�

�

�Z

X+1


¬
 +1

�
d��

¬
+1; 


��

d� 

Hence, there exist 0+1 
00
+1 2 X+1 such that


¬
 0+1

�
�  () ¬ �00 ()

�
� 

¬
 00+1

�


On the other hand, for each +1 2 X+1 we have


¬
 +1

�
= �00 ( + 1) + ��¬1

�Z

�

�

�Z

X+2


¬
 +1 +2

�
d��

¬
+2;

¬
 +1

���
d�(+1)

�


15Since  is bounded, also the function �00 is bounded. Hence, the series
X

��0
�+��00 (+ �) is

absolutely convergent.
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and so a similar argument shows that there exist 0+2 
00
+2 2 X+2 such that


¬
 +1 

0
+2

�
�  ( +1) ¬ �00 ( + 1)

�
� 

¬
 +1 

00
+2

�


Hence,


¬
 0+1 

0
+2

�
�  () ¬ �00 () ¬ ��00 ( + 1)

�2
� 

¬
 00+1 

00
+2

�


By proceeding in this way, we get


¬
 0+1  

0
+

�
�  () ¬

P¬1
�=0 �

��00 ( + �)

� (32)

� 
¬
 00+1  

00
+

�


If  () 
X

��0
���00 ( + �), then

lim


 () ¬
P¬1

�=0 �
��00 ( + �)

� = +1

while

lim


 () ¬
P¬1

�=0 �
��00 ( + �)

� = ¬1

if  () 
X

��0
���00 ( + �). In both cases, (32) leads to a contradiction because  is

bounded. We conclude that  () =
X

��0
���00 ( + �) for all  2 S with  � 00 . �

Next we re�ne the existence result of the previous section by providing su¢ cient condi-
tions under which  is a contraction, and so it has a unique �xed point.

Theorem 5 The operator  :  (S ) !  (S ) given by (31) has a unique �xed point
provided  2 + (S) and � : R+ ! R is twice di¤erentiable on R++ and satis�es one of the
following three conditions:

(i) � is IAAA;

(ii) � is IRAA and inf2  ()  0;

(iii) � is SDAAA, concave and sup�0  ()  1.

Proof. The theorem and the proposition immediately below follow from collecting several
uniqueness and global attractivity results proven in Marinacci and Montrucchio (2007). �

Under conditions (i), (ii) or (iii), the unique �xed point can be found via a contraction
argument, and this implies the following property useful for iteratively approaching the
solution:
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Proposition 8 Suppose conditions (i), (ii) or (iii) of Theorem 5 hold. Given any initial
condition 0 2  (S ), the sequence   () of iterates uniformly converges to �, i.e.,
k  () ¬ �k1 ! 0.

The �nal result we need shows that a unique �xed point must be monotonic in the sense
we used in the main text. We proceed by �rst proving a key consequentialist property holds
and then proving the monotonicity result.

Lemma 6 Let  be a subset of  (S). Suppose the operator  :  (S ) !  (S ) given by
(31) has a unique �xed point,  , for each  2 . Then, for any  1  2 2 ,  1 () =  2 ()
for all  �  implies  1

() =  2
().

Proof. Fix  and suppose to the contrary that  1 () =  2 () for all  �  but  1
() 6=

 2
(). Now construct ̂ 1

2  (S ) as follows:

̂ 1
() =

8
<

:

 1
() if  �  and  � 

 2
() if  > 

 () if  >  and  6= 

where


�
0
�
�  1

�
0
�
+ ��¬1

 Z

�

�

 Z

X0+1

̂ 1

�
0  0+1

�
d��

�
0+1; 

0
�!

d�0

!


for   0 are the unique values determined by the recursion from the already speci�ed
values of ̂ 1

. By construction, ̂ 1
() is a �xed point of  for  1, but ̂ 1

() 6=  1
()

contradicting the assumed uniqueness. �

Proposition 9 Let  be a subset of  (S). Suppose the operator  :  (S ) !  (S )
given by (31) has a unique �xed point,  , for each  2 . Then, for any  1  2 2 ,
 1 () �  2 () for all  �  implies  1

() �  2
(). If, in addition,  1 and  2 are

deterministic and  1()   2() for at least some  �  then  1
()   2

().

Proof. For deterministic  (i.e.,  such that the value at a node  depends only on the
time at which the node occurs), one may verify that  (

) =
X

��0
��  (+� ) is a �xed

point, and, therefore, given the assumption of uniqueness, must be the unique �xed point.
Thus, for deterministic  1 and  2 with  1 () �  2 () for all  �  and  1()   2()
for at least some  � ,  1

()   2
(). More generally, consider  1  2 2  and the

associated unique �xed points  1
and  2

. Suppose that for some node ,  1 () �  2 ()
for all  � . If  1 () =  2 () for all  � , the result follows from Lemma 6. Suppose
then that  1 ()   2 () for at least one  � . S is countable, so let D = f1 2   g be
an enumeration of the successors of  where  1 ()   2 (). We may approach  1 from  2

on  �  through a countable number of steps by changing the value at one node at a time.
That is, construct a sequence, fg  such that 0 =  2 and, for   0  has the same

47



value as ¬1 at all but the node , with  () =  1 (). Note that if we start from a
 for which  has a unique �xed point and change the value of  at only one node, there
will still be a unique �xed point (by recursion backward from the time of the change). Let�


	
be the associated sequence of unique �xed points. Observe that since  = ¬1 at

all nodes except , Lemma 6 implies 
= ¬ 1 at all strict successors of  and at all

successors of  that are neither predecessors nor successors of . Therefore, at ,


() =  1 () + ��¬1

�Z

�

�

�Z

X+1

¬ 1 ( +1) d�� (+1; )

�
d�

�
  2 () + ��¬1

�Z

�

�

�Z

X+1

¬ 1 ( +1) d�� (+1; )

�
d�

�
= ¬ 1 () .

Thus, working backwards by recursion, 
()  ¬ 1 () for all successors of  that are

predecessors of  (the inequality is strict since all �nite paths were assumed to have positive
probability). In particular, 

()  ¬ 1 (
). This holds for all  in the sequence, so

 2
() = 0

()  
() for all   0. Since lim!1 

() �  1
(), we have

 2
() �  1

(). �

10.4 Proofs for Section 4.2

Proof of Theorem 2. Follows from Proposition 6.. �
Proof of Proposition 3. Follows from Proposition 7 and Proposition 9. �

Proof of Theorem 3. Follows from Theorem 5 and Proposition 9. �
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