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Abstract

I develop a model of endogenous bounded rationality due to search costs, arising implicitly
from the decision problem’s complexity. The decision maker is not required to know the entire
structure of the problem when making choices. She can think ahead, through costly search, to
reveal more of its details. However, the costs of search are not assumed exogenously; they are
inferred from revealed preferences through choices. Thus, bounded rationality and its extent
emerge endogenously: as problems become simpler or as the benefits of deeper search become
larger relative to its costs, the choices more closely resemble those of a rational agent. For a
fixed decision problem, the costs of search will vary across agents. For a given decision maker,
they will vary across problems. The model explains, therefore, why the disparity, between
observed choices and those prescribed under rationality, varies across agents and problems. It
also suggests, under reasonable assumptions, an identifying prediction: a relation between the
benefits of deeper search and the depth of the search. In decision problems with structure
that allows the optimal foresight of search to be revealed from choices of plans of action, the
relation can be tested on any agent-problem pair, rendering the model falsifiable. Moreover, the
relation can be estimated allowing the model to make predictions with respect to how, in a given
problem, changes in the terminal payoffs affect the depth of search and, consequently, choices.
My approach provides a common framework for depicting the underlying limitations that force
departures from rationality in different and unrelated decision-making situations. I show that
it is consistent with violations of timing-independence in temporal framing problems, dynamic
inconsistency and diversification bias in sequential versus simultaneous choice problems, and
with plausible but contrasting risk attitudes across small- and large-stakes gambles.

Keywords: bounded rationality, complexity, search
JEL Classification Numbers: D80, D83



1 Introduction

Most economic models assume rational decision-making. This requires, at a minimum, that the
agent understands the entire decision problem, including all possible plans of action and the ter-
minal consequences of each, and chooses optimally according to well-defined preferences over final
outcomes. For all but the simplest problems, however, being able to make choices in this way
amounts to having access to extraordinary cognitive and computational abilities and resources. It
is not surprising, therefore, that the predictions of a variety of models of rational decision-making
are systematically violated across a spectrum of experimental and actual decision makers.1 Theories
of bounded rationality attempt to address these discrepancies by accounting for agents with limited
abilities to formulate and solve complex problems or to process information, as first advocated by
Simon [68] in his pioneering work.

Bounded rationality in economics has been widely incorporated but in models that take the
cognitive, computational, or information-processing limitations as fixed and exogenous.2 Yet, a
striking feature of bounded rationality in practice is that its nature and extent vary across both
decision makers and problems. More importantly, the variation can depend systematically on the
decision problem itself. This suggests that it is the interaction between the limited abilities of the
agent and the precise structure of the problem that determines the extent of bounded rationality
and, hence, the resulting choices. That is, our understanding of boundedly-rational decision-making
remains incomplete until we can relate the heterogeneity in decision-making abilities to the het-
erogeneity in decision problems. Ultimately, the nature and extent of bounded rationality should
themselves be determined within the model, explaining (i) why a given agent departs from rational
decision-making in some problems but not in others, and (ii) why, in a given decision problem,
different agents exhibit different degrees of bounded rationality. Ideally, the variation should be
connected to observable features, yielding concrete implications which could, in principle, be tested
empirically.

This paper takes a step towards these desiderata for finite, sequential decision problems. The
decision maker is not required to know the entire structure of the problem when making choices
but can think ahead, through search that may be costly, to reveal more of its details. The novelty
of my approach lies in constructing a theoretical framework for the complexity costs of search to
be inferred from revealed preferences through observed choices. Specifically, I consider decision-

1The extant literature on violations of rational decision-making is vast. For a representative (yet, by no means

comprehensive) review, see Benartzi and Thaler [3], Carbone and Hey [8], Charness and Rabin [9], Forsythe et al.

[18], Henrich et al. [31], Hey [32], Lee and Hey [33], Kahneman and Tversky [39]; Loewenstein and Elster [45], and

Thaler [74], [75].
2To give but a few examples, bounded rationality models have been introduced in game theory (Abreu and

Rubinstein [1], Piccione and Rubinstein [52], Osborne and Rubinstein [50], Rosenthal [58], Camerer et al. [7]),

bargaining (Sabourian [61]), auctions (Crawford and Iriberri [14]), macroeconomics (Sargent [63]), and contracting

(Anderlini and Felli [2], Lee and Sabourian [44]).
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making under limited foresight, a restriction on the forward depth of search in the decision-tree that
depicts the extensive form of the problem at hand. For a given depth, the horizon of search is given
by the collection of the chains of information sets whose length does not exceed the depth. For a
given finite sequential problem, the decision-tree defines a finite sequence of nested search horizons.
To abstract from discrepancies with rational decision-making due to sources unrelated to costly
search (errors in choice, misperceptions of payoffs, behavioral or psychological biases in preferences
or information-processing, complete misunderstanding of the problem, etc.), the agent is taken to
perceive correctly the utility payoffs of the terminal nodes within her horizon of search and to
be unrestricted in her ability to optimize across them. Beyond her search horizon, however, the
structure of the continuation problem or the possible terminal payoffs from different plans of action
may not be known exactly. The agent is assumed to know only the best and worst possible terminal
payoffs that may realize beyond the current search horizon from each plan of action available within
the horizon. Her expected continuation payoff, from following an available plan of action within
the horizon, is defined relative to the corresponding best and worst terminal payoffs. The weighting
function αh (t, s, f) (see Section 2.2) depends on her current decision node h, the foresight t of her
search, the plan of action s under consideration, and Nature’s play f .

The suggested choice behavior under limited foresight amounts to a two-stage optimization.
The agent chooses first the optimal plans of action for each value of foresight that can be de-
fined on the decision-tree; then, she chooses the optimal level of foresight. The function αh (t, s, f)
can be constructed such that this choice process is, in principle, indistinguishable from rational
decision-making (Proposition 1). It can lead to quite different choices, however, if the cognitive,
computational, or information-processing limitations that necessitate search also constrain its hori-
zon to one of inadequate foresight. More precisely, any reasonable (in terms made precise by
Definition 2 and the subsequent discussion) choice s which disagrees with the predictions of the
rational paradigm will be an optimal plan of action, in this framework, for some foresight t not
long enough to account for the problem’s entire set of possible contingencies. It follows that this
particular foresight would be actually optimal under an appropriate transformation γh (t, f) of the
maximal continuation payoff for the horizon of foresight t against f .

My approach to modeling bounded-rationality is based, therefore, on constructing a theoretical
platform for assigning welfare values to observed choices, with respect to some underlying utility
representation of preferences over terminal outcomes in the decision-tree under consideration. Com-
paring these values with those corresponding to rational choices gives the implied complexity costs
of bounded rationality, the welfare loss relative to rational decision-making. This allows the extent
of bounded rationality to emerge endogenously. As problems become simpler or as the benefits of
deeper search become larger relative to its costs, the choices more closely resemble those of a ratio-
nal decision maker. In fact, for a given agent, if the decision problem is sufficiently simple or the
benefits of search outweigh its costs, her choices become indistinguishable from rational ones. For
a given problem, the costs will vary across agents, explaining why the disparity between observed
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and rational choices differs across decision makers.
More importantly, for any decision maker-problem pair, the approach establishes a relation

between the perceived benefits of deeper search and the depth of search. Specifically, if the revealed
optimal foresight for a chosen plan of action s∗ against Nature’s play f is t∗ then the absolute
value of the percentage marginal change in the transformation function, ∆tγh(t∗,f)

γh(t∗,f) = γh(t∗+1,f)
γh(t∗,f) − 1,

cannot be less than the percentage change in the maximal perceived continuation payoff f when the
foresight of search is extended from t∗ to t∗+1. Similarly, ∆tγh(t∗−1,f)

γh(t∗−1,f) cannot exceed the percentage
change in the maximal perceived continuation payoff f when the foresight of search is extended
from t∗ − 1 to t∗ (Proposition 2). Since the transformation function does not depend upon the
terminal utility payoffs, these inequalities imply that changes in the terminal utility payoffs which
increase (decrease) sufficiently the percentage change in the maximal perceived continuation payoff
against f , when the foresight of search is extended from t∗ to t∗+ 1 (t∗− 1 to t∗), induce the agent
to lengthen (shorten) her foresight of search against f and, thus, possibly change her choice of plan
s∗ (Corollary 1).

In decision problems with structure that allows the optimal foresight of search to be revealed
from choices of plans of action, the transformation function γh (t, f) can be calibrated (Section
3.4). This turns the assertion of a relation between the perceived benefits of deeper search and
the depth of search into a powerful test that renders the approach falsifiable. It makes also the
percentage changes in the agent’s maximal perceived continuation payoff against f , with respect
to a one-step extension in her foresight of search, identifiable. By varying the marginal benefit of
further search against f along the given decision tree, the inequalities in the preceding paragraph
can be sharpened until they become binding and, thus, turn into estimates for the percentage
changes in the maximal perceived continuation payoffs. Of course, given an already calibrated
transformation function, the estimation of the maximal perceived continuation payoff as a function
of depth of search corresponds directly to estimating the model’s implied search cost function. The
latter estimation allows the model to make predictions with respect to how, in the given problem
(or in others similar in complexity), changes in the terminal payoffs affect the depth of search and,
consequently, choices.

Nevertheless, the most appealing feature of the model developed in this paper is perhaps its
versatility. Through three applications, I show that it is consistent with violations of timing-
independence in temporal framing problems, with dynamic inconsistency and diversification bias
in sequential versus simultaneous choice problems, and with plausible but contrasting risk atti-
tudes across small- and large-stakes gambles. The cases under study correspond to three well-
known decision-making paradoxes which are seemingly unrelated and obtain for obviously different
reasons. Accordingly, a variety of explanations have been suggested in the literature based on case-
specific models and arguments. Yet, the endogenously-implied complexity costs approach provides
a common framework for depicting the underlying limitations that force choices to depart from
those prescribed by rationality. In each case, paradoxical behavior results when the costs of search
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are large relative to its perceived benefits, preventing a boundedly-rational agent from considering
the decision problem in its entirety.

Bounded rationality is at the heart of a large literature in economics in which, however, the
underlying limitations leading to bounded rationality are usually taken to be exogenous. The
paper closest to this one is MacLeod [47] (see also Eboli [16]). Drawing on search cost models
from the computer and cognitive sciences, he bundles together the costs and perceived payoffs
of search into an exogenously-given net-value function for search. This function determines how
search proceeds through the decision tree, according to some heuristic algorithm. His setup allows
for flexibility in the depth and direction of search but in manner imposed by the net-value function
and the algorithm. In principle, the function can be calibrated for the directed search to fit observed
choices. However, it does not shed any light on the tradeoffs between the costs and perceived payoffs
of search which must be the fundamental determinant of boundedly-rational decision-making for
bounded rationality to be associated with limited search.

Behavior under exogenously-given limited foresight has been studied in repeated games (Jehiel
[35]-[38], Rubinstein [59]). Taking the depth of search to be fixed implies that the complexity of
the stage-game matters equally throughout the repeated game, a problematic assumption when
the set of contingencies that define the stage-game is not a singleton. For in this case, the number
of possible contingencies, introduced by an extra period of play to be accounted for, increases
in a combinatorial manner with the number of periods already accounted for. In contrast, the
notion of complexity introduced here incorporates both the number of periods and the number
of contingencies within a given period. More importantly, the foresight of search is determined
endogenously, which is crucial for explaining behavior in the applications I examine.

In the work on repeated games played by finite automata, the number of states of a machine
is often used to measure complexity (Neyman [48]-[49], Rubinstein [59]-[59], Abreu and Rubinstein
[1], Piccione and Rubinstein [52], Kalai and Stanford [41], Sabourian [61]). This leads to a decision-
making framework that can be incorporated within the present one (Section 3.5.3). Another strand
of finite automata research focuses on the complexity of response rules (Eliaz [17], Chatterjee and
Sabourian [10], Gale and Sabourian [22]).3 While this notion of complexity is more comprehensive
than the in this paper, it is unclear how it can be applied beyond repeated games, sequential
matching, and bargaining.

The paper is organized as follows. Section 2 presents the model and the results. Section 3
discusses the main implications of the analysis as well as some of the related literature in more
detail. The applications are examined in Section 4 while Section 5 concludes. The proofs for all the

3Response complexity compares two response rules that are otherwise identical but for their prescriptions on some

partial history of play. If, for this partial history, one assigns the same action irrespective of the current state of

the machine while the other has the action dependent upon the state, the former is regarded as less complex. With

respect to machine complexity, response complexity comes closer to a complete ordering: two machines can have the

same number of states but differ in response complexity.
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results are to be found in Appendix A. The analysis of the application in Section 4.3 is extended
in Appendix B.

2 Modeling Bounded Rationality

A decision problem can be viewed as a game between the agent, who is strategic, and Nature.
As a game, it is defined by the set of observable events, the sets of possible plans of action for
the agent and Nature, and the agent’s utility payoff function over the terminal contingencies. It
can be depicted by a directed graph Γ = 〈D,A〉 with D and A being the set of nodes and arcs,
respectively. The elements of A correspond injectively to pairs of nodes (d, d′) such that d, d′ ∈ D
with d 6= d′ and d′ an immediate successor of d on the graph. Letting Ω denote the set of terminal
nodes and H be the collection of the sets of nodes at which the same player chooses from the same
set of actions, H forms a partition of D \ Ω into information sets. H will denote the collection of
the information sets where the agent acts. H \H is the collection of Nature’s chance nodes. Let
also D (h) denote the collection of nodes comprising the information set h ∈ H. I will be referring
to h as an immediate successor of some d ∈ D, denoted by d B h, if there exists d′ ∈ D (h) that
immediately-succeeds d. Similarly, h′ ∈ H with h′ 6= h is an immediate successor of h, denoted by
h B h′, if there exists d ∈ D (h) and d′ ∈ D (h′) with d B d′.

2.1 Limited Foresight

When decision-making is constrained by limited foresight, the agent chooses optimally, from her set
of strategic alternatives against Nature’s play, taking into account, however, only a subset of the
set of possible future contingencies. Specifically, she considers only some part of the decision-tree
that lies ahead of her current decision node. Since a pair of plans of action for the agent and
Nature defines a sequence of immediately-succeeding information sets that may occur with positive
probability, I will restrict attention to parts of the decision-tree consisting of chains of arc-connected
information sets. In what follows, I introduce the necessary concepts and notation to describe the
precise structure of these parts and, thus, how search is directed through the graph.

For a positive integer t, a path from the node d to the information set h′ of length t is a
sequence of arc-connected information sets {hτ}t

τ=1 ⊆ H such that ht = h′, d B h1, and hk B hk+1

for k ∈ {1, ..., t− 1}. It will be denoted by d B {hτ}t
τ=1. The union of all paths of length at most t

that start from some d ∈ D (h)

h(t) =
⋃

d∈D(h)

⋃

k∈{1,...,t}

{
d B {hτ}k

τ=1

}

defines the horizon of foresight t starting at the information set h. This is the collection of
all chains of information sets starting at h whose length is at most t. The continuation problem
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starting at h, denoted by Γh, is the union of all horizons on the graph starting at h.4 Observe
that the horizons can be ordered by proper set-inclusion and since

t′ > t ⇐⇒ h(t) ⊂ h
(
t′
) ∀t, t′ ∈ N \ {0}

this ordering can be equivalently represented by the standard ordering on the foresight length.
Notice also that, in finite trees, Γh = h (Th) for some positive integer Th.

Let Ωh be the set of terminal nodes that may occur conditional on play having reached some
d ∈ D (h). If h (t) ⊂ Γh, then h (t) defines a partition of Ωh into the collection of terminal nodes
that are immediate successors of information sets within the horizon and its complement. The
collection is given by

Ωh (t) =
{
y ∈ Ωh : ∃h′ ∈ h (t) ∧ d′ ∈ D

(
h′

) ∧ d′ B y
}

A terminal node y ∈ Ωh (t) will be called observable within h (t).
The set of available actions at each of the nodes in D (h) will be denoted by A (h). A pure

strategy is a mapping s : H → ×h∈HA (h) assigning to each of the agent’s information sets an
available action. Let S be the set of such mappings in the game. A mixed strategy for the agent
will be denoted by σ ∈ Σ = ∆ (S) . A deterministic play by Nature is a mapping q : H \ H →
×d′∈H\HA (d′) assigning to each chance node in H \ H a move by Nature. Q is the set of such
mappings in the game and f ∈ ∆ (Q) denotes a mixed strategy by Nature. Let also p (d|σ, f) be the
probability that the node d is reached under the scenario (σ, f). Given that play has reached d, the
conditional probability that node d′ will be reached under (σ, f) will be demoted by p (d′|d, σ, f)
with p (d′|d, σ, f) = 0 if d′ cannot follow from d or p (d|σ, f) = 0,.

The set of terminal nodes that may occur under (σ, f), if play starts at a node of the information
set h, is given by

Ωh (σ, f) = {y ∈ Ωh : ∃d ∈ D (h) ∧ p (y|d, σ, f) > 0}

Finally,

Ωh (t, σ, f) = Ωh (t) ∩ Ωh (σ, f)

is the collection of terminal nodes which are observable within h (t) and may occur under (σ, f) if
play starts at a node of h.

4This is the standard definition of a continuation problem which is to be distinguished from a subgame: a subgame

is a continuation problem but not vice versa. A non-terminal node d ∈ D \Ω can be the root of a subgame Γd if and

only if either h ∩ Γd = ∅ or h ∈ Γd, ∀h ∈ H. Any player who moves at d or at any information set of a subgame

must know that d has occurred, which requires that only singleton information sets be starting points for subgames.
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2.1.1 An Example

Consider the decision-tree depicted in Figure 1 where decision and chance nodes are depicted by
squares and circles, respectively, while the agent’s non-singleton information set i.3 is depicted
by the shaded oval. The terminal nodes are indexed {A, . . . ,K} while the values in brackets
represent the corresponding terminal utility payoffs. At the initial node i.1, the decision maker
must choose a plan of action, given a specification f of distributions at each chance node. For
example, suppose that f assigns probability 1/2 to each branch at n.3 and n.4, and probability 1 to
the branches leading to the terminal nodes B and K at n.1 and n.2, respectively. Under unbounded
rationality and, thus, perfect foresight, the agent can account for every possible contingency within
the continuation problem (the entire tree here). Assuming for simplicity that she has expected
utility preferences over final outcomes, her plan of action would choose the middle branch at i.1,
the upper branch at the information set i.3, and the branches leading to the terminal nodes I and
D at i.2 and i.4, respectively.5
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Figure 1: Foresight and Horizons of Search

Under bounded rationality, the search process is structured in my approach such that it trun-
cates the decision-tree into horizons, with a horizon of foresight t consisting of all chains of informa-
tion sets with length at most t. The decision-tree of Figure 1 defines a finite increasing sequence of

5The analysis can accommodate also non-expected utility preferences (see Section 3.2).
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values for the foresight of search, t ∈ {1, 2, 3, 4}, and a corresponding increasing sequence of nested
horizons (depicted, in the figure, by combining adjacent hatched regions from left to right).6 For
t = 1, the search horizon is given by i.1 (1) = {n.1, n.2, n.3}. For t = 2, there are two chains of infor-
mation sets of that length, i.1 B {n.2, i.2} and i.1 B {n.3, i.3}. The collection {n.1, n.2, n.3, i.2, i.3}
defines the horizon i.1 (2). Since only one chain of length t = 3 starts at i.1, i.1 B {n.3, i.3, n.4},
the horizon i.1 (3) is given by {n.3, i.3, n.4} ∪ i.1 (2). Finally, {n.3, i.3, n.4, i.4} ∪ i.1 (3) defines
i.1 (4) (giving the entire tree). The set of terminal nodes that can be reached from i.1 is, of course,
Ωi.1 = ∪K

j=A {j}. The sets, though, that are observable within the horizons of search are given,
respectively, by Ωi.1 (1) = {A,B,K}, Ωi.1 (2) = Ωi.1 (1)∪{F ,G,H,I,J}, Ωi.1 (3) = Ωi.1 (2)∪{C}, and
Ωi.1 (4) = Ωi.1.

