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Abstract

Language is arguably a powerful coordination device in real-life interactions. We here
develop a game-theoretic model of two-sided pre-play communication that generalizes the
cheap-talk approach by way of introducing a meaning correspondence between messages
and actions, and postulating two axioms met by natural languages. Deviations from this
correspondence are called dishonest and players have a lexicographic preference for honesty,
second to material payoffs. The model is first applied to finite and symmetric two-player
games and we establish that, in generic and symmetric n× n -coordination games, a Nash
equilibrium component in such a lexicographic communication game is evolutionarily stable
if and only if it results in the unique Pareto efficient outcome of the underlying game. We
discus Aumann’s (1990) example of a Pareto efficient equilibrium that is not self-enforcing.
We also extend the approach to one-sided communication.

Keywords: Communication, coordination, language, honesty, evolutionary stability.
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1 Introduction

Communication is crucial to most human interaction, and yet most economic analyses
either neglect communication altogether or presume that it leads to play of an equilibrium
that is not Pareto dominated by any other equilibrium.1 An example of the latter is
renegotiation proofness, a criterion used in contract theory and in analyses of repeated
games (see Benoit and Krishna (1993) for a succinct analysis).

However, as pointed out by Aumann (1990), strategically interacting decision-makers
may agree to play a payoff dominant equilibrium even if each decision maker secretly plans
to deviate. Aumann illustrated this possibility by means of the following game:

(1)
c d

c 9, 9 0, 8
d 8, 0 7, 7

This two-player game has three Nash equilibria, all symmetric: the payoff dominant but
risk dominated strict equilibrium (c, c), the risk dominant but payoff dominated strict equi-
librium (d, d), and a mixed equilibrium that results in an intermediate expected payoff.
Aumann points out that each player has an incentive to suggest play of (c, c), even if the
suggesting player actually plans to play d; it is advantageous to make the other play c rather
than d irrespective of what action the suggesting player takes. In Aumann’s colorful words,
with Alice and Bob in the two player roles: “Suppose that Alice is a careful, prudent person,
and in the absence of an agreement, would play d. Suppose now that the players agree on
(c, c), and each retires to his ‘corner’ in order actually to make a choice. Alice is about
to choose c when she says to herself: ‘Wait; I have a few minutes; let me think this over.
Suppose that Bob doesn’t trust me, and so will play d in spite of our agreement. Then he
would still want me to play c, because that way he will get 8 rather than 7. And of course,
also if he does play c, it is better for him that I play c. Thus he wants me to play c no
matter what. [...] Since he can reason in the same way as me, neither one of us gets any
information from the agreement; it is as if there were no agreement. So I will choose now
what I would have chosen without an agreement, namely d.’” (op. cit. p. 202) Aumann
concludes that the payoff dominant Nash equilibrium (c, c) is not self-enforcing.

This line of reasoning abstracts away from the possibility that Alice and Bob may have
a preference against dishonesty (here, for violating an agreement). In this abstraction,
Aumann is not alone. Indeed, virtually all of economics relies on the presumption that
economic agents have no preference for honesty or against deceiving or lying per se. The
standard assumption is that economic agents opportunistically misreport their private in-
formation whenever they believe it is to their advantage to do so.2

1Indeed, laboratory experiments usually support the hypothesis that pre-play communication enhances
coordination on payoff domant equilibria in coordination games. A pioneering study of this phenomenon is
Cooper et al. (1989). See Crawford (1998) for a survey, Charness (2000), Clark, Kay and Sefton (2001) and
Blume and Ortmant (2005) for more recent contributions.

2Notable exceptions are Alger and Ma (2003), Alger and Renault (2006), Alger and Renault (2007), and
Kartik, Ottaviani and Squintani (2007).
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We here show that “small lying costs,” in the sense of a lexicographic preference for
honesty—when it doesn’t reduce material payoffs—render the “bad” equilibrium (d, d) in
the above game evolutionarily unstable under two-sided pre-play communication. While
small lying costs don’t eliminate all bad equilibria, they do destabilize payoff dominated
equilibrium outcomes, where stability is defined in a standard evolutionary model with a
set-valued notion of evolutionary stability. When applying our model to Aumann’s ex-
ample, we come to the conclusion that the outcome (c, c), which Aumann convincingly
argues is not self-enforcing when players are indifferent towards honesty, is the only robust
long-run outcome. Expressed somewhat loosely: if such a game were played with pre-play
communication, over and over again in a large population with a common language and a
lexicographic preference for honesty, then play of (c, c) would be the only mode of behavior
that would be sustainable in the long run. Even if the population were initially playing
(d, d), it would eventually find its way to the payoff dominant equilibrium (c, c).

More precisely, we generalize the cheap-talk approach to include what we call a meaning
correspondence, a correspondence that specifies what pre-play messages mean in terms of the
action to be taken in the underlying game, such as the one in (1). For instance, the message
“I will play c” would typically mean that the sender intends to take action c. To take any
other action would be deemed dishonest. By contrast, the message “I will play c or d” is
consistent with any action in the game (1) and is thus honest irrespective of what action the
sender takes.3 The key assumption is here that the two parties have a common language
and agree on its meaning. Our analysis shows how such a shared culture—language and
honesty code—facilitates coordination on socially efficient equilibrium outcomes in strategic
interactions. It does not imply honesty, however. Individuals may lie in equilibrium, even
when this is part of an evolutionarily stable set. It is rather the common understanding of
the language—the common meaning correspondence—that drives home the result.

Most individuals arguably feel some guilt or shame when lying or being dishonest. The
practice of using the polygraph in trials suggests that lying causes physiological symptoms of
effort (sweating) and recent fMRI studies provide neurological evidence that lying activates
more parts of the brain, and parts more associated with negative emotions, than truth-
telling.4 Gneezy (2005) provides experimental evidence for a psychological cost associated
with the act of lying, see also Ellingsen and Johannesson (2004), Hurkens and Kartik (2006)
and Lundquist et al. (2007)). Gneezy’s main empirical finding is that “The average person
prefers not to lie, when doing so only increases her payoff a little but reduces the other’s
payoff a great deal.” (op. cit. p. 385). In the context of the above example: for a sufficiently
large psychological cost of lying, neither Alice nor Bob would say that they will play c and
then play d. What happens, by contrast, if the preference for honesty is weak in comparison
to the material stakes?

This is exactly what we analyze here. We go to the extreme and assume that players
3Examples of lying that is usually not thought to be dishonest are “white lies” in social life and policy

makers’ denials of plans to devalue a currency.
4Kozel, Padgett and George (2004) find that “For lying, compared with telling the truth, there is more

activation in the right anterior cingulate, right inferior frontal, right orbitofrontal, right middle frontal, and
left middle temporal areas.” (op.cit., p 855). Other studies suggest that activities in the right side of the
brain are correlated with negative emotions, see e.g. Davidson and Hugdahl (1995).
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avoid dishonest messages only if this comes at no loss of material payoff. This assumption
may, at first sight, seem too weak to have any interesting implication for behavior. However,
this is not so. For example, suppose that, in Aumann’s example, both Alice and Bob say that
they will play c, but take action d. Such behavior is compatible with Nash equilibrium under
cheap talk, since then messages have no exogenous meaning. By contrast, it is incompatible
with Nash equilibrium in a lexicographic communication game if the message space is rich
enough to permit precise descriptions of actions in the game. For if the language contains
some message, m, that is honest only if action c is taken and another message, m′, that
is honest only when followed by action d — two innocuous assumptions about any natural
language — then it is lexicographically better to say m′ instead of m, since this can induce
no payoff loss in the game G in (1).5

Lexicographic preferences for honesty, by themselves, imply neither honesty nor effi-
ciency in equilibrium. In fact, we show that there are Nash equilibria in lexicographic
communication games in which both players are dishonest and we also show that there are
Nash equilibria in such games that result in outcomes that are payoff dominated by other
Nash equilibria in the underlying game G. However, Nash equilibria in pre-play commu-
nication games usually come in whole continuum sets, so-called equilibrium components.
Our main result is that in finite and symmetric two-player n× n-coordination games with
a unique payoff-dominant equilibrium, components that yield payoff dominated outcomes
are set-wise evolutionarily unstable, granted the message space satisfies two axioms—a pre-
cision and a null axiom—that are met by natural languages. The precision axiom requires
that there for each action in the underlying game G exists a message that means that the
sender intends to take precisely that action. The null axiom requires that there is a message
that means that the sender may take any action. We also show that the payoff-dominant
Nash equilibrium outcome is evolutionarily stable. We extend our model to sender-receiver
games and show that the sender’s most preferred equilibrium is selected. This finding is in
agreement with earlier results based on different approaches from ours.

