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Abstract

In the context of decision making for retirees of a defined contribution pension scheme in
the de-cumulation phase, we formulate and solve a problem of finding the optimal time
of annuitization for a retiree having the possibility of choosing her own investment and
consumption strategy. We formulate the problem as a combined stochastic control and
optimal stopping problem. As criterion for the optimization we select a loss function that
penalizes both the deviance of the running consumption rate from a desired consumption
rate and the deviance of the final wealth at the time of annuitization from a desired target.
We find closed form solutions for the problem and show the existence of three possible types
of solutions depending on the free parameters of the problem. In numerical applications
we find the optimal wealth that triggers annuitization, compare it with the desired target
and investigate its dependence on both parameters of the financial market and parameters
linked to the risk attitude of the retiree. Simulations of the behaviour of the risky asset
seem to show that under typical situations optimal annuitization should occur a few years
after retirement.

JEL Classification: C61, D91, J26, G11, G23.

Keywords: defined contribution pension scheme, de-cumulation phase, stochastic optimal
control, optimal annuitization time.



1 Introduction

In defined contribution pension schemes, the financial risk is borne by the member: contributions
are fixed in advance and the benefits provided by the scheme depend on the investment performance
experienced during the active membership and on the price of the annuity at retirement, in the case
that the benefits are given in the form of an annuity. Therefore, the financial risk can be split into
two parts: investment risk, during the accumulation phase, and annuity risk, focused at retirement.
In order to limit the annuity risk — which is the risk that high annuity prices (driven by low bond
yields) at retirement can lead to a lower than expected pension income — in many schemes the
member has the possibility of deferring the annuitization of the accumulated fund. This possibility
consists of leaving the fund invested in financial assets as in the accumulation phase, and allows
for periodic withdrawals by the pensioner, until annuitization occurs (if ever). In UK this option is
named “income drawdown option”, in US the periodic withdrawals are called ”phased withdrawals”.

The current actuarial literature about the financial risk in defined contribution pension schemes is
quite rich. Papers dealing with the financial risk in DC schemes in the accumulation phase are,
for instance, Blake, Cairns and Dowd (2001), Booth and Yakoubov (2000), Boulier, Huang and
Taillard (2001), Haberman and Vigna (2002), Khorasanee (1998) and Knox (1993). Arts and Vigna
(2003) and Chiarolla, Longo and Stabile (2004) analyze both the accumulation and the distribution
phase of a defined contribution pension scheme. The financial risk in the distribution phase of
defined contribution pension schemes has been dealt with in many papers, including: Albrecht and
Maurer (2002), Blake, Cairns and Dowd (2003), Gerrard, Haberman and Vigna (2004a), Gerrard,
Haberman, Højgaard and Vigna (2004b), Gerrard, Haberman and Vigna (2006), Kapur and Orszag
(1999), Khorasanee (1996), Milevsky (2001), Milevsky and Young (2002), Milevsky, Moore and
Young (2006).

In this paper we assume that the retiree takes the income drawdown option: she defers the annu-
itization, meanwhile consumes some income withdrawn from the fund and invests the remainder of
the fund. Such a pensioner has three principal degrees of freedom:

1 she can decide what investment strategy to adopt in investing the fund at her disposal;

2 she can decide how much of the fund to withdraw at any time between retirement and ultimate
annuitization (if any);

3 she can decide when to annuitize (if ever).

The first two choices represent a classical inter-temporal decision making problem, which can be
dealt with using optimal control techniques in the typical Merton (1971) framework (see Gerrard et
al. (2006) for an example), whereas the third choice can be tackled by defining an optimal stopping
time problem.

In this paper, we formulate a combined stochastic control and optimal stopping problem with the
aim of outlining a decision tool that could help members of DC schemes in making their decisions
regarding the three choices outlined above. The third choice, when to annuitize, has been analyzed
with different approaches, for example, by Blake et al. (2003), Stabile (2006), Milevsky et al. (2006)
and Milevsky and Young (2007). In this paper we find closed form solutions in terms of two constants
z0, z

∗ defined as solutions of given equations. We state and prove an algorithm for numerical
solutions for z0, z

∗ and apply this algorithm for numerical investigations of the optimization problem
and its solution. As far as we know, the problem of optimal annuitization in the presence of quadratic
loss functions have not been tackled yet in the literature of defined contribution pension schemes.
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On the other hand, we regard quadratic loss functions which are target-depending as appropriate
for defined contribution pension schemes, for they have proven to produce optimal portfolios that
are efficient in the mean-variance setting (see Højgaard and Vigna (2007)). The main contribution
of this paper to the current actuarial literature on pension funds is the solution in closed form of
the optimal annuitization time problem in the presence of quadratic loss functions.

The remainder of the paper is organized as follows: section 2 outlines the general model, section 3
treats the model with quadratic utility functions, in which case a solution is constructed. In section
4 we verify that the constructed solution does solve the optimization problem. Section 5 presents
some numerical investigations of the problem and section 6 concludes.

