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Abstract

The traditional multivariate Lévy process constructed by subordinating a Brownian

motion through a univariate subordinator presents a number of drawbacks, including

the lack of independence and a limited range of dependence. In order to face these, we

investigate multivariate subordination, with a common and an idiosyncratic component.

We introduce generalizations of some well known univariate Lévy processes for financial

applications: the multivariate compound Poisson, NIG, Variance Gamma and CGMY.

In all these cases the extension is parsimonious, in that one additional parameter only

is needed.

First we characterize the subordinator, then the time changed processes via their

Lévy measure and characteristic exponent. Finally we study the subordinator associa-

tion, as well as the subordinated processes’ linear and non linear dependence. We show

that the processes generated with the proposed time change can include independence

and that they span the whole range of linear dependence. We provide some exam-

ples of simulated trajectories, scatter plots and both linear and non linear dependence

measures. The input data for these simulations are calibrated values of major stock

indices.

Journal of Economic Literature Classification: G12, G13

Keywords: Lévy processes, multivariate subordinators, dependence (association, cor-

relation), multivariate asset modelling, multivariate time changed processes..



Introduction

The technique of time change is a well established way to introduce Lévy processes at

the univariate level: it has proven to be theoretically helpful for financial applications,

thanks to Monroe’s theorem. Geman, Madan, Yor [11] do report that ” price processes,

being semi-martingales [..] are time changed Brownian motions. [..] As time changes

are increasing random processes, they are for practical purposes purely discontinuous,

if they are not locally deterministic” This remark led them and a number of prominent

Authors to consider purely discontinuous models for univariate asset prices, generated

as time changed diffusions.

At the multivariate level, however, time changing has been studied much less. Mul-

tivariate Lévy processes have been generally constructed by subordinating a Brownian

motion by means of a univariate subordinator. Such processes present a number of

drawbacks, including the lack of independence and a limited range of dependence (see

[9]).

In order to face these problems, we investigate multivariate subordination. ¿From the

intuitive point of view, the main feature of such a multivariate subordination is that it

allows to incorporate both a common time transform, which can be interpreted in finance

applications as a measure of the overall market activity, and an idiosyncratic time shift,

linked to the asset specific trade and information update. In particular, we introduce

generalizations of the multivariate compound Poisson, Normal Inverse Gaussian (NIG),

Variance Gamma (VG) and Carr Geman Madan Yor (CGMY) processes. In all of them,

first we characterize the subordinator, then the time changed processes via their Lévy

Measure and characteristic exponent. Finally we study the subordinator association,

as well as the single processes linear and non linear dependence. We show that the

aforementioned processes can include independence and that they span the whole range

of linear dependence. We provide some examples of simulated trajectories, scatter plots

and both linear and non linear dependence measures. The input data for the simulation

are calibrated values of major stock indicies.

The paper proceeds as follows: section 1 presents the class of multivariate subordina-

tors which we are going to adopt and recalls some features of stable subordinators. Sec-

tion 2 considers the general properties (Lévy nature, characteristic function, Lévy triplet

and measure) of the corresponding subordinated processes, using Barndorff-Nielsen et

alii [2]. The results are then specified in relation to the compound Poisson, NIG, VG

and CGMY cases. Section 3 studies the association of the subordinator and the linear

and non linear dependence of the subordinated processes. Section 4 concentrates on

linear dependence. Section 5 provides simulations of the Compound Poisson, VG and

NIG cases.
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1 A class of multivariate subordinators

In this section we follow the construction in Semeraro [20] in order to introduce a class

of multivariate time changes: each one is a sum of an idiosyncratic and a common

component.

We define n subordinators as follows: let Xi, i = 1, ..., n and Z be independent

and infinitely divisible random variables, with characteristic functions respectively ψi,

i = 1, ..., n and ψZ . Define the random vector W as the sum

W = (W1,W2, ...,Wn)T = (X1 + α1Z,X2 + α2Z, ..., Xn + αnZ)T , (1.1)

where αj, j = 1, ..., n are real parameters (the same method to construct multivariate

infinitely divisible distribution is adopted in Barnorff-Nielsen et al. [3]).

The vector W is jointly infinitely divisible and, due to independency, its character-

istic function, ψW, is:

ψW (u1, u2, ...un) =
n∏

j=1

ψj(uj)ψZ(
n∑

j=1

αjuj), (1.2)

Define G = {G(t), t ≥ 0} as the Lévy process which has the law L of W at time

one:

L(G(1)) = L(W ). (1.3)

Semeraro [20] characterized the process G in terms of its Lévy triplet and of its charac-

teristic exponent as follows.

Let X̃j = {Xj(t), t ≥ 0}, j = 1, ..., n and Z̃ = {Z(t), t ≥ 0} be the Lévy processes

defined by:

L(Xj(1)) = L(Xj), L(Z(1)) = L(Z). (1.4)

Let νj, νZ be respectively the Lévy measures of the processes X̃j, j = 1, ..., n and Z̃,

then the Lévy measure νG of G satisfies

νG(E) =
n∑

j=1

νj(Ej) + νZ(E∆),
(1.5)

where E ∈ B(Rn \ {0}), Ej = E ∩ Aj and Aj = {x ∈ Rn : xk = 0, k 6= j, k = 1, ..., n}.
If X̃j, j = 1, ..., n, and Z̃ are real subordinators, then the process G is a multivariate

subordinator. Moreover if

Ψj(w) =
∫

R+
(eiwz − 1)νj(dz) + iljw, j = 1, ..., n

ΨZ(w) =
∫

R+
(eiwz − 1)νZ(dz) + ilzw.

(1.6)
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are respectively the exponents of the processes X̃j, j = 1, ..., n and Z̃, then the

characteristic exponent ΨG of G satisfies:

ΨG(w) =
n∑

j=1

Ψj(wj) + ΨZ(
n∑

j=1

αjwj)

=
n∑

j=1

∫
R+

(eiwjzj − 1)νj(dzj) + i(ljwj)

+

∫
R+

(ei(
∑n

j=1 αjwj)s − 1)νZ(ds) + i(lz(
n∑

j=1

αjwj)),

(1.7)

Observe that if X̃j, j =, ..., n and Z̃ have zero drift, so does G. Throughout the

paper the subordinator we are going to consider for X̃j, j =, ..., n and Z̃ will have zero

drift.