Let σ prescribe positive probabilities for each of the available actions at i.1, i.2, and i.4, but
probability 1 to Down at i.3. The sets of terminal nodes that may occur under the scenario
(σ, f) and are observable within the horizons of search are given by Ωi.1 (1, σ, f) = {B,K} and
Ωi.1 (t, σ, f) = {F,H,B,K} = Ωi.1 (σ, f) for t ≥ 2. If s ∈ support{σ} is the pure strategy that plays
the middle branch at i.1, then Ωi.1 (1, s, f) = ∅ while Ωi.1 (t, s, f) = {F,H} = Ωi.1 (s, f) for t ≥ 2.

Similarly, for the decision to be made at the information set i.3, we have Ωi.3 (1) = {C,F,G,H},
Ωi.3 = {C,D,E,F,G,H} = Ωi.3 (2), and Ωi.3 (1, σ, f) = {F,H} = Ωi.3 (σ, f).

2.2 Behavior under Limited Foresight

Starting at h ∈ H, the agent may consider a horizon h (t) ⊆ Γh instead of the entire continuation
problem. Given its limited foresight, her decision-making is sophisticated: with respect to the
terminal nodes that are observable under her current foresight, she can correctly optimize according
to her underlying preferences over terminal consequences. Regarding outcomes beyond her horizon,
she is not able to do so, even though she is aware that there may exist contingencies which could
occur, under Nature’s f ∈ ∆(Q) and her choice σ ∈ Σ, but are currently unforeseen within
h (t). I will assume that the agent evaluates the set of possible but currently unforeseen terminal
contingencies according to the expectation operator Eµ, for some probability distribution µ on this
set.

Formally, let u : Ω → R++ represent the agent’s preferences over terminal outcomes.7 Abusing
notation slightly, for any set Y of terminal nodes, let

u (Y ) =
∑

y∈Y

u (y) and u (∅) = 0

6In this framework, with respect to the length of its foresight, the search for the optimal alternative proceeds

through the decision-tree so as to encompass new information sets in exactly the same way as a filtration evolves,

with respect to time, to include new events.
7Although at no loss of generality, the non-negativity of the terminal utility payoffs is essential for determining

precisely what unbounded rationality corresponds to in my approach (Lemma 1). I make the stronger assumption of

strict positivity so as to represent some of the defining features of my model in terms of percentage changes in the

expected continuation utility payoffs across immediately-succeeding horizons (Proposition 2).
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Given a pure strategy profile (s, q) ∈ S ×Q, u (Ωh (s, q)) is the agent’s total utility payoff from the
continuation problem Γh. Preferences over lotteries on terminal consequences admit an expected
utility representation. The agent’s expected utility payoff under (σ, f) ∈ Σ×∆(Q), given that play
reached h, is given, therefore, by

uh (σ, f) =
∑

s∈S

∑

q∈Q

σ (s) f (q) u (Ωh (s, q))

while
Rh (f) = arg max

σ∈Σ
uh (σ, f)

is the set of best-responses under rational decision-making (unlimited foresight).
Under limited foresight, the notation must be enriched to distinguish the payoffs associated

with terminal nodes that are observable within the horizon from those corresponding to terminal
nodes beyond. Since the agent perceives correctly the former collection, the payoff from (s, q)
at terminal nodes that are observable under foresight t is given by u (Ωh (t, s, q)). Within the
unobservable set Ωh \ Ωh (t), however, the terminal contingencies can be reached via any strategy
profile (σ′, f ′) ∈ Σ × ∆(Q) that results in the same play as (s, q) within h (t). That is, (σ′, f ′)
is another possible continuation scenario from the perspective of the horizon h (t). By Kuhn’s
Theorem, we can define the following concept:

Definition 1 Let h ∈ H and h (t) ⊆ Γh. Two strategy profiles (σ, f) , (σ′, f ′) ∈ Σ × ∆(Q) are
h (t)-equivalent, denoted by (σ, f) '

h(t)
(σ′, f ′), if both prescribe the same probability distribution at

each node in D
(
h̃
)
, for any information set h̃ ∈ h (t). That is,

(σ, f) '
h(t)

(
σ′, f ′

)
iff (σ, f) |h(t) ≡

(
σ′, f ′

) |h(t)

Here,
(
σ̃, f̃

)
|h(t) denotes the restriction to h (t) of the unique behavior-strategy profile that corre-

sponds to
(
σ̃, f̃

)
.

Regarding outcomes beyond the truncated tree, the set of terminal nodes that may follow from
any d ∈ D (h) when (s, f) is played within h (t) is given by8

Ωh (t, s, f) =
⋃

(s′,f ′)∈S×∆(Q):(s′,f ′) '
h(t)

(s,f)

Ωh

(
s′, f ′

) \ Ωh (t, s, f)

The set of the corresponding terminal utility payoffs will be denoted by

Uh (t, s, f) =
{
u (y) : y ∈ Ωh (t, s, f)

} ⊂ R++

8Observe that Ωh (t, s′, f ′) ≡ Ωh (t, s, f), for any (s′, f ′) ∈ S ×∆(Q) : (s′, f ′) '
h(t)

(s, f).
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The agent evaluates the set Ωh (t|s, f) of possible but currently unforeseen terminal contingencies
according to the expectation operator Eµ [Uh (t, s, f)] for some probability measure µ on Ωh (t|s, f).
Observe that, letting inf Uh (t, s, f) and supUh (t, s, f) denote the minimum and maximum of this
set, respectively, this criterion can be represented as

Eµ [Uh (t, s, f)] = αh (t, s, f) inf Uh (t, s, f) (1)

for some αh (t, s, f) ∈
[
1, supUh(t,s,f)

inf Uh(t,s,f)

]
. In Section 3, I discuss the robustness of my results with

respect to using the this particular representation. The total expected utility payoff under horizon
h (t), when (σ, f) is played within the horizon, is given by the mapping Uh (·) : {1, ..., Th} × Σ ×
∆(Q) → R++ with

Uh (t, σ, f) = u (Ωh (t, σ, f)) +
∑

s∈S

σ (s)Eµ [Uh (t, s, f)] (2)

= u (Ωh (t, σ, f)) +
∑

s∈S

σ (s) αh (t, s, f) inf Uh (t, s, f)

The second term above corresponds to the agent’s expected utility payoff from the possible but
currently unforeseen future terminal contingencies when (σ, f) is played within h (t). It will be
called, henceforth, the continuation value of the horizon h (t) under (σ, f).

A binary relation can now be defined on {1, ..., Th} by

t %h t′ iff max
σ∈Σ

Uh (t, σ, f) ≥ max
σ∈Σ

Uh

(
t′, σ, f

)

This is the agent’s preference relation over the horizons in Γh when Nature’s strategy is f . By
construction, it admits the utility representation

Vh (t, f) = max
σ∈Σ

Uh (t, σ, f)

while the correspondence
Rh (t, f) = arg max

σ∈Σ
Uh (t, σ, f)

gives the optimal choices from Σ against f under the horizon h (t). The optimization problem
maxt∈{1,...,Th} Vh (t|f) determines optimal horizon - strategy set pairs {h (t∗) , Rh (t∗, f)} ∈ Γh ×Σ.

2.3 Bounded Rationality

The behavior under limited foresight described above can be used to compare boundedly-rational
with rational decision-making once some minimal structure is imposed on the underlying choice
rules.

Definition 2 A choice rule Ch (S, f) ⊆ Σ, against f ∈ ∆(Q) at h, is admissible if there exists
t ∈ {1, ..., Th} such that Ch (S, f) ≡ Rh (t, f).
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The criterion in Definition 2 admits really any reasonable choice. It refuses only choice rules
which ignore strict dominance to an extent that it is impossible to draw a line between bounded
rationality and irrationality. To see this, let s? ∈ Ch (S, f) for some inadmissible Ch (S, f). By
definition, we cannot find any t ∈ {1, ..., Th} and an corresponding array [αh (t, s, f)]s∈S such
that Uh (t, s, f) ≤ Uh (t, s∗, f) for all s ∈ S. Fixing t ∈ {1, ..., Th}, this implies the existence
of some s̃ ∈ S such that Uh (t, s̃, f) > Uh (t, s∗, f) for any αh (t, s̃, f) ∈

[
1, supUh(t,es,f)

inf Uh(t,es,f)

]
and any

αh (t, s∗, f) ∈
[
1, supUh(t,s∗,f)

inf Uh(t,s∗,f)

]
. Taking αh (t, s̃, f) = 1 and αh (t, s∗, f) = supUh(t,s∗,f)

inf Uh(t,s∗,f) , by (1) and
(2), we get

min
(s′,f ′)∈S×∆(Q): (s′,f ′) '

h(t)
(es,f)

uh

(
s′, f ′

)

= u (Ωh (t, s̃, f)) + min
(s′,f ′)∈S×∆(Q): (s′,f ′) '

h(t)
(es,f)

{
uh

(
s′, f ′

)− u (Ωh (t, s̃, f))
}

> u (Ωh (t, s∗, f)) + max
(s′,f ′)∈S×∆(Q): (s′,f ′) '

h(t)
(s∗,f)

{
uh

(
s′, f ′

)− u (Ωh (t, s∗, f))
}

= max
(s′,f ′)∈S×∆(Q): (s′,f ′) '

h(t)
(s∗,f)

uh

(
s′, f ′

)

That is, an inadmissible choice rule opts for the plan of action s∗ against f even though there
exists a plan s̃ under which the worst possible outcome, from the perspective of the horizon h (t), is
strictly better than the best possible outcome under s∗. Moreover, since the foresight t was taken
arbitrarily, this applies even for every horizon in Γh.

The notion of admissibility of Definition 2 imposes some very weak restrictions on the extent
to which the choice behavior under study departs from rationality. I will now demonstrate that,
within the realm of admissibility, the behavior under limited foresight in 2 can be used as a platform
onto which both rational as well as boundedly-rational decision-making can be represented. For
this, I must make the following behavioral assumption.
A.1 ∀h ∈ H and ∀ (s, f) ∈ S ×∆(Q) αh (t, s, f) is non-decreasing on {1, ..., Th}

Recall that the mapping αh (t, s, f) depicts the agent’s belief about the continuation value of the
horizon h (t) under the profile (s, f) as a combination between the best and worst utility payoff out
of the set of currently unforeseen but possible future terminal contingencies when (s, f) is played
within h (t). The assumption amounts simply to requiring that the agent does not become more
pessimistic about the continuation value of her horizon of search, with respect to a given profile
(s, f), as her search deepens. This suffices for the agent to be exhibiting a weak preference for
deepening her horizons of search.

Proposition 1 Under Assumption A.1, the relation %h exhibits a weak preference for larger hori-
zons:

t > t′ =⇒ t %h t′

11



Notice that a weak preference for deeper search can be equivalently expressed as ∆tVh (t, f) ≥ 0
∀t ∈ {1, ..., Th}. Therefore,

max
t∈Th

Vh (t, f) = Vh (Th, f) = max
σ∈Σ

uh (σ, f)

At any h ∈ H, an agent with preferences %h on {1, ..., Th} will choose the maximal horizon and,
thus, the same set of best responses from Σ against f ∈ ∆(Q) as a rational decision maker.
Under assumption A.1, the suggested behavior under limited foresight is indistinguishable from
rationality. It can be taken, therefore, as a benchmark: departures from rational decision-making
can be equivalently depicted as departures from this behavior under limited foresight. Within the
context of admissible choice rules, I will restrict attention to departures that result in a welfare loss
relative to rational decision-making.

Definition 3 An admissible choice rule Ch (S, f) is boundedly-rational if Ch (S, f) ≡ Rh (t∗, f)
and Vh (t∗, f) < Vh (Th, f), for some t∗ ∈ {1, ..., Th − 1}.

Since it is admissible, a boundedly-rational choice rule should give a best-response set that is
optimal for the optimization over Th of some appropriate transformation of the value function
Vh (t, f). This transformation could represent a variety of psychological, behavioral, cognitive or
ability factors that force departures from rationality. However, boundedly-rational choices ought
to be admissible with respect to every foresight t ∈ {1, ..., Th}. Moreover, preferences over lotteries
on the set of terminal consequences should admit an expected utility representation. Clearly, we
must restrict attention to strictly-increasing, affine transformations of Uh (t, ·, f). Let, therefore,
Ũh : {1, ..., Th} × Σ×∆(Q) → R++ be defined by

Ũh (t, σ, f) = γh (t, f) Uh (t, σ, f) + γ0
h (t, f)

for some functions γh : Th ×∆(Q) → R++ and γ0h : Th ×∆(Q) → R. The optimization problem
now becomes

max
t∈{1,...,Th}

γh (t, f)Vh (t, f) + γ0
h (t, f) (3)

Let th (f) denote the smallest optimal foresight in (3). The corresponding set of maximizers from
Σ will be called the boundedly-rational best-response set, denoted by BRh (f).

The formulation in (3) embeds rational decision-making as a special case. More importantly,
it does so in a way that establishes the functions γh and γ0

h as indicators of bounded rationality.
For the agent to be boundedly-rational against f at h, at least one of two functions must not be
constant on the set {th (f) , ..., Th}. Put differently, rational decision-making against any f ∈ ∆(Q)
at h is consistent only with both functions being constant on

{
minf∈∆(Q) th (f) , ..., Th

}×∆ (Q).

Proposition 2 Let f ∈ ∆(Q). The following are equivalent:

12



(i) The optimization in (3) represents %h on the set {t (f) , ..., Th}

(ii) The functions γh and γ0
h are constant on the set {t (f) , ..., Th}.

For the remaining of the paper, I will normalize γ0
h to be the zero function on {1, ..., Th}×∆(Q).

This allows for an empirically testable and robust relation between the terminal utility payoffs of
the decision problem at hand and the agent’s optimal horizon. To see this, observe first that

∆t [γh (t, f) Vh (t, f)] = γh (t + 1, f) Vh (t + 1, f)− γh (t, f) Vh (t, f)

= γh (t + 1, f)∆tVh (t, f) + Vh (t, f)∆tγh (t, f) (4)

while, at the optimal foresight, we must have ∆t [γh (t (f) , f) Vh (t (f) , f)] ≤ 0. Since ∆tVh (t, f) ≥
0 on {1, ..., Th} (recall Proposition 1),

Remark 1 For the representation in (3), let γ0
h be the zero function on {1, ..., Th}×∆(Q). Then,

∆tγh (t (f) , f) ≤ 0.

Moreover, all utility payoffs of terminal outcomes are strictly positive (i.e. Vh (t, f) > 0 for all
(t, f) ∈ Th ×∆(Q) , h ∈ H) and so is the function γh. Clearly, we must have

∆tVh (t (f) , f)
Vh (t (f) , f)

≤ − ∆tγh (t (f) , f)
γh (t (f) + 1, f)

Since the transformation function γh does not vary with the terminal utility payoffs, the validity
of the above inequality is completely determined by the left-hand side quantity. If this increases
sufficiently, other things remaining unchanged, the inequality will no longer be valid.9 Similarly,
by the optimality of (f), we have ∆t [γh ((f)− 1, f) Vh ((f)− 1, f)] ≥ 0 and, thus,

∆tVh ((f)− 1, f)
Vh ((f)− 1, f)

≥ −∆tγh ((f)− 1, f)
γh ((f) , f)

If the quantity ∆tVh((f)−1,f)
Vh((f)−1,f) decreases sufficiently, ceteris paribus, the inequality will cease to hold.10

Remark 2 In the representation in (3), let γ0
h be the zero function on {1, ..., Th}×∆(Q). Suppose

that the specification of the terminal utility payoffs in ∪s∈SΩh (s, f) changes and denote by told (f)
and tnew (f) the optimal horizons under the original and new specifications, respectively. Let also
V new

h (t, f) denote the value function in (3) under the new specification. Then,

1. tnew (f) = told (f) if the changes in the terminal utility payoffs are such that

∆tV
new
h

(
told (f) , f

)

V new
h (told (f) , f)

∈
[
0,−∆tγh

(
told (f) , f

)

γh (told (f) , f)

]
and

∆tV
new
h

(
told (f)− 1, f

)

V new
h (told (f)− 1, f)

∈
[
−∆tγh

(
told (f) , f

)

γh (told (f) , f)
, +∞

)

9Other things remaining unchanged refers here to the quantities ∆tVh(t,f)
Vh(t,f)

, for t ∈ {1, ..., Th} \ {t (f)}.
10Ceteris paribus refers to the quantities ∆tVh(t,f)

Vh(t,f)
, for t ∈ {1, ..., Th} \ {t (f)− 1}.
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(2.i) tnew (f) > told (f) if the changes in the terminal utility payoffs are such that

∆tV
new
h

(
told (f) , f

)

V new
h (told (f) , f)

/∈
[
0,−∆tγh

(
told (f) , f

)

γh (told (f) , f)

]
and

∆tV
new
h

(
told (f)− 1, f

)

V new
h (told (f)− 1, f)

∈
[
−∆tγh

(
told (f) , f

)

γh (told (f) , f)
, +∞

)

(2.ii) tnew (f) < told (f) if the changes in the terminal utility payoffs are such that

∆tV
new
h

(
told (f) , f

)

V new
h (told (f) , f)

∈
[
0,−∆tγh

(
told (f) , f

)

γh (told (f) , f)

]
and

∆tV
new
h

(
told (f)− 1, f

)

V new
h (told (f)− 1, f)

/∈
[
−∆tγh

(
told (f) , f

)

γh (told (f) , f)
, +∞

)

The suggested normalization guarantees also that the optimal horizon against f ∈ ∆(Q) at h ∈ H

in (3) is not affected by affine transformations in the utility representation of the agent’s preferences
over terminal consequences.

Claim 1 For the representation in (3), let γ0
h be the zero function on {1, ..., Th} × ∆(Q) and

consider an affine transformation, λu (·) with λ > 0, of the utility representation of preferences
over the terminal consequences. Then, told (f) = tnew (f).

2.4 Complexity and its Costs

In general, different search horizons h (t) ∈ Γh impose different degrees of informational limitations
on the agent’s decision-making. The particular search horizon the agent considers should, therefore,
matters for her response against any f ∈ ∆ (Q). Yet, the proof of Proposition 1 shows that this is
not always the case since the preference for larger horizons is not necessarily strict. Depending on
the structure of the problem and Nature’s play, the marginal benefit from deeper search, ∆tVh (t, f),
may be zero. In such a case, extending the search horizon from h (t) to h (t + 1) does not affect the
set of optimal responses against f . This corresponds to a non-complex decision-making situation.

Definition 4 For any h ∈ H and t ∈ {1, ..., Th − 1}, we say that f ∈ ∆(Q) is h (t)-complex if
∆tVh (t, f) > 0. f is h-complex if it is h ()-complex for some t ∈ {1, ..., Th}. The decision problem
is complex at h, if there exists f ∈ ∆(Q) that is h-complex.

Example 2.4: For the decision problem of Figure 1, suppose that Nature may move in either
direction at n.3 and n.4 with equal probability, left at n.1 with any probability p, and determinis-
tically down at n.2. At i.1, if the agent chooses the upper branch, she expects a utility payoff of
5 + 10p. If she chooses the lower branch, her payoff will be 1. The middle branch corresponds to a
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continuation value of 5αi.1 (1,m, f) for t = 1 (the worst case scenario is her moving Down at i.3),
10
2 + 5

2αi.1 (2,m, f) for t = 2, 10
2 + 5

4 + 5
4αi.1 (3,m, f) for t = 3 (for t ∈ {2, 3}, the worst case scenario

entails moving Up at i.3 but Down at i.4), and 45
4 for t = 4. Notice that αi.1 (1,m, f) ∈

[
1,

10
2

+ 20
2

5

]

whereas αi.1 (2,m, f) , αi.1 (3,m, f) ∈ [
1, 20

5

]
.