2 The general model

2.1 Basics

A pensioner has a lump sum of size x(0) at time 0, which can be invested either in a riskless asset
paying interest at fixed rate r or in a risky asset, whose price evolves as a geometric Brownian
motion with parameters λ and σ. The pensioner’s force of mortality is supposed constant, equal to
δ.

Up until the time of annuitization, the pensioner can choose what proportion of the fund to invest
in the risky asset and can choose how much to withdraw from the fund. She is also able to select
the time of eventual annuitization. The size of the annuity purchasable with sum x is kx, where
k > r.

If the amount of money in the fund is ever exhausted, no further investment or withdrawal is
permitted.

The pensioner derives utility U1(b) from a payment of size b before annuitization, U2(kx) from
the same payment after annuitization. The introduction of two utility functions is to account for
the fact that she might be wary of withdrawing money from the fund when this will increase the
probability of ruin. Both U1 and U2 are assumed concave (but not necessarily strictly concave).

Notation:

• TD is the pensioner’s time of death, as measured from the time when the lump sum is received

• T is the time of annuitization

• T0 is the time when the fund goes below 0

• x(t) is the size of the fund at time t (where t < min(T, TD, T0))

• y(t) is the proportion of the fund invested in the risky asset at time t

• b(t) dt is the income withdrawn from the fund between time t and time t + dt.

We thus investigate the problem of choosing two continuous control variables, y(t) and b(t), and a
stopping time, T , in such a way as to maximise the expectation of

∫ TD∧τ

0
e−ρtU1

(
b(t)

)
dt + 1τ<TD

∫ TD

τ
e−ρtU2

(
kx(τ)

)
dt, (2.1)
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where τ = T ∧ T0, ρ is a subjective discount factor and the updating equation for x is

dx(t) = −b(t) dt + y(t)x(t)
(
λ dt + σ dB(t)

)
+ r

(
1− y(t)

)
x(t) dt, (2.2)

where B(·) represents a standard Brownian motion.

Since mortality is assumed to operate independently of the evolution of the fund level, we can
instead use the expecation of (2.1) with respect to the time of death as the objective function:

∫ τ

0
e−(ρ+δ)tU1

(
b(t)

)
dt +

e−(ρ+δ)τ

ρ + δ
U2

(
kx(τ)

)
. (2.3)

The operation of such a scheme may be subject to local regulation:

• b(t) may be restricted to lie in a given range (bmin, bmax), with both minimum and maximum
values dependent on x(0);

• there may be an upper limit on T , for example if pensioners are required to purchase an
annuity by a given age;

• the investment strategy y(t) may be constrained to be non-negative or to be no greater than
unity, depending on rules regarding the possibility of short selling of risky assets or borrowing
to fund additional equity purchases.

However, in this paper we treat only the situation of unconstrained controls.

Definition 1 (Admissible controls) A control strategy ({b(t) : t ≥ 0}, {y(t) : t ≥ 0}, T ) is admis-
sible if

a) {b(t) : t ≥ 0}, {y(t) : t ≥ 0} and T are all adapted to the filtration generated by {(x(t), B(t)
)

:
t ≥ 0};

b) There is some constant C0 < ∞ such that, with probability 1, |y(t)x(t)| ≤ C0 for all t ≤ T .

Let V0(t, x) denote the supremal expected reward from time t onwards, given that the pensioner is
still alive at that time and that x(t) = x. Then we have

V0(t, x) = max

{
e−(ρ+δ)t

ρ + δ
U2(kx), V0 + sup

b,y

[
e−(ρ+δ)tU1(b) +

∂V0

∂t
+ Lb,yV0(t, x)

]}
, (2.4)

where

Lb,yV0 = [−b + rx + (λ− r)xy]
∂V0

∂x
+ 1

2σ2x2y2 ∂2V0

∂x2
. (2.5)

The compulsory termination of activity in the event of ruin implies that V0(t, 0−) = e−(ρ+δ)tU2(0)/(ρ+
δ).

As the mechanism governing the evolution of the fund is time-homogeneous, we may deduce that
V0 takes the form

V0(t, x) = e−(ρ+δ)tV (x), (2.6)

so that, for each x ≥ 0, either

V (x) ≥ U2(kx)
ρ + δ

and sup
b,y

[
U1(b)− (ρ + δ)V + Lb,yV

]
= 0 (2.7)
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or

V (x) =
U2(kx)
ρ + δ

and sup
b,y

[
U1(b)− (ρ + δ)V + Lb,yV

]
≤ 0 (2.8)

A point x will be said to be in the continuation region if the first of these is the case, or in the
stopping region if the second is true.

In Appendix A we prove the verification theorem which states conditions under which a function
which satisfies (2.7) and (2.8) is the optimal value function.