1.1 Stable subordinators

In what follows, we will be concerned mainly with stable and tempered stable subordi-

nators (for a complete treatment see Samorodnitsky and Taqqu [18]). We will therefore

spend some words about their general properties, before focusing on the ones of main

interest for asset price modelling.

A random variable X has stable distribution with parameters 0 < α ≤ 2, σ > 0,

−1 < β < 1 and γ ∈ R, shortly X ∼ Sα(σ, β, γ), if its characteristic function has the

form:

ψX(z) =
{ exp{−σα|z|α(1− β(signz)tanπα

2
) + iγz}, α 6= 1

exp{−σ|z|(1 + β(signz)β 2
π
ln|z|) + iγz} α = 1, (1.8)

Since γ affects only location, we assume γ = 0 for simplicity.

An α-stable real subordinator G is given by a stable random variable X with support

[0,∞), X ∼ Sα(σ, 1, 0) with 0 < α < 1.

The Lévy measure of a stable subordinator has the following expression

νG(dx) =
cG
xα+1

1x>0, (1.9)

where cG = c(α)σα, c(α) > 0.

If the subordinators X̃j and Z defined in (1.4) are α-stable then G has α-stable

margins. Let Xj ∼ Sα(σj, 1, 0) and Z ∼ Sα(σz, 1, 0), so that αjZ ∼ Sα(σzαj, 1, 0). By

Propositions 1.2.1 and 1.2.3 in Samorodnitsky and Taqqu [18], if independency holds,

Xj + αjZ is α-stable and its law is

L(Xj + αjZ) = Sα(σGj
, 1, 0), (1.10)

where σGj
= (σα

j + (σzαj)
α)1/α.
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We will also consider tempered stable subordinators, first introduced by Tweedie

[24]. They are characterized by the following Lévy measure:

ν(x) =
ce−λx

xα+1
1x>0. (1.11)

Let us denote the corresponding infinitely divisible distribution by X ∼ TSα(c, λ), where

0 < α < 1, λ > 0 and c > 0. The distribution of the sum of two tempered stable

processes, analogously to the non-tempered case, can be characterized as follows: if X ∼
TSα(cX , λ) and Y ∼ TSα(cY , λ) their sum is TSα(cX +cY , λ) and αiX ∼ TSα(cXα

α
i ,

λ
αi

).

Therefore if Xi ∼ TSα(ci,
λ
αi

) for i = 1, ..., n and Z ∼ TSα(cz, γz, λ), then G has margins

TSα(ci + czα
α
i ,

λ
αi

).

We end this section with a more general remark. Consider a stable subordinator GB

with Lévy measure given by (1.9). A subordinator GA is absolutely continuous with

respect to GB (see Madan and Yor [13] and Sato [19] for a more general definition), if

νA(dx) = f(x)νB(dx) = f(x)
cG
x1+α

dx. (1.12)

and ∫ ∞

0

νB(dt)(
√
f(t)− 1)2 <∞. (1.13)

Obviously if X̃j and Z̃ are α-stable continuous with the same density, their sum is.

All the previous classes of subordinators are characterized by the fact that the dif-

ference between the Lévy measures of X̃j, Z̃ and Gj is a constant.

2 Time-changed Brownian motions

We are ready to use the multivariate subordinators above in order to time change inde-

pendent Brownian motions. This construction was first introduced in Semeraro [20] for

the variance gamma model.

The general construction relies on the characterization of Barndorff-Nielsen et al. [2]

(Theorem 3.3). We need a preliminary notion.

Consider n independent Lévy processes X1(t), ..., Xn(t). The stacked process X(t) =

(X1(t), ..., Xn(t))T , where the superscript T denotes the transpose, is then a Lévy process

on Rn. Consider the multi-parameter s = (s1, ..., sn)T ∈ Rn
+ and the partial order on

Rn
+:

s1 � s2 ⇔ s1
j ≤ s2

j , j = 1, ...n.

The multi-parameter process {X(s), s ∈ Rn
+} is defined by

X(s) = (X1(s1), ..., Xn(sn))T .

We consider as particular multi-parameter processes the ones obtained from inde-

pendent Brownian motions.
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Let Bj = {Bj(t), t ≥ 0} j = 1, ..., n be independent standard Brownian motions.

Consider the process B = {B(t), t > 0}

B(t) = (µ1t+ σ1B1(t), ..., µnt+ σnBn(t))T , (2.1)

the Lévy triplet of B is obviously (µ,Σ, 0), where

Σ = diag(σ1, ..., σn) :=


σ1 0... 0

0 σ2.... 0

0 0... σn


The time changed processes at time t will be collected in the vector Y (t) and inter-

preted as log returns or log prices: Y (t) = logS(t) where S(t) collects the time t prices

of n assets.

The Rn valued log price process Y = {Y (t), t > 0} is defined as:

Y (t) =

 Y1(t)

...

Yn(t)

 =

 µ1G1(t) + σ1B1(G1(t))

....

µnGn(t) + σnBn(Gn(t))

 , (2.2)

where B is given by (2.1) and G is a multivariate subordinator defined by (1.3), inde-

pendent from B.

The process Y , as given by (2.2), is a Lévy process with characteristic function

E[ei〈z,Y (t)〉] = exp(tΨG(logψB(z))), z ∈ Rn
+,

where ψB is the characteristic function of the Brownian motion B and for any w =

(w1, ..., wn)T ∈ Cn with Re(wj) ≤ 0, j = 1, ..., n,

ΨG(w) = 〈m ·w〉+

∫
Rn

(e〈w,x〉 − 1)ν(dx).

is the characteristic exponent of G. The subordinator involved in the construction of G

will have zero drift, i.e. m = 0. Therefore we characterize the process Y under this

condition and we refer to Barndorff-Nielsen et al. [2] (Theorem 3.3) for the general case.

The characteristic triplet (γY ,ΣY , νŶ ) of Y is as follows

γY =
∫

Rn
+
νG(ds)

∫
|x|≤1

xρs(dx),

ΣY = 0,

νY (B) =
∫

Rn
+
ρs(B)νG(ds),

(2.3)

where ρs = L(B̃(s)), s ∈ Rn
+, x = (x1, ..., xn)T and B ∈ Rn \ {0}. Observe that the

process Y is a pure jump. Starting from the previous theorem we can also discuss the
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regularity of the trajectories of the process Y , namely its finite/infinite activity and its

bounded/unbounded variation.