The mechanism that drives home our inefficiency result—that inefficiency leads to evo-
lutionary instability—is similar to that in Robson (1990) in that it depends on the existence
of unsent messages in equilibrium. Robson noted that, in a population playing such an equi-
librium, a small group of deviating players can profitably use such messages as a “secret
handshake” to recognize each other and to coordinate their play to an efficient equilibrium.
However, while the existence of such unsent messages is assumed in Robson (1990), and
non-deviating players in his setting are assumed not to react to these, the existence of un-
sent messages is here derived from primitives and non-deviators may recognize and even
“punish” senders of such messages.

We believe that setwise evolutionary stability is relevant in the present context. If an
interaction takes place over and over again in a large population with a common language
and culture, then drift may occur among materially payoff-equivalent strategies in connected
sets.6 Thus, if the set is evolutionarily unstable, a small group of individuals can, sooner or

5Just as with Aumann’s informal reasoning, this hinges on the fact that the off-diagonal payoff 8 is no
less than the on-diagonal payoff, 7.

6Drift in equilibrium components of games is also analyzed in detail in Binmore and Samuelson (1994,
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later, deviate to some strategy outside the set and do better in terms of material payoffs.
Our results appear to be broadly in agreement with recent empirical findings. Based on

laboratory experiments, Blume and Ortman (2005) find that, in games with payoff struc-
tures similar to that in Aumann’s example, costless communication with a priori meaningful
messages leads to the efficient outcome after some rounds of play. In a follow-up on Gneezy
(2005), Hurkens and Kartik (2006) find that Gneezy’s data cannot reject the hypothesis that
some people never lie while others lie whenever they obtain a material benefit from that.
In particular, an individual’s propensity to lie may not depend on the individual’s material
benefit nor on the harm done to others. To us, this seems to lend some empirical sup-
port to the here maintained hypothesis of a (probably culturally conditioned) lexicographic
deontological preference for honesty.

The rest of the paper is organized as follows. The model is laid out in section 2,
Nash equilibrium is analyzed in section 3 and evolutionary stability in section 4. Section
5 analyzes one-sided communication, section 6 discusses related research and section 7
concludes. Mathematical proofs are given in an appendix.

2 Lexicographic communication games

Let G be a symmetric n × n two-player game with payoff matrix Π = (π (a, b)). Thus,
π (a, b) is the payoff to a player who uses pure strategy a when the other player uses pure
strategy b. We will refer to G as the underlying game. Let A denote the finite set of pure
strategies of G, to be called actions. Let M be a non-empty finite set of messages. There is
no restriction on what these messages are, but we take them to be statements in a natural
language (allowing for basic notation from mathematics), mastered by both persons playing
the game in question, and referring to actions to be taken in the game G. The messages
can be unconditional, such as “I will take action a ∈ A”, or conditional, such as “I will take
action a ∈ A if you say that you will take action a”.7

Let G =(S, v) be a symmetric cheap-talk communication game, based on the game G,
as follows. First, the players simultaneously send a message from the set M to each other.
Then each player observes both messages and takes an action a ∈ A. The pure-strategy
set for each player in G is thus the finite set S of pairs (m, f), where m ∈ M is a message
to send and f : M2 −→ A a function or “rule” that specifies what action a = f (m,m′)
in game G to take after having sent message m and received message m′, for all possible
message pairs (m,m′).8 Given a mixed strategy σ ∈ ∆ (S), a randomization over one’s
set S of pure strategies, let σ(m, f) denote the probability assigned to the pure strategy
s = (m, f).9 Define the payoff function v : S2 → R, in G =(S, v), by letting v [(m, f), (m′, g)]

1997).
7Note that it is not clear what actions two persons will take who send this conditional statement. However,

this would have been clear had they both sent the following message: “I will take action a if also you send
this message”.

8It is technically inessential that each player conditions his action upon his own message (he knows what
message he has sent). However, this formalization simplifies the notation.

9Technically, ∆ (S) is thus the unit simplex of probability distributions over S. Recall that mixed strate-
gies have two distinct interpretations in game theory. In the epistemic interpretation (Aumann and Barn-
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be the payoff π [f(m,m′), g(m′,m)] that a player who takes the action (m, f) against action
(m′, g) in the underlying game G. We extend the pure-strategy payoff function v linearly
to mixed strategies in G as usual.10

Having defined the cheap-talk game G =(S, v), let β : ∆ (S) ⇒ ∆ (S) be the best-reply
correspondence in G. This correspondence specifies, for each (pure or mixed) strategy
σ′ ∈ ∆ (S) that one’s opponent may play, the (non-empty) set β (σ′) ⊂ ∆ (S) of optimal
(pure and mixed) strategies to use. Let

(2) ∆NE = {σ ∈ ∆ (S) : σ ∈ β (σ)}
be the set of fixed points under β; the set of (pure and mixed) strategies in the cheap-talk
game that are best replies to themselves. In other words, ∆NE is the set of pure and mixed
strategies used in symmetric Nash equilibria in G.

We are now in a position to define lexicographic communication games. The messages,
actions and strategies in such a game G̃ are defined as in G, with G denoting the underlying
game. We proceed to define G̃ as an ordinal game, that is, a game in which players have
complete and transitive preference orderings over mixed-strategy profiles (see Chapter 2
in Osborne and Rubinstein (1994)). Messages in G̃ have a pre-determined meaning in the
sense that to send any message m ∈ M “means” that one intends to take some action in a
subset of A that depends on m and that may also depend on the message m′ received. Let
this subset be denoted µ (m.m′). For example, to send the message mc =“I will take action
c” would usually be taken to mean that the sender intends to take action c, irrespective
of the message received: µ (mc,m′) = {c} for all m′ ∈ M . Likewise, the meaning of the
message mcd =“I will take action c or d” can be formalized as µ

(
mcd,m′) = {c, d} for all

m′ ∈ M . If m∗ is the conditional statement “I will take action c if you say that you will
take action c” satisfies µ (m∗,mc) = {c} and µ

(
m∗,md

)
= A for md =“I will take action

d” for any action d 6= c.11 We call such a correspondence µ : M2 ⇒ A, mapping message
pairs to subsets of actions, a meaning correspondence.12

Players have a lexicographic preference for honesty, defined as follows. Let h : M2×A →
R+ be the “honesty cost” (psychological and/or social discomfort) of sending message m
and taking action a, having received message m′, where h (m,m′, a) = 0 if and only if
a ∈ µ (m,m′), that is, to take actions in accordance with the common language has zero
honesty cost, while all other behaviors have positive honesty cost.13 Define the second-
order payoff function w : S2 → R by setting w [(m, f), (m′, g)] = −h [m,m′, f (m,m′)].

denburger, (1995)), a mixed strategy represents another players’ uncertainty about the player’s behavior .
In the mass action interpretation (Nash, 1950), there is a population associated with each player role in the
game, and a mixed strategy represents a population frequency of deterministic behaviors.

10This is done as follows: multiply each pure-strategy payoff v [(m, f), (m′, g)] by the probabilities σ(m, f)
and σ′(m′, g) attached to the pure strategies involved, and take the sum all these products.

11Although this does not follow from predicate logic, we conjecture that a vast majority of English-speking
persons would understand m∗ to also satisfy µ (m∗, m∗) = {c} (or at least c ∈ µ (m∗, m∗).

12Usually, correspondences are taken to be non-empty valued. However, since there are statements that
are dishonest irrespective of the actions taken (for example: “I am a violinist” if uttered by any one of the
authors), we allow for the possibility that µ (m, m′) = ∅ for some m, m′ ∈ M . However, by requiring all
messages in the set M to be either honest or dishonest, we exclude from the set M such messages as “This
message is dishonest”, which, arguably, is neither honest nor dishonest.