2.2 Solution within the continuation region

If x is in the continuation region, then

sup
b,y

[
U1(b)− (ρ + δ)V (x) + [−b + rx + (λ− r)xy]V ′(x) + 1

2σ2x2y2V ′′(x)
]

= 0.

We assume that there are no restrictions on y and b. The optimizing value of y is therefore

y∗ = y∗(x) = −(λ− r)V ′(x)
σ2xV ′′(x)

, (2.9)

as long as V ′′(x) < 0. We shall be assuming that this holds for all x, i.e. that V is concave
throughout the continuation region, otherwise there is no finite maximum for y.

The optimal value of b depends on the form of U1, but we can write

b∗ = b∗(x) = arg sup
b

[U1(b)− bV ′(x)]. (2.10)

Therefore

U1

(
b∗(x)

)− (ρ + δ)V (x)− (
b∗(x)− rx

)
V ′(x)− 1

2β2 V ′(x)2

V ′′(x)
= 0, (2.11)

where β denotes the Sharpe ratio, β = (λ− r)/σ.

We make use of a method illustrated by Karatzas, Lehoczky, Sethi and Shreve (1986) (see also Xu
and Shreve (1992) and references therein): we introduce the dual problem by defining a function
X(z) to be the inverse of V ′, so that

V ′(X(z)
)

= z and V ′′(X(z)
)

= 1/X ′(z).

The concavity of V implies that X is a decreasing function of z. We may then rewrite (2.7) as

U1

(
b∗

(
X(z)

))− zb∗
(
X(z)

)
+ rzX(z)− (ρ + δ)V

(
X(z)

)− 1
2β2z2X ′(z) = 0. (2.12)

The next step is to differentiate this equation with respect to z to obtain

1
2β2z2X ′′(z) + (ρ + δ + β2 − r)zX ′(z)− rX(z) = −b∗

(
X(z)

)
. (2.13)

The complementary function is of the form

X(z) = C1z
α1 + C2z

α2 , (2.14)
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where α1 > α2 are the two roots of the quadratic

P (α) = 1
2β2α2 + (ρ + δ + 1

2β2 − r)α− r.

Observe that the coefficient of α2 in P (α) is positive and that P (0) < 0, P (−1) = −(ρ + δ) < 0.
Therefore one root is positive, the other below −1. We assume that α1 > 0 > −1 > α2.

Let us denote the particular solution by ξ(z). Thus the general solution takes the form

X(z) = ξ(z) + C1z
α1 + C2z

α2 , (2.15)

V
(
X(z)

)
=

1
ρ + δ

[
η(z) + C1

(
r − 1

2β2α1

)
zα1+1 + C2

(
r − 1

2β2α2

)
zα2+1

]
, (2.16)

where
η(z) = U1

(
b∗

(
X(z)

))− zb∗
(
X(z)

)
+ rzξ(z)− 1

2β2z2ξ′(z).

In the following sections we consider a special case, minimizing quadratic disutility functions, as
treated in Gerrard et al. (2004b).

3 Quadratic model

3.1 Basics

In the formulation of the problem and the choice of the disutility function, we follow Gerrard et
al. (2004b). We investigate the problem of choosing two continuous control variables, y(t) and b(t),
and a stopping time, τ , in such a way as to minimise the expectation of

v

∫ τ

0
e−(ρ+δ)t (b0 − b(t))2 dt +

we−(ρ+δ)τ

ρ + δ
(b1 − kX(τ))2 ,

where τ = min(T, T0), v and w are weights, k is the amount of annuity which can be purchased
with one unit of money, and the updating equation for x is

dx(t) = −b(t) dt + y(t)x(t)(λ dt + σ dB(t)) + r(1− y(t))x(t) dt.

This choice corresponds to U1(b) = v(b0 − b)2 and U2(kx) = w(b1 − kx)2.

The amount b0, the income target until the annuity is purchased, will in many cases be equal
to kx0, the size of the annuity which could have been purchased if the retiree had annuitised imme-
diately on retirement. This choice is reasonable, for UK regulations specify that the income drawn
down from the fund before annuitisation cannot exceed kx0.

The process evolves until either it is advantageous to annuitise or the fund falls to a negative value,
in which case no further trading is permitted. The loss associated with annuitisation when the level
of the fund is x, so that the annuity pays kx per unit time, is

K(x) =
w

ρ + δ
(b1 − kx)2. (3.1)

Remark 1
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• The fact that annuitisation is compulsory when the fund level goes below zero implies that
V (0−) = K(0) = wb2

1/(ρ + δ).

• It is always possible to consume the interest received on the fund without investing in the
risky asset. Therefore V (x) ≤ v(b0 − rx)2/(ρ + δ).

• It is always optimal to purchase an annuity if the fund level reaches b1/k, since no further
losses will be incurred in this case. If the fund level is above b1/k, the investor can consume
at rate b0 then purchase an annuity if the fund level ever falls to b1/k. Similarly, if the fund
level is above b0/r, she can consume b0 without diminishing her fund. Therefore

V (x) = 0 for x ≥ min
(

b0

r
,
b1

k

)
.