As concerns the activity, an immediate consequence of

νY (Rd) =

∫
Rn

+

ρs(Rd)νG(ds) =

∫
Rn

+

νG(ds) = νG(Rn), (2.4)

is that Y has finite activity (νY (Rd) < ∞) if and only if G does (νG(Rd) < ∞).

Sufficient conditions on the subordinator’s Lévy measure for Y to have finite variations

are also provided by Theorem 3.3 in Barndorff-Nielsen et al. [2]. These conditions are

not always satisfied by the processes examined here. However, since their margins are

completely characterized, we can infer the path regularity of the process as a whole from

its margin properties, as follows. Since the marginal Lévy measures are defined by (see

Cont and Tankov [9])

νj(A) = νY (R× Aj...× R), Aj ∈ B(R), j = 1, ..., n, (2.5)

νj(R) <∞ for all j = 1, .., n iff ν(Rn) <∞.

As concerns the variations, Y has finite variations if and only if the margins do.

The paths of Y are vectorial functions whose components are the paths of its marginal

processes. Therefore the previous statement is a consequence of the fact that a vectorial

function has bounded variation (has finite length) if and only if its components have

bounded variations.

We now discuss different specifications of the Y process and we characterize them

completely. They are multivariate generalizations of log prices models widely studied in

Finance. The main properties of the corresponding univariate versions are recalled in

the Appendix.

2.1 Compound Poisson margins

Geman, Madan, Yor [11] proved that the Poisson model with reflected normal jumps’

intensity can be constructed by Poisson time-changing a univariate Brownian Motion.

We further demonstrate that it can be extended to the multivariate case using our

construction.

Consider the univariate compound Poisson process:

Ŷ (t) =

N(t)∑
j=1

Mj, (2.6)

where N(t) is a Poisson process with rate λt, λ > 0, and the random variables Mj are

i.i.d, independent from the process N , with reflected normal density

f(x) =

√
2exp(− x2

2σ2 )

σ
√
π

, x > 0. (2.7)
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Geman, et al. [11] considered the log price process defined as

Y (t) = Ŷ1 − Ŷ2, (2.8)

where Ŷ1, Ŷ2 are independent copies of Ŷ . They proved that Y can be defined as a time

changed Brownian motion through the following construction:

Y (t) = σB(N1(t) +N2(t)), (2.9)

where B is a standard Brownian motion and N1 and N2 are two independent Poisson

processes with the same arrival rate λt.

Since the Poisson distribution is closed under convolution, N1 + N2 is a Poisson

process with rate 2λ (N1 + N2 ∼ Poisson(2λ)). In order to extend the compound

Poisson construction to multivariate subordination, we now specify the subordinator G

defined by (1.1), so that the resulting multivariate log price model has compound Poisson

margins, as in [11]. Let Xi ∼ Poisson(2λi − a), i = 1, ..., n and Z ∼ Poisson(a), where

0 < a < 2λj, j = 1, ..., n. It follows that Xi +Z ∼ Poisson(2λi). Define W as in (1.1),

and choose unit weighting parameters αi = 1, i = 1, ..., n. Let G be as in Section 1. In

this way the marginal process Gj is compound Poisson with parameter 2λjt:

L(Gj(t)) = Poisson(2λjt), j = 1, ..., n.

Using (1.7), the characteristic function of G(1) is

ψG(u) = exp(
n∑

j=1

((2λi − a)(exp(iuj)− 1)) + (a(exp(i
n∑

j=1

αjuj)− 1)). (2.10)

The Lévy measure of G can be derived applying (1.5).

The log-price process Y defined as in Section 2, imposing µj = 0, j = 1, ..., n, namely

Y (t) =

 σ1B1(G1(t))

.....

σnB2(G2(t))

 , (2.11)

has therefore compound Poisson margins. Because the subordinator has zero drift,

the results of Section 1 hold and the process Y defined in (2.11) is a pure jump. We are

able to provide its Lévy triplet, as explained in Section 1. Moreover its characteristic

function at time one is the following:

ψY (u) = exp(
n∑

j=1

((2λi − a)(exp(−i1
2
σ2

ju
2
j)− 1)) + (a(exp(−i

n∑
j=1

αj
1

2
σ2

ju
2
j)− 1))

The process has finite activity, because its margins do.
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2.2 Normal inverse gaussian (NIG) margins

Following Barndorff-Nielsen [4] (see also Schoutens [21]) we can define an inverse gaussian

process by subordination of a Brownian motion using an inverse gaussian subordinator

G. The subordinator used to obtain the NIG process as a time changed Brownian motion

belongs to the tempered stable family.

First we recall the univariate definition of the NIG process as a time changed Brow-

nian motion. Let {B(t), t ≥ 0} be a standard Brownian motion and {G(t), t ≥ 0} an IG

process with parameters a = 1 and b = δ
√
α2 − β2, such that α > 0, −α < β < α, δ > 0.

It can be proven that the process

Y (t) = βδ2G(t) + δB(t), (2.12)

is a NIG process with parameters (α, β, δ).

We construct a multivariate Lévy process with NIG margins assuming that the sub-

ordinator G defined by (1.3) has IG margins: define Xi ∼ IG(1 − aγi,
b
γi

), i = 1, ..., n

and Z ∼ IG(a, b). Since the IG distribution is tempered stable it follows that γ2
i Z ∼

IG(aγi,
b
γi

). In order for the marginal distributions to have non negative parameters,

the following constraints must be satisfied:

b > 0, 0 < a <
1

γi

, i = 1, ..., n. (2.13)

¿From stability it follows that Xi + γ2
i Z is IG; from independence it follows that its

characteristic function is

ψXi+γ2
i Z = exp(−γia(

√
−2iu+ (

b

γi

)2 − b

γi

)) exp(−(1− aγi)(

√
−2iu+ (

b

γi

)2 − b

γi

))

= exp(−(

√
−2iu+ (

b

γi

)2 − b

γi

)),

(2.14)

Therefore: Xi + γ2
i Z ∼ IG(1, b

γi
). Let W be as in (1.1) and choose as weighting

parameters αi = γ2
i , i = 1, ..., n. Let G be as in section 1. In this way the marginal

process Gj is IG with parameters t and b
γj

L(Gj(t)) = IG(t,
b

γj

), j = 1, ..., n,

The characteristic function of G(1) is ψG(u) = ψXi+γ2
i Z . ¿From equation (1.5) we

can derive also the Lévy measure of G.