13Individuals may differ as to their honesty costs. The key assumption is that they have a common
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The function value w [(m, f), (m′, g)] ≤ 0 is the second-order utility arising from potentially
being dishonest when using pure strategy (m, f) ∈ S when the other player uses pure
strategy (m′, g) ∈ S, as, for example, when first saying that one will take a certain action
a and then not doing so. With some abuse of notation, let w(σ, σ′) be the linear extension
of w to mixed strategies, hence, representing the expected value of w for a player who uses
the mixed strategy σ when the other uses σ′. Let <L define the lexicographic order on R2,
defined as usual: (x1, x2) <L (y1, y2) if x1 > y1 or x1 = y1 and x2 ≥ y2. Each player’s utility
vector, when the own strategy is σ and the other’s is σ′, is defined as

(3) ṽ(σ, σ′) = (v(σ, σ′), w(σ, σ′)) ∈ R2.

The preferences of the players in G̃ are defined as the lexicographic ordering of these utility
vectors. In other words: each player prefers one strategy profile over another if the first
profile’s utility vector is lexicographically ranked before the other’s,

(4)
(
σ, σ′

)
<

(
τ, τ ′

)
⇔ ṽ(σ, σ′) <L ṽ(τ, τ ′),

where σ, τ ∈ ∆ (S) are the player’s own strategies and σ′,τ ′ ∈ ∆ (S) those of the other
player. Material payoffs are thus ranked first and honesty payoffs second. One strategy
profile is thus strictly preferred over another if and only if either (i) the expected payoff
from the interaction in the underlying game G is higher under the first profile, or (ii) there
is an exact tie between those expected payoffs but the expected dishonesty cost is lower
under the first profile. This defines G̃ =(S, <) as an ordinal game.

The best-reply correspondence β̃ : ∆ (S) ⇒ ∆ (S) in a lexicographic communication G̃
is defined by

(5) β̃
(
σ′

)
=

{
σ ∈ ∆ (S) : (σ, σ′) < (τ, σ′) ∀τ ∈ ∆ (S)

}
.

In other words, a (pure or) mixed strategy σ is a best reply in G̃ against the pure or mixed
strategy σ′ if and only if there is no other pure or mixed strategy τ that either results in a
higher expected material payoff or in exactly the same material payoff but a lower expected
honesty cost. Accordingly, a Nash equilibrium of G̃ is a strategy profile (σ, σ′) such that
σ ∈ β̃ (σ′) and σ′ ∈ β̃ (σ). Such an equilibrium is symmetric if σ = σ′. The set of strategies
in symmetric Nash equilibria of G̃ will be denoted

(6) ∆̃NE =
{

σ ∈ ∆ (S) : σ ∈ β̃ (σ)
}

.

This is the set of (pure and) mixed strategies that are best replies to themselves in the
lexicographic communication game.

The following two axioms for the meaning correspondence turn out to be important and
will be explicitly invoked when assumed:

Axiom P (the precision axiom): For each action a ∈ A there exists at least one
message m ∈ M such that µ (m,m′) = {a} for all m′ ∈ M .

Axiom N (the null axiom): There exists at least one message m ∈ M such that
µ (m,m′) = A for all m′ ∈ M .

meaning correspondence.
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In other words, Axiom P requires the message set M to contain at least one message for
each action in the underlying G such that the action is exactly specified. To send such a
message and then take another action violates the common understanding of the language,
irrespective of the message sent by the other player. Such a message could take the form
“I will take action a irrespective of what message you send”.14 Likewise, Axiom N requires
the message set to contain at least one message that does not specify what action in G the
speaker will use, irrespective of what the other player says, for instance, “I promise nothing
as to what action I will take, irrespective of what you say”. Messages of the latter type will
be called null messages.

Remark 1. We obtain cheap talk as the special case when all messages are null messages
(µ (m,m′) = A for all m,m′ ∈ M).

3 Nash equilibrium

It follows from the definition of the best-reply correspondence β̃ that a mixed-strategy
profile (σ, σ) is a Nash equilibrium of G̃ if and only if (i) it is a Nash equilibrium of G, (ii)
all strategies in the support of σ have the same expected cost of dishonesty, and (iii) there
is no other pure strategy that earns the same material payoff against σ and has a lower
expected dishonesty cost. Formally (and with a slight abuse of notation):

Lemma 1. σ ∈ β̃ (σ) if and only if σ ∈ β (σ) and

v((m, f), σ) = v(σ, σ) ⇒ w((m, f), σ) ≤ w((m′, g), σ)

for all (m, f) ∈ S and all (m′, g) ∈ supp(σ).

As an immediate corollary we obtain that if (σ, σ) is a Nash equilibrium of G̃ in which a
null message is used with positive probability, then w (σ, σ) = 0. We call such Nash equilibria
honesty equilibria. By contrast, a symmetric Nash equilibrium (σ, σ) of G̃ is a dishonesty
equilibrium if w (σ, σ) < 0. The following example exhibits a dishonesty equilibrium.

Example 1 (Dishonesty equilibrium). Consider the game G defined by the payoff bi-matrix
in (1). Let M = {“c”, “d”}, where “c” is honest iff c is played, µ (“c”, ·) ≡ {c}, and “d”
is honest iff d is played, µ (“d”, ·) ≡ {d}.15 Consider the pure strategy s = (“d”, f), where
f (“d”, “d”) = c and f (“d”, “c”) = d. In other words: say “d” and take action c if you
receive the message “d”, otherwise take action d. Clearly (s, s) is a Nash equilibrium in the
cheap-talk game G, since no deviation can result in a higher material payoff. A deviation to
“c” results in a material payoff loss, so (s, s) is also a Nash equilibrium in the lexicographic
communication game G̃, a dishonesty equilibrium.

14Likewise, Rabin (1994), see section 5, defines completeness of a pre-play communication language to
essentially mean that in the pre-play negotiation stage in his model, players are able to specify any equilibrium
they want to suggest (op. cit. Definition 2).

15The message “c” could, for example, be “I will take action c” or “Let us play c”.
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Next, we consider the opposite possibility, discussed in Aumann (1990), namely that
people may say “c” when they actually intend to play d in the game G in (1). Such
behavior, while compatible with Nash equilibrium under cheap talk, is incompatible with
Nash equilibrium in any language in which (a) saying “c” is dishonest when followed by play
of d, and (b) there is a message that is honest to send in conjunction with taking action d.
More precisely, we know from lemma 1 that in equilibrium of a lexicographic communication
game based on G, one of the three Nash equilibria of G will be implemented. As the
following example shows, to send the message “c” with positive probability and then play
the Nash equilibrium (d, d) of G is incompatible with Nash equilibrium in the lexicographic
communication game.

Example 2 (Disequilibrium). Let G̃ be as in the preceding example. Suppose that σ sends
the message “c” with positive probability and that play of (σ, σ) results in the action pair
(d, d) with probability one. Then each player incurs material payoff 7 and a positive expected
dishonesty cost. A unilateral deviation to a pure strategy s = (“d”, f), where f (“d”,m) = d
for all messages m, does not reduce the material payoff but reduces the dishonesty cost.
Hence, (σ, σ) is not a Nash equilibrium of G̃. By contrast, sending “d” with probability one
and playing the action pair (d, d) is compatible with Nash equilibrium in G̃.

We now explore the implications of Axioms P and N. First, if the language contains
a null message, then any symmetric Nash equilibrium of an underlying game G can be
implemented in Nash equilibrium in G̃ by simply having both players send a null message
(“promise nothing”) and play the symmetric Nash equilibrium of G irrespective of the
message received from the other player. In particular, the payoff dominated equilibrium
(d, d) in the game in (1) is consistent with Nash equilibrium in G̃. Denoting mixed strategies
in G by ρ ∈ ∆ (A), with ρ (a) for the probability assigned to action a ∈ A, we have:

Lemma 2. Let (ρ, ρ) be a Nash equilibrium of a symmetric two-player game G and suppose
that G̃ satisfies axiom N. Then there exists a symmetric honesty equilibrium of G̃ in which
each action a ∈ A is played with probability ρ (a).

Second, if G is a coordination game with at least two actions, then every symmetric
Nash equilibrium in the associated lexicographic communication game has a message that
is not sent in equilibrium if axioms P and N are met. More precisely, we call a finite
and symmetric n × n-game G a (pure) coordination game if the payoff matrix Π satisfies
π (i, i) > π (j, i) ∀i, j 6= i. In other words, each (pure) action is its own unique best reply.
A message m ∈ M is unsent under a mixed strategy σ ∈ ∆ (S) if no pure strategy in the
support of σ uses m with positive probability.