• We assume that there is neither utility nor loss associated with the event of death before
annuitisation.

Since the difference between b0/r and b1/k appears often, we define it:

D
def
=

b0

r
− b1

k
. (3.2)

The formulation of the problem makes the possibility that D < 0 very atypical. In fact, typically
the starting wealth is x0 = b0

k < b0
r . In other words, the initial fund gives the possibility to buy a

lifetime annuity of size b0 which costs less than a perpetuity of size b0. If b0
r < b1

k , the fund should
cross b0

r before hitting the desired level b1
k . If the fund reaches b0

r , then, as noted above, it is optimal
to invest the whole portfolio in the riskless asset and consume b0, which gives to the pensioner
the same outcome of immediate annuitization at retirement. Therefore, it would be impossible to
reach the real goal which is being able to afford an annuity of size b1 > b0. Considering the fact
that the utility from bequest in case of death before annuitization is here disregarded, immediate
annuitization would then be preferable to the optimization program because it would avoid the ruin
possibility. Thus the choice D < 0, although perfectly admissible from a mathematical point of
view, is not realistic in this context. For this reason, we will henceforth assume that D > 0.

3.2 The value function

The continuation region U is defined by

U := {x ∈ R : V (x) < K(x)}

By application of (2.7), (2.8), and Theorem 12 in the Appendix, we will show that the value function
of the problem satisfies the following variational inequality (HJB equation)

LV (x) = 0 and V (x) ≤ K(x) for x ∈ U
LV (x) ≥ 0 and V (x) = K(x) for x ∈ U c (3.3)

where
LV (x) = inf

b,y
[v(b0 − b)2 − (ρ + δ)V (x) + Lb,yV (x)] (3.4)

and where Lb,y, as before, is the linear differential operator

Lb,yV (x) = [−b + (λ− r)yx + rx]V ′ + 1
2σ2y2x2V ′′.
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In that part of the continuation region that lies between 0 and b1
k the optimal controls are given by

y∗(x) = −(λ− r)V ′(x)

σ2xV ′′(x) , (3.5)

b∗(x) = b0 +
1
2v

V ′(x)
, (3.6)

and the optimal stopping time τ∗ is given by

τ∗ = inf{t ≥ 0 : x(t) /∈ U}.

One of the difficult tasks consists in finding the continuation region U . However, exploiting the
previous remark, we can prove the following:

Lemma 2 The continuation region U contains the set ( b1
k , +∞), but b1

k ∈ U c.

Therefore the only region where the problem is interesting is
[
0, b1

k

)
.

Lemma 3 If the set U0 is defined by

U0 = {x ∈ R : LK(x) < 0} (3.7)

then U0 ⊆ U .

Proof. If x ∈ U c then V (x) = K(x) and LV (x) ≥ 0, from which it follows that LK(x) ≥ 0, i.e.,
x ∈ U c

0 .

Typically, one obtains information on the continuation region U by first analyzing the set U0.

3.3 The analysis of the set U0

The set U0 under study is:
U0 = {x : LK(x) < 0}

LK(x) = inf
b,y

{
v(b0 − b)2 − (ρ + δ)K + [−b + (λ− r)yx + rx]K ′ + 1

2σ2y2x2K ′′} (3.8)

Given the form (3.1) of K(x), the minimising values of (3.8) are:

b̂(x) = b0 − kw

v(ρ + δ)
(b1 − kx)

ŷ(x) = β
b1 − kx

σkx
.

By substitution, after some algebra, we obtain:

U0 = {x : w(b1 − kx) [2krD − φ(b1 − kx)] < 0} , (3.9)

where D is given by (3.2), and

φ = ρ + δ + β2 − 2r + k2 w

v(ρ + δ)
. (3.10)
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Lemma 14, proved in Appendix B, allows us to deduce that the optimal behaviour when φ <
2krD/b1 is to purchase an annuity immediately, regardless of the value of x, so that V (x) = K(x)
for this range of values of φ. We therefore restrict attention to the case φ ≥ 2krD/b1.

In this case,

U0 =
(
−∞,

b1

k
− 2rD

φ

)
∪

(
b1

k
,+∞

)

and therefore

U ⊇
[
0,

b1

k
− 2rD

φ

)
∪

(
b1

k
, +∞

)
(3.11)

3.4 Solution within the continuation region

In the continuation region, the value function satisfies (see (3.3)):

1
2β2 (V ′)2

V ′′ +
1
4v

(V ′)2 + (b0 − rx)V ′ + (ρ + δ)V = 0. (3.12)

The optimal proportion of the fund to invest in the risky asset and optimal income to draw down are
given by (3.5) and (3.6), respectively. By application of the methodology illustrated in the general
case, we define in this case X to be the negative of the inverse of V ′, so that

V ′(X(z)
)

= −z.