We now impose some constraints on the parameters which lead the subordinated

process to have NIG margins. Let αj, βj, δj be such that αj > 0, −αj < β < αj,

δ > 0. In order to get NIG margins we choose the parameter of the subordinator so
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that bj = b
γj

= δj
√
α2

j − β2
j . Furthermore, we define the independent Brownian motions

Bj(t) = βjδ
2
j t+ δjBj(t), j = 1, ..., n, according to (2.12).

In accordance to the general construction of the previous section, we form the process

Y = {Y (t), t > 0} by time changing the previous Brownian motions:

Y (t) =

 β1δ
2
1G1(t) + δ1B1(G1(t))

.....

βnδ
2
nG2(t) + δnB2(G2(t))

 . (2.15)

The process Y defined in (2.15) is a Lévy process with NIG margins. Its Lévy triplet

(γY ,ΣY , νY ) can be derived from (2.3). Its characteristic function at time one is the

following:

ψY (u) = exp[−
n∑

j=1

(1− aγj)(

√
−2i(iβjδ2

juj −
1

2
δ2
ju

2
j) +

b2

γ2
j

− b

γj

)

− aγj(

√√√√−2i
n∑

j=1

γj(iβjδ2
juj −

1

2
δ2
ju

2
j) +

b2

γ2
j

− b

γj

)]

(2.16)

Since the subordinator has zero drift it is a pure jump process. It has unbounded

variation, since the marginal processes do.

2.3 Variance gamma (VG) margins

Another example of multivariate subordinator with the features of section 1 above is

the α-gamma process introduced in Semeraro [20], that leads to a log price model with

variance gamma (VG) margins. Its subordinator, which is a gamma process, can be

considered as a tempered stable process, if one includes in that class α = 0 (see for

example Cont and Tankov [9]).

The α-gamma process is generalization of the multivariate VG process introduced for

the symmetric case in Madan and Seneta [15] and calibrated in Luciano and Schoutens

[12]. The latter process was constructed by subordination of a multivariate Brownian

motion B using a common gamma subordinator. The model we are going to discuss

contains the VG as the limit subcase that leads to the maximal correlation for the

subordinator1.

The starting point is the univariate VG model, which is constructed as follows: let

{B(t), t ≥ 0} be a standard Brownian motion, {G(t), t ≥ 0} be a gamma process with

parameters ( 1
ν
, 1

ν
) and σ > 0, µ be real parameters, then the real process XV G is defined

as

XV G(t) = µG(t) + σB(G(t)).

1This aspect will be investigated in the section devoted to dependence.
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The multivariate VG is obtained by extending the previous construction considering

n independent Brownian motions subordinated by a common gamma process.

The α-gamma process instead is constructed as follows: consider a, b, αj, j = 1, ..., n

real parameters that satisfy the constraints

0 < αj <
b
a

j = 1, ..., n.
(2.17)

Let L(Xj) = Γ( b
αj
− a, b

αj
) and L(Z) = Γ(a, b); assume that Xj, j = 1, ..., n and Z are

independent random variables; the random vector W defined in (1.1) satisfies L(Wj) =

Γ( b
αj
, b

αj
), j = 1, ..., n (the proof is in Semeraro [20]).

Let G = {G(t), t ≥ 0} be the Lévy process associated to the distribution of W , then

L(Gj(t)) = Γ( tb
αj
, b

αj
), j = 1, ..., n,

The process G is a subordinator, following Semeraro [20] its Lévy measure can be

shown to be:

νG(B) =
n∑

j=1

νj(Bj) + νZ(B∆)

=
n∑

j=1

∫
Bj

(
b

αj

− a)exp(− b

αj

x)x−11(0,+∞)(x)dx+

∫
B∆

aexp(−bx)x−11(0,+∞)(x)dx,

where B ∈ B(R2) and Bj, B∆ are defined as in Section 1.

The process Y defined from G as in (2.2) is a pure jump Lévy process. Its Lévy

triplet (γY ,ΣY , νY ) is given by (2.3). Its characteristic function is

ψY (t)(u) =
n∏

j=1

(1−
αj(iµjuj − 1

2
σ2

ju
2
j)

b
)
−t( b

αj
−a)

(1−
∑n

j=1 αn(iµjuj − 1
2
σ2

ju
2
j)

b
)−ta. (2.18)

The α-VG process has infinite activity and bounded variation, as we can derive from

the properties of its components.

2.4 CGMY margins

Madan and Yor [13] proved that the CGMY process, first introduced in Carr et al [8],

can be constructed as a time changed Brownian motion.

Let Y be a CGMY (C,G,M, Y ) process, with parameters C,G,M > 0 and Y < 2.

Let us consider the stable subordinator G′ ∼ SY
2
(K, γ), with Lévy measure

ν ′(dx) =
K

x1+Y
2

dx. (2.19)
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Define as Γk the gamma random variable with law Γ(k, 1), and Γ(k) the gamma

function at k.

Madan and Yor [13] assume that G is a subordinator absolutely continuous with

respect to G′, with density

f(y) = e−
(B2−A2)y

2 E[exp{−B
2y

2

ΓY/2

Γ1/2

}], (2.20)

where

A =
G−M

2
, B =

G+M

2
, K =

CΓ(Y/4)Γ(1− Y/4)

2Γ(1 + Y/2)
. (2.21)

They then define the process Y by the following

Y (t) =
G−M

2
G(t) +B(G(t)). (2.22)

We now construct a multivariate subordinator of the type introduced in Section 1

as to obtain a multivariate Lévy model with CGMY (Cj, Gj,Mj, Y ) margins, where

Cj, Gj,Mj > 0, Y < 2. We denote the subordinator of Madan and Yor as Su(CGMY ).

Let Z̃ ∼ Su(C ′, G,M, Y ), where C ′, G,M > 0 and Y < 2 and X̃j is Su(C ′′
jGjMjY ),

where C ′′
j > 0; then G has marginal processes Gj ∼ Su(CjGjMjY ), with Cj = C ′

j + C ′′
j

and C ′
j = C ′α

Y/2
j . In fact if Z̃ ∼ Su(C ′, G,M, Y ) then αjZ̃ ∼ Su(C ′

j, Gj,Mj, Y ) where

G = G′
√

αj
, M = M ′

√
αj

and C ′
j = C ′α

Y/2
j . Assume now that X̃j is Su(C ′′

jGjMjY ), where

C ′′
j > 0; then the assert stems from the properties of continuous stable subordinators.