Lemma 3. Let G̃ be a lexicographic communication game that satisfies Axioms P and N,
and where G is an n× n−coordination game with n ≥ 2. Every σ ∈ ∆̃NE has at least one
unsent message.

The following example shows that there are dishonest equilibria in some games even
under the hypotheses of Proposition 3. It is as if two friends are joking with each other.
They both say “let us meet at the bad restaurant” although they understand that the other
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actually plans to go to the good restaurant. A deviation from this joke would bewilder the
other and induce him or her to indeed go to the bad restaurant.

Example 3 (Dishonesty despite Axiom N). Reconsider game G in (1) and let M =
{“c”,“d”, n}, where “c” is honest if and only if c is played, “d” if and only if d is played,
and n is a null message. Let G̃ be the lexicographic communication game based on G, with
message set M and the meaning correspondence described above; so G̃ satisfies Axioms P
and N. Consider the pure strategy s = (“d”, f), where for all m ∈ M : f (m, “d”) = c and
f (m, “c”) = f (m,n) = d. In other words: say “d”, and take action c if and only if you
receive the message “d”. Messages “c” and n are thus unsent in s. It is easily verified that
(s, s) is a Nash equilibrium of G̃ for the reasons given in Example 1.

This example and proposition 3 together show that, although a lexicographic preference
for honesty does not rule out the possibility of lying equilibria, nevertheless it restricts the
sets of messages sent in equilibrium. In particular, it rules out so-called babbling equilibria,
that is, equilibria in cheap-talk games in which all messages are sent and “nobody listens”
(actions are not conditioned on messages). This property is crucial for our main result.

The structure of the sets of Nash equilibria, in G and G̃ respectively, are as follows. The
cheap-talk game G is finite, so its Nash equilibria form a finite disjoint union of closed and
connected semialgebraic sets, the Nash equilibrium components of G. The same is true of
the set ∆NE of fixed points under β.16 Likewise, the set ∆̃NE can be defined in terms of
finitely many real polynomial inequalities and so is a finite disjoint union of semialgebraic
subsets of ∆NE . It follows immediately from the definition of lexicographic Nash equilibria
that each component (and hence its closure) of ∆̃NE is contained in some component of
∆NE . Components of ∆̃NE , unlike those of ∆NE , need not be closed, due to the possibility
of dishonesty equilibria. The next example illustrates this fact.

Example 4 (A non-closed component). Reconsider the strategy s = (“d”, f) in Example
1, and let s′ = (“d”, f c), where f c ≡ c. Consider mixed strategies σλ = λs + (1− λ) s′, for
λ ∈ [0, 1]. Note that σλ ∈ ∆NE for all such λ. It is as if everybody says “d”, plays c when
hearing “d”, and plays d with probability λ if someone would instead say “c”. We also have
σλ ∈ ∆̃NEfor all λ > 0, but not for λ = 0. For positive λ, a deviation from message “d”
to message “c” leads to a lower expected material payoff, since “c” is met by action d with
positive probability. However, for λ = 0 a deviation to “c”, followed by taking the action c,
incurs no loss in expected material payoff (is not “punished”) but raises the honesty payoff.
Such a deviation is thus a lexicographically better reply to σ0, and hence σ0 /∈ ∆̃NE. Thus
the component of ∆̃NE that contains the strategies σλ, for all λ > 0, is not closed.17

16This set is a projection of the intersection between the set of Nash equilibria in G and the diagonal of
the space of mixed-strategy profiles. It is non-empty by Kakutani’s Fixed-Point theorem applied to β, see
Weibull (1995).

17In fact, honesty and closedness are strongly related properties: if axiom N and the game is not trivial
components are closed if and only if they do not contain lying equilibria. The proof of this fact, that is not
needed in the sequel is available upon request from the authors.
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4 Evolutionary stability

The concept of neutral stability (Maynard Smith (1982)) is a weakening of evolutionary
stability: instead of requiring that any mutant strategy does strictly worse in the post-
mutation population (granted its population share is small enough) it is required that no
mutant does strictly better in the post-mutation population (under the same proviso).
Neutral stability is thus similar in spirit to Nash equilibrium; no small group of individuals
in a large community can do better by together deviating to another strategy when the
rest of the community plays the original strategy.18 We here apply this concept to the
material payoffs in lexicographic communication games, or equivalently, to the cheap-talk
game associated with any given lexicographic communication game.

Formally, given a lexicographic communication game G̃:

Definition 1. A mixed strategy σ ∈ ∆ (S) is neutrally stable if ∀τ ∈ ∆ (S):
(i) v (τ, σ) ≤ v (σ, σ) and
(ii) v (τ, σ) = v (σ, σ) ⇒ v (τ, τ) ≤ v (σ, τ).

In other words, a neutrally stable strategy (an NSS) is a strategy σ that is a best reply
to itself and, in case of multiple best replies, fares at least as well against other best replies
τ as these fare against themselves.19 Let ∆NSS ⊂ ∆ (S) denote the (closed but potentially
empty) set of neutrally stable strategies. Clearly ∆NSS ⊂ ∆NE . We call a component X of
∆̃NE neutrally stable if it is contained in ∆NSS .

A closed set X of neutrally stable strategies is called evolutionarily stable (Thomas
(1985)) if X contains all strategies that are just as good as a strategy σ against σ and
against themselves:

Definition 2. A non-empty and closed set X ⊂ ∆NSS is evolutionarily stable if for all
σ ∈ X and τ ∈ ∆ (S):

(7) v (τ, σ) = v (σ, σ) ∧ v (τ, τ) = v (σ, τ) ⇒ τ ∈ X.

Applied to a singleton set {σ}, this definition is identical with Maynard Smith’s (1982)
definition of an evolutionarily stable strategy (ESS) σ. Not surprisingly, evolutionarily stable
sets thus have most of the properties of evolutionarily stable strategies. In particular, just
as an ESS, viewed as a population state, is asymptotic stable in the replicator dynamic
(Taylor and Jonker (1978)), an evolutionarily stable set is set-wise asymptotically stable
in the same dynamic (Thomas (1985), Weibull (1995)). More precisely, if we view the
probabilities assigned by a mixed strategy σ to pure strategies s = (m, f) as population
shares, in a population where individuals now and then are randomly pairwise matched
to play the game G̃, and if pure strategies that on average give higher material payoffs
spread faster in the population than those that on average give lower material payoffs, then

18In the case of evolutionary, as opposed to neutral, stability, such groups do strictly worse; a parallel to
strict Nash equilibrium.

19To see that this is equivalent with the above given verbal condition concerning post-mutation popula-
tions, note that, since v is linear in each of its two arguments, neutral stability is equivalent with requiring
that for all τ : v (τ, (1− ε) σ + ετ) ≤ v (σ, (1− ε) σ + ετ), for all ε > 0 small enough.
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no small perturbation of a population state σ in, or near, an evolutionarily stable set X
will lead the population state far away from X. Indeed, the population state will in the
long run be arbitrarily close to, or in, the set X.20 In this sense, (setwise and pointwise)
evolutionary stability implies asymptotic stability in the replicator dynamic. It is also
known that a neutrally stable strategy σ, again viewed as a population state, is weakly
dynamically stable (or Lyapunov stable) in the replicator dynamic (Bomze and Weibull
(1995)). It is easily verified that this also holds for any neutrally stable set.21 Hence, no
small perturbation of a neutrally stable population state, or a population state in or near
a closed set of such states, will lead the population state far away.22

Let G be a finite and symmetric coordination game with a unique payoff-dominant Nash
equilibrium (c, c), resulting in payoff α to each player.23 For any real number β, call β a
(material) equilibrium outcome in the lexicographic communication game G̃ if v (σ, σ) = β
for some strategy σ in ∆̃NE , and say that a component X of ∆̃NE results in payoff β if
v (σ, σ) = β for all strategies σ in X. Finally, call β an evolutionarily stable outcome if the
set X (β) = {σ ∈ ∆ (S) : v(σ, σ) = β} of strategies σ that earn material payoff β against
themselves is evolutionarily stable.

We proceed to establish that if Axioms P and N are met, then an equilibrium component
is neutrally stable if and only if it results in the payoff dominant outcome in the underlying
game and, moreover, that this outcome is the unique evolutionarily stable equilibrium
outcome. Formally:

Proposition 1. Let G be a finite and symmetric coordination game with at least two actions
and with a unique payoff dominant Nash equilibrium with payoff α. Suppose that G̃ is a
lexicographic communication game, based on G, that satisfies Axioms P and N. A component
X of ∆̃NE is neutrally stable if and only if it results in material payoff α. This outcome is
the unique evolutionarily stable equilibrium outcome.