If p ≥ 5
8 , the expected value of every horizon is 5+10p; Nature’s play is not complex at i.1. For

p < 5
8 , the expected values are 5max {1 + 2p, αi.1 (1,m, f)} for t = 1, 5+5 max

{
2p, 1

2αi.1 (2, m, f)
}

for t = 2, 5 + 5max
{
2p, 1

4 + 1
4αi.1 (3,m, f)

}
for t = 3, and 45

4 for t = 4. Nature’s play can now be
complex at i.1 (for instance, let p < 1

4). ¤

Consider now the function Ch : {1, ..., Th} → R defined by

Ch (t, f) = [1− γh (t, f)]Vh (t, f)

This function acquires some interesting properties when the notion of complexity defined above is
linked with the representation in (3). Since th (f) denotes an optimal horizon in (3), we have

Vh (th (f) , f)− Ch (th (f) , f) ≥ Vh (t, f)− Ch (t, f) =⇒
Ch (t, f)− Ch (th (f) , f) ≥ Vh (t, f)− Vh (th (f) , f)

≥ 0 (by Proposition 1) ∀t ∈ {t (f) , ..., Th}
If we normalize γh (th (f) , f) = 1, then Ch (th (f) , f) = 0. Since now Ch (t, f) ≥ 0, for any
t ∈ {t (t) Th} and f ∈ ∆(Q), the function Ch becomes a cost function on {t (f) , ..., Th}. If,
moreover, we restrict gh to take values in the set (0, 1], Ch becomes a cost function on the entire
set {1, ..., Th}. In either case, it will be called, henceforth, the complexity cost function.

By the very definition of the complexity-cost function, when γ0
h is the zero function on {1, ..., Th},

the decision-making under bounded rationality given in (3) admits equivalently the following rep-
resentation

max
t∈{1,...,Th}

Vh (t, f)− Ch (t, f) (5)

This representation illustrates the economic meaning of the complexity costs. Notice that, if
∆tCh (t, f) = 0 for all t ∈ {1, ..., Th}, the representation is equivalent to rational decision-making.
The function Ch (·, f) depicts, therefore, the discrepancy between the payoff, γh (t, f) Vh (t, f), that
the boundedly-rational agent assigns to her best response, Rh (t, f), against f when her horizon is
limited to h (t) and the actual payoff, Vh (t, f), from Rh (t, f) against f when the foresight is re-
stricted to t. It is trivial to verify the following relations between the marginal benefits of extending
search around the optimal foresight against f and the corresponding marginal complexity costs. In
Section 3.4, I show that they lead to important testable implications of my model.

Remark 3 For the representation in (3), let g0
h be the zero function on {1, ..., Th}. For any f ∈

∆(Q) and h ∈ H, we have

∆tCh (t (f) , f) ≥ ∆tVh (t (f) , f) and ∆tCh (t (f)− 1, f) ≤ ∆tVh (t (f)− 1, f)
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For the representation in (6), discrepancies between boundedly-rational and rational decision-
making can exist only in complex situations. That is, the complexity costs do not affect the
behavior under limited foresight in non-complex decision-making situations.

Claim 2 For the representation in (3), let γ0
h be the zero function on {1, ..., Th}. If f ∈ ∆(Q) is

not h (t)-complex, then it cannot entail any marginal complexity costs on the horizon h (t). That
is,

∆tVh (t, f) = 0 =⇒ ∆tCh (t, f) = 0

The complexity-cost function affects choices only in complex problems and only where the agent
would strictly prefer to expand her horizon if she were not constrained by her bounded rationality.
In this sense, the function depicts the presence of (and only of) bounded rationality. To see this,
consider again Nature’s mixed strategy in Example 2.4 with p ≥ 5

8 . An agent who chooses the
upper branch at i.1 may or may not be boundedly-rational. Such a stochastic play by Nature is not
complex enough to reveal bounded rationality from observed choices in this problem. Accordingly,
expanding the agent’s foresight does not entail any marginal complexity costs.

Complexity has been defined here with respect to the structure of the decision problem. It
depends, therefore, upon the particular conjecture f about Nature’s play. This dependence is
reflected in the function Ch allowing the model to exhibit an important endogenous form of bounded
rationality. When playing a complex game against a strategic opponent, the perceived ability of
the opponent seems to obviously matter when the agent decides how deeply into the game-tree to
plan for. Even though Nature is not a strategic player, there is an analogue of this intuition in
a decision-theoretic setting. Different conjectures about Nature’s play correspond to different sets
of unforeseen contingencies that may occur beyond the current horizon. Hence, the difficulty of a
given decision problem varies with the set of Nature’s stochastic plays that the agent considers.
In this model, the conjectures about Nature’s play matter not only through the expected terminal
payoffs but also directly through the complexity-cost function. This may lead a boundedly-rational
agent to choose different horizons in response to different conjectures.

Allowing the complexity costs function to vary on ∆ (Q) offers also a built-in flexibility to
differentiate between the length and breadth of a horizon, in terms of complexity. The cost of
considering a horizon h (t) against a strictly-mixed f may well be strictly higher than the corre-
sponding cost against any pure strategy in the support of f . This could reflect the larger number
of contingencies which may happen within the horizon against the mixture. While the foresight is t

in either case, responding against f requires accounting for more contingencies. Finally, the model
allows the function Ch to vary across the information sets h ∈ H at which decisions are to be made
against f . It can accommodate, therefore, decision-making situations where the complexity of the
continuation problem varies at different stages of the problem.
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3 Discussion and Related Literature

The preceding analysis views bounded rationality as resulting from costs implied by the complexity
of the decision problem. The costs obtain in such a way that decision-making under bounded
rationality admits the following representation

max
t∈Th

Vh (t, f)− Ch (t, f) (6)

In this section, I discuss some of the strengths and limitations of this representation and how it
relates to some of the literature.

3.1 Strictly Dominated Strategies Matter

Decision-making under limited foresight is based upon comparing plans of action that lead to
terminal outcomes occurring within the agent’s current foresight against her beliefs about the
continuation value of plans that do not. Such decision-making is affected by strictly dominated
strategies, if the agent’s foresight is not long enough to reveal the dominance.

In finite, non-repeated problems, any (s, q) ∈ S × Q will eventually reach a unique terminal
node. That is, one of the two terms of the partition Ωh (t, s, q) ∪ Ωh (t, s, q) is the empty set, for
any t ∈ Th, h ∈ H. There exists, therefore, th (s, q) ∈ Th such that Ũh (th (s, q) , s, q) = u (h, s, q).
Suppose now that s̃ ∈ S does strictly worse than s against q conditional on play having reached
h: u (h, s, q) > u (h, s̃, q). The presence of s̃ does not matter for the objective in (3) as long as
t ≥ th (s, q). For t ≥ maxq∈Q th (s, q), this is true for any strictly dominated strategy s̃. For
finitely-repeated problems, this argument suggests that the presence of s̃ does not matter for the
optimization in (3), if there exists s ∈ S that does strictly better than s̃ against q in the stage game
and the agent’s foresight suffices to cover the stage game.

To illustrate, consider removing the option of moving Down at i.3 in Figure 1. Any strategy that
uses this action with positive probability is strictly dominated by any other that assigns probability
1 to Up at i.3. The deletion will not affect the valuation Vi.1 (t, f), for t ≥ 2, because the dominance
is revealed within the horizon. This is not true, however, for t = 1. Consider the play f of Example
2.4. The continuation value of the middle branch at i.1 is now the one corresponding to the horizon
i.1 (2) in that example, 10

2 + 5
2αi.1 (2,m, f). For αi.1 (2,m, f) > 4p, an agent with foresight t = 1

will choose Middle at i.1. This inequality can be satisfied even for p ≥ 5
8 ; that is, in cases where the

agent would choose Up in Example 2.4. The removal of a strictly-dominated option at i.3 makes
her here ex-ante, strictly better-off at i.1.

It is equally straightforward to construct a strictly dominated strategy whose introduction
makes a boundedly-rational decision maker better off. Following Nature moving left at n.1 in
Figure 1, suppose that the agent can now choose between two moves, say Left and Right, for a
utility payoff of 15 and 1, respectively. The new problem is equivalent to the old for a rational
agent. Yet, for Nature’s f as above, the continuation payoff of choosing Up at i.1, for t = 1, becomes
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pαi.1 (1, u, f) + 5 (1− p), where αi.1 (1, u, f) ∈ [1, 15]. For αi.1 (1, u, f) < 5, an agent with foresight
t = 1 will choose the middle branch at i.1 for any p ∈ [0, 1]. Introducing a strictly dominated
option at n.1 makes her ex-ante strictly better-off at i.1.

Notice that the dependence on strictly dominated strategies obtains only as long as the con-
tinuation value of the horizon depends on the length of foresight. The continuation value of any
(s, f) ∈ S × ∆ (Q) does not vary with t if and only if αh (t, s, f) = supUh(t,s,f)

inf Uh(t,s,f) , for all t ∈ Th. If
the agent correctly identifies the best possible future outcome of (s, f) under any horizon h (t), her
limited foresight poses no informational limitation for decision-making. She will always choose the
same best-response set as if her foresight were unlimited. Planning for future contingencies that lie
beyond even the shortest horizon, h (1), is not necessary.

3.2 Robustness

The complexity cost approach is based on measuring the extent of bounded rationality via the
implied welfare loss when observed choices differ from those prescribed under rational decision-
making. This framework for modeling endogenous bounded rationality is robust to many different
ways of evaluating a given (s, f) with respect to the horizon h (t) : t ∈ Th. Specifically, it can
accommodate any functional Uh (t, s, f). A different valuation criterion would define a new value
function Vh (t, f) which, in turn, require a new transformation Ṽh (t, f) to represent the discrepancies
between Vh (t, f) : t < Th and the criterion of rational decision-making, V (Th, f). Nevertheless,
this representation of endogenous bounded rationality can still be given as the trade-off between
Vh (t, f) and the costs of complexity, Ch (t, f) = Vh (t, f)− Ṽh (t, f).

The functional defined in (2) is based upon an intuitive interpretation of limited foresight.
Namely, that it imposes informational and/or other decision-making constraints only with respect
to contingencies that may occur beyond the reach of the current horizon. An obvious way to
evaluate the set of such contingencies is via the expectation operator on the set of the corresponding
terminal utility payoffs according to some subjective probability distribution the decision maker
places on this set. This valuation criterion produces a ranking of the available plans of action
that is independent of affine transformations of the utility representation of the preferences over
terminal consequences. If we restrict attention, moreover, to strictly positive utility payoffs, it can
be equivalently given by the second term on the right-hand side of (2).

Assumption A.1 ensures that the value function Vh (t, f) is non-decreasing in t, for any f ∈
∆(Q). This monotonicity is crucial for an important feature of my approach to modeling bounded
rationality. By specifying precisely how rational decision-making corresponds to a limiting case
of the representation, the property provides the necessary structure for the optimal horizon to be
obtained endogenously and for the implied complexity costs to be inferred from observed choices.
The assumption is restrictive in the following sense. As the foresight t increases, the agent becomes
better-informed about the possible paths of play under (s, f) and drops plans f ′ 6= f such that
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(s, f ′) is h (τ)-equivalent to (s, f) for some τ < t but not for τ = t. Assumption A.1 requires that
αh (·, s, f) is non-decreasing even when u (h, s, f ′) > u (h, s, f).

This requirement on the agent’s beliefs becomes quite weak in the presence of another require-
ment, on the consistency of her forecasts about Nature’s play. Specifically, suppose that the agent’s
forecast is always correct; that is, it is correct from the perspective of every horizon in Γh. The set
Uh (t, s, f) of terminal utility payoffs that can realize beyond the horizon h (t) under (s, f) is now
given by

Uh (t, s, f) ≡
{

x = u
(
h, s′, f

)− u
(
Ωh

(
t, s′, f

))
: s′ ∈ S,

(
s′, f

) '
h(t)

(s, f)
}
⊂ R++

As the foresight t ∈ Th increases, {Uh (t, s, f)}t∈Th
forms a decreasing nested sequence. Since the

agent optimizes over S, Assumption A.1 requires now merely that the agent does not become more
pessimistic about her abilities to respond optimally against f as her foresight increases.

In general, mins′∈S:(s′,f) '
h(t)

(s,f) u (h, s, f) is non-decreasing it the foresight t (recall relation

(i) in the proof of Lemma 1). Under the consistency requirement of the preceding paragraph,
maxs′∈S:(s′,f) '

h(t)
(s,f) u (h, s, f) is non-increasing in t. This enables my approach to model also deci-

sion makers whose limited foresight changes along the decision-tree in a way that may not agree
with the sequence {h (t)}t∈Th

. Optimizing under horizon h (t) requires that the agent considers
all contingencies in the t-length chains of information sets for all profiles (s, f) : s ∈ S. Consider,
however, an agent who examines the contingencies, that may occur against f , when she follows
the plans s and s∗ along chains of information sets of length t and t∗ > t, respectively. If she
prefers s to s∗, we can model her choice by choosing appropriate values for αh (·, f) such that
Uh (t, s, f) ≥ Uh (t, s∗, f). If she chooses s∗ over s, we can construct the valuation criterion such
that Uh (t∗, s, f) ≤ Uh (t∗, s∗, f). It is easy to check that, for none of the two inequalities above to
be valid, the following two conditions must hold simultaneously:

(i) maxs′∈S:(s′,f) '
h(t)

(s,f) u (h, s, f) < mins′∈S:(s′,f) '
h(t)

(s∗,f) u (h, s∗, f)

(ii) mins′∈S:(s′,f) '
h(t∗)

(s,f) u (h, s, f) > maxs′∈S:(s′,f) '
h(t∗)

(s∗,f) u (h, s∗, f)

But this cannot be since (i) leads to a contradiction of (ii):

min
s′∈S:(s′,f) '

h(t∗)
(s,f)

u (h, s, f)

≤ max
s′∈S:(s′,f) '

h(t∗)
(s,f)

u (h, s, f)

≤ max
s′∈S:(s′,f) '

h(t)
(s,f)

u (h, s, f)
(i)
< min

s′∈S:(s′,f) '
h(t)

(s∗,f)
u (h, s∗, f) ≤ min

s′∈S:(s′,f) '
h(t∗)

(s∗,f)
u (h, s∗, f)

≤ max
s′∈S:(s′,f) '

h(t∗)
(s∗,f)

u (h, s∗, f)
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Figure 2: A Non-Complex Problem

By choosing the appropriate foresight and values for αh (·, f), the agent’s actual ranking of s and s∗

can be depicted by the model under one of the horizons h (t), h (t∗). As long as the agent’s choices
come from an admissible rule, they can be represented using the interpretation of limited foresight
presented here even though the true underlying decision-making criterion might not examine the
same length of chains of information sets across all available plans of action.

Consistent forecasts provide my approach with another desirable feature. Lemma 2 dictates now
that any contingency which lies beyond the current horizon and does not require strategic decisions
by the agent cannot add to the current complexity costs. The following example illustrates two
immediate implications of this result. First, the benefits and costs of further search are zero
along dimensions where further search is futile. Second, calculating expectations with respect to
Nature’s probability distributions is not costly; it cannot account for departures from rationality.
Discrepancies from rational decision-making can result only from the the agent’s limited ability to
handle the complexity of making optimal decisions.

Example 3.2: For the problem of Figure 2, consider the stochastic play f by Nature that
places equal probability at the branches of every chance node. There are infinitely many plays,
f ′ 6= f , such that (s, f) and (s, f ′) are i.1 (2)-equivalent to f , for any s ∈ S. If the set Uh (t, s, f)
of terminal utility payoffs beyond the horizon is defined as in Section 2.2, the agent’s continuation
value, for t ≤ 2, depends on her conjecture about the likelihood of the plays f ′. As long as the
agent believes that such an f ′ is played with non-zero probability, ∆tVi.1 (t, f) 6= 0 for t ≤ 2.

Let now Uh (t, s, f) be defined as above. Since the agent has only one available move at i.2
and i.3, the problem is not complex at any of her decision nodes. The value of i.1 (1) is 8 (playing
down at i.1 terminates the game within the reach of the horizon for a utility payoff of 3; playing
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right corresponds to an expected continuation payoff of 8). The best response and the value of the
horizon i.1 (t) remain unchanged for t ≥ 2: ∆tVi.1 (t, f) = 0 and, thus, ∆tCi.1 (t, f) = 0. Notice that
the decision-tree here can be reduced so that it consists of a single decision node, at i.1, without
changing the complexity of the problem at hand.

3.3 Uniqueness of Optimal Foresight

Recall that th (f) denotes the smallest optimal foresight against f at h in (3). This section examines
specifications for the transformation function γh under which the optimal foresight is unique in (3)
- with γ0

h being the zero function on {1, ..., Th}.
Consider the case of a strategy s∗ ∈ S, that an agent chooses against f at h, being optimal for

more than one lengths of foresight with respect to the criterion Vh. For example, let Uh (τ, s∗, f) =
Uh (τ ′, s∗, f), for τ, τ ′ ∈ Th : τ < τ ′. Taking γh (τ, f) > γh (τ ′, f) gives Ũh (τ, s∗, f) > Ũh (τ ′, s∗, f),
leaving s∗ optimal with respect to only the smaller horizon in (3). It is trivial to provide sufficient
conditions for a stronger result, to guarantee that the representation in (3) is single-peaked on Th.

Remark 4 For the representation in (3), let γ0
h be the zero function on {1, ..., Th}. For t∗ ∈

{1, ..., Th − 1}, suppose that the following conditions hold:

(i) ∆tγh (t, f) > 0, ∀t ∈ {1, ..., t∗ − 1}

(ii) γh (t + 1, f)∆tVh (t, f) + ∆tγh (t, f) Vh (t, f) < 0, ∀t ∈ {t∗, ..., Th − 1}

Then, t∗ = t (f).

Under conditions (i)-(ii), my approach gives an endogenous stopping rule regarding the search for
optimal alternatives against f . Specifically, the optimal foresight th (f) is obtained by considering
the nested sequence of horizons {h (t)}t∈Th

until the marginal benefit from enlarging the search
horizon falls short of the marginal complexity cost of doing so:

th (f) = min {t ∈ {1, ..., Th} : ∆tVh (t, f) < ∆tCh (t, f)}

This stopping-rule for search can be interpreted as a satisficing condition, to use the terminology
of Simon [69]. In contrast to popular interpretations, satisficing here is not the phenomenon of
giving up when the decision maker has achieved a predetermined level of utility. As in MacLeod
[47], satisficing instead refers to stopping search when it is believed that further search is unlikely
to yield a higher net payoff.11 As an example, let γh : Th ×∆ (Q) → R++ be defined by

γh (t, f) = e−kh(f)[t−t∗]2 , kh (f) ∈ R++ (7)
11This agrees closely with the intuition of Stigler [71] who described the notion of an optimal stopping rule for

search of satisfactory alternatives via the example of a person who wants to buy a used car and stops searching when

the cost of further search would exceed the benefit from it.
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Observe that γh (t, f) ≤ 1 on {1, ..., Th} and

∆tγh (t, f) = γh (t + 1, f)− γh (t, f) = γh (t, f)
(
e−kh(f)[1+2(t−t∗)] − 1

)

Clearly, ∆tγh (t, f) > 0 if t < t∗. For t ≥ t∗, we have

∆t [γh (t, f) Vh (t, f)] = γh (t, f)
[
e−kh(f)[1+2(t−t∗)]Vh (t + 1, f)− Vh (t, f)

]

< γh (t, f)
[
e−kh(f)Vh (t + 1, f)− Vh (t, f)

]

Choosing kh (f) ≥ maxt∈{t∗,...,Th−1} ln
(

Vh(t+1,f)
Vh(t,f)

)
, this specification meets the requirements of the

corollary. Since all terminal payoffs are finite, there clearly exists kh (f) sufficiently large so that
the corollary applies with th (f) = t∗.

The conditions (i)-(ii)allow also the complexity cost function to depict the extent of bounded
rationality as this varies across agents for a given decision problem.