The Lévy measure of G follows by equation (1.5). In accordance to the general

construction of the previous section, define the process Y = {Y (t), t > 0} by time

changing n independent Brownian motions:

Y (t) =

 G1−M1

2
G1(t) +B1(G1(t))

.....
Gn−Mn

2
Gn(t) +Bn(Gn(t))

 . (2.23)

The process Y is a Lévy process with CGMY margins with parameters Cj,Mj, Gj, Y .

Since the subordinator has zero drift its Lévy triplet (γY ,ΣY , νY ) can be derived from

(2.3). The variations of Y , as for the marginal processes, depend on the parameter Y.

If Y < 1 the path have bounded variation, if Y ∈ [1, 2) they have unbounded variation.

Moreover if Y < 0 the process has also finite activity. In fact the marginal Yj are CGMY

processes and they have finite activity if Y < 0. Since the Lévy measures of Gj and

X̃j only differ for constant terms, also the Lévy measures of the subordinated processes

Yj = Bj(Gj) and Bj(X̃j) only differ for constant terms. Thus, if Y < 0 the margins Yj

have finite activity then Bj(X̃j) have finite activity that implies (see Appendix B) Y

has finite activity.
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3 Dependence

This section is devoted to discussing the dependence structure of the above models.

The subordinator G is always positively associated, see Semeraro [20].

As concerns the single subordinated models presented above, only the dependence

features of the Compound Poisson case are an easy consequence of known closure prop-

erties of dependence with respect to mixture. Indeed, the following proposition holds:

The process Y defined in (2.11) is PA.

To prove the previous assert observe that the compound Poisson process Ŷ can

be written as follows: Ŷ (t) =
∑N(t)

j=1 Xj, where X are i.i.d. and positive. Since

[Ŷ (t)|N(t) = n] is stochastically increasing in n, and N (t) is PA, then by Proposi-

tion 2.1 in [5] so is Ŷ (t).

Consider now −Ŷ . Since the same argument holds if [Ŷ (t)|N(t) = n] is stochas-

tically decreasing, we derive that −Ŷ is PA. The thesis follows because PA is closed

under convolution.

The subordinated Lévy model Y has non linear dependence. To prove this, we

observe that the process has dependent margins also in the symmetric case (ρ = 0):

indeed the Lévy measure of Y is given by

νY (B) =

∫
Rn

+

ρs(B)νG(ds). (3.1)

¿From the expression of νG it follows that the components of Y may jump together.

Thus the processes σjBj(Gj(t)) have non-linear dependence, unless the random variable

Z is degenerate.

Remark 1. A detailed study of the subordinated process dependence - apart from the

Compound Poisson case - would require the use of copulas or Lévy copulas. In principle,

these can be obtained through Sklar’s theorem. In our case, since we can only provide

integral expressions for the marginal and joint distributions of Y (t), even when the

subordinators X̃j, j = 1, ..., n and Z̃ have known distributions at each time t, we do not

have a closed formula for the copula at time t. Anyway the copula function can be studied

numerically, by providing both scatter plots and contour levels of it. The Lévy copula

function should also be studied numerically, since we have only integral expressions for

the tail integrals of the marginal and of the joint Lévy measures.

4 Linear dependence

We now turn to linear dependence, which can be useful in order to calibrate the previous

models. In order to show that the processes constructed so far are actually a general-

ization of the existing ones, we study their linear correlation and show that it can span

the whole range [-1,1], including independence. We will spend some words about linear

12



correlation for the multivariate time changed class as a whole. Then we will specify it

for the models considered. We focus mainly on the α-VG model, a similar discussion

also holds for the other models.

We start from the correlation matrix ρG(t) = (ρG(t)(l, j)) of the subordinator. Since

Cov(Gl(t), Gj(t)) = αlαjV (Z(t)) and V (Gj) = V (Xj(t)) + α2V (Z(t)), (4.1)

we have

ρG(t)(l, j) =
αlαjV (Z(t))√

[V (Xl(t)) + α2
l V (Z(t))][V (Xj(t)) + α2

jV (Z(t))]

Concerning the subordinated process Y , the variance of Yj(t) is:

V [Yj(t)] = E[V [Yj(t)|Gj(t)]] + V [E[Yj(t)|Gj(t)]] = σ2
jE[Gj(t)] + µ2

jV [Gj(t)]. (4.2)

The lj covariance of the process at time t is:

cov[Yl(t), Yj(t)] = µlµjcov[G1(t), G2(t)] = µlµjαlαjV (Z(t)).

Therefore the linear correlation coefficients are

ρY (t)(l, j) =
µlµjαlαjV (Z(t))√
V (Yl(t))V (Yj(t))

Since all the processes involved are Lévy ones, by infinite divisibility V (Z(t)) =

V (Z)t, V (Yj(t)) = V (Yj(1))t, j = 1, ..., n and ρY (t)(l, j) is independent from t. In

addition2, ρY (t)(l, j) ≤ ρG(t)(l, j).

Under the conditions µj > 0 and αj > 0, j = 1, ..., n, ρY (t)(l, j) = 0 iff V [Z(t)] =

0, that is Z̃ is degenerate iff the margins are independent. This is the case which

2Indeed

µ1µ2α1α2 =
√

µ2
1α1µ2

2α2
√

α1α2 ≤
√

(σ2
1 + µ2

1α1)(σ2
2 + µ2

2α2)
√

α1α2

implies

µ1µ2
√

α1α2 ≤
√

(σ2
1 + µ2

1α1)(σ2
2 + µ2

2α2) (4.3)

and

µ1µ2α1α2a = µ1µ2
√

α1α2
√

α1α2a ≤
√

(σ2
1 + µ2

1α1)(σ2
2 + µ2

2α2)
√

α1α2a, (4.4)

from this it follows that

ρY (t)(l, j) =
µlµjαlαja√

(σ2
l + µ2

l αl)(σ2
j + µ2

jαj)
≤ √

αjαja = ρG(t)(l,j). (4.5)
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cannot be captured by the standard multivariate time changed models with a univariate

subordinator.