The corresponding wealth function is:

X(z) =
b0

r
− z

2v(r − γ)
+ C1z

α1 + C2z
α2 , (3.13)

where γ is given by
γ = ρ + δ + β2 − r. (3.14)

and C1 and C2 are constants to be determined by the boundary conditions. The corresponding
value function is:

V
(
X(z)

)
=

z2

4v(r − γ)
− 1

ρ + δ

[
A1C1z

1+α1 + A2C2z
1+α2

]
, (3.15)

where
A1 = r − 1

2β2α1, A2 = r − 1
2β2α2. (3.16)

Notice that the coefficients A1 and A2 are both positive. In fact, P (2r/β2) > 0, so that αi < 2r/β2

for i = 1, 2, thus Ai = r − 1
2β2αi > 0 for both i.

The optimal control functions can then be written as

y∗(X(z)) = −β

σ

zX ′(z)
X(z)

(3.17)

b∗(X(z)) = b0 − z

2v
(3.18)
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3.5 The boundary of the continuation region

According to (3.11), the form of the continuation region U is

U = [0, x∗) ∪ (x̃,+∞),

where x∗ ≥ b1
k − 2rD

φ and x̃ ≤ b1
k . We begin by investigating x̃.

Lemma 4 x̃ = b1
k .

Proof. Since V (x) ≤ K(x), from K(b1/k) = K ′(b1/k) = 0 it follows that V (b1/k) = V ′(b1/k) =
0. Suppose that every interval of the form (b1/k − ε, b1/k) (for ε > 0) contains an element of U .
Then letting ε → 0 implies the existence of a z such that X(z) = b1/k satisfying z = −V ′(b1/k) = 0.
However, if z = 0, then X(z), which is given by (3.13), cannot be equal to b1/k. This contradiction
shows that the assumption was false. Therefore, for sufficiently small ε,

(
b1

k
− ε,

b1

k

)
⊂ U c,

and we conclude that x̃ cannot be less than b1/k. 2

Intuitively, this result can be explained by observing that if x̃ were strictly lower than b1
k , then

b1
k would stay in U , which is absurd, since it is clear that when reaching b1

k one should stop invest-
ing and annuitize to get zero loss.

It remains to determine x∗. One obvious characteristic is that

V (x∗) = K(x∗). (3.19)

In addition, we may apply the “smooth fit principle” (see Shiryaev (2008)) to obtain the further
condition that

V ′(x∗) = K ′(x∗). (3.20)

If we define z∗ by z∗ = −V ′(x∗), so that X(z∗) = x∗, then these two boundary conditions (3.19)
and (3.20) can be written in the form

−z∗=−2kw
ρ+δ (b1 − kx∗)

w
ρ+δ (b1 − kx∗)2 = z2∗

4v(r−γ) − 1
ρ+δ

[
A1C1z

1+α1∗ + A2C2z
1+α2∗

]

x∗= b0
r − z∗

2v(r−γ) + C1z
α1∗ + C2z

α2∗

(3.21)

In addition, we require a boundary condition at x = 0. Since the pensioner is forced to purchase an
annuity as soon as the fund becomes negative, one possible boundary condition is that V (0) = K(0).
A solution to the problem which satisfies this boundary condition will be called a Type 1 solution.

However, this is not the only possibility, since there exist strategies which ensure that the fund level
never falls below 0. For example, the pensioner could stop investing in the risky asset as soon as
x falls below ε, and instead consume only the interest on the fund. This leads to a penalty equal
to vb2

0/(ρ + δ) when x = 0, which may be strictly less than K(0). Such a solution will be called a
Type 2 solution, and is characterized by the condition limx→0 xy∗(x) = 0, or, in other words, due
to (3.17), there exists a value of z such that both X(z) = 0 and X ′(z) = 0.
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It is then clear that if
v

w
<

(
b1

b0

)2

(3.22)

then solution Type 1 will not be feasible.

Although in general the solution X(z) of (3.13) might not hit zero, any version of X which might
be considered as a solution to the current problem must hit 0 at some point. We therefore define
z0 = inf{z > 0 : X(z) = 0}, so that

b0

r
− z0

2v(r − γ)
+ C1z

α1
0 + C2z

α2
0 = 0. (3.23)

Then the boundary condition at z0 corresponding to a Type 1 solution, V (0) = K(0) is

z2
0

4v(r − γ)
− 1

ρ + δ

[
A1C1z

1+α1
0 + A2C2z

1+α2
0

]
=

wb2
1

ρ + δ
, (3.24)

while for a Type 2 solution the appropriate requirements, X ′(z0) = 0 and V (0) ≤ K(0), are

α1C1z
α1−1
0 + α2C2z

α2−1
0 = 1

2v(r−γ)

and
z2
0

4v(r−γ) − 1
ρ+δ

[
A1C1z

1+α1
0 + A2C2z

1+α2
0

]
≤ wb21

ρ+δ

(3.25)

3.6 Construction of a solution

The method of construction is to start with a candidate value zc for z∗, to derive appropriate values
of C1, C2 and z0 and to check whether this constitutes a solution to the problem.