While the proof given in the appendix is somewhat lengthy and technical, its intuition
is simple. The most important claim is the instability of components X of ∆̃NE that do
not result in the maximal material payoff. Let X be such. By proposition 3, there exists a
message m that is not sent by σ. The population may drift in the component X towards
strategies σ′ that do not “punish” senders of m, and earn the same material payoff as σ

20A population state x, or, more generally, a compact set X of population states is Lyapunov stable if
for every open set A containingat x (0) ∈ B ⇒ x (t) ∈ A for all t > 0. In other words, starting in B, the
population state will never leave A. A compact set X is asymptotically stable if it is Lyapunov stable and,
moreover, there exists an open set B∗ containing X such that x (0) ∈ B∗ ⇒ d(x (t) , X) → 0. In other words,
starting sufficiently near X, the population state will asymptotically approach X.

21To see this, let X ⊂ ∆NSS be closed, and let A ⊃ X be open. For each x ∈ X, let x ∈ Ax for Ax open
with Ax ⊂ A. There exists an open set Bx such that x ∈ Bx and such that x (0) ∈ Bx ⇒ x (t) ∈ Ax for all
t > 0. The union B = ∪x∈XBx is an open set that contains X, and x (0) ∈ B ⇒ x (t) ∈ Ax ⊂ A for all
t > 0.

22The closedness requirement is important, since each point in a non-closed set X can be Lyapunov stable
and yet boundary points of X can be dynamically unstable. Binmore and Samuelson (1994), Binmore,
Gale and Samuelson (1995), Weibull (1995) and Binmore and Samuelson (1999) analyze variants of entry-
deterrence and ultimatum-bargaining games with precisely this property.

23That is, (c, c) is a Nash equilibrium of G and both players obtain lower payoffs in all other Nash equilibria
of G.
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(against σ and itself). This leaves the door open for mutants who use the message m as a
“secret handshake” among themselves. They earn the same material payoff against σ′ as
the non-mutants do. However, by playing the action-pair (c, c) when meeting each other,
they earn more in such encounters and thus also on average. The two parts of the argument,
“drift to non-punishing strategies” and “secret handshake” are illustrated in the following
two examples:

Example 5 (Drift). Let G̃ be the lexicographic communication game in example 3. There
is a Nash equilibrium in which both players say “hi” (send message n) to each other and
then play the mixed Nash equilibrium in the underlying game G. More exactly, let σ =
7
8(n, f∗) + 1

8(n, fd), where f∗(n, n) = c, f∗(n,“c”) = f∗(n,“d”) = d and fd (·, ·) ≡ d. It is
easily verified that σ is a best reply to itself in G̃, that is, σ ∈ ∆̃NE. Unilateral deviations to
any other message are punished by play of d for sure, giving the deviator a material payoff
of at most 7. However, also σ′ ∈ ∆̃NE for σ′ = 7

8(n, f c) + 1
8(n, fd), where f c (·, ·) ≡ c, a

strategy that does not punish deviating messages. The two strategies σ and σ′ belong to the
same component of ∆̃NE, since σt = (1 − t)σ + tσ′ ∈ ∆̃NE for all 0 ≤ t ≤ 1. Hence, if
strategies are subject to drift off their equilibrium paths, then drift may lead away from the
punishing strategy σ to the “forgiving” strategy σ in the same component of ∆̃NE.

Example 6 (Secret handshake). Let again G̃ be the lexicographic communication game in
example 3 and now let σ ∈ ∆̃NE be such that v (σ, σ) = 7, that is, σ plays d against itself.
By proposition 3, there exists a message m that is not sent by σ. Let τ send m, play c when
receiving m, otherwise d. Then v (τ, σ) ≥ 7 = v (σ, σ). Moreover, v (τ, τ) = 9 > v (σ, τ),
where the last inequality holds since σ has to play d against τ ; otherwise there would exist
a profitable unilateral deviation against σ in G. This proves that σ is not neutrally stable,
σ /∈ ∆NSS. A small group of mutants playing τ would do better than σ in the post-entry
population. Consequently, the component of ∆̃NE to which σ belongs is not even weakly
evolutionarily stable.

5 Sender-receiver games

We here briefly discuss how our approach can be extended to games with one-sided
communication—so-called sender-receiver games—and what results the approach yields.
Intuitively, one would expect one-sided communication to be beneficial for the sender, who
arguably can lead play towards any preferred Nash equilibrium in the underlying game G.
This intuition turns out to be roughly, though not entirely, right.

Let G be a finite, not necessarily symmetric, two-player game with player roles S and R
and with action set A for player S and action set B for player R. Let the payoffs to the pure-
strategy pair (a, b) ∈ A × B be πS(a, b) and πR(a, b). Define a cheap-talk sender-receiver
game H, based on G, as follows. Before G is played, S sends a message m from a finite set
M . Player R receives this message and thereafter both players simultaneously take their
actions, a ∈ A and b ∈ B, respectively, in game G. Hence, in H a pure strategy for the
sender is a pair (m, a) ∈ M × A and, for the receiver, a function g : M → B that maps
received messages to own actions. Play of such a pure-strategy pair in H results in actions
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a and b = g (m) ∈ B in G. The payoffs in H are the resulting payoffs in the underlying
game G, to be called the material payoffs.

We introduce meaning of messages in a similar way as in games with two-sided commu-
nication, and thereby obtain a game H̃ with one-sided communication. More specifically,
for each message m ∈ M , let µ (m) be a subset of the sender’s action set A. The elements of
µ (m) are those actions that message m means that the sender intends to play. This defines
the meaning correspondence µ : M ⇒ A in H̃. Let h : M × A → R+ be an function such
that h (m,a) = 0 if and only if a ∈ µ (m); this is the sender’s honesty cost function. Define
the sender’s lexicographic preferences in H̃ along the same lines as in games with two-sided
communication, and let the receiver’s preferences in H̃ simply be defined by this player’s
material payoffs. This defines H̃ as a lexicographic sender-receiver game. Now define H̄ as
the symmetric lexicographic communication game that is obtained from H̃ by adding a first
random draw by “nature”, whereby one of the players in H̄ becomes the sender and the
other the receiver in H̃, with equal probability for both draws. Both players in the sym-
metric game H̄ thus have a lexicographic preference for honesty, a preference that matters
only if the player happens to be drawn to be the sender.

Consider lexicographic communication games H̄ satisfying axioms P and N.24 For each
mixed-strategy profile (σ, τ), denote by vS(σ, τ) and vR(σ, τ) the conditionally expected
material payoffs to the player who plays σ, conditional upon the event that this player is
drawn to be the sender and receiver, respectively. Thus

(8) v̄(σ, τ) =
1
2
vS(σ, τ) +

1
2
vR(σ, τ)

is the expected material payoff to strategy σ in H̄ when played against τ . Let β̄ be the
best-reply correspondence in H̄ and let ∆̄NE be its set of fixed points. Again, this set
consists of finitely many connected components.

We establish the claimed results for a class of games G that contain those considered
in Proposition 1 — symmetric coordination games with a unique payoff dominant Nash
equilibrium. Generalizing the notation in the preceding section somewhat, let αS denote
the maximal payoff in G to player role S,

(9) αS = max
(a,b)∈A×B

πS(a, b).

In other words, whenever the player in the sender role obtains this payoff, he gets “his way”
in G. For any real number β, call β an equilibrium sender-outcome if vS (σ, σ) = β for
some strategy σ in ∆̄NE , and say that a component X of ∆̄NE results in sender-payoff β if
vS (σ, σ) = β for all strategies σ in X. Finally, call β an evolutionarily stable sender-outcome
if the set XS (β) = {σ ∈ ∆ (S) : vS(σ, σ) = β} is evolutionarily stable.

Consider games G in which the maximum payoff αS to player role S is achieved in only
one action pair, (a∗, b∗), and, moreover, this action pair is a strict Nash equilibrium of G.