Observe that linear correlation ρ depends on the variance of the subordinator’s com-

mon factor. By construction we are able to move the variance of the common factor

leaving fixed margins. Since α2
jV (Z(t)) = V (Gj)− V (Xj(t)), if we fix the margins of G

(so that V (Gj(t)) is constant), to increase the variance of Z we have to decrease the vari-

ance of Xj. The maximal correlation is then reached when3 V (Xj(t)) → 0. This implies

that ρG(t)(l, j) → 1 and Gj(t) = αjZ(t). Togheter with the constraints E[Gj(t)] = t

this makes αi = αj and G a.s. a univariate subordinator.

Before analyzing case by case the way linear correlation changes with parameters,

we would like to observe that in the symmetric case the correlation is zero. The same

happened in the case with one subordinator. In order to have linear correlation in the

symmetric models, the only way out is to consider a more general construction with

correlated Brownian motions. Anyway also in the symmetric case we are able to model

non linear and tail dependence.

4.1 Compound Poisson

Consider the general model (2.1). If the subordinator is the Poisson one introduced in

Section 2.1 the linear correlation coefficients of the process at time t are:

ρY (t)(l, j) =
µlµja

2
√
λl(σ2

l + µ2
l )λj(σ2

j + µ2
j)
,

If we focus on the Poisson compound log price of Geman, Madan and Yor [11], in

which µj = 0, j = 1, ..., n, the linear correlation of Y is zero, while we can capture

non linear dependence. Indeed if a 6= 0, then V [Z(t)] = at 6= 0, the correlation of

the subordinator is different from zero and the margins of Y are positively associated.

Moreover we have independence if a→ 0 and maximal dependence, that corresponds to

maximal correlation for the subordinator, if a → 2λj for each j = 1, ..., n; in the last

case G is a.s. a univariate subordinator.

4.2 Normal inverse gaussian

We now consider the NIG log-price model. The linear correlations of the subordinator

are

ρG(t)(l, j) =
γ2

l γ
2
j

a
b3√

[
(1−aγl)γ

3
l

b3
+ γ2

l
a
b3

][
(1−aγj)γ3

j

b3
+ γ2

j
a
b3

]

3The limit value V (Xj(t)) = 0 requires some constraints on the marginal distributions, which we
will discuss in details for the α-variance gamma case.
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Observe that ρG(t)(l, j) = 1 if a = 1
γj

= 1
γ
, j = 1, ...n (this way ρG(t)(l,j) = γ) and

γ = 1. By so doing we obtain the subcase with one subordinator Z. Its law becomes

IG(1, b).

The linear correlation coefficients of the subordinated process at time t are:

ρY (t)(i, j) =
βiδ

2
i βjδ

2
jγ

2
i γ

2
j

a
b2√

(δ2
i γi +

β2
i δ4

i γ3
i

b2
)(δ2

jγj +
β2

j δ4
j γ3

j

b2
)

For given marginal distributions, i.e. fixed δi, γi, βi, the correlation is a function

of both a and b, the parameters of the common factor. Therefore changing them we

can move the correlation matrix of the process leaving fixed margins. The only way to

capture independence is to let a go to zero. In order to capture the maximal dependence,

we have to impose to the parameters the constraints that lead to ρG(t)(l, j) = 1. This

reduces our model to one subordinator with parameters (1, b), as observed above. Notice

that ρY (t)(i, j) can be written as

ρY (t)(i, j) =
βiδ

2
i βjδ

2
j

γ2
i

b2
γ2

j

b2
ab√

(δ2
i

γi

b
+ β2

i δ
4
i

γ3
i

b3
)(δ2

j
γj

b
+ β2

j δ
4
j

γ3
j

b3
)

.

¿From this rapresentation it is clear that in order to study the correlation the as-

sumption b = 1 is not restrictive.

4.3 α-variance gamma

The linear correlations of the α-gamma subordinator do not depend on t and are in-

creasing in αj:

ρG(t)(l, j) =
a

b

√
αlαj.

The linear correlation coefficients of the process at time t are:

ρY (t)(l, j) =
µlµjαlαj

a
b2√

(σ2
l + µ2

l
αl

b
)(σ2

j + µ2
j

αj

b
)

=
µlµjαlαja

b
√

(bσ2
l + µ2

lαl)(bσ2
j + µ2

jαj)
,

The correlations of the process involve all the parameters, and for any couple of fixed

marginal distributions the linear correlation is a function of a only. This is the main

contribution of the α-VG generalization with respect to VG correlation, since changing

a we can modify the correlation of the process, without modifying the marginal distri-

butions of the process. On the contrary, in the Variance Gamma process with a common

gamma subordinator used in the previous literature (ρG(t) = 1), for fixed parameters of

the lj marginal processes, the correlation coefficient is uniquely determined.

Moreover, the correlation coefficient depends on αl, αj, b only through the ratios αl

b

and
αj

b
: this means that in order to study the correlation the assumption b = 1 is not

restrictive. Therefore we fix b = 1. Let us examine the extreme correlation cases.
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1. |ρY (t)(l, j)| = 1 iff σl = σj = 0 and a = 1
αl

= 1
αj

holds.

2. the lj-th marginal processes are independent iff a = 0

3. the lj margins are dependent and uncorrelated (ρY (t)(l, j) = 0) processes iff µ1 =

µ2 = 0 and a 6= 0.

The previous asserts are an evident consequence of the construction and the expres-

sion of ρY (t)(l, j). We now discuss them case by case.

1. |ρY (t)(l, j)| = 1 can be reached if and only if the model becomes the traditional

multivariate VG. Indeed the condition a = 1
αl

= 1
αj

corresponds to the limit case

with only one subordinator (ρG(t)(l, j) = 1, see Semeraro [20] ). With a unique

subordinator a necessary condition for |ρY (t)(l, j)| = 1 is that σj = σl = 0. Anyway

we can reach high correlation also with the general model, thus with different

marginal processes, assuming that σl � |µl| and σj � |µj|.

2. The limit case a = 0 leads to a subordinator with independent components. The

process Y is a mixture of independent processes and has independent margins.

We also capture low correlation with a 6= 0, as the calibrations will show.