Since b1
k > x∗ ≥ b1

k − 2rD
φ , we see from (3.21) that any solution z∗ must satisfy

0 < z∗ ≤ 4k2wrD

φ(ρ + δ)
= zU , say,

and so we choose zc in this range.

3.6.1 Signs of C1 and C2

From (3.21) it follows that the corresponding values of C1 and C2 must be

C1(zc) =
2zc

−α1

β2(α1 − α2)

[
−A2D − φ

(
r − γ + β2(1− α2)

)
(ρ + δ)

4k2w(γ − r)
zc

]
. (3.26)

C2(zc) =
2zc

−α2

β2(α1 − α2)

[
A1D + φ

(
r − γ + β2(1− α1)

)
(ρ + δ)

4k2w(γ − r)
zc

]
(3.27)

After some algebra, one can prove that r − γ + β2(1− α2) > 0 and that r − γ + β2(1− α1) > 0 if
and only if r > γ. From this, it is possible to prove that C2(zc) > 0 if and only if

zc <
4k2wD

φ(ρ + δ)
(
r + 1

2β2α1

)
= zU

(
1 +

β2

2r
α1

)
, (3.28)

so this is always true for the range of values of zc under consideration.

By means of a similar argument we find that C1(zc) > 0 if and only if

r > γ and zc > zU

(
1 +

β2

2r
α2

)
. (3.29)

10



3.6.2 Behaviour of the function X(z)

Recall equation (3.13) giving the solution for X(z). Since X(z) depends on C1 and C2, we can
regard it, too, as a function of zc, denoted as X(z; zc). Notice that limz→0 X(z; zc) = +∞, as
α2 < 0 and C2(zc) > 0.

Now observe that

∂2X

∂z2
(z; zc) = α1(α1 − 1)C1(zc)zα1−2 + α2(α2 − 1)C2(zc)zα2−2. (3.30)

By investigating P (1) we see that α1 > 1 ⇐⇒ r > γ. Combining this result with (3.29), we notice
that we have to consider three possible situations.

Situation 1: If r < γ then 0 < α1 < 1 and C1(zc) < 0, so the right hand side of (3.30) is positive,
implying that X is convex, viewed as a function of z. In addition, X(z; zc) = z

2v(γ−r)(1 + o(1)) as
z →∞. Therefore X has a unique minimum value for each fixed zc.

Situation 2: If r > γ and zc > zU (1 + 1
2β2α2/r) then α1 > 1 and C1(zc) > 0, again implying that

X is convex. In this case X(z; zc) = C1(zc)zα1(1+o(1)) as z →∞. Therefore X again has a unique
minimum value for each zc.

Situation 3: If r > γ and zc < zU (1 + 1
2β2α2/r). In this case C1(zc) < 0 and we conclude that

∂X
∂z (z; zc) < 0 for all z; indeed, as z →∞, X(z; zc) = C1(zc)zα1

(
1 + o(1)

) → −∞.

Notice that in situation 3 one can only have Type 1 solution, whereas situations 1 and 2 allow
for both types of solution.

On differentiating (3.26) and (3.27), we find that

dC1

dzc
=

2(1 + α1)
β2(α1 − α2)

· φ(ρ + δ)zc
−(1+α1)

4k2w
(zU − zc) (3.31)

dC2

dzc
= − 2(1 + α2)

β2(α1 − α2)
· φ(ρ + δ)zc

−(1+α2)

4k2w
(zU − zc). (3.32)

For a fixed value of z we obtain

∂

∂zc
X(z; zc) =

2
β2(α1 − α2)

· φ(ρ + δ)zc
−1

4k2w
(zU − zc)

{
(1 + α1)

(
z

zc

)α1

− (1 + α2)
(

z

zc

)α2
}

.

Every term is positive. So, as we decrease zc, the value of X(z; zc) also decreases for each fixed z.
We can conclude that infz≥0 X(z; zc) decreases as zc decreases.

Proposition 5 For zc sufficiently small, infz>0 X(z; zc) < 0.

Proof. We can write

X(z; zc) =
b0

r
− z

2v(r − γ)
+ C1(zc)zα1 + C2(zc)zα2

=
b0

r
− z

2v(r − γ)
+

2
β2(α1 − α2)

(
z

zc

)α1
[
−A2D − φ

(
r − γ + β2(1− α2)

)
(ρ + δ)

4k2w(γ − r)
zc

]

+
2

β2(α1 − α2)

(
z

zc

)α2
[
A1D + φ

(
r − γ + β2(1− α1)

)
(ρ + δ)

4k2w(γ − r)
zc

]

=
b0

r
− ζzc

2v(r − γ)
+

2
β2(α1 − α2)

{ζα1 [−A2D + d2zc] + ζα2 [A1D + d1zc]} ,
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where ζ = z/zc, and d1, d2 are constants. Since A2 > 0, we can choose ζ sufficiently large that

2D

β2(α1 − α2)
[−A2ζ

α1 + A1ζ
α2 ] < −4

b0

r
.