24In this context, axiom P requires that there for each a ∈ A exists at least one m ∈ M such that
µ (m) = {a}, where µ is the meaning correspondence in the associated game H̃. Likewise, axiom N requires
that there exists at least one message n ∈ M such that µ (n) = A.
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We call such games strict. In such a game, a message suggesting play of (a∗, b∗) is self-
committing in the sense that a sender believing that the receiver believes the message has
an incentive to carry out her action, a∗. However, such a message need not be self-signaling,
where self-signaling means that the sender prefers the receiver to believe the message only if
she plans to carry out her action. Aumann’s example shows that strictness does not imply
this property. Clearly all symmetric coordination games with a unique payoff-dominant
Nash equilibrium are strict in this sense, as are all games of the battle-of-sexes and hawk-
dove varieties (while prisoner’s dilemma games are not). One would guess that, when the
underlying game is strict, it would be evolutionarily advantageous to “declare to be tough”
and then play a∗ when in the sender role, and to be accommodating and play b∗ in the
receiver role. The following proposition formalizes this intuition.25

Proposition 2. Let G be strict and let H̄ be a symmetric lexicographic communication
game, based on G, that satisfies axioms P and N. A component X of ∆̄NE is neutrally stable
if and only if it results in the maximal sender-payoff αS. This is the unique evolutionarily
stable equilibrium sender-outcome.

The intuition for the proof, put in the appendix, is as follows. First, in a Nash equilib-
rium there is always an unused message, as in the case of two-sided communication. Second,
the population may drift towards strategies that do not “punish” senders of the unused mes-
sage. Third, if such a “forgiving” strategy is not lead to the maximal sender-payoff, this
leaves the door open for mutants who “get their way” as senders and accommodate opti-
mally as receivers. Such mutants earn on average a higher material payoff than the rest of
the population.

Unlike in the case of two-sided communication, the unique evolutionary stable outcome
need not be ex-ante Pareto efficient. To see this, let G be the following skewed battle-of-
the-sexes game:

(10)
c d

c 3, 1 0, 0
d 0, 0 2, 6

This game has two strict Nash equilibria, one better for the row player, the other better
for the column player, both Pareto efficient in the game G, but the latter giving the highest
average payoff, 4. The game G is clearly strict, with αS = 3. Hence, in a lexicographic and
symmetrized communication game H̄ satisfying axioms P and N, the unique evolutionarily
stable set results in play of the strict equilibrium (c, c) preferred by the player in the sender
role, although the associated expected material payoff in H̄ is only 2, while always sending a
null message and taking action d is another Nash equilibrium of H̄ and results in the higher
expected material payoff 4. Why cannot a few mutants playing (d, d) with each other invade
a population playing (c, c)? The point is that, even if such mutants would appear and start
sending an unused message (in order to recognize each other), and even if the rest of the
population would not punish senders of this message, the mutant in the sender role has no

25The conclusions are valid under less stringent, but more involved assumptions on G than strictness.
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way to know whether the receiver is a mutant or not, where the latter is much more likely.
So a mutant sender essentially has to presume that the receiver is a non-mutant and will
therefore have no way to be “nicer” to a receiving mutant. By contrast, under two-sided
communication, two mutants, both sending an unused message, can recognize each other
and thereby coordinate their actions on a better equilibrium in the underlying game.26

6 Related work

We believe that our approach is original. By having a meaning correspondence, it differs
from the cheap-talk literature and from other models of pre-play communication in which
messages have a pre-existing meaning. We here comment on some of the most closely related
work, in chronological order.

Farrell (1988,1993) analyzes costless pre-play communication when messages have a
pre-existing meaning. Unlike here, players have no preference for honesty per se. Instead,
Farrell imposes a credibility condition, roughly requiring the listener to believe the speaker
unless the speaker could have a “strategic reason” to mislead the listener. Credibility is a
property of a message (and may depend on the game in question), while we model honesty
as a property of a triplet—a message-pair and an action—and assume that players have a
deontological preference for this property.

Myerson (1989) develops a formal credibility criterion for one-sided communication
games, assuming that messages have a pre-existing meaning. Applied to games of com-
plete information, Myerson’s criterion essentially requires that if the sender promises to
take a certain action and recommends the others to take some actions, the so defined
action-profile should constitute a Nash equilibrium of the underlying game. Players do not
have deontological preferences for honesty or the truth.

As mentioned in the introduction, Robson (1990) pioneered the idea of using unsent
messages as “secret handshakes” among mutants (see also Wärneryd (1991)). Using a sim-
ilar argument, Sobel (1993) establishes a form of dynamic evolutionary stability of efficient
outcomes in coordination games preceded by two-sided cheap talk. He defines a popula-
tion dynamic with a finite population for each player role in a two-player game. Pairs
of individuals, one from each player population, are randomly matched to play the game
and all individuals play pure strategies. Sobel assumes that there are more messages than
individuals in each player population, so there always exists at least one unsent message.
Evolutionary drift may lead to a population state in which the unsent message in question
is not “punished”. If, in a coordination game, the average population payoff is not maximal,
this opens the door for mutants to destabilize the population state by way of sending the
unsent message and playing the “good” Nash equilibrium among themselves.27

26The line of reasoning in this section applies also to cheap-talk games, at the expense of introducing one
more round of evolutionary drift in order to create an unused message. In that setting, our result essentially
replicates Proposition 4 in Kim and Sobel (1995).

27As showed by Schlag (1993, 1994), Wärneryd (1998) and Banerjee and Weibull (1993, 2000), this
argument does not apply if individuals are allowed to play mixed strategies and the game in question is
played by individuals drawn from one and the same population. In particular, there exists an evolutionarily
stable outcome in 2× 2 coordination games that sends all messages and results in suboptimal payoffs.
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Sobel’s (1993) model is further developed in Kim and Sobel (1995) and they also consider
sender-receiver games. As pointed out earlier, our result for this case confirms theirs,
the only difference being that our approach requires one round less of evolutionary drift.
This suggests the possibility that a honesty costs might induce faster convergence to the
equilibrium preferred by the sender.

Rabin (1994) analyzes two-sided pre-play communication in symmetric two-player games.
He considers costless communication in a language with pre-existing meaning, and players
make repeated simultaneous proposals before playing the underlying game. If all players
propose the same equilibrium in a given pre-play communication round, then this is taken
to be an agreement to play that equilibrium. Our approaches differ, since in Rabin’s model
players do not have honesty preferences and in our model two identical messages are not
taken to necessarily constitute an agreement.

Blume (1998) studies a stochastic population dynamic for pre-play communication
games in which some messages have a priori meaning. Namely, for each strict equilibrium
in the underlying game, each player has exactly one message “linked” to that equilibrium
(in a similar way as our precision axiom). If such a linked message is sent, then the receiver
of the message obtains a small increase in his or her material payoff when playing according
to that equilibrium, while the sender’s payoff is unaffected. By contrast, we assume that it
is the sender who may incur a lexicographic payoff loss, while the receiver’s payoff does not
depend directly on the message received.

Hurkens and Schlag (2002) analyze cheap talk pre-play communication in situations
where each player has the option of not showing up at the pre-play communication stage,
that is, of not sending a message and not knowing if the other player has sent a message. By
contrast, while our null axiom permits senders to avoid “committing” to any particular ac-
tion, receivers in our model cannot commit to not observe the other’s message. Hurkens and
Schlag show that in their setting the unique evolutionarily stable set in n× n-coordination
games is characterized by play of the payoff dominant equilibrium.

Crawford (2003) analyzes one-way pre-play communication in zero-sum games in which
the players send messages to each other about their intentions, in a pre-existing language.
Players do not have a preference against lying per se, but may be sophisticated or mortal.
The first category is essentially the usual homo oeconomicus, while mortals do not always
have correct beliefs about their opponent’s behavior. In particular, they expect their own
attempts to deceive their opponent to always be successful. The possibility of a mortal
opponent fundamentally alters the game from sophisticated players’ viewpoint and makes
deception possible in sequential equilibrium.28

Miettinen (2006) develops a model of bilateral pre-play agreements in which players
incur a psychological costs if they breach an agreement and thereby harm the other party.
The cost is weakly increasing in the harm caused the other player. Hence, while addressing
a related question, the approach is quite distinct. In particular, it is not a generalization of
cheap talk and players do not have a deontological preference for honesty.

Kartik, Ottaviani and Squintani (2007) develop a sender-receiver model of the Crawford
28For other analyses of deceit and lying, see Sobel (1985), Benabou and Laroque (1992), Farrell and

Gibbons (1989) and Conlisk (2001).