3. If µl = µj = 0 the correlation is 0, even if the margins are correlated (a 6= 0).

This means that the linear correlation is not sufficient to capture the dependence

structure of the model. In order to model linear dependence we should use corre-

lated Brownian motions. To introduce correlation in the Brownian motions we

could come back to the bivariate variance gamma with one subordinator, i.e.

a = 1
αl

= 1
αj

. In any case we observe that also in the symmetric case we can

describe independence by choosing a = 0.

For completeness we observe that in the dependence cases (a 6= 0) ρY (t)(l, j) > 0 if

and only if µlµj > 0.

5 Simulation and dependence

In this section we simulate the subordinators and subordinated processes introduced so

far, in order to discuss their behaviour. The simulation tecnique is described in appendix

B. For each given type of process (compound Poisson, NIG, α−VG) we will

1. fix the marginal parameters,

2. choose the values of a corresponding to independence and to maximal dependence;

3. compute the corresponding maximal linear correlation;
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4. construct the trajectories of both the subordinators and the corresponding subor-

dinated processes;

5. build the scatter plots of both, for t = 1.

By so doing, we aim at

• pointing out the flexibility features of multivariate subordinators, as opposed to

the standard univariate subordinators. The range of dependence captured by the

former indeed spans from independence to maximal dependence, while the latter

correspond to the perfect linear correlation between the subordinators,

• compare the flexibility features of the different specifications (compound Poisson,

NIG..) introduced above.

In all but the compound Poisson case we will use the estimates obtained for seven

stock indices, using the Bloomberg quotes of the corresponding options with three

months to expiry. For each index, six strikes (the closest to the initial price) were

selected, and the corresponding option prices were monitored over a one hundred days

window, from 7/14/06 to 11/30/06. In correspondence to the alpha-VG marginal model

we estimated the marginal parameters as follows: using the quotes of the first day only,

we obtained the parameter values which minimized the mean square error between the-

oretical and observed prices, the theoretical ones being obtained by FRFT. We used

the results as guess values for the second day, the second day results as guess values

for the third day, and so on. The marginal parameters used here are the average ones.

The previous procedure is intended to provide marginal parameters which are actually

”representative” of the corresponding stock index price, and are not dependent on an

initial arbitrary guess. The marginal values for the VG processes are reported in the

following table:
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Asset µ σ α b
S&P -0.6490 0.0224 0.1021 1.0000
Nasdaq -0.6730 0.1062 0.1317 1.0000
CAC 40 -0.4674 0.1031 0.1109 1.0000
FTCE -0.5865 0.0450 0.0313 1.0000
Nikkei -0.3386 0.1595 0.1042 1.0000
DAX -0.2700 0.1334 0.1410 1.0000
Hang Seng -1.6790 0.0788 0.0279 1.0000

Please notice that, without loss of generality, b has been fixed to the value 1 (see

section 4.3).

For the NIG, we computed the marginal parameters by moment matching. More

precisely, we fixed them by matching the first four moments of the VG and NIG cases.

The relationships between the moments and the process parameters are in Appendix A.

The values so obtained are in the following table:
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α β δ b γ
1.0910 -0.2170 3.1740 1.0000 0.294668349
1.1690 -0.2920 2.5850 1.0000 0.341754741
1.0670 -0.2560 2.3440 1.0000 0.411862303
1.2540 -0.3930 0.8180 1.0000 1.026593053
1.2780 -0.2600 1.6120 1.0000 0.495773039
0.7390 -0.1220 9.9440 1.0000 0.137973197
1.0280 -0.1480 4.0250 1.0000 0.244224438

Please notice that, without loss of generality, b has been fixed to the value 1 (see

section 4.2).

As for the compound Poisson, with respect to the theoretical model presented above

we provide an example adding the drift. In the following table we list the marginal

parameters chosen.
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Asset λ µ σ
1 15.0000 1.0000 1.0000
2 20.0000 1.0000 1.0000

5.1 Compound Poisson

5.1.1 a = 0

This value of a corresponds to independence. The picture below shows the scatter plot

and the simulated trajectories.
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5.1.2 a = min{2λ1, 2λ2}

This value of a, namely 30, corresponds to ρ = 0.433 and rapresents the maximal

correlation captured by the model. The picture below shows the scatter plot and the

simulated trajectories.
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5.2 Normal inverse gaussian

5.2.1 a = 0

This value of a corresponds to independent components. The picture below shows the

scatter plot and the simulated trajectories for the pair S&P and Nasdaq.
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}

For each pair of assets the following table gives the values of ρ (upper entry) and a

(lower one) corresponding to the maximal correlation:
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S&P Nasdaq CAC 40 FTSE Nikkei Dax
Nasdaq 0.047

2.926
CAC 40 0.041 0.056

2.428 2.428
FTSE 0.034 0.047 0.049

0.974 0.974 0.974
Nikkei 0.032 0.044 0.046 0.047

2.017 2.017 2.017 0.974
Dax 0.023 0.027 0.024 0.020 0.018

3.394 2.926 2.428 0.974 2.017
Hang Seng 0.027 0.031 0.027 0.023 0.021 0.018

3.394 2.926 2.428 0.974 2.017 4.095

The picture below shows the scatter plot and the simulated trajectories for the pair

S&P and Nasdaq.
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5.3 α-variance gamma

5.3.1 a = 0

This value of a corresponds to independent components. The picture below shows the

scatter plot and the simulated trajectories for the pair S&P and Nasdaq.
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For each pair of assets the following table gives the values of ρ (upper entry) and a

(lower one) corresponding to the maximal correlation:
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S&P Nasdaq CAC 40 FTCE Nikkei Dax
Nasdaq 0.803

7.590
CAC 40 0.795 0.701

9.020 7.590
FTCE 0.505 0.410 0.406

9.791 7.590 9.020
Nikkei 0.556 0.461 0.457 0.284

9.593 7.590 9.020 9.593
Dax 0.512 0.536 0.447 0.261 0.294

7.092 7.092 7.092 7.092 7.092
Hang Seng 0.500 0.406 0.403 0.834 0.282 0.259

9.791 7.590 9.020 31.976 9.593 7.092

The picture below shows the scatter plot and the simulated trajectories for the pair

S&P and Nasdaq.
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6 Appendix A

Here we recall the definitions of the real processes which are the basis of our multivariate

generalization.