Definition 5 Let Ch (S, f) = BRh (t, f) and C′h (S, f) = BRh (t′, f) be two boundedly-rational
choice rules against f ∈ ∆(Q) at h. Ch (S, f) is more boundedly-rational than C′h (S, f) if
t < t′ and BRh (t, f) 6= BRh (t′, f).

By Proposition 1, the optimal responses against f under foresight t correspond to strictly lower ex-
pected payoff than those under foresight t′: Vh (t, f) < Vh (t′, f). This definition is based, therefore,
upon the premise that the more boundedly-rational agent will do worse against f as a consequence
of her more myopic foresight. If the optimal foresight is unique, then the behavior of the more
myopic decision maker corresponds to higher marginal complexity costs at values of foresight that
lie between the two respective optima. More precisely, if Ch (·, f) and C ′

h (·, f) are complexity costs
functions for the choice rules Ch (S, f) and C′h (S, f), respectively, then

∆tC
′
h (τ, f) < ∆tVh (τ, f) < ∆tCh (τ, f) ∀τ ∈ {t, ..., t′ − 1}

Remark 5 Suppose that Ch (S, f) = BRh (t, f) is a more boundedly-rational choice rule than
C′h (S, f) = BRh (t′, f) against f at h. Suppose also that Ch (·, f) and C ′

h (·, f) are the corresponding
complexity cost functions. Then

∆tCh (τ, f) > ∆tC
′
h (τ, f) ∀τ ∈ {t, ..., t′ − 1}

3.4 Empirical Testing

Proposition 2 and Corollary 1 suggest a procedure for empirical inference in decision problems
where observed choices reveal the limited foresight of the decision maker. Suppose that, against f

at h, the agent’s optimal foresight is t∗: Vh(t∗+1,f)
Vh(t∗,f) ≤ γh(t∗,f)

γh(t∗+1,f) . Let, moreover, the terminal utility
payoffs change so that Vh (t∗ + 1, f) increases, say to Vh (t∗ + 1, f) + v, other things being equal.
For a sufficient increase, the agent will find it optimal to extend her horizon beyond h (t∗). The
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smallest required such increase is v0 = γh(t∗,f)
γh(t∗+1,f)Vh (t∗, f) − Vh (t∗ + 1, f). In decision problems

where different strategic choices by a boundedly-rational agent correspond to different levels of
optimal foresight, v0 can be used to identify the quantity γh(t∗,f)

γh(t∗+1,f) and, thus, the objective in (3),
at various levels of t, when g0h (·, f) is the zero function on Th.

To illustrate, consider the decision-making situation of Example 2.4 with p < 5
8 . If an agent plays

Up at i.1, gi.1(1,f)
gi.1(2,f) ≥ 1 +

max{0, 1
2
αi.1(2,m,f)−2p}
1+2p . If she chooses the middle branch with an intention

to play Right (Up) at i.4, gi.1(1,f)
gi.1(2,f) ≤ 1 +

max{0, 1
2
αi.1(2,m,f)−2p}
1+2p and gi.1(3,f)

gi.1(4,f) > (≤) 1 + 1− 1
4
αi.1(3,m,f)

5
4
+ 1

4
αi.1(3,m,f)

.
We can proceed now in two ways. We ask an agent who chose Up at i.1 to consider the problem
again and again, with ever increasing payoffs at n.4 and i.4, until the first instant where she chooses
the middle option. This exercise would give an upper bound for gi.1(1,f)

gi.1(2,f) and an increasing array of
lower bounds. If the agent plans at i.1 to play Right at i.4, we ask her to consider the problem more
times while increasing the payoffs at i.4 until the first instant where she announces the intention to
move Up at i.4. This would give a lower bound for gi.1(3,f)

gi.1(4,f) and a decreasing array of upper bounds.
By refining our process of payoff-increases, we can reduce the size of the resulting intervals for the
quantities gi.1(1,f)

gi.1(2,f) and gi.1(3,f)
gi.1(4,f) to acceptable estimates.

Alternatively, we can present the problem, with a randomly-drawn payoff structure, to a popu-
lation of agents and estimate the infimum for (i) Vi.1(2,f)

Vi.1(1,f) such that the middle option is chosen at

i.1 and (ii) Vi.1(4,f)
Vi.1(3,f) such that the intention to move Up at i.4 is announced at i.1, given that the

middle branch is chosen at i.1. Observe that, under either method, the model is falsified if agents
are observed to switch from the middle to the upper branch at i.1 or from Up to Right at i.4 while
presented with increasing Vi.1(2,f)

Vi.1(1,f) or Vi.1(4,f)
Vi.1(3,f) , respectively.

In terms of the representation in (6), Proposition 2 implies that the benefits and the implied
complexity costs of search are related in a particular way: when the benefits of further search are
increased, the costs of search also increase but not as quickly. Empirical inference of the complex-
ity cost function can be based on the fact that higher benefits to search offer an incentive for the
decision-maker to extend her search horizon. Notice that these are costs of bounded rationality
implied by the model. They determine the cost-benefit trade-offs required for it to replicate the ob-
served choices. Thus, my analysis abstracts from some well-known issues associated with modeling
limited search as optimization with decision costs. First, reliable estimates of the true underly-
ing benefits and costs (such as opportunity or computational costs) can demand large degrees of
knowledge. Second, the knowledge and the computations involved can be so massive that one is
forced to assume that ordinary people have the computational abilities and statistical software of
econometricians (Conlisk [12], Sargent [63]). And of course, there is the issue of infinite regress:
the cost-benefit computations themselves are costly and demand some meta-level cost-benefit com-
putations and so on (Conlisk [12]).

In terms of cost-constrained decision-making, there must indeed exist some regression problem
but it need not be infinite. If decision makers do follow some sequence of meta-level cost-benefit
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computations, the very fact that they do deliver strategic responses means that somehow this
sequence has converged to a stopping point after a finite number of iterations (Bewley [4] presents a
setting where this is actually optimal). My as if approach to modeling departures from rationality is
based on a simple observation. Whatever goes on inside agents’ minds in decision-making situations
(what many authors have referred to as the “black box” of bounded rationality), it does result in
their choices. These choices reveal a particular cost-benefit relation when they are compared to the
behavior under limited foresight presented here. And this is sufficient for a representation.

3.5 Related Literature

The analysis presented here can be viewed as a generalization of an interesting class of limited
foresight models (Jehiel [35], [36]). In these, the agent’s foresight is exogenously-given, at some
th ∈ Th \ {Th} for all f ∈ ∆(Q), and attention is restricted to situations where the complexity of
the problem increases along a single dimension: the length of foresight determines the unique chain
of singleton information sets the agent considers. This can be presented as a special case of the
specification in (7) with t∗ = th and kh (·) = k ≥ max(t,f)∈{th,...,Th−1}×∆(Q) ln

(
Vh(t+1,f)

Vh(t,f)

)
. When

the foresight is fixed, the representation in (3) reduces to Vh (th, f), for any f ∈ ∆ (Q), which is
more tractable but also harder to falsify. In the face of incorrect predictions, one cannot easily
distinguish between the limited foresight approach being inadequate or having assumed the wrong
length of foresight. This identification issue becomes intractable in general problems, like the one
depicted in Figure 1, where the complexity changes also along the depth dimension of the tree and
the change in the cardinality, ∆t|h (t) |, of the horizon is not necessarily constant on Th.

A sizeable literature on information theory and computational complexity has avoided the
assumption of fixed foresight. Instead, boundedly-rational decision-making in complex problems
is modeled via algorithms for searching through the tree. The central issue, of which direction
and how far into the tree one should look ahead, is usually addressed by various interpretations of
the following principle. A search path is evaluated by assigning (i) the utility payoff given by the
underlying preferences over terminal consequences, for those terminal nodes that can be reached
within the path, (ii) some continuation value for the remaining problem beyond the path, and (iii)
some computational costs for considering the contingencies encountered by the path. McLeod [47]
prefers to combine (ii) and (iii) into one heuristic function since their decomposition often leads to
underestimating the difficulty of the problem: it assumes implicitly that one can costlessly create
probability distributions over uncertain events. He argues that the complexity of a problem is very
sensitive to not only the size of the search graph but also the structure of the heuristic function.

The similarities between this literature and my approach are obvious. With respect McLeod’s
criticism, the implied complexity costs of search are derived here via a framework that does assume
costless assignment of probability distributions over uncertain events. Its advantage, however, is
that it allows for the discrepancies, between the criterion defined by (i)-(ii) and rational decision-
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making, to be measured by these costs alone and, therefore, for the costs to be inferred from
observed choices. The heuristic function, as well as exogenously-given decompositions of it in (ii)-
(iii), impose exogenously the interdependency between two sources of bounded rationality: limited
foresight and the perception of the net benefits of further search. As in the models of fixed limited
foresight, this hinders inference of the costs of search from observed behavior.

In the spirit of the search-cost algorithms literature, Gabaix and Laibson [21], propose a rep-
resentation that corresponds to (3) with γh (t, f) = 1 and γ0

h (t, f) = kt on {1, ..., Th} ×∆(Q), for
some positive constant k. This is a parsimonious and tractable model that lends itself easily to the
authors’ experimental analysis. However, Remark 1 and Claim 2 highlight two important issues.
Normalizing γh (·) makes the predictions about the optimal foresight of search and the correspond-
ing optimal choices highly sensitive to the units used for the utility representation of preferences
over terminal consequences. Moreover, the empirical validity of any form of the representation in
(3) cannot be established just by showing that it explains observed choices better than rational
decision-making. Departures in choice behavior from some rational paradigm can be modeled in
many ways, including ones that do not view search-costs as the source of bounded rationality. For
example, there is a vast literature which prefers to parameterize bounded rationality directly in the
preferences over terminal consequences or in the formation of beliefs. One of the main results of
this paper implies that the fundamental test of the validity of the search-costs approach should be
whether or not the experimental data supports a systematic relation between the extent of search
and the expected benefits of further search.

A considerable body of work on bounded rationality has modeled complexity in repeated games
via the use of finite automata. These are machines with a finite number of states whose operating
instructions are given by (i) an output function that assigns an action at each state and (ii) a
transition function that assigns a succeeding state to every pair of a current state and an action
by the opponent (Neyman [?], Rubinstein [59], Abreu and Rubinstein [1], Piccione and Rubinstein
[52], Kalai and Stanford [41]). An automaton is meant to be an abstraction of the process by which
a player implements a rule of behavior. The complexity of a machine M is given by the number of
its states, ,M,. A player’s preferences over machines are lexicographic along two dimensions: they
are increasing in her payoff in the repeated game and decreasing in complexity, the former being
the dominant relation.

A machine M defines a plan of action for a finite number of contingencies and a strategy
q (M) ∈ Q which repeats this plan cyclically. Each cycle corresponds to a horizon of foresight
t (M) = r,M, (r being the number of actions available to the agent in the stage-game) while, by
being a cycle, play returns to the initial state at the end of it. Diasakos [?] shows that, when facing
a machine M , the decision-making rule of the implementation complexity approach is equivalent to
Vh (t (M) , q (M)) with αh (·) = 1 on Th ×∆(Q). Since play returns to the initial state at the end
of the horizon, the worst continuation payoff beyond the horizon, min(s′,q′) '

h(t(M))
(s,q(M)) u (s′, q′), is

independent of the s ∈ S played within the horizon. Hence, Vh (t (M) , q (M)) chooses s (M) ∈ S
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that responds optimally against q (M) within h (t (M)) and is h (t (M))-equivalent to the optimal
machine against M .

The complexity cost approach agrees also with most of the “general principles” of decision-
making in complex problems given by Geanakoplos and Gray [23]. The nested sequence of horizons
{h (t)}Th

t=1 guarantees that the proximity principle (thinking about the immediate consequences of
your actions first) is met, but leads generally to at least as good choices as the relevance principle
(examining the most promising alternatives first).12 Assigning continuation values beyond the
horizon leads, in general, to a set of options that are considered good rather than singling out one
possibility as excellent (the family principle). By appropriate choice of the αh (·) function, this
can be consistent with the clear sight (if possible, one should base decisions on clear-cut results:
observations with the lowest error-probability should typically receive the most weight) and stability
(consistency increases confidence so that, if our guesses are accurate, we should guess values along
the intended path that change very little) principles.

4 Applications

This section illustrates several important aspects of complexity costs and demonstrates that the
model is consistent with three well-known paradoxes in decision-making. The paradoxes obtain,
for obviously different reasons, in situations that are seemingly simple and unrelated. Accordingly,
a variety of models and arguments have been suggested in the literature to explain them. Yet, the
complexity-costs approach provides a common framework for depicting the underlying limitations
that might force choices to depart from those prescribed by rationality. For the first application, in
particular, the model reconciles the findings of two experimental studies that seem to be at odds
under other theoretical explanations.

In each application, paradoxical behavior results when the complexity costs are large relative to
the benefits of search, preventing a boundedly-rational agent from considering the problem in its
entirety. For simplicity, the criterion Uh (·) in (2) is taken with αh (·) = 1 on Th×S×∆ (Q). Even
though the agent is assumed to use only the worst-case scenario as her continuation payoff beyond
her current horizon, all three cases correspond to complex decision-making situations. Moreover,
in each setting, the best response set under rationality is a singleton and we can construct gh (·)
on Th × ∆(Q) such that any other choice set can be optimal in (3), for some t∗ < Th. Notice
also that, in all cases, Nature’s moves are dictated by distributions that are known when the agent
makes her choice. Clearly, the consistency of forecasts requirement of Section 3.2 is met.

12The relevance principle dictates that the path defined by the most promising alternative is followed deeper into the

tree than the remaining alternatives. In contrast, the horizon of search applies here the same depth to all alternatives

and, thus, leads to at least as good choices. However, the discussion of Section 3.2 indicates that choice-rules obeying

the relevance principle can be represented in my framework under the consistency requirement.
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4.1 Temporal Framing

The two problems of Figure 3 differ only in their temporal framing. In Γnp, a random draw takes
place first. With probability 1 − p, the game ends immediately and the decision-maker gets $x3.
Otherwise, the agent is asked to choose between ending the game and receiving $x2 (x2 > x3) or
allowing for another random draw in which she can get $x1 (x1 > x2) with probability q and $x3,
otherwise. The setup of Γp is the same but for pre-commitment: the agent must decide, before any
resolution of uncertainty, whether or not she will terminate the game if it does not end at the first
draw.
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Figure 3: Temporal Framing (Extensive Forms)

Standard economic theory offers two methods for solving such decision problems: the strategy
method and backward induction. Under the strategy method, the decision-maker looks at the
normal form representation of the game, calculates the implications of each available strategy for
the probability distribution over final outcomes, and chooses the optimal strategy with respect to
her underlying preferences over final outcomes. For this method, the two problems are identical
as they have the same normal form representation. In both, the agent chooses only once from
two available actions: “Take the Draw” (D) and “End the Game” (E). In both, choosing E versus
D corresponds to a difference of δ = p [u(x2)− qu(x1)− (1− q) u(x3)] in unconditional ex-ante
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expected utility. Let δ > 0, so that E is optimal, and denote by f Nature’s play.13

Table 1: Temporal Framing (Normal Form)

UU UD DU DD

D x1 x3 x3 x3

E x2 x2 x3 x3

In contrast, the complexity-costs approach can allow for different choices across the two prob-
lems. In Γnp, the agent does not have to make any decisions prior to the first draw. Starting at
i.np, the horizon i.np (1) covers the continuation problem. Complexity costs Ci.np (1, f) suffice,
therefore, for her to figure out that choosing between E and D corresponds to an expected utility
difference of δ

p . The net expected utility difference is δ
p − Ci.np (1, f). In problem Γp, she has to

commit in advance to an action and it is the horizon i.p (2) that covers the continuation problem
(once again, an increasing sequence of nested horizons is depicted, in the figure, by combining ad-
jacent hatched regions from left to right). However, Nature’s plan f is known here in advance and,
thus, the agent’s forecast has to be consistent. By Lemma 2, therefore, enlarging the horizon is not
costly if it introduces only information sets where no decisions are made: Ci.p (2, f) = Ci.p (1, f).
The net expected utility difference from considering this problem is δ − Ci.p (1, f).

If

δ − Ci.p (1, f) < 0 ≤ δ

p
− Ci.np (1, f) (8)

the two problems are not equivalent. The pre-commitment problem entails complexity that the
agent finds more costly than the expected benefit from fully considering her two choices. Since it
is not optimal to incur the costs of complexity, she will be indifferent, at i.p, between continuing
or terminating the game after the first draw. In problem Γnp, on the other hand, incurring the
complexity costs is optimal and she will choose to terminate the game at i.np.

Cubitt et al. [15] investigated such choices experimentally. They presented their subjects with
(non-graphical) descriptions of Γnp, Γp, and a third problem Γs. In Γs, the agent must choose
between the simple lottery that follows E and the compound one that follows D, respectively, in
the tree depicting Γp in Figure 3. Their study found that play in the first two problems differs in
a statistically significant way: up to 70% of their subjects chose E in Γnp and 57% chose D in Γp.
They did not observe any significant difference in play across the last two problems.14

13The normal form representation of either problem is depicted in Table 1. In terms of the notation introduced

in Section 2, let X and Y denote the outcomes “Nature’s last draw ended the game paying x3” and “not X”,

respectively. Then Q = {X, Y } × {X, Y } where (x, y) ∈ Q is ordered according to the outcome of the first draw

and second draw, respectively. The two independent draws in Γnp and Γp are given by the probability distribution

f = {pq, p(1− q), q(1− p), (1− p)(1− q)} on {(Y, Y ) , (Y, X) , (X, Y ) , (X, X)}.
14Problems 2, 3 and 4 in Cubitt et al. [15] correspond to Γnp, Γp, and Γs, respectively. Problems 1 and 5 are,
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Since Nature is a non-strategic player, Γs is equivalent in extensive form to Γp and, consequently,
in normal form to both Γnp and Γp. This means that the strategy method cannot account for
the findings of the study. Under backward induction, however, the agent looks at the extensive
form representation and may not be indifferent across the three problems depending on how the
pre-commitment problem Γp is evaluated. There are two possibilities. The agent may consider
her decision as being made at the beginning of the game, in which case Γp is equivalent to Γs.
Alternatively, she may regard the decision as to be made when she actually gets to play. Now,
Γp is equivalent to Γnp (regardless of whether backward induction is combined with reduction of
compound lotteries or substitution with certainty equivalents).

In either case, under the standard setting of expected utility optimization, E ought to be chosen.
The authors turn, therefore, to non-expected utility theories for an explanation of their experimental
finding. They consider those of Machina [46], Segal [65], Kahneman and Tversky [40], and Karni
and Safra [42]. Except for that of Karni and Safra, all theories are rejected as they require timing
independence in decision-making which forces the same predictions for Γnp and Γp. In contrast,
the behavioral consistency theory of Karni and Safra does not require timing independence and
views Γp as equivalent to Γs, but not to Γnp. Because it is based on generalized expected utility,
the theory permits the common ratio effect to obtain, accommodating different responses across
Γnp and Γp.15

An alternative explanation can be supported by the model of Koszegi and Rabin [43]. An agent
can opt for different choices across the two problems if her risk attitudes depend upon her reference
point. Under pre-commitment, her reference point can be her current endowment, relative to which
Γp involves no potential losses: E corresponds to gaining x2 with probability p or remaining at the
reference point otherwise, D results in a gain of x1 with probability pq or remaining at the reference
point otherwise. Problem Γnp, on the other hand, does entail the possibility of losses. Choosing E
at i.np guarantees x2 which can be incorporated into the agent’s reference point. D corresponds
now to a gamble between a gain of x1 − x2 with probability pq and a loss of x2 − x3 otherwise.