16



and Sobel (1982) variety and use this to analyze strategic misrepresentation of private
information. The sender knows the true state and incurs a disutility from misrepresenting
his private information. The message space is identical with the state space and this is an
unbounded interval. The sender’s utility function is decreasing in his message’s deviation
from the truth. Receivers have a small probability of being credulous. See Chen (2004),
Kartik (2005) and Chen, Kartik and Sobel (2007) for more research on this somewhat
related topic.

Lo (2007) develops an alternative model of language, meaning and games. She focuses on
sender-receiver games and formalizes meaning by way of restricting the receiver’s reactions
to messages. Her solution concept is iterated elimination of weakly dominated strategies.
This approach leads to interesting results in games that permit self-committing and self-
signalling messages. For instance, in battle-of-the-sexes games, the sender obtains her
preferred outcome, as in our model in Section 5. She also discusses Aumann’s example (1),
and shows that all outcomes are possible in that game.

7 Concluding comments

An interesting feature of evolutionary stability in pre-play communication games is its
logical independence of ordinality in the underlying game, where by ordinality we mean
invariance of the solution under transformations that leave the best-reply correspondence
unchanged. For example, while the best-reply correspondence of the game in (1) is identical
with that of

(11)
c d

c 1, 1 0, 0
d 0, 0 7, 7

the unique evolutionarily stable outcome in a lexicographic pre-play communication game,
as modelled above, is play of (c, c) when based on (1) but (d, d) when based on (11).29 A
more profound question, falling outside the scope of this study, is whether indeed ordinality
should be viewed as a general desideratum for solution concepts in games.

We plan to extend our analysis in different directions. We plan to apply this approach
to infinitely repeated games. Fudenberg and Maskin (1991) showed that evolutionary sta-
bility and noise together have strong efficiency implications in infinitely repeated prisoners’
dilemmas. If, instead of noise, the players communicate with each other between rounds,
will this destabilize inefficient outcomes? We also intend to study the evolution of meaning
and honesty of language in populations using cheap talk.

8 Appendix

This section contains mathematical proofs of results not proved in the main text.
29Note, however, that evolutionary and neutral stability are ordinal solution concepts in the sense of being

invariant under transformations that keep the best-reply correspondence unchanged in the game to which
they are applied, here the cheap-talk game G.
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8.1 Lemma 3

Consider a mixed strategy σ ∈ ∆ (S) such that every message m ∈ M is sent with
positive probability in σ. By Axiom N, the language contains a null message. Let n be such
a message. Since n is used in σ, no pure strategy (m, f) in the support of σ is dishonest
against σ, by Lemma 1. Moreover, since every message is sent with positive probability,
the support of σ contains only pure strategies s = (m, f) such that f (m,m′) ∈ µ(m,m′)
for all m′ ∈ M . By hypothesis, the game G contains at least two actions, say c and d. By
Axiom P there exist messages “c”,“d”∈ M such that µ(“c”, ·) ≡ {c} and µ(“d”, ·) ≡ {d}.
Since, by hypothesis, every message is sent in σ, the message pair (“c”,“d”) is realized with
positive probability. The player who sent “c” has to play c, but this is not a best reply to
the action of the other player, who plays d (since she sent “d”). Hence, σ /∈ β̃(σ).

8.2 Proposition 1

First, we prove that a component X of ∆̃NE is not neutrally stable if it contains a
strategy σ with v (σ, σ) < α.

Since σ ∈ ∆̃NE and axioms N and P hold, proposition 3 implies that there exists at least
one message that is not sent in σ. Let n ∈ M be such. Choose a pure strategy s̃ ∈ supp(σ)
such that v(σ, s̃) < α and let s̃ = (m̃, f̃). For each pure strategy s = (m, f) ∈ supp(σ),
let s1 be the associated modified pure strategy (m, f1), where f1(m,m′) = f(m, m′) for
all m′ 6= n and f1(m,n) = f(m, m̃). Note that s1 reacts to receiving n just as s reacts
to m̃, while otherwise they coincide. If σ =

∑
λisi for pure strategies si and probability

weights λi > 0 summing to 1, let σ1 =
∑

λis
1
i . In other words, σ1 is the same convex

combination of the pure strategies s1
i as σ is with respect to the si. For all 0 ≤ t ≤ 1, define

σt = (1 − t)σ + tσ1. Note that σ and σt send the same messages and react in the same
way to the messages they send: they differ only in their reaction to the (unsent) message
n. This implies that v(σ, σ) = v(σt, σt) and w(σ, σ) = w(σt, σt) for all 0 ≤ t ≤ 1.

Claim 1. σt ∈ ∆̃NE for all t < 1.

Proof : Suppose first that τ ∈ ∆ (S) does not use n. Then v(τ, σt) = v(τ, σ) ≤ v(σ, σ) =
v(σt, σt) since σ ∈ ∆̃NE . Under equality, w(τ, σt) = w(τ, σ) ≤ w(σ, σ) = w(σt, σt) for the
same reason. Suppose now that τ ∈ ∆ (S) uses n. Consider thus a pure strategy sending
n, say s0 = (n, h). Clearly v(s0, σ) ≤ v(σ, σ), because σ ∈ ∆̃NE . Moreover, by definition of
σ1, we have v(s0, σ1) = v((m̃, h), σ). Now, the fact that σ ∈ ∆̃NE implies that

v((m̃, h), σ) ≤ v(σ, σ) = v(σ1, σ1).

If v(s0, σ) < v(σ, σ), linearity in t implies that v(s0, σt) < v(σt, σt) for all t < 1. If
v(s0, σ) = v(σ, σ), then we must have w(s0, σ) ≤ w(σ, σ) because σ is a lexicographic
NE. However, we also have w(s0, σ1) = w(s0, σ) because, again, σ and σ1 send the same
messages, so

w(s0, σ1) = w(s0, σ) ≤ w(σ, σ) = w(σ1, σ1),
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Again, by linearity in t, we are done. This proves the claim.30

Consider now the pure “secret handshake” strategy ŝ = (n, g), where g(n, m′) = f̃(m̃,m′)
if m′ 6= n and g(n, n) = c. We then have v(ŝ, σ1) = v(s̃, σ) = v(σ, σ) = v(σ1, σ1) and
v(ŝ, ŝ) = α. However, v(σ1, ŝ) = v (σ, s̃) < α. Thus σ1 /∈ ∆NSS . But σ1 ∈ X̄ and
X̄ ⊂ ∆NSS since ∆NSS is closed, establishing that X is not neutrally stable.

Secondly, we prove that α is the unique evolutionarily stable equilibrium outcome.
For any σ ∈ X (α) and τ ∈ ∆ (S), v (τ, σ) ≤ α = v (σ, σ), so condition (i) in the

definition of neutral stability holds. If v (τ, σ) = v (σ, σ), then τ must always play c against
σ, so v(σ, τ) = α ≥ v (τ, τ) and thus also condition (ii) in the definition of neutral stability
holds. In sum: X (α) ⊂ ∆NSS . We note that X (α) is non-empty (send any null message
and react to all messages by taking action c) and that it is closed by continuity of v. It thus
only remains to verify that if v (σ, σ) = α, v (τ, σ) = v (σ, σ) and v (τ, τ) = v (σ, τ), then also
v (τ, τ) = α. But this follows from the above observation that v(σ, τ) = α.

Thirdly, it remains to prove that a component X of ∆̃NE is neutrally stable if it results
in material payoff α. However, this follows directly from the just proved fact that α is an
evolutionarily stable equilibrium outcome, which implies that any subset of X (α) consists
of neutrally stable strategies.

8.3 Proposition 2

We first prove that a component X of ∆̄NE is not neutrally stable if it contains some
strategy σ such that vS(σ, σ) < αS .