6.1 Normal inverse gaussian

An inverse gaussian (IG) process with parameters (a, b) is a Lévy process with the

following characteristic function:

ψIG(z) = exp t(−a(
√
−2iu+ b2 − b). (6.1)

The Lévy measure of the IG process is 1/2-stable, in fact

νG(x) = (2π)1/2ax−3/2 exp(−1/2b2x)1(0,+∞)(x)dx. (6.2)

A normal inverse gaussian (NIG) process with parameters α > 0, −α < β < α, δ > 0

is a Lévy process XNIG = {XNIG(t), t ≥ 0} with characteristic function

ψNIG(z) = exp t(−δ(
√
α2 − (β + iu)2 −

√
α2 − β2). (6.3)

A NIG process has no gaussian component; for its characterization see Schoutens [21].

The process is of infinite variation.

We end with the moments of the distribution: the mean m, the variance v, the

sweakness s and the curtosis k.

m =
δβ√
α2 − β2

(6.4)

v = α2δ(α2 − β2)−
3
2 (6.5)

s = 3βα−1δ−
1
2 (α2 − β2)−

1
4 (6.6)

k = 3(1 +
α2 + 4β2

δα2
√
α2 − β2

) (6.7)

6.2 Variance gamma

A variance gamma process is a real Lévy process XV G = {XV G(t), t ≥ 0} which can be

obtained as a Brownian motion with drift time-changed by a gamma process.

A gamma process {G(t), t ≥ 0} with parameters (a, b) is a Lévy process so that

the defining distribution of X(1) is gamma with parameters (a, b) (shortly L(X(1)) =

Γ(a, b)). It is a finite variation Lévy process. Its Lévy triplet is

γ = a(1−exp(−b))
b

,

A = 0

ν(dx) = a exp(−bx)x−11(0,+∞)(x)dx.
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Let {B(t), t ≥ 0} be a standard Brownian motion, {G(t), t ≥ 0) be a gamma process

with parameters ( 1
ν
, 1

ν
) and σ > 0, θ be real parameters; then the process XV G is defined

as

XV G(t) = θG(t) + σB(G(t)).

The characteristic function of XV G is the following

ψXV G(t)(u) = [ψXV G(1)(u)]
t = (1− iuθν +

1

2
σ2νu2)−

t
ν .

The paths of the VG process are of infinite activity and finite variation. We end with

the moments of the distribution: the mean m, the variance v, the sweakness s and the

curtosis k.

m = θ (6.8)

v = σ2 + νθ2 (6.9)

s =
θν(3σ2 + 2νθ2)

(σ2 + νθ2

3/2

(6.10)

k = 3(1 + 2ν − 4νσ4(σ2 + νθ2)−2) (6.11)

6.3 CGMY

The CGMY process is a Lévy process X = {X(t), t ≥ 0} whose characteristic function

is

ψX(t)(u) = exp(CtΓ(−Y )((M − iu)Y −MY + (G+ iu)Y −GY )), (6.12)

where C,G,M > 0 and Y < 2. Carr et al. [8] introduced this distribution. The path

regularity changes for different values of the parameter Y : if Y < 0 the paths have finite

activity; if Y ∈ [0, 1) they have infinite activity and finite variation; if Y ∈ [1, 2) they

have infinite variation.

6.4 The return processes

The price process is the exponential of the process Y . The i-th component of S is

Si(t) = Si(0) exp(Yi(t)), t ≥ 0.

According to Cont and Tankov [9] (Section 9.5) our model is arbitrage free, since it has

both positive and negative jumps. Since this is an exponential-Lévy model which is

arbitrage-free, there exists an equivalent martingale measure Q. The model however be-

longs to the class of incomplete models: the equivalent martingale measure is not unique.
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Among the possible equivalent martingale measures, we select the mean-correcting one.

Under this measure, the risk neutral return process Ỹ(t) has the same linear correlation

matrix as the process Y (t) at any point in time. This happen since Ỹ(t) is a translation

Y (t). We call ρ their common correlation matrix.

7 Appendix B: simulation and dependence assess-

ment techniques

For each one of the models studied above, the scatter plots of the processes Y at time

t = 1 can be easily obtained. We illustrate the technique in the bivariate case.

• Simulate N realizations from the independent laws L(X1), L(X2), L(Z); let them

be respectively xn
1 , x

n
2 , z

n for n = 1, ..., N ;

• obtain N realizations (wn
1 , w

n
2 ) of W through the relations W1 = X1 + Z and

W2 = X2 + Z;

• generate N independent random draws from each of the independent random vari-

ables M1 and M2 with laws N(0,W1) and N(0,W2). The draws for M1 are in turn

obtained from N normal distributions with zero mean and variance wn
1 , namely

M1(n) = N(0, wn
1 )

The draws for M2 are from normal distributions with zero mean and variance wn
2 ,

namely

M2(n) = N(0, wn
2 )

• obtain N realizations (yn
1 , y

n
2 ) of Y (1) by means of the relations

yn
1 = µ1w

n
1 + σ1M1(n)

yn
2 = µ2w

n
2 + σ2M2(n)

where the parameters µj and σj, j = 1, 2 depend on the specific model under

consideration.

The realizations (yn
1 , y

n
2 ) give the scatter plots of

Y1(1) = µ1W1 + σ1M1

Y2(1) = µ2W2 + σ2M2

.

For completeness one can also simulate the value of the process Y at time points

{n∆t, n = 0, ....N} as follows
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• simulate N realizations {(x1(n), x2(n), z(n)), n = 1, ...N} from the independent

random variables L(X1(∆t)), L(X2(∆t)), L(Z(∆t)), whereXi(∆t) := Xi(s+∆t)−
Xi(s) is independent from s. The same notation for Z(∆t);

• obtain N realizations of the increments of W , {(w1(n), w2(n)), n = 1, ..., N}
through the relations W1 = X1 + Z and W2 = X2 + Z;

• generate N independent random numbers {M1(n) : n = 1, ...N} extracted from a

variable M1 with L(M1) = N(0, 1)

• generate N independent random numbers {M2(n) : n = 1, ...N} extracted from a

variable M2 with L(M2) = N(0, 1), independent from M1;

The N independent simulated increments of the process Y are then

y1(n) = µ1 · w1(n) + σ1M1(n)
√
w1(n)

y2(n) = µ2 · w2(n) + σ2M2(n)
√
w2(n)

For j = 1, 2 the simulated trajectories are:

Yj(0) = 0,

Yj(n∆t) = Yj((n− 1)∆t) + yj(n).
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