Now choose zc sufficiently small that

max
{

2|d2|zc

β2(α1 − α2)
ζα1 ,

2|d1|zc

β2(α1 − α2)
ζα2

}
<

b0

r
.

If r − γ > 0 then it is easily seen that X(z; zc) < 0. If, on the other hand, r − γ < 0 then choose z
so small that ζzc

2v(r−γ) < b0
r . Then X(ζzc; zc) < 0, as required.2

To begin the construction process, we set zc = zU , so that X(z; zU ) is a convex function of z and
has a unique minimum. Depending on the sign of r−γ, we are then either in situation 1 or 2. What
happens next depends on whether infz≥0 X(z; zU ) is positive or negative.

Case 1: infz≥0 X(z; zU ) ≥ 0

In this case we can progressively reduce zc, which in turn reduces the minimum value of X(z; zc),
until zc is just large enough that infz X(z; zc) = 0, in other words, that ∂

∂zX(z; zc) = 0 at exactly
the point when X(z; zc) = 0: let zM denote the value of zc when this occurs. If, in this case,
V (0; zM ) ≤ K(0), then the boundary conditions (3.25) are satisfied, so we have a Type 2 solution
and the problem is solved: z∗ is equal to zM and z0 is arg minX(z; zM ).

If, however, V (0; zM ) > K(0), then no Type 2 solution is possible, but we can still seek a Type
1 solution (notice that in this case (3.22) is violated). To this end, we continue to reduce zc. For
each zc, define z0(zc) = inf{z ≥ 0 : X(z; zc) ≤ 0}. Then z0 is a decreasing function of zc. Consider
V (0; zc)−K(0): by assumption this is positive when zc = zM .

z0 is given by 0 = b0
r − z0

2v(r−γ) + C1z
α1
0 + C2z

α2
0 . This implies that

0 =
[
− 1

2v(r − γ)
+ α1C1z

α1−1
0 + α2C2z

α2−1
0

]
∂z0

∂zc
+ zα1

0

∂C1

∂zc
+ zα2

0

∂C2

∂zc

=
[
− 1

2v(r − γ)
+ α1C1z

α1−1
0 + α2C2z

α2−1
0

]
∂z0

∂zc
(3.33)

+
2φ(ρ + δ)

4k2wβ2(α1 − α2)zc
(zU − zc)

{
(1 + α1)

(
z0

zc

)α1

− (1 + α2)
(

z0

zc

)α2
}

In addition, V (0; zc) = z2
0

4v(r−γ) − (ρ + δ)−1[A1C1z
1+α1
0 + A2C2z

1+α2
0 ]. This implies that

∂

∂zc
V (0; zc) =

{
z0

2v(r − γ)
− (ρ + δ)−1[(1 + α1)A1C1z

α1
0 + (1 + α2)A2C2z

α2
0 ]

}
∂z0

∂zc

− (ρ + δ)−1

[
A1z

1+α1
0

∂C1

∂zc
+ A2z

1+α2
0

∂C2

∂zc

]

=
{

z0

2v(r − γ)
− α1C1z

α1
0 − α2C2z

α2
0

}
∂z0

∂zc
(3.34)

− 2φ(ρ + δ)
4k2wβ2(α1 − α2)

(zU − zc)

{
α1

(
z0

zc

)1+α1

− α2

(
z0

zc

)1+α2
}

Putting these together gives

∂

∂zc
V (0; zc) =

2φ(ρ + δ)
4k2wβ2(α1 − α2)

(zU − zc)

{(
z0

zc

)1+α1

−
(

z0

zc

)1+α2
}
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Every term on the right hand side is positive, so V (0; zc) is an increasing function of zc: as zc

decreases, V (0; zc) also decreases. There may come a value of zc at which V (0; zc) = K(0). If so,
the boundary condition (3.24) is satisfied and we have a Type 1 solution to the problem, since by
construction X ′(z) < 0 for all z < z0.

We should check that V (0; zc) really does reach K(0) eventually. Let us consider what happens
when zc is close to 0. In this case

C2(zc) =
2A1Dzc

−α2

β2(α1 − α2)
(1 + O(zc)), C1(zc) = − 2A2Dzc

−α1

β2(α1 − α2)
(1 + O(zc))

and therefore

X(z; zc) =
b0

r
− ζzc

2v(r − γ)
+

2D

β2(α1 − α2)
[A1ζ

α2 −A2ζ
α1 ] + O(zc),

where ζ = z/zc. This implies that z0(zc) = ζ0zc(1 + O(zc)), where ζ0 is the solution to

2D

β2(α1 − α2)
[A2ζ

α1 −A1ζ
α2 ] =

b0

r
.