Let σ ∈ X. Using the same argument as in the proof of proposition 3, it is not difficult
to show that there exists a message m ∈ M such that σ assigns zero probability to all pure
strategies using m. We define σ1 in a similar way as in the proof of Proposition 1: in the
sender role, σ1 sends the same messages and takes the same actions as σ. In the receiver role
σ1 reacts to all messages but m in the same way as σ does. When m is sent, σ1 reacts by
taking action b∗. Let τ be the strategy that, in the sender role, sends message m and takes
action a∗, and, in the receiver role behaves like σ1. For t ∈ [0, 1], let σt = (1 − t)σ + tσ1.
Suppose that vS(σ, σ) = β < αS . It is easy to see that there is a t̄ < 1 such that, for
all t ∈ [0, t̄], σt ∈ X. Let σ′ = (1 − t̄)σ + t̄σ1. Then vS(τ, σ′) = vS(σ′, σ′) = β. We
claim that σ′ is not neutrally stable, because τ is a successful mutant against it. First, τ
is a material best reply to σ′ in H̄. Because vR(τ, σ′) = vR(σ′, σ′) since τ , in the receiver
role, reacts to σ′ exactly as σ′ does, and τ does just as well as σ′ in the receiver role.
Hence, v̄(τ, σ′) = v̄(σ′, σ′). Second, τ earns more material payoff against itself than σ′

earns against it. To see this, first note that vS(τ, τ) = αS while vS(σ′, τ) = vS(σ′, σ′) = β,
so vS(τ, τ) > vS(σ′, τ). Secondly, vR(τ, τ) = π(b∗, a∗) while vR(σ′, τ) ≤ π(b∗, a∗) because
(a∗, b∗) is a Nash equilibrium. Hence, v̄(τ, τ) > v̄(σ′, τ). Consequently, σ′ is not neutrally
stable and therefore X is not a neutrally stable component either.

Secondly, we prove that αS is the unique evolutionarily stable equilibrium sender-
outcome.

30Note that, if σ in a dishonest component, σ1 /∈ ∆̃NE , because we could have v((n, h), σ) < v(σ, σ),
v((n, h), σ1) = v(σ1, σ1) and w((n, h), σ1) > w(σ1, σ1), see Example 4.
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Let σ ∈ XS (αS). Since the maximum of vS is attained by play of the unique action pair
(a∗, b∗) in G, (σ, σ) induces play of (a∗, b∗) with probability one. In particular, σ always plays
a∗ in the sender role. Let τ be any mutant. By definition of XS (αS), vS(τ, σ) ≤ vS(σ, σ).
When τ is a receiver and σ the sender, σ takes action a∗ and τ thus gets at most, π(b∗, a∗),
the payoff to the best reply to a∗. So vR(τ, σ) ≤ vR(σ, σ). The same argument, and
the strictness of the Nash equilibrium (a∗, b∗) in G, implies that if v̄(τ, σ) = v̄(σ, σ) then
vS(τ, σ) = vS(σ, σ), vR(τ, σ) = vR(σ, σ) and the action pair (a∗, b∗) is played with probability
one when τ meets σ. The latter implies that v̄(σ, τ) = v̄(σ, σ) and that τ always takes action
a∗ in the sender role. But then the best τ can do upon meeting itself is to play b∗ in the
receiver role, so v(τ, τ) ≤ v(σ, τ), with equality implying that τ ∈ XS (αS).

Thirdly, it remains to prove that a component X of ∆̄NE is neutrally stable if it results in
the maximal sender-payoff αS . However, this follows directly from the just proved fact that
αS is an evolutionarily stable equilibrium sender-outcome, which implies that any subset of
XS (αS) consists of neutrally stable strategies.
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receivers”, mimeo., Yale University.

[21] Chen Y., N. Kartik and J. Sobel (2007): “On the robustness of informative cheap talk”,
mimeo., University of California at San Diego.

[22] Clark K., S. Kay and M. Sefton (2001): “When are Nash equilibria self-enforcing? An
experimental analysis”, International Journal of Game Theory 29, 495-515.

[23] Conlisk J. (2001): “Costly predation and the distribution of competence”, American
Economic Review 91, 475-484.

[24] Cooper R., D. deJong, R. Forsythe and T. Ross (1989): “Communication in the battle
of the sexes game; some experimental results”, RAND Journal of Economics 20, 568-
587.

[25] Crawford V. (1998): “A survey of experiments on communication via cheap talk”,
Journal of Economic Theory 78, 286-298.

[26] Crawford V. (2003): “Lying for strategic advantage: Rational and boundedly rational
misrepresentation of intentions”, American Economic Review 93, 133-149.

21



[27] Crawford V. and J. Sobel (1982): “Strategic information transmission”, Econometrica
50, 1982, 1431-1452.

[28] Davidson R. and K. Hugdahl (1995): Brain Asymmetry. Cambridge, MA: MIT Press.

[29] Ellingsen T. and M. Johannesson (2004): “Promises, threats and fairness”, Economic
Journal 114, 397-420.

[30] Farrell J. (1988): “Communication, coordination, and Nash equilibrium”, Economics
Letters 27, 209-214.

[31] Farrell J. (1993): “Meaning and credibility in cheap-talk games”, Games and Economic
Behavior 5, 514-531.

[32] Farrell J. and R. Gibbons (1989): “Cheap talk with two audiences”, American Eco-
nomic Review 79, 1214-1223.

[33] Fudenberg D. and E. Maskin (1990): “Evolution and cooperation in noisy repeated
games”, American Economic Review, Papers and Proceedings 80, 274-279.

[34] Gneezy U. (2005): “Deception: The role of consequences”, American Economic Review
95, 384-394.

[35] Hurkens S. and K. Schlag (2002): “Evolutionary insights on the willingness to commu-
nicate”, International Journal of Game Theory 31, 511-526.

[36] Hurkens S. and N. Kartik (2006): “(When) Would I lie to you? Comment on ‘Decep-
tion: the role of consequences’”, mimeo., Institut d’Analisi Economica and UCSD.

[37] van Huyck J., R. Battalio and R. Beil (1990): “Tacit coordination games, strategic
uncertainty and coordination failure”, American Economic Review 80, 234-248.

[38] Kartik N. (2005): “Information transmission with almost-cheap talk”, mimeo., Uni-
versity of California at San Diego.

[39] Kartik N., M. Ottaviani and F. Squintani (2007): “Credulity, lies, and costly talk”,
Journal of Economic Theory 134,93-116.

[40] Kim Y.-G. and J. Sobel (1995): “An evolutionary approach to pre-play communica-
tion”, Econometrica 63, 1185-1193.

[41] Kohlberg E. and J.-F. Mertens (1986): “On the strategic stability of equilibria”, Econo-
metrica 54, 1003-1037.

[42] Kozel F., T. Padgett and M. George (2004): “A replication study of the neural corre-
lates of deception”, Behavioral Neuroscience 118, 852-856.

[43] Lundquist T., T. Ellingsen, E. Gribbe and M. Johannesson (2007): “The cost of lying”,
SSE/EFI Working Papers in Economics and Finance, No. 666.

22



[44] Miettinen T. (2006): “Promises and conventions - an approach to pre-play agreements”,
mimeo., University College London.

[45] Myerson R. (1989): Credible negotiation statements and coherent plans”, Journal of
Economic Theory 48, 264-303.

[46] Nash J. (1950): “Non-cooperative games”, Ph D thesis, Department of Mathematics,
Princeton University.

[47] Osborne M. and A. Rubinstein (1994): A Course in Game Theory, MIT Press.

[48] Rabin M. (1994): “A model of pre-play communication”, Journal of Economic Theory
63, 370-391.

[49] Robson A. (1990): Efficiency in evolutionary games: Darwin, Nash and the secret
handshake”, Journal of Theoretical Biology 144, 379-396.

[50] Rubinstein A. (1986): “Finite automata play the repeated prisoners’ dilemma”, Journal
of Economic Theory 39, 83-96.

[51] Rubinstein A. (2000): Economics and Language. Cambridge University Press.

[52] Samuelson L. and J. Swinkels (2003): “Evolutionary stability and lexicographic pref-
erences”, Games and Economic Behavior 44, 332-342.

[53] Schlag K. (1993): “Cheap talk and evolutionary dynamics”, Bonn Department Discus-
sion Paper B-242.

[54] Schlag K. (1994): “When does evolution lead to efficiency in communication games?”,
Bonn University Discussion Paper B-299.

[55] Sobel J. (1985): “A theory of credibility”, Review of Economic Studies 52, 557-573.

[56] Sobel J. (1993): “Evolutionary stability and efficiency”, Economics Letters 42, 301-312.

[57] Thomas B. (1985): “On evolutionarily stable sets”, Journal of Mathematical Biology
22, 105-115.

[58] Wärneryd (1991): “Evolutionary stability in unanimity games with cheap talk”, Eco-
nomics Letters 36, 375-378.

[59] Wärneryd (1998): “Communication, complexity, and evolutionary stability”, Interna-
tional Journal of Game Theory 27, 599-609.

[60] Weibull J. (1995): Evolutionary Game Theory. MIT Press.

23