Explaining the findings of Cubitt et al. [15] based on either the common ratio effect or reference-
dependence loss aversion seems to be at odds, however, with the findings of another study. Instead
of choices between continuing or terminating the game after the first draw, Hey and Paradiso [34]
elicit subjects’ preferences for the three problems via their willingness to pay for playing them.16

Since all valuations are made ex-ante, the reference point in Γp and Γnp is the same and the problems

respectively, scaled versions of 2 and 4. The authors run their experiments with x1 = 16, x2 = 10, x3 = 0, p = 0.25,

and q = 0.8.
15Consider lotteries defined on the set {x1, x2, x3} of monetary consequences. A simple prospect can be denoted

by the vector (π1, π2, 1− π1 − π2) of probabilities assigned, respectively, to x1, x2, and x3. The common ratio effect

occurs when the option (0, 1, 0) is chosen over (q, 0, 1 − q) while (pq, 0, 1 − pq) is chosen over (0, p, 1 − p), for some

q, p ∈ (0, 1). Notice that the former pair of lotteries corresponds to the decision the agent faces at i.np while the

latter pair to the one at i.p.
16Hey and Paradiso use x1 = 50, x2 = 30, and x3 = 0 while p and q are the same as in Cubitt et al [15].
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are equivalent under reference-dependence loss aversion. Yet, only 56% of the subjects revealed
that they were indifferent between the two. Under the common ratio effect, Γp should be preferred
to Γnp: the ex-ante expected value of choosing D in Γp is pqu(x1) + (1− pq)u(x3) while that of E
in Γnp is pu(x2) + (1 − p)u(x3). Nevertheless, only a third of the subjects were willing to pay a
significantly higher amount for playing Γp.

The complexity-costs approach can accommodate the findings of Paradiso and Hey. For the
majority of their subjects, the complexity costs seem to be trivial and the three problems are
equivalent; each one has an ex-ante expected value of pu(x2) + (1 − p)u(x3). For a third of the
subjects, though, the costs are non-trivial but incurring them is optimal. The expected utility
payoff from any problem is pu(x2) + (1 − p)u(x3). If Ci.p (1, f) < Ci.np (1, f), however, the net
expected value of the pre-commitment problem Γp is higher than that of Γnp. This relation for the
complexity costs across the two problems can indeed obtain here since the value of the horizon is
always an upper bound for its complexity costs.17 These upper bounds for Ci.np (1, f) and Ci.p (1, f)
are u(x2) and pu(x2) + (1− p)u(x3), respectively.

The complexity costs depict the expected utility difference between fully- and boundedly-
rational choices. Obviously, the higher the expected benefit from thinking further into a decision
problem, the higher ought to be the penalty for not doing so. In this example, the boundedly-
rational choice is always to not terminate the game after the first draw. In problem Γp, failing at
i.p to choose E corresponds to an expected loss of −pE [∆u(x)]. In Γnp, on the other hand, failing
to choose E at i.np carries an expected loss of −E [∆u(x)]. Ex-ante, the expected loss from making
the wrong choice is the same in both problems. At the time of making the decision, however, it is
higher at i.np.

When the entire decision-tree is costlessly considered, the ex-ante value of a problem does
not depend upon the timing of decisions. Under limited foresight, though, the expected benefit
of further search does. Since the complexity costs measure the discrepancies between the two,
the timing of decisions matters for the costs of complexity. Moreover, it matters even when the
costs do not prevent the decision-maker from considering the entire problem and choosing the
plans of action that are optimal under rational decision-making. The complexity-costs approach
allows for violations of both timing independence and dynamic consistency in decision-making.18

The timing of the resolution of uncertainty is important, therefore, beyond the way in which it is
when dynamic consistency is required. Under dynamic consistency, the timing of the resolution
of uncertainty matters for the ex-ante value of a decision problem only if it affects the choice of
optimal plans. Under complexity costs, it matters even when the optimal choice remains the same
allowing the approach to reconcile the findings of the two experimental studies.

17Recall that Ch (t, f) = [1− gh (t, f)] Vh (t, f), with gh (t, f) ∈ (0, 1] for all t ∈ Th.
18It is easy to see how dynamic inconsistencies can obtain here. Let Γp be a problem about advanced planning

instead of pre-commitment. If (8) holds, the agent cannot decide what her best move should be at i.p; she is indifferent

between her two actions. When she gets to i.np, however, she will prefer to not take the second draw.
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The pre-commitment problem requires essentially thinking at i.p about the strategic position
at i.np, after some partial resolution of uncertainty. Relative to its ex-ante expected utility payoff,
this is a more complex undertaking than just waiting to see in which strategic position one ends up
and deciding then, as in problem Γnp. For an agent for whom such complexity is too costly relative
to the benefit of thinking about pre-commitment, her choices may differ in the two problems. For
an agent for whom the complexity costs are not too high yet non-trivial, the choice will be the
same but the ex-ante expected net value of Γp can exceed that of Γnp. The latter agent can be
viewed as sophisticated about her bounded rationality. She realizes that she may err in her choices
and this makes the amalgamation of risks offered by the pre-commitment problem Γnp valuable as
it mitigates the expected cost of her errors. She prefers to pre-commit as she knows that erring at
i.np will be more costly than it appears to be at i.p.

4.2 Diversification Bias

Consumers have been repeatedly found to be more variety-seeking when they plan for future con-
sumption than when they make separate sequential choices preceding each consumption period.
This effect was first demonstrated by Simonson [70], who gave students the opportunity to select
among six snacks in one of two conditions: (i) they picked one snack at each of three weekly
class meetings (sequential choice), (ii) on the first meeting, they selected three snacks to be con-
sumed one per week over the meetings (simultaneous choice). The subjects displayed significantly
more variety-seeking under simultaneous choice where 64% chose three different snacks. Under
sequential choice, only 9% did so. Simonson suggested that this behavior might be explained by
variety-seeking serving as a choice heuristic (when asked to make several choices at once, people
tend to diversify). Thaler [73], on the other hand, regards this behavior as resulting from a failure
of predicted utility to accurately forecast subsequent experienced utility.

Read and Loewenstein [56] replicated Simonson’s diversification effect (they refer to it as the
“diversification bias”) for snacks in several experiments. In one study, conducted on Halloween
night, their subjects were young trick-or-treaters who approached two adjacent houses. In one
setting, the children were offered a choice between two candies at each house. In another, they
were told at the first house they reached to “choose whichever two candy bars you like” (with
large piles of both candies being displayed so that the children would not think it rude to take
two of the same). The results showed again a strong bias for diversification under simultaneous
choice: every child selected one of each candy. In contrast, only 48% of those given sequential
choice picked different candies. Evidence of diversification bias has been found also in studies of
defined contribution savings plans, supermarket purchases, choices of lottery tickets, and audio
tracks (Read et al. [57]).

In what follows, I present an example of the complexity-costs model which is consistent with
the findings of the experiment by Read and Loewenstein. Although the set-up does not explain
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why people err in the direction of diversification, it accounts for why they do not diversify in the
sequential setting.19 Consider a decision-maker who must choose one of two snacks, a and b, on
each of two consecutive periods, 1 and 2. The objects of choice, therefore, are two-period plans in
X = {a, b}×{a, b}. Let (x, y) ∈ X denote the plan in which x is chosen in the first period and y in
the second. Experiments of diversification bias use objects that are familiar to the subjects so that
consumption per se provides no new information to the decision-maker about the product itself.
Nevertheless, even without any objective uncertainty about static preferences across the different
items, the agent has subjective uncertainty about which plan she would prefer over the dynamic
setting she must consider. Let this kind of uncertainty be completely described by a finite state
space Ω and a probability distribution µ on Ω. For ((x, y) , ω) ∈ X ×Ω, the state-dependent utility
is given by some function u : X × Ω → R++.

Since the aim of this example is to illustrate how the temporal nature of a decision problem
matters for observed choices, the analysis can be simplified by abstracting from the static preferences
across snacks. I will assume that the choice of a particular snack matters only with respect to
whether or not it adds variety in consumption across periods:

Assumption 4.2.A

u (a, b, ω) = u (b, a, ω) and u (a, a, ω) = u (b, b, ω) ∀ω ∈ Ω

Notice also that, temporal issues aside, diversification should not be ex-ante preferable; other-
wise, the bias is not really paradoxical for we could have the following scenario. In the simultaneous-
choice setting, the diversified plan is chosen since it is optimal according to the ex-ante expected-
utility ranking. Under sequential-choice, choosing x ∈ {a, b} in period 1 defines the period-2 choice
set to be {(x, a) , (x, b)}. The choice from this set will be according to the state-dependent utility
ranking for the state that obtains in period 2. Diversification would be optimal now at any of the
states in Ω0 = {ω̃ ∈ Ω : u (x, y, ω̃) > u (x, x, ω̃)}, for y 6= x. Since Ω0 occurs with probability µ (Ω0),
an outside observer would record a diversified plan as chosen always in the simultaneous setting
but only 100× µ (Ω0)% of the time in the sequential one.

Assumption 4.2.B

EΩ [u (x, y, ω)] < EΩ [u (x, x, ω)] ∀x, y ∈ {a, b} : x 6= y

Under these two assumptions, rational decision-making under expected utility is not consistent
with the diversification bias: an undiversified plan is chosen always in the simultaneous setting and

19In the Read and Loewenstein experiment, the decision problem is presented to subjects in a way that allows

for erring in only one direction, choosing a diversified plan. Bias towards diversification has been demonstrated also

in other experiments that allow for making errors along more than one dimensions (Read et al. [57]). The one-

dimensional character of Read and Loewenstein, however, allows for a description of the problem by a simple model

which explains, without loss of generality, why choices differ across the two settings.
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100 × (1− µ (Ω0))% of the time in the sequential one. However, this is not necessarily the case
in the complexity-costs model. The temporal framing of the decision problem matters for choices,
by affecting the choice set of the agent and, consequently, whether or not dynamic inconsistency
matters for final outcomes.

Under sequential choice, opting for x in period 1 leaves {(x, a) , (x, b)} as the feasible set for
period 2. This allows for any dynamically inconsistent choice of plan, made in period 1 (due to
complexity being too costly), to be reversed in period 2. Under simultaneous choice, opting for
(x, y) in period 1 makes it the singleton feasible set for period 2. The diversification bias can obtain
because the choice of plan made in period 1 is now irreversible.
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Figure 4: Simultaneous Choice

Consider first the simultaneous choice problem depicted by Figure 4. The period-2 realizations
of the states in Ω are represented by the terminal nodes i.ω. As in the preceding figures, a sequence
of nested horizons is depicted by combining adjacent hatched regions. In period 1, the agent has
to choose and commit to one of the four plans in X. At i.0, when thinking about the possible
terminal contingencies, she faces two paths. Each has length t = 2 and is associated with the
period-2 realization of one of the states in Ω, following a period-1 choice of snack. Accounting for
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all terminal contingencies requires, therefore, complexity costs Ci.0 (2, µ). Since there is a unique
prior about the terminal nodes, the decision-making rule reduces to that of the standard expected
utility ranking between the four plans across the states in Ω. The value of the horizon i.0 (2) is
given by

Vi.0 (2, µ) = max
(x,y)∈X

∑

ω∈Ω

µ (ω) u (x, y, ω) = max
(x,y)∈X

EΩ [u (x, y, ω)]

The decision-maker will choose either of the two undiversified plans.
Suppose, however, that the agent limits her foresight to t = 1. The corresponding complexity

cost is Ci.0 (1, µ). Since the horizon does not reach the terminal nodes, the decision problem becomes

Vi.0 (1, µ) = max
x∈{a,b}

min
y∈{a,b}

∑

ω∈Ω

µ (ω) u (x, y, ω) = min
(x,y)∈X

EΩ [u (x, y, ω)]

She will choose either of the two diversified plans. In other words, the following condition

∆tCi.0 (1, µ) > EΩ [u (x, x, ω)]− EΩ [u (x, y, ω)] {x, y} ∈ X : x 6= y (9)

suffices for the agent to choose a diversified plan when she has to commit to a decision about a
two-period plan at the beginning of period 1.

Under sequential choice, if x ∈ {a, b} was picked in period 1, the period-2 choice will be from
{(x, b) , (x, a)}. The decision-tree is the same as that of Figure 4, albeit for each state i.ω that
follows from n.a or n.b defining a singleton information set. At each i.ω, the decision problem is
trivial in terms of complexity costs: Vi.ω (µ) = maxy∈{a,b} u (x, y, ω). At i.0, though, the problem
is similar to that of Figure 4 in terms of complexity. There are two horizons the agent might
consider: i.0 (1), and i.0 (2). The corresponding complexity costs Ci.0 (1, µ), Ci.0 (2, µ) and the
values Vi.0 (1, µ), Vi.0 (2, µ) are the same as before.

If (9) holds, the agent will again find it not worthwhile, at i.0, to think about her period-2
choice once she has chosen something in period 1. She will choose either of the two diversified
plans. If (9) does not hold, on the other hand, she will choose either of the two undiversified ones.
Nevertheless, a choice of a plan (x, y) ∈ X at i.0 is now merely an intention to pick y in period 2,
not a commitment. Having chosen x in period 1, when she chooses again at i.ω, it will be out of
the set {(x, a) , (x, b)}. Picking (x, y) : y 6= x will then be optimal at any state in Ω0. Since this
occurs with probability µ (Ω0), an outside observer would record a diversified plan only 100µ (Ω0)%
of the time.

When (9) holds, the predictions of the model are in agreement with the observed bias towards
diversification. Under simultaneous choice, at the beginning of period 1 the agent must commit to
a plan which will irrevocably determine her utility for both subsequent periods. Clearly, there is an
advantage in considering the entire time-horizon of the problem. If the corresponding complexity
is too costly, however, diversification results.
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Under sequential choice, at the time of making the period-2 decision, the uncertainty about
preferences will have been resolved. Thinking about this resolution of uncertainty in period 1 is
still a complex undertaking but the agent is not penalized for failing to do so. If the complexity
costs are too high so that (9) applies, she will have the wrong intentions in period 1 about period-2
play. Yet, this can be corrected by period-2 actual decisions. Diversification as a final outcome
obtains only in the states of Ω0, when it is actually called for.

4.3 Risk Aversion in the Small and Large

This application presents an intertemporal model of consumption and savings in which larger
amounts of wealth to be allocated across time induce longer planning horizons. Such a relation
between the wealth and the length of the optimal horizon has significant implications for risk
attitudes in the small and large. Here, I show that the model can accommodate plausible but
contrasting preferences between small- and large-stakes gambles that cannot be explained under
standard settings.

Consider a decision-maker who has an endowment w0 and a choice between accepting or not a
lottery z̃ which would result in her wealth being w̃0 = w0 + z̃. Rabin [54] and Safra and Segal [62]
show that, under expected as well as non-expected utility maximization, rejecting certain small
gambles implies that ridiculously favorable gambles should also be turned down. More precisely,
let V (w̃) denote the value functional for wealth prospects w̃. If V (w̃′0) ≤ V (w0) for a small-stakes
gamble w̃′0, then there exist very favorable gambles w̃0

′′ for which V (w̃′′0) < V (w0). In fact, this is
the case for gambles w̃0

′′ involving small losses, very large winnings, and winning probabilities such
that very few people, if any, would reject them. Such predictions contradict plausible patterns of
behavior since many people would turn down the small gambles.

Suppose, however, that the agent also faces the problem of allocating her wealth for consumption
and savings across a lifetime of T periods. Under the complexity-costs approach, her optimal
horizon, t (w̃) ∈ {1, ..., T}, for the temporal allocation of any wealth prospect w̃ enters into the
value function V (t (w̃) , w̃). In what follows, I construct an example in which the optimal t (·) is
consistent with rejecting small gambles while accepting sufficiently favorable large ones.

Rabin [54] offers a strong argument for why expected utility theory is unable to provide a
plausible account of risk aversion over modest stakes. Turning down a modest-stakes gamble
means that the marginal utility of wealth diminishes quickly even for small changes in wealth.
His examples indicate that seemingly innocuous risk aversion with respect to small gambles implies
an absurd rate of decrease in the marginal utility of wealth. Safra and Segal [62] extend this
criticism to several non-expected utility theories.

With complexity costs, two competing effects govern choices: the decreasing marginal utility
of wealth, and the fact that a larger wealth level leads to a jump in the value of wealth when it
induces a longer optimal horizon. The value of any amount of wealth is higher when this amount gets
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allocated over a longer horizon, because it is better allocated. The issue that Rabin, Safra and Segal
point out applies, other things being equal, within a fixed horizon. The following example suggests
that (i) it can be outweighed when the value of money increases sufficiently with the length of the
optimal horizon and (ii) the increase in the value of money from extending the horizon increases
with the amount of wealth to be allocated.

Apart from being consistent with contrasting risk attitudes in the small and large, an increasing
relation between wealth and the length of the optimal horizon also explains why risk aversion would
be, in particular, large in the small but small in the large. The possible realizations of a lottery
define different contingencies with respect to the temporal wealth-allocation problem. Gambles with
small stakes correspond to contingencies in which the resulting wealth levels are similar enough to
the endowment to be allocated under the same horizon as the endowment.

When the stakes are large, however, the contingency of winning big motivates the agent to
think further into the future. A longer planning horizon means that a larger fraction of the wealth
endowment is allocated optimally and, thus, used to evaluate the prospect. With non-increasing
relative risk aversion utility for wealth, this results in risk aversion being smaller in the large than
in the small. Moreover, it can produce realistically high degrees of risk aversion in the small even
when the endowment is too large for this to obtain under standard settings. This is the case when
the complexity costs of wealth allocation are high enough for the agent to be sufficiently myopic in
her planning relative to her lifetime. Then, the corresponding part of her lifetime endowment that
is used for optimal allocation is small, and her risk aversion large.

In the complexity-costs model, differences in the corresponding optimal horizons can produce
sharp contrasts in the way agents evaluate risky prospects in the small and large. This can also
account for acceptance of gambles with very large winnings and very small losses, even when the
probability of winning is extremely low. That is, it can explain why people purchase lottery tickets.
In the standard settings, accepting bets with extremely low expected gains requires convex utility
functions for wealth. In the presence of complexity costs, this can result from players’ attitudes
towards lotto-type bets being more sensitive to the large jackpot than to the minuscule probability
of winning. The case of lotto-type bets is examined in Appendix A.2. In what follows, I present a
simplified version that focuses on risk aversion in the small and large.

Formally, consider an agent who will lives for 3 periods, denoted by τ ∈ {1, 2, 3} (the general,
T -period version is analyzed in Appendix A.1). She has a wealth endowment w0 and must allocate
her wealth for consumption across her lifetime. Her preferences are represented by a time-separable
function, with utility for consumption in period τ given by uτ (cτ ) = log cτ . I will assume also that
she has a belief regarding the worst possible level of consumption in period τ , given by cτ > 0.20 To
complete the description, any wealth not consumed in period τ ∈ {1, 2} can be invested in a safe
asset that generates a period-τ rate of return, rτ , while the discount factor between two consecutive
periods is δ ∈ (0, 1).

20An obvious interpretation of such a belief is some subsistence level of consumption.
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Suppose the agent is considering a horizon of length t ∈ {1, 2, 3}. Her decision problem for
allocating any amount of wealth w is given by

V (t, w) = max
c∈C

{
t∑

τ=1

δτ−1 log cτ + min
c′∈C: c′'

t
c

3∑

τ=t+1

log c′τ

}

where C denotes the set of feasible lifetime consumption plans. These are plans c = {cτ}3
τ=1

satisfying the following system of constraints:

s0 = w, sτ = sτ−1 (1 + rτ−1)− cτ , sτ ≥ 0, cτ ≥ cτ τ ∈ {1, 2, 3} (10)

where sτ denotes the wealth available at the beginning of period τ while consumption takes place
at the beginning of each period. Of course, the initial wealth must suffice for the plan {cτ}3

τ=1 of
least consumption:21

w ≥
3∑

τ=1

cτ

τ−1∏

i=1

(1 + ri)
−1 (11)

With respect to foresight t, two lifetime consumption plans c, c′ are equivalent (c '
t

c′) iff
cτ = c′τ for all τ ≤ t. The worst outcome for the remainder of her life beyond the horizon would
obtain if she were to consume at {cτ}3

τ=t+1. For a horizon of length t, the decision problem can be
re-written as follows

V (t, w) = max
c∈C

{
t∑

τ=1

δτ−1 log cτ +
3∑

τ=t+1

δτ log cτ

}

For c ∈ C, let ct = {cτ}t
τ=1 denote the restriction of c to the horizon of length t. If the agent

chooses the consumption plan ct within the horizon, her available wealth at the end of period t will
be

st

(
ct

)
= w

t∏

i=1

(1 + ri)−
t∑

τ=1

cτ

t∏

i=τ

(1 + ri) t ∈ {1, 2}

Along with the system of constraints in (10), this implies that

w =
3∑

τ=1

cτ

τ−1∏

i=1

(1 + ri)
−1 (12)

is met by any solution c ∈ C. Notice also that, since V (2, w) = V (3, w), rational decision-making
requires t ≥ 2.22

21Abusing notation slightly, in what follows, the term
0Q

i=1

xi will denote the number 1, for any xi > 0.

22For t = 2, a given plan {c1, c2} chosen for consumption within the horizon corresponds to a unique level of

consumption in the final period as determined by (12). Planning for the first two periods implicitly accounts also for

consumption in the last period.
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Let the agent consider foresight t = 1. Given that she anticipates her consumption beyond the
horizon to be at the worst level, the choice of period-1 consumption is given trivially by the budget
constraint (12):

c1 = w −
(

1
1 + r1

)(
c2 +

c3

1 + r2

)

The value of the horizon is

V (1, w) = log
[
w −

(
1

1 + r1

)(
c2 +

c3

1 + r2

)]
+ δ log c2 + δ2 log c3

For t ≥ 2, the problem becomes a standard one. The optimal consumption vector is c∗1 = w
1+δ+δ2 ,

c∗2 = δc∗1 (1 + r1), and c∗3 = δ2c∗1 (1 + r1) (1 + r2). The value of the problem is

V (2, w) =
(
1 + δ + δ2

)
log w + δ log [δ (1 + r1)]

− (
1 + δ + δ2

)
log

[
1 + δ + δ2

]
+ δ2 log

[
δ2 (1 + r1) (1 + r2)

]

Consider now the agent facing a lottery z̃, which would result in her wealth being w̃0 = w0 +
z̃. For simplicity, I will restrict attention to 50-50 lose $l/gain $g lotteries (g > l), denoted by(
g, 1

2 ;−l, 1
2

)
. Under such gambles, the expected values of the horizons are given by

E ew0
[V (1, w̃0)]

=
1
2

(
log

[
w0 + g −

(
1

1 + r1

)(
c2 +

c3

1 + r2

)]
+ log

[
w0 − l −

(
1

1 + r1

)(
c2 +

c3

1 + r2

)])

+δ (log c2 + δ log c3)

and

E ew0
[V (2, w̃0)] =

(
1 + δ + δ2

)

2
log [(w0 + g) (w0 − l)] + δ log [δ (1 + r1)]

− (
1 + δ + δ2

)
log

[
1 + δ + δ2

]
+ δ2 log

[
δ2 (1 + r1) (1 + r2)

]

Let t (w̃0) and t (w0) denote the corresponding optimal horizons for the wealth allocation prob-
lem under the lottery w̃0 and the endowment, respectively. The agent will accept the lottery if and
only if E ew0

[V (t (w̃0) , w̃0)] > V (t (w0) , w0). That is, the relative lengths t (w̃0) and t (w0) of the
optimal horizons matter for the decision of whether or not to accept the lottery. The following two
claims establish precisely how they matter.

Claim 3 For a gamble
(
g, 1

2 ;−l, 1
2

)
, suppose that the induced optimal horizon is not longer than

that induced under the certain prospect, t (w̃0) ≤ t (w0). If

w0 − 1t( ew0)=1

(
1

1 + r1

)(
c2 +

c3

1 + r2

)
≤ gl

g − l
(13)

then the gamble will be rejected. For t (w̃0) = t (w0),
(
g, 1

2 ;−l, 1
2

)
is rejected only if (13) holds.
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Proof. Observe first that E ew0
[V (t, w̃0)] and V (t, w0) have all but their respective first terms

equal. If both problems induce fully-rational planning, t (w̃0) > 1, the claim is immediate by
comparing E ew0

[V (2, w̃0)] and V (2, w0). Otherwise, we have
(

w0 + g −
(

1
1 + r1

)(
c2 +

c3

1 + r2

))(
w0 − l −

(
1

1 + r1

)(
c2 +

c3

1 + r2

))

=
(

w0 −
(

1
1 + r1

)(
c2 +

c3

1 + r2

))2

+ (g − l)
(

w0 −
(

1
1 + r1

)(
c2 +

c3

1 + r2

))
− gl

By (13), this implies E ew0
[V (t (w̃0) , w̃0)] ≤ V (t (w̃0) , w0). Since t (w̃0) ≤ t (w0), Lemma 2 implies

V (t (w̃0) , w0) ≤ V (t (w0) , w0).

Claim 4 For a gamble
(
g, 1

2 ;−l, 1
2

)
, suppose that it induces a longer optimal horizon than the

certain prospect, t (w̃) > t (w0). If

(w0 + g) (w0 − l) > Z (δ)2
(

w0 −
(

1
1 + r1

)(
c2 +

c3

1 + r2

))2

(14)

where

Z (δ) =
(

1 + δ +
1
δ

)δ+δ2 (
1 + δ + δ2

δδ2

)

then the gamble will be accepted.

Proof. For the gamble to be accepted, it must be E ew0
[V (2, w̃0)] > V (1, w0). By (12), w̃0 >

c2
1+r1

,
c3

(1+r1)(1+r2) , for both realizations of w̃0. That is,

(
δ + δ2

2

)
log [(w̃0 + g) (w̃0 − l)] > δ log c2 + δ2 log c3

−δ log [1 + r1]− δ2 log [(1 + r1) (1 + r2)]

It suffices, therefore, to have

log [(w0 + g) (w0 − l)] + 2
[
δ log δ − (

1 + δ + δ2
)
log

[
1 + δ + δ2

]
+ δ2 log δ2

]

> log
[
w0 −

(
1

1 + r1

)(
c2 +

c3

1 + r2

)]2

which is equivalent to (14).
For complexity costs to account for different risk attitudes in the small and large, it must

be that small gambles correspond to shorter optimal horizons than large ones. In what follows, I
present sufficient conditions for this to be the case. Specifically, these conditions guarantee that the
optimal horizon induced by the certain prospect, w0, is at least as long as that for a small gamble
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but shorter than that for a large one. To facilitate comparisons of optimal foresight, observe that

2 (E ew0
[∆tV (1, w̃0)]−∆tV (1, w0))

= 2E ew0
[V (2, w̃0)− V (1, w̃0)]− 2 [V (2, w0)− V (1, w0)]

=
(
1 + δ + δ2

)
log

[
(w0 + g) (w0 − l)

w2
0

]

− log




(
w0 + g −

(
1

1+r1

) (
c2 + c3

1+r2

))(
w0 − l −

(
1

1+r1

)(
c2 + c3

1+r2

))

(
w0 −

(
1

1+r1

)(
c2 + c3

1+r2

))2


 (15)

Before proceeding, I must specify what are the costs of complexity in the context of this application
as well as what gambles should be regarded as small in the presence of complexity costs. The com-
plexity is that of the decision problem of allocating any given amount of wealth w for consumption
and savings across the agent’s lifetime. For a horizon t ∈ {1, 2, 3} in the allocation problem, the
complexity costs will be given by some function C (t, w).

When considering a gamble, the agent must address the allocation problem for each amount of
wealth resulting from the possible realizations of the gamble. In this context, it is natural to regard
as small any gamble such that all of its possible realizations are small enough for the problem of
allocating the corresponding wealth to not differ, in terms of complexity, from that of allocating
the endowment.23

Definition 6 A possible realization z of a lottery z̃ is a small stake if

C (t, w0 + z) = C (t, w0) t ∈ {1, 2}

A lottery z̃ is small if every z in the support of z̃ is a small stake.

This definition requires that the complexity-cost function is constant with respect to wealth, for a
given foresight t, over some range (w0 −M,w0 + M) : M > 0 around the endowment level (, z,≤ M

for a small stake). Equivalently,

g (t, w0 + z̃)
g (t, w0)

=
V (t, w0)

Ew0+ez [V (t, w0 + z̃)]
t ∈ {1, 2} for small z̃ (16)

By (15), the following condition

[
w2

0

(w0 + g′) (w0 − l′)

]1+δ+δ2

≥ (17)

[
w0 −

(
1

1+r1

)(
c2 + c3

1+r2

)]2

[
w0 + g′ −

(
1

1+r1

)(
c2 + c3

1+r2

)] [
w0 − l′ −

(
1

1+r1

) (
c2 + c3

1+r2

)]

23The definition does not specify a relation for t = 3 as this would be redundant. Since V (2, w) = V (3, w), by

Lemma 2, C (2, w) = C (3, w).
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is equivalent to E ew′0 [∆tV (1, w̃′0)] ≤ ∆tV (1, w0) and, thus, implies

E ew′0
[
∆tV

(
1, w̃′0

)]−∆tC
(
1, w̃′0

) ≤ ∆tV (1, w0)−∆tC (1, w0)

for a small gamble.24 Under a specification for the function g (t, ·) that meets the requirements
of Corollary 2, such as the one given by (7), (17) suffices for a small gamble

(
g′, 1

2 ;−l′, 1
2

)
to give

t (w̃′0) ≤ t (w0) and, thus, for Claim 4 to establish then a rejection condition.
Let us now turn to large gambles. Since the focus of this application is on explaining why very

favorable gambles could be accepted even though small gambles are rejected, I restrict attention
to gambles offering large gains but small losses:

(
g′′, 1

2 ;−l′′, 1
2

)
: g′′ > l′′ where l′′ is a small stake

but g′′ is not. The complexity costs argument requires that such gambles induce longer optimal
horizons than small ones. If (17) holds for a small gamble, this is the case when the optimal horizon
under the large gamble corresponds to rational planning, t (w̃′′0) = 2, while that induced under the
endowment does not, t (w0) = 1. Claim 4 gives then a sufficient condition for the large gamble
to be accepted. Hence, we require that the expected marginal benefit of extending the horizon
from t = 1 to t = 2, under the large gamble, exceeds the corresponding marginal benefit under the
certain prospect: E ew′′0 [∆tV (1, w̃′′0)] > ∆tV (1, w0).25 For this, it suffices that


 w1+δ+δ2

0

w0 −
(

1
1+r1

)(
c2 + c3

1+r2

)



2

< (18)

[(w0 + g′′) (w0 − l′′)]1+δ+δ2

[
w0 + g′′ −

(
1

1+r1

)(
c2 + c3

1+r2

)] [
w0 − l′′ −

(
1

1+r1

)(
c2 + c3

1+r2

)]

In this inequality, only the right-hand side depends upon the realizations of the gamble. Since
(w0−l′′)1+δ+δ2

w0−l′′−
“

1
1+r1

”“
c2+

c3
1+r2

” > (w0 − l′′)δ+δ2

and the gamble involves small losses, l′′ ≤ M , the right-

hand side is bounded below by G = (w0+g′′)[(w0+g′′)(w0−M)]δ+δ2

w0+g′′−
“

1
1+r1

”“
c2+

c3
1+r2

” . Yet, the gains are not small and

limg′′→+∞G = +∞. Clearly, (18) holds for gambles with small losses but sufficiently large gains.26

24Let x =
“

1
1+r1

”“
c2 +

c3
1+r2

”
be the present value of the worst possible future consumption stream. As x → w0,

the right-hand side of (i) tends to 0+ while the strictly positive left-hand side remains unchanged. That is, (i) holds,

for any gamble (g′, 1
2
;−l′, 1

2
), as long as x is sufficiently close to the initial endowment w0.

25Let the myopic foresight be optimal under the certain prospect (t (w0) = 1) and E ew′′0 [V (1, ew′′0 )] < V (1, w0)

(the large gamble is rejected under myopic planning). Set
g(2, ew′′0 )
g(1, ew′′0 )

= g(2,w0)
g(1,w0)

= V (2,w0)
V (1,w0)

. Then, E ew′′0 [∆tV (1; ew′′0 )] >

∆tV (1, w0) implies
E ew′′0 [V (2, ew′′0 )]

E ew′′0 [V (1, ew′′0 )]
> V (2,w0)

V (1,w0)
=

g(2, ew′′0 )
g(1, ew′′0 )

. By Proposition 2(i), the large gamble induces rational

planning: t ( ew′′0 ) > 1.
26My analysis here is about the expected marginal benefit of extending the planning horizon in absolute terms, not

relative to wealth. It is important to emphasize this as one could argue that the smaller the agent’s wealth, the more

important it is that she allocates it optimally; hence, the more important that her horizon is long. This is a statement

as to why the expected marginal benefit of further planning relative to wealth should be falling with wealth.
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Conditions (17) and (18) will hold under plausible assumptions; namely, if the large gamble offers
sufficiently large winning stakes and the present value of the worst possible future consumption
stream is sufficiently close to the agent’s wealth endowment. Claims 2 and 3 allow then for a
large favorable gamble to be accepted when a small one is turned down. To illustrate, consider a
function g (t, ·) such that the problem of allocating an initial endowment w0 for consumption and
savings across one’s lifetime is sufficiently complex to induce myopic planning: t (w0) = 1. Let(
g′, 1

2 ;−l′, 1
2

)
be a small gamble that satisfies (i), inducing, therefore, the same myopic horizon as

the certain prospect, t (w̃′0) = t (w0) = 1. If (13) holds, this gamble ought to be rejected. Let also(
g′′, 1

2 ;−l′′, 1
2

)
be a gamble with small losses but sufficiently large gains for (ii) to hold, inducing,

thus, rational planning, t (w̃′′0) = 2. In this case, (14) suffices for the large gamble to be accepted.
Observe also that, since (13) holds, an even stronger acceptance condition is given by

(
w0 + g′′

) (
w0 − l′′

)
> Z (δ)2

(
g′l′

g′ − l′

)2

(19)

Clearly, G = 36
(

g′l′
g′−l′

)2
is an upper bound for the quantity on the right-hand side of (19).27

Rabin [54] presents values for g′′, l′′, g′, l′, and w0 such that many people would turn down
the small bet but few - if any - would reject the large one (Tables I and II; the discussion in pp.
1282-1285). For example, let g′′ = 635, 670, l′′ = 4, 000, g′ = 105, l′ = 100, and w0 = 340, 000 or
g′′ = 36× 109, l′′ = 600, g′ = 125, l′ = 100, and w0 = 290, 000. Observe that

g′′l′′

g′′ − l′′
>

g′l′

g′ − l′
(20)

holds in both cases. If (13) obtains for the small gamble, it will be rejected under the horizon of
length t = 1 and so will be the large gamble. However, (19) is also satisfied in both cases. The
corresponding upper bounds for its right-hand side are G = 32.15× 108 and G = 1.8× 108 whereas
the values for its left-hand side are given by 32.78× 1010 and 1.04× 1016, respectively. Hence, the
large gambles will be accepted under the horizon of length t = 2. Similar results can be obtained
for all large bets in Rabin’s Table II.28

For a small gamble to be turned down, condition (13) requires that the part of the endowment
w0 which is allocated optimally under the myopic horizon, w0−

(
1

1+r1

)(
c2 + c3

1+r2

)
, is small. This

27The quantity Z (δ) was defined in the proof of Claim 2. We have

log Z (δ) =
`
1 + δ + δ2´ log

ˆ
1 + δ + δ2˜− `δ + 2δ2´ log δ

<
`
1 + δ + δ2´ `log

ˆ
1 + δ + δ2˜− log δ

´
=
`
1 + δ + δ2´ log

ˆ
1 + δ + δ−1˜

It is trivial to check that the last quantity above is increasing in δ; 3 log 3 is an upper bound for log Z (δ).
28All bets in that table qualify for the sufficient condition. Yet, only the ones with gains large enough to induce

long optimal horizons should be taken in consideration. Notice also that, with respect to Table I, my predictions hold

for large gambles and for sufficiently large levels of initial wealth. For example, with w0 < 20, 000, large bets will be

turned down even though they may induce longer horizons than small bets.
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is in contrast to the standard expected log-utility setting, which requires the entire endowment to
be small.29 For the two small gambles above to be rejected, it must be that not more than $2100
and $500, respectively, are allocated optimally. Of course, these amounts may be unrealistically
small but the two sides of the acceptance condition (19) differ by several orders of magnitude.
Hence, the examples do make the point that the model offers considerable room for maneuver in
the selection of gambles that produce the desired contrasting risk attitudes in the small and large.

Another possible response to Rabin’s argument is that decision-makers do not reject small
lotteries even when their expected payoff is almost zero. My analysis abstracts from this issue by
assuming sufficient conditions so that small gambles are rejected. This allows the exposition to
focus on the essence of Rabin’s criticism of expected utility: the rapid deterioration in the value of
wealth that rejecting small gambles reveals. For the log-utility specification, this is highlighted by
condition (20). For any w0, once

(
g′, 1

2 ;−l′, 1
2

)
is rejected over a horizon of length t ∈ {1, 2}, any

gamble
(
g′′, 1

2 ;−l′′, 1
2

)
satisfying (20) will also be turned down over the same horizon, no matter

how favorable. In the previous numerical example, (20) holds and both gambles are rejected under
myopic planning, t = 1, but the large gamble is ultimately accepted if it induces a longer optimal
horizon. The example used the acceptance condition (19) which is not compatible with the small
gamble being rejected under the standard setting when (20) holds. (14), however, is weaker than

(19) allowing for w2
0 > (w0 + g′′) (w0 − l′′) > Z (δ)2

(
w0 −

(
1

1+r1

)(
c2 + c3

1+r2

))2
. Thus, the model

can also accommodate pairs of gambles such that both are turned down under the standard setting.
In this case, both gambles will be rejected under myopic planning but the large one will be accepted
if it induces an optimal horizon of length t = 2.

In the complexity-costs model, under the myopic horizon t = 1, the amount of wealth the agent
is using to evaluate risky prospects consists of the portion of her endowment that she intends to
spend within her horizon, namely w0−

(
1

1+r1

)(
c2 + c3

1+r2

)
. The analysis indicates that the smaller

this part, other things remaining unchanged, the more likely that small gambles will be turned down
and large gambles will be accepted - recall conditions (13) and (14). This is a qualitative prediction
regarding the heterogeneity of risk attitudes in the small and large across agents: controlling for
initial endowments, the more optimistic is an agent about her worst possible future consumption
stream, the more likely that her risk attitudes will differ in the small and large. The statement
generalizes to the T -period version of the model where, for a given initial endowment w0, the more
myopic the agent’s planning horizon relative to her lifetime, the more likely that conditions (26),
(27) and (29) of Appendix A.1 will hold.

Appendix A.2 extends the model to lotto-type large gambles, offering very large winnings, very
small losses and minuscule winning probabilities. I show that, for sufficiently large amounts of
wealth, the resulting jump in welfare from extending the allocation horizon outweighs the deteri-
oration in the marginal value of wealth even under extremely small probabilities of winning. As

29A gamble
`
g, 1

2
;−l, 1

2

´
is rejected, under the standard setting, if w0 ≤ gl

g−l
.
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in this example, my argument depends on the assumption that considering how to allocate one’s
wealth for consumption in the winning contingency corresponds to a marginal benefit from ex-
tending the allocation horizon that outweighs the marginal complexity costs, inducing a longer
optimal horizon than that under the endowment. My intuition, that accepting lotto-type gambles
is fundamentally based upon inducing one to think how to allocate the winnings, seems to be in
agreement with common marketing practises for such products. Large-prize lotteries are almost
always marketed by pointing out various ways the prize could be spent. Advertisements usually
describe luxury homes, boats, vacations and retirement locations that could be afforded with the
winnings before inviting one to play. Actually, in exactly this spirit of getting one thinking about
the contingency of winning, the National Lottery Organization of Greece ran a very successful
advertising campaign in 2004-05 with the slogan “But if you win?”.

The prediction given above remains valid for the analysis of Appendix A.2: the complexity-
costs model asserts that, other things being equal, more myopic agents are more likely to accept
lotto-type bets. Moreover, poorer agents (with smaller initial endowments) are more likely to accept
lotto-type bets, other things remaining unchanged - see conditions (31), (A.2.ii) and the subsequent
discussion. Observe also that (14) becomes easier to satisfy as the gains g′′ increase while losses
remain small. This result, that higher potential winnings make it more likely that the bet will be
taken other things remaining unchanged, holds also for the lotto-type gambles. Cook and Clotfelter
[13] show that, across states in the US, lottery-ticket sales are strongly correlated with the size of
the state’s population, which is in turn positively correlated with the size of the jackpot. Within a
state, ticket sales each week are strongly positively correlated with the size of the rollover.

A natural conclusion from Rabin’s criticism is that expected utility should be replaced with more
general theories, especially those that exhibit first order risk aversion, those based on uncertainty
aversion or those derived from preferences over gains and losses rather than final wealth levels.
As observed first by Samuelson [64], expected-utility theory makes also the powerful prediction
that agents don’t see an amalgamation of independent gambles as significant insurance against the
risk of those gambles. He showed that, under expected utility, if (for some sufficiently wide range
of initial wealth levels) someone turns down a particular gamble, she should also turn down an
offer to play n > 1 independent plays of this gamble. In his example, if Samuelson’s colleague is
unwilling to accept a

(
100, 1

2 ;−200, 1
2

)
bet, he should be unwilling to accept 100 of those taken

together. Samuelson’s paradox is weaker than Rabin’s but it makes the point that adding together
many independent risks should not alter attitudes towards those risks in any meaningful way for
an expected-utility maximizer. Although rather cumbersome mathematically, it is easy to replace
the large 50-50 gamble here by n small ones taken together. For large enough n, this is again a
large stakes bet and it will not be turned down if it induces a sufficiently long planning horizon.

Rabin [54] and Rabin and Thaler [55] argue that the way to resolve these paradoxes is loss
aversion. The calibration results of Safra and Segal [62], however, apply to a large collection of
non-expected utility theories while both the Rabin and the Samuelson paradoxes can be reframed
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to apply to pure gains.30 In other words, there seems to be a fundamental discrepancy in the way
agents evaluate risky prospects in the small and large, irrespective of the underlying preferences
over final outcomes. Indeed, the problems with assuming that risk attitudes over modest and large
stakes derive from the same utility function relate to a long-standing debate in economics. Here,
the discrepancy arises using the same, simplistic underlying preferences in the small and large.
Instead, my argument for why an agent considers a different objective function to evaluate small
and large risky prospects derives from considering different horizons for the allocation problem.
This results purely from the interaction between the costs and benefits of further search. As long
as complexity costs are present, it would apply whatever the valuation functional V (t, w) for the
underlying preferences over final wealth outcomes.

Another example of treating differently small and large bets in an intertemporal consumption-
savings problem is suggested by Fudenberg and Levine [19]. They model a “dual-self” agent,
consisting of a patient long-run self with infinitely-long time-horizon, and a sequence of myopic
short-run selves who live for only one period. The long-run self wants to restrain the myopic self
from overspending and a commitment device is available in the form of a cash-in-advance constraint.
That is, the long-run self decides on how much “pocket cash” to allow the short-run self to have
for allocation between consumption and savings during the period. Differences in risk attitudes
for small and large bets arise due to a wedge between the propensity to consume out of pocket
cash and out of wealth. Winnings from sufficiently small gambles are spent in their entirety, and
so are evaluated according to the short-run self’s preferences. But when the stakes are large, self-
restraint kicks in because part of the winnings will be saved and spread over the lifetime. Since
small and large gambles are evaluated relative to pocket money and wealth, respectively, under
constant relative risk aversion, the “dual-self” decision-maker appears to be less risk averse when
facing large gambles than when facing small ones.

This intuition is close to the one arising from the complexity costs. Both approaches attribute
differences in risk attitudes to differences in the amount of wealth used as reference to evaluate a
given gamble. For small gambles, this is restricted to be pocket-cash and w0−

(
1

1+r1

)(
c2 + c3

1+r2

)
,

respectively. As with the pocket-cash interpretation, the smaller is the fraction of the endowment
allocated optimally under the certain prospect, the more likely that large bets are accepted even
though small ones are not. If the current endowment w0 is interpreted as the agent’s lifetime
income, the fraction in question would be the part that is currently available. That is, given one’s
lifetime income, the more cash constrained the agent is the more pronounced the divergence in her
risk attitudes in the small and large. In the general T -period version, this is the case the more

30For the Samuelson paradox, consider an agent who (over a sufficiently wide range of initial wealth levels) turns

down a 50-50 win $300 or nothing bet for the certain prospect of $100. Then she should also prefer $100n to n plays

of the gamble. But as n increases, the expected payoff from the risky prospect becomes infinitely larger than that

of the certain one while the probability of winning more by choosing it approaches 1. For the Rabin paradox, if an

agent prefers the certain prospect of $s to a 50-50 bet of winning $g or nothing, she should also choose $ s2

g−2s
over a

50-50 bet of winning infinity or nothing.
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myopic is the agent’s planning in allocating her endowment.
Chetty and Szeidl [11] offer another interesting analysis of risk preferences. Their model has

two consumption goods, one of which involves a commitment in the sense that an adjustment cost
must be paid whenever the per-period quantity consumed is changed. Consumption commitments
affect risk preferences by amplifying risk aversion against moderate-scale shocks and by creating
a certain gambling motive. When the agent cannot adjust commitment consumption easily, small
shocks to wealth must be handled by changing adjustable consumption; the marginal utility of
wealth increases more rapidly when the agent has commitments. The gambling motive obtains
when the expected decrease in utility from the adjustable good in the case of a loss is offset by the
large expected increase in utility from changing commitment consumption under a gain.

Their analysis offers a convincing rationalization of why people buy insurance against moderate
shocks, change their consumption patterns significantly in the face of unemployment shocks when
these lead to large income losses but not when they lead to small ones, or why wealthier individuals
are less likely to play the lottery. An important limitation, however, is approximate risk neutrality
for small stakes (see their Table II). High risk aversion over moderate stakes offers an explanation
for why moderate-stakes gambles would be rejected. It does not explain why risk attitudes should
differ in the small and large for a given wealth endowment. Moreover, the gambling motive obtains
only for small gambles and for initial wealth levels around the points where the agent is indifferent
between adjusting or not commitment consumption.31 Rather than explaining why large-stakes
gambles would be accepted, this suggests that small gambles shouldn’t be rejected.

5 Concluding Remarks

This analysis developed a model of bounded rationality due to search costs arising from the com-
plexity of the decision problem. By inferring these costs from revealed preferences through choices,
bounded rationality and its extent emerge endogenously. Revealed bounded rationality encompasses
variation across decision-makers as well as decision problems. Under additional assumptions, cal-
ibration of search costs suggests predictions and testable implications of the model. Applications
to seemingly disparate problems illustrate the flexibility of this approach. Endogenous complex-
ity costs can be consistent with violations of timing independence in temporal framing problems,
dynamic inconsistency and diversification bias in sequential versus simultaneous choice problems,
and with plausible but contrasting risk attitudes in small- and large-stakes gambles.

My approach is based fundamentally on using the behavior under limited foresight, depicted
by the representation in (2), as a common framework for comparing the revealed preferences from
observed boundedly-rational choices to those prescribed by the rational paradigm. For this to
be a complete model of bounded rationality, however, it requires a theoretical foundation, an

31See their Proposition 1(iii). Since the value function is locally convex only at these points, the wealth outcomes

need to remain within the corresponding neighborhoods.
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axiomatization of the actual preferences that lie behind the representations in (2) and (3). Current
work in progress is attempting to exploit the insights of Ghirardato [24] and Ahn and Ergin [?] to
this end. The former paper seems to provide promising avenue for further research in constructing
preferences over unforeseen contingencies that could be represented by the utility function in (2).
The latter develops a theoretical framework for studying how preferences might vary as the way or
extent to which the future might be unforeseen varies.

Another obvious next for further research would be to extend this approach to strategic games.
That is, to attempt study extend this approach to strategic games. Current work in progress es-
tablishes existence of equilibrium (in the standard sense of no player having an incentive to deviate
when her conjectures happen to be correct) for extensive-form games when players are boundedly-
rational. Since, however, the standard notion of equilibrium is problematic with currently unfore-
seen contingencies, I examine which conjectures can be justifiable under limited foresight. The
fact that the degree of limited foresight obtains endogenously implies a relation between choice of
foresight and justifiable conjectures that can be viewed as the bounded rationality analogue to ra-
tionalizability. The model can explain some game-theoretical paradoxes in which observed or even
intuitively correct responses are at odds with the predictions of backward induction. I show that
the set of “rationalizable”-under limited-foresight strategies includes ones consistent with observed
play.

As a tribute to those most commonly observed humans who regularly demonstrate impressive
ingenuity yet even more often prove themselves capable of rather foolish acts, this research at-
tempted to explain why, in the latter situations, a frustrated observer would exclaim “you were not
thinking”. The sequel papers are looking for an answer to the observer’s question “what were you
thinking?”.
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A Proofs

Proposition 1 For arbitrary h ∈ H and (s, f) ∈ S × ∆(Q), let t, t′ ∈ {1, ..., Th} with t > t′.
Since h (t′) ⊂ h (t), we have Ωh (t′, s, f) ⊆ Ωh (t, s, f). Since the mapping u takes only nonnegative
values, it follows immediately that u (Ωh (t, s, f)) ≥ u (Ωh (t′, s, f)).

Notice also that any strategy profile (s′, f ′) which is equivalent to (s′, f ′) with respect to the hori-
zon h (t), it has to be equivalent also with respect to the smaller horizon h (t′). Thus, Ωh (t′, s, f) ⊇
Ωh (t, s, f) and, consequently, Uh (t′, s, f) ⊇ Uh (t, s, f). That is, inf Uh (t, s, f) ≥ inf Uh (t′, s, f).

By the definition in (2), we have

Uh (t, s, f) = u (Ωh (t, s, f)) + αh (t, s, f) inf Uh (t, s, f)

≥ u
(
Ωh

(
t′, s, f

))
+ αh (t, s, f) inf Uh

(
t′, s, f

)

≥ u
(
Ωh

(
t′, s, f

))
+ αh

(
t′, s, f

)
inf Uh

(
t′, s, f

)

= Uh

(
t′, s, f

)
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The first inequality above uses the preceding results along with the fact that αh (t, s, f) > 0. The
second follows from Assumption A.1. The required result follows immediately from the definition
of the preference relation %h. ¤

Proposition 2 The “if” part is trivial since, for γh and γ0
h constant on {t (f) , ..., Th}, we have

γh (t, f)Vh (t, f) + γ0
h (t, f) = γh (Th, f) Vh (t, f) + γ0

h (Th, f) ∀ t ∈ {t (f) , ..., Th}

For the “only if”, let th (f) be optimal against f and suppose that (3) represents %h on
{t (f) , ..., Th}. By Lemma 1,

γh (t, f) Vh (t, f) + γ0
h (t, f) ≥ γh (th (f) , f) Vh (th (f) , f) + γ0

h (th (f) , f) ∀ t ∈ {t (f) , ..., Th}

and by optimality

γh (t, f)Vh (t, f) + γ0
h (t, f) ≤ γh (th (f) , f) Vh (th (f) , f) + γ0

h (th (f) , f) ∀ t ∈ {1, ..., Th}

Hence,

γh (t, f) Vh (t, f) + γ0
h (t, f) = γh (th (f) , f) Vh (th (f) , f) + γ0

h (th (f) , f) ∀ t ∈ {t (f) , ..., Th}

But th (f) must be optimal against f also for the Vh (·, f) representation of %h. Applying the
lemma and optimality argument once more, we get

Vh (t, f) = Vh (th (f) , f) ∀t ∈ {t (f) , ..., Th}

In other words, we have

[γh (t, f)− γh (Th, f)]Vh (Th, f) = γ0
h (Th, f)− γ0

h (t, f) ∀ t ∈ {t (f) , ..., Th}

Fix now t ∈ {1, ..., Th} and recall that γh and γ0
h do not depend upon the terminal utility pay-

offs. The last equality above must hold, therefore, as an identity with respect to the values that
Vh (Thvf) = maxσ∈Σuh (σ, f) may take across various u-representations of the preferences over the
terminal consequences. The result is immediate. ¤

Claim 1 By the definitions in (1) and (2), we have

Uh (t, s, f) = [1− αh (t, s, f)]u (Ωh (t, s, f)) + αh (t, s, f) min
(s′,f ′)∈S×∆(Q): (s′,f ′) '

h(t)
(s,f)

uh

(
s′, f ′

)

Consider now an affine transformation, λu (·)+ k with λ > 0, k ∈ R, of the mapping u (·). The new
mapping is given by

Ûh (t, s, f) = [1− αh (t, s, f)] [λu (Ωh (t, s, f)) + k]

+αh (t, s, f) min
(s′,f ′)∈S×∆(Q): (s′,f ′) '

h(t)
(s,f)

(
λuh

(
s′, f ′

)
+ k

)

= λUh (t, s, f) + k
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Clearly, such transformations do not affect the agent’s ranking of the strategies in S from the
perspective of the horizon h (t). If k = 0, they do not affect the optimal horizon t (f) either. ¤

Claim 2 Fix f ∈ ∆(Q). In the proof of Proposition 1, we established that, at any h ∈ H, any
t ∈ {1, ..., Th} and for any s ∈ S, we have

Uh (t, s, f) ≤ Uh (t + 1, s, f)

Let σ∗ ∈ BRh (t, f) and suppose that there exists s′ ∈ support{σ∗} such that the above holds as a
strict inequality for s′. We have

max
σ∈Σ

∑

s∈S

σ (s)Uh (t + 1, s, f) ≥
∑

s∈S

σ∗ (s)Uh (t + 1, s, f) >
∑

s∈S

σ∗ (s) Uh (t, s, f)

= max
σ∈Σ

∑

s∈S

σ (s) Uh (t, s, f) =⇒

Vh (t + 1, f) > Vh (t, f)

which contradicts ∆tVh (t, f) = 0. Thus, it must be

Uh

(
t + 1, s′, f

)
= Uh

(
t, s′, f

) ∀s′ ∈ S : σ∗
(
s′

)
> 0

In other words, we established that

∆tVh (t, f) = 0 =⇒ BRh (t, f) ⊆ BRh (t + 1, f) (21)

Since BRh (t, f) is the best-response set for the objective in (3),

γh (t + 1, f) Vh (t + 1, f) = γh (t, f) Vh (t, f)
∆tVh(t,f)=0

=⇒ γh (t + 1, f) = γh (t, f)

The result follows immediately. ¤

B Risk Aversion in the Small and Large

Here, the analysis of section 4.3 is extended to the general T -period case. For a horizon of length
t ∈ {1, ..., T}, the problem of allocating an amount of wealth w becomes

V (t, w) = max
c∈C

{
t∑

τ=1

δτ−1 log cτ + min
c′∈C: c′∼

t
c

T∑

τ=t+1

δτ−1 log c′τ

}

where C denotes the set of lifetime consumption plans c = {cτ}T
τ=1 satisfying

s0 = w sτ = sτ−1 (1 + rτ−1)− cτ , sτ ≥ 0, cτ ≥ cτ τ ∈ {1, ..., T} (22)
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where sτ denotes the wealth available at the beginning of period τ while consumption takes place
at the beginning of each period. Of course, the initial wealth must suffice for the plan {cτ}T

τ=1 of
least consumption:

w ≥
T∑

τ=1

cτ

τ−1∏

i=1

(1 + ri)
−1 (23)

With respect to foresight t, the worst case scenario beyond the horizon would obtain if the agent
were to consume {cτ}T

τ=t+1. The decision problem can be re-written, therefore, as follows

V (t, w) = max
c∈C

{
t∑

τ=1

δτ−1 log cτ +
T∑

τ=t+1

δτ log cτ

}

For c ∈ C, recall that ct = {cτ}t
τ=1 denotes the restriction of c to the horizon of length t. If the

agent chooses the consumption plan ct within the horizon, her available wealth at the beginning of
period t + 1 will be

st+1

(
ct

)
= w

t∏

i=1

(1 + ri)−
t∑

τ=1

cτ

t∏

i=τ

(1 + ri) t ∈ {1, ..., T − 1}

Along with the system of constraints in (22), this implies

w =
T∑

τ=1

cτ

τ−1∏

i=1

(1 + ri)
−1 (24)

for any solution c ∈ C. Clearly, rational planning requires foresight t ≥ T − 1.
Let the agent consider a horizon of length t. Given that she anticipates her consumption beyond

the horizon to be at the worst level, {cτ}T
τ=t+1, the planning problem can be re-written as follows:

V (t, w) = max
ct∈C

{
t∑

τ=1

δτ−1 log cτ +
T∑

τ=t+1

δτ−1 log cτ

}

The first-order conditions are given by

cτ

c1
= δτ−1

τ−1∏

i=1

(1 + ri) 1 < τ ≤ t (25)

The optimal vector c∗ (w) =
{
{c∗τ (w)}t

τ=1 , {cτ}T
τ=t+1

}
solves the system of t equations defined by

(22) and (25) giving

c∗1 (w) =

(
t∑

τ=1

δτ−1

)−1


w −

T∑

τ=t+1

cτ
τ−1∏
i=1

(1 + ri)



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The value of the horizon of length t is given by32

V (t, w) =
t∑

τ=1

δτ−1 log

(
w −

T∑

τ=t+1

cτ

τ−1∏

i=1

(1 + ri)
−1

)
+

T∑

τ=t+1

δτ−1 log cτ

−
t∑

τ=1

δτ−1 log

(
t∑

τ=1

δτ−1

)
+

t∑

τ=2

δτ−1 log

(
δτ−1

τ−1∏

i=1

(1 + ri)

)

For a 50-50 lose $l/gain $g gamble (g > l), we get

E ew0
[V (t, w̃0)]

=
t∑

τ=1

δτ−1

2
log





w + g −

T∑

τ=t+1

cτ
τ−1∏
i=1

(1 + ri)





w − l −

T∑

τ=t+1

cτ
τ−1∏
i=1

(1 + ri)







+ζ
(
δ, {ri}t−1

i=1 , {ci}T
i=t+1

)

where

ζ
(
δ, {ri}t−1

i=1 , {ci}T
i=t+1

)

=
T∑

τ=t+1

δτ−1 log cτ −
t∑

τ=1

δτ−1 log

(
t∑

τ=1

δτ−1

)
+

t∑

τ=2

δτ−1 log δτ−1 +
t∑

τ=2

δτ−1 log

(
τ−1∏

i=1

(1 + ri)

)

Recall that t (w̃0) and t (w0) denote the corresponding optimal horizons for the wealth allocation
problem under the lottery w̃0 and the endowment, respectively. The agent will accept the lottery
if and only if E ew0

[V (t (w̃0) , w̃0)] > V (t (w0) , w0). That is, the relative lengths t (w̃0) and t (w0) of
the optimal horizons matter for the decision of whether or not to accept the lottery. The following
two claims establish precisely how they matter.

Claim 5 For a gamble
(
g, 1

2 ;−l, 1
2

)
, suppose that the induced optimal horizon does not exceed that

induced under the certain prospect, t (w̃0) ≤ t (w0). If

w0 − 1t( ew0)<T−1

T∑

τ=t(w0)+1

cτ
τ−1∏
i=1

(1 + ri)
≤ gl

g − l
(26)

then the gamble is rejected. For t (w̃0) = t (w0), the gamble is rejected only if (26) holds.

Proof. E ew0
[V (t, w̃0)] and V (t, w0) have all but the respective first summations equal. If both prob-

lems induce rational planning, t (w̃0) ≥ T−1, the claim is immediate by comparing E ew0
[V (T − 1, w̃0)]

32Abusing notation slightly, the term
P1

τ=2 xi is to be taken as zero, for any xi > 0.
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and V (T − 1, w̃0). Otherwise, notice that

w0 + g −

T∑

τ=t+1

cτ
τ−1∏
i=1

(1 + ri)
−1





w0 − l −

T∑

τ=t+1

cτ
τ−1∏
i=1

(1 + ri)
−1




=

(
w0 −

T∑

τ=t+1

cτ

τ−1∏

i=1

(1 + ri)
−1

)2

+ (g − l)

(
w0 −

T∑

τ=t+1

cτ

τ−1∏

i=1

(1 + ri)
−1

)
− gl

By (26), this implies V (t (w̃0) , w0) ≥ E ew0
[V (t (w̃0) , w̃0)]. Since t (w̃0) ≤ t (w0), the monotonicity

property gives V (t (w0) , w0) ≥ V (t (w̃0) , w0).

Claim 6 For a gamble
(
g, 1

2 ;−l, 1
2

)
, suppose that it induces a longer optimal horizon than the

certain prospect, t (w̃0) = t (w0) + k : 1 ≤ k ≤ T − t (w0). If

exp

(
−2ζk (δ, t (w0))∑t(w0)

τ=1 δτ−1

)

w0 −

T∑

τ=t(w0)+1

cτ
τ−1∏
i=1

(1 + ri)




2

(27)

<


w0 + g −

T∑

τ=t(w0)+k+1

ct
τ−1∏
i=1

(1 + ri)





w0 − l −

T∑

τ=t(w0)+k+1

cτ
τ−1∏
i=1

(1 + ri)




where

ζk (δ, t) =
t∑

τ=1

δτ−1 log

(∑t
τ=1 δτ−1

∑t+k
τ=1 δτ−1

)
+

t+k∑

τ=t+1

δτ−1 log

(
δτ−1

∑t+k
τ=1 δτ−1

)

then the gamble will be accepted.

Proof. We want E ew0
[V (t (w0) + k, w̃0)] > V (t (w0) , w0). By (23), we have


w0 + g −

T∑

τ=t(w0)+k+1

cτ
τ−1∏
i=1

(1 + ri)





w0 − l −

T∑

τ=t(w0)+k+1

cτ
τ−1∏
i=1

(1 + ri)




≥




t(w0)+k∑

τ=t+1

cτ
τ−1∏
i=1

(1 + ri)




2

= ζ
(
δ, {ri}t(w0)+k−1

i=1 , {ci}T
i=t(w0)+k+1

)
− ζ

(
δ, {ri}t(w0)−1

i=1 , {ci}T
i=t(w0)+1

)
+ ζk (δ, t (w0))

The result follows immediately.
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For complexity costs to account for different risk attitudes in the small and large, it must be
that small gambles correspond to shorter optimal horizons than large ones. In what follows, I
present sufficient conditions for this to be the case. Specifically, I establish conditions that suffice
for the optimal horizon induced by the certain prospect w0 to be at least as long as the one for a
small gamble but shorter than that for a large one. To facilitate comparisons of optimal foresight,
consider

E ew0
∆tV (t, w̃0)−∆tV (t, w0)

=
t∑

τ=1

δτ−1

2
∆t




log
(

w0 + g −∑T
τ=t+1 cτ

τ−1∏
i=1

(1 + ri)
−1

)

+ log
(

w0 − l −∑T
τ=t+1 cτ

τ−1∏
i=1

(1 + ri)
−1

)

− log
(

w0 −
∑T

τ=t+1 cτ

τ−1∏
i=1

(1 + ri)
−1

)2




(28)

+
δt

2




log
(

w0 + g −∑T
τ=t+2 cτ

τ−1∏
i=1

(1 + ri)
−1

)

+ log
(

w0 − l −∑T
τ=t+2 cτ

τ−1∏
i=1

(1 + ri)
−1

)

− log
(

w0 −
∑T

τ=t+2 cτ

τ−1∏
i=1

(1 + ri)
−1

)2




As in Section 4.3, small gambles have gains and losses small enough so that the problem of allo-
cating the corresponding wealth to not differ, in terms of complexity, from that of allocating the
endowment.

Definition 7 A possible realization z of a lottery z̃ is a small stake if

C (t, w0 + z) = C (t, w0) t ∈ {1, ..., T − 1}

A lottery z̃ is small if every z in the support of z̃ is a small stake.

For small stakes z, C (t, ·) is taken to be constant for some range, (w0 −M,w0 + M) : M > 0,
around the endowment level: , z,≤ M .33 Equivalently, (16) is valid for t ∈ {1, ..., T − 1} and for a
small gamble z̃.

Let the present value of the least-consumption stream, {cτ}T
τ=t+k, be denoted by xt+k =

∑T
τ=t+k cτ

τ−1∏
i=1

(1 + ri)
−1. Define also F : R2

+ × R++ → R++ by F (g, l, x) = (w0−x)2

(w0+g−x)(w0−l−x) .

From (28),

(B.i) δt log F (g, l, xt+2) ≥
t∑

τ=1

δτ−1 log
(

F (g, l, xt+1)
F (g, l, xt+2)

)

33The definition does not specify a relation for t = T as this would be redundant. Recall that t = T −1 is sufficient

for rational planning: V (T − 1, w) = V (T, w), for any wealth realization w. By Lemma 2, C (T − 1, w) = C (T, w).
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is equivalent to E ew0
∆tV (t, w̃0) ≤ ∆tV (t, w0) and implies E ew′0 [∆tV (t, w̃′0)]−∆tC (t, w̃′0) ≤ ∆tV (t, w0)−

∆tC (t, w0) for a small gamble.34 Under a specification for the function g (t, ·) that meets the re-
quirements of Corollary 2, such as the one given by (7), (B.i) suffices for a small gamble

(
g′, 1

2 ;−l′, 1
2

)

to give t (w̃′0) ≤ t (w0) and, thus, for Claim 5 to establish then a rejection condition.
Let us now turn to large gambles:

(
g′′, 1

2 ;−l′′, 1
2

)
: g′′ > l′′, where l′′ is a small stake but g′′

is not. The complexity costs argument requires that such gambles induce longer optimal horizons
than small ones. If (B.i) holds for a small gamble, it suffices that the optimal horizon under the large
gamble is longer than the one induced under the endowment. Thus, we require that the expected
marginal benefit of extending the horizon, under the large gamble, exceeds the corresponding
marginal benefit under the certain prospect.35 That is, E ew′′0 [∆tV (t, w̃′′0)] > ∆tV (t, w0) which is
equivalent to

(B.ii) δt log F
(
g′′, l′′, xt+2

)
<

t∑

τ=1

δτ−1 log
(

F (g′′, l′′, xt+1)
F (g′′, l′′, xt+2)

)

Recall that the losses l′′ are bounded above by M but the gains are not; the left-hand side of (B.ii)
tends to −∞ as g′′ → +∞. In footnote 3 of this section, I show that F (g′′, l′′, ·) is increasing if the
gamble is rejected under the standard setting: g′′l′′

g′′−l′′ > w0. Since xt+1 > xt+2 > 0, the right-hand
side of (B.ii) remains strictly positive and the condition is valid for gambles with sufficiently large
gains.

Conditions (B.i) and (B.ii) will hold under plausible assumptions; namely, if both gambles are
rejected under the standard setting, the large gamble offers sufficiently large winning stakes and the
present value of the worst possible future consumption stream beyond the horizon of the certain
prospect, t (w0), is sufficiently close to the agent’s wealth endowment. Claims 5 and 6 allow then
for a large favorable gamble to be accepted when a small one is turned down.

For simplicity of exposition, suppose that the large gamble induces rational planning. For
k = T − t (w0)− 1, (27) reads

g′′ − l′′ ≥ g′′l′′ − Z (δ, t (w0) , w0)
w0

(29)

34 ∂
∂x

F (g′′, l′′, x) > 0 is equivalent to (w0 − x)2 [2 (w0 − x) + g′′ − l′′] > 2 (w0 − x) (w0 + g′′ − x) (w0 − l′′ − x) or

(w0 − x) (g′′ − l′′) < 2g′′l′′. The rejection condition under the standard setting, w2
0 > (w0 + g) (w0 − l), suffices for

the last inequality to hold. Since xt+2 > 0, if the gamble is rejected under the standard setting, then F (g, l, xt+2) >

F (g, l, 0) > 0. Observe now that xt+1 > xt+2. Let xt+1 → w0 and suppose that xt+1 − xt+2 remains bounded below

by some K > 0. The right-hand side of (A.1.i) tends to −∞ whereas the left-hand side remains strictly positive.
35Let τ be the optimal foresight under the certain prospect, t (w0) = τ , and E ew′′0 [V (τ, ew′′0 )] < V (τ, w0) (the large

gamble is rejected under foresight τ). Set
g(1+τ, ew′′0 )

g(τ, ew′′0 )
= g(1+τ,w0)

g(τ,w0)
= V (1+τ,w0)

V (τ,w0)
. Then, E ew′′0 [∆tV (τ ; ew′′0 )] > ∆tV (τ, w0)

implies
E ew′′0 [V (1+τ, ew′′0 )]

E ew′′0 [V (τ, ew′′0 )]
> V (1+τ,w0)

V (τ,w0)
=

g(1+τ, ew′′0 )
g(τ, ew′′0 )

. By Proposition 2(i), the large gamble induces a longer horizon

than the certain prospect: t ( ew′′0 ) > τ .
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where

Z (δ, t, w) = w2 − exp

(
−2ζT−t−1 (δ, t)∑t

τ=1 δτ−1

)
(w − xt+1)

2

Observe that Z (δ, t (w0) , w0) > 0 iff xt(w0+1) >

[
1− exp

(
ζT−t(w0)−1(δ,t(w0))

Pt(w0)
t=1 δτ−1

)]
w0.36 For suffi-

ciently small δ, this holds for any values of {ri}T−1
i=1 , w0 and {cτ}T

τ=t(w0).
37 Moreover, if t (w0) +

1 >
Pt(w0)

τ=1 τδτ

Pt(w0)
τ=1 δτ

, a sufficient condition for it to hold for all values of δ is
∑T

τ=t(w0)+1
cτ

τ−1Q
i=1

(1+ri)

>

(
T

T
t(w0)+1 − t (w0)− 1

)
T
− T

t(w0)+1 w0.38

Notice also that Z (δ, w0, t) increases with xt+1.39 Ceteris paribus, the lower bound for g′′− l′′ in
(29) falls with the present value of the amount of initial wealth allocated for consumption optimally

36Consider Z (δ, t, w0) as a quadratic in xt+1. Then, Z (δ, t, w0) > 0 iff
h
1− exp

“
ζT−t−1(δ,t)Pt

τ=1 δτ−1

”i
w0 < xt+1 <h

1 + exp
“

ζT−t−1(δ,t)Pt
τ=1 δτ−1

”i
w0. By (24), the second inequality holds trivially.

37Since limδ→0+ log

„Pt
τ=1 δτ−1

Pt+k
τ=1 δτ−1

«
= 0 = − limδ→0+

„Pt+k
t=t+1 δτ−1
Pt

τ=1 δτ−1

«
log
“Pt+k

τ=1 δτ−1
”

and

limδ→0+

Pt+k
τ=t+1 δτ−1 log δτ−1

Pt
τ=1 δτ−1 = 0−, we have limδ→0+

ζk(δ,t)Pt
τ=1 δτ−1 = 0−. Let k = T − t (w0) − 1 for the result

in the text.
38We have

∂

∂δ

 
ζT−t−1 (δ, t)Pt

τ=1 δτ−1

!
=

Pt
τ=2 (τ − 1) δτ−2

Pt
τ=1 δτ−1

−
PT

τ=2 (τ − 1) δτ−2

PT
τ=1 δτ−1

+

PT−1
τ=t+1 (τ − 1) δτ−2

Pt
τ=1 δτ−1

−
PT−1

τ=t+1 δτ−1

Pt
τ=1 δτ−1

PT
τ=2 (τ − 1) δτ−2

PT
τ=1 δτ−1

+

 
tX

τ=1

δτ−1

!−1 T−1X
τ=t+1

(τ − 1) δτ−2 log

 
δτ−1

PT
τ=1 δτ−1

!

−
 

tX
t=1

δτ−1

!−2 tX
τ=2

(τ − 1) δτ−2
T−1X

τ=t+1

δτ−1 log

 
δt−1

PT
τ=1 δτ−1

!

=

PT
τ=2 (τ − 1) δτ−2

Pt
τ=1 δτ−1

−
PT

τ=2 (τ − 1) δτ−2

PT
τ=1 δτ−1

 
1 +

PT
τ=t+1 δτ−1

Pt
τ=1 δτ−1

!

+

 
tX

τ=1

δτ−1

!−2
0
@

Pt
τ=1 δτ−1PT

τ=t+1 (τ − 1) δτ−2 log
“

δτ−1
PT

τ=1 δτ−1

”

−Pt
τ=2 (τ − 1) δτ−2PT

τ=t+1 δτ−1 log
“

δτ−1
PT

τ=1 δτ−1

”
1
A

=

 
tX

τ=1

δτ−1

!−2
0
@

PT
τ=t+1 (τ − 1) δτ−2 log

“
δτ−1

PT
τ=1 δτ−1

”

+
Pt

τ=2

PT
τ=t+1 (t− τ) δt+τ−3 log

“
δt−1

PT
τ=1 δτ−1

”
1
A

This expression is not of the same sign across all T ∈ N \ {0}, t ∈ {1, ..., T − 1}. A sufficient condition for it to

be negative is t + 1 >
Pt

τ=1 τδτ

Pt
τ=1 δτ . In this case, infδ∈(0,1) exp

“
ζT−t−1(δ,t)Pt

τ=1 δτ−1

”
= exp

“
ζT−t−1(1,t)

t+1

”
where ζT−t−1 (1, t) =

(t + 1) log (t + 1)− T log T .
39Given λt > 0 and w0 > xt+1, −λt (w0 − xt+1)

2 is strictly increasing in xt+1. In Z (δ, w0, t), set λt =

exp
“
− 2ζT−t−1(δ,t)Pt

τ=1 δτ−1

”
. We have w0 > xt+1 by (24).
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under the certain prospect. Moreover, if

w0 − xt(w0)+2

w0 − xt(w0)+1
> exp

(
2ζ (δ, t (w0) + 1)
∑t(w0)+1

τ=1 δτ−1
− 2ζ (δ, t (w0))∑t(w0)

τ=1 δτ−1

)
(30)

the lower bound decreases the shorter is the optimal horizon under the certain prospect, t (w0).40

B.1 Extension to Lotto-type Bets

Let us now consider gambles (g∗, p;−l∗, 1− p) : p → 0 with again only l∗ being a small stake. A
minuscule probability of winning simplifies significantly the mathematical exposition of the argu-
ment and is also appropriate for lotto-type bets (where p is usually of the order 5× 10−9 when one
buys one lotto entry for l∗ = $1). We have

E ew∗0 [V (t, w̃∗0)]

=
t∑

τ=1

δτ−1




log
(

w0 + g∗ −∑T
τ=t+1 cτ

τ−1∏
i=1

(1 + ri)
−1

)p

+ log
(

w0 − l∗ −∑T
τ=t+1 cτ

τ−1∏
i=1

(1 + ri)
−1

)1−p




+
T∑

τ=t+1

δτ−1 log cτ −
t∑

τ=1

δτ−1 log

(
t∑

τ=1

δτ−1

)
+

t∑

τ=2

δτ−1 log

(
δτ−1

τ−1∏

i=1

(1 + ri)

)

and

E ew∗0 [∆tV (t, w̃∗0)]−∆tV (t, w0)

=
t∑

τ=1

δτ−1∆t




log
(

w0 + g∗ −∑T
τ=t+1 cτ

τ−1∏
i=1

(1 + ri)
−1

)p

+ log
(

w0 − l∗ −∑T
τ=t+1 cτ

τ−1∏
i=1

(1 + ri)
−1

)1−p

− log
(

w0 −
∑T

τ=t+1 cτ

τ−1∏
i=1

(1 + ri)
−1

)




+δt log




(
w0 + g∗ −∑T

τ=t+2 cτ

τ−1∏
i=1

(1 + ri)
−1

)p (
w0 − l∗ −∑T

τ=t+2 cτ

τ−1∏
i=1

(1 + ri)
−1

)1−p

w0 −
∑T

τ=t+2 cτ

τ−1∏
i=1

(1 + ri)
−1




Therefore, E ew∗0 [∆tV (t, w̃∗0)] > ∆tV (t, w0) is equivalent to

(B.1.i) δt log F (g∗, l∗, xt+2) <

t∑

τ=1

δτ−1 log
(

F (g∗, l∗, xt+1)
F (g∗, l∗, xt+2)

)

40∆tZ (δ, w0, t) = −λt+1 (w0 − xt+2)
2 + λt (w0 − xt+1)

2 < − (w0 − xt+1) [λt+1 (w0 − xt+2)− λt (w0 − xt+1)] where

λt is defined in the preceding footnote. The inequality follows from xt+k being decreasing in k.
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where F : R2
+ × R++ → R++ is defined by F (g, l, x) = (w0−x)2

(w0+g−x)p(w0−l−x)1−p . For given p > 0, as
g → +∞, the left-hand side of (B.1.i) tends to −∞ whereas the right-hand side remains bounded
below by a finite negative number.41 That is, for every p, there exists some large enough gain g∗

so that (B.1.i) holds.
Therefore, the lotto-type bet can induce a longer optimal horizon than that of the certain

prospect, t (w̃∗0) = t (w0)+k for some k ≥ 1. In this case, the following claim establishes a sufficient
condition for the gamble to be accepted.

Claim 7 For a gamble (g∗, p;−l∗, 1− p), suppose that it induces a longer optimal horizon than the
certain prospect, t (w̃∗0) = t (w0) + k : 1 ≤ k ≤ T − t (w0). If

e
− 2ζk(δ,t(w0))
Pt(w0)

τ=1 δτ−1 (
w0 − xt(w0)+1

) ≤ (
w0 + g∗ − xt(w0)+k+1

)p (
w0 − l∗ − xt(w0)+k+1

)1−p (31)

then the gamble will be accepted.

Proof. We want E ew0
[V (t (w0) + k, w̃∗0)] > V (t (w0) , w0) for 1 ≤ k ≤ T − t (w0). The argument is

identical to that in the proof of Claim 4, since by (24) we get

(
w0 + g∗ − xt(w0)+k+1

)p (
w0 − l∗ − xt(w0)+k+1

)1−p
>

t+k∑

τ=t+1

cτ
τ−1∏
i=1

(1 + ri)

for any 1 ≤ t ≤ T − k.
Given g∗, let p → 0. (31) will hold if

(A.2.ii)

(
e
− 2ζk(δ,t(w0))
Pt(w0)

τ=1 δτ−1 − 1

)
(
w0 − xt(w0)+k+1

) ≤ e
− 2ζk(δ,t(w0))
Pt(w0)

τ=1 δτ−1

t(w0)+k∑

τ=t(w0)+1

cτ
τ−1∏
i=1

(1 + ri)
− l∗

Since limδ→0+
ζk(δ,t)Pt
τ=1 δτ−1 = 0− (recall footnote 6 of the previous section of Appendix B), this in-

equality is valid for sufficiently low values of δ. For every g∗, there exist pairs (δ, p), with the
discount factor and winning probability both being small enough, so that (31) holds.42 Notice
that (B.1.i) becomes easier to satisfy the lower is the initial endowment w0, other things remaining
unchanged.

41Since xt+1 > xt+2,
F(g,l,xt+1)
F(g,l,xt+2)

=
“

w0−xt+1
w0−xt+2

”2 “w0+g−xt+2
w0+g−xt+1

”p “w0−l−xt+2
w0−l−xt+1

”1−p

>
“

w0−xt+1
w0−xt+2

”2

> 1.
42Since a larger g∗ makes (31) more likely to hold, this argument is valid in conjunction with the one given for why

(B.1.i) should hold. That is, for sufficiently small δ, there do exist pairs (p, g∗) with p very small but g∗ sufficiently

large such that both (31) and (B.1.i) are satisfied.
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