(This definitively does have a solution ζ0 > 1 because putting ζ = 1 on the left hand side gives D,
which is less than b0/r, whereas when ζ →∞ the left hand side diverges to +∞.)

Now

V (0; zc) = V ◦X(z0(zc); zc) =
ζ2
0zc

2

4v(r − γ)
+

2A1A2Dζ0zc

β2(α1 − α2)(ρ + δ)
[ζα1

0 − ζα2
0 ] + O(zc)

Therefore limzc→0 V (0; zc) = 0 < K(0), as required.

Case 2: infz≥0 X(z; zU ) < 0

In this case no Type 2 solution is possible. We define z0(zc) as above. If V ◦X(z0(zU ); zU ) < K(0),
then no Type 1 solution is possible either, since reducing the value of zc below zU will only have
the effect of decreasing V (0; zc), and there will be no value of zc which gives V (0; zc) = K(0). If,
however, V ◦X(z0(zU ); zU ) ≥ K(0), then progressively reducing zc will eventually result in a value
such that V ◦X(z0(zc); zc) = K(0), which corresponds to a Type 1 solution.

3.7 Optimal consumption at z0

What is the optimal consumption whenever ruin occurs? The answer is different depending on
whether we have a solution Type 1 or 2.

Let us define
zneg := 2vb0

It is clear from (3.18) that b∗(X(zneg)) = 0 and b∗(X(z)) < 0 for z > zneg, i.e. the optimal
consumption is negative for z > zneg. This in turn implies that in a solution Type 2 it must be

zneg ≤ z0

To show this, let us recall that
V (x) = min

π(·)
J(x; π(·)) (3.35)
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where J(x; π(·)) is the optimality criterium under strategy π(·). Call π̃(·) the null strategy, i.e.
under π̃(·) the portfolio is invested entirely in the riskless asset and the consumption is null. If we
are at 0 at time t in a solution Type 2 problem, then it cannot be b∗(0) > 0. In fact, assume that
b∗(0) > 0. Since we know by construction that the portfolio is entirely invested in the riskless asset,
we would have immediate ruin, implying optimal annuitization:

V (0) = K(0)

However,

K(0) =
wb2

1

ρ + δ
>

vb2
0

ρ + δ
= J(0; π̃(·)),

in contradiction with (3.35). Therefore in a solution Type 2 optimal consumption at z0 cannot be
strictly positive.

Alternatively, we can notice that if we have a Type 2 solution, we are either in situation 1 or
situation 2, which means that X(z) is convex in z, tends to infinity when z goes to 0 and to infinity,
and the minimum of X(z) is zero and is reached in z = z0, i.e.

min
z≥0

X(z) = X(z0) = 0. (3.36)

If it was zneg > z0, then at z0 the positive consumption, coupled with the fund equal to 0 and the
optimal portfolio entirely invested in the riskless asset, would push the fund below zero, contrary
to (3.36).

While in a solution Type 2 at z0 the optimal consumption is bound to be either negative or null, this
does not apply to solution Type 1, when the optimization program stops and optimal annuitization
occurs as soon as the fund goes below zero. In solution Type 1, then, optimal consumption at z0

can be positive, in which case is positive for all permitted values of z.

Finally, let us remark that in a problem with Type 2 solution the optimal consumption is neg-
ative for fund size lower than X(zneg), i.e. b∗(x) < 0 for x < X(zneg). Then, X(zneg) acts as a sort
of undesirable barrier for the fund, below which the optimal consumption rule states to pay money
into the fund instead of withdrawing it. Optimal negative consumption in the de-cumulation phase
of DC schemes was already observed in Gerrard et al. (2006).

4 Application of the verification theorem

We are now in a position to state and prove a theorem showing that the constructed solution satisfies
the verification theorem (Theorem (12)).

Theorem 6 Assume that D > 0 and that φ ≥ 2krD/b1. Suppose that there exist constants C1, C2,
z0 and z∗ with 0 < z∗ < z0 < ∞, such that the function X(z) given by (3.13) satisfies the boundary
conditions (3.21), (3.23) and either (3.24) or (3.25).

Then

(i) For each z ∈ (z∗, z0) there is a corresponding x ∈ (0, x∗) such that X(z) = x;
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(ii) the function V given by

V (x) = 0 for x ≥ b1
k

V (x) = K(x) for x∗ ≤ x ≤ b1
k

V
(
X(z)

)
is given by (3.15) for z∗ ≤ z ≤ z0

(4.1)

is the optimal value function;

(iii) the optimal time to annuitise is τ∗ = inf{t : x(t) ∈ U c}, where the continuation set U is given
by

U = [0, x∗) ∪
(

b1

k
,∞

)
;

(iv) for values of x belonging to [0, x∗), the optimal controls are given by

y∗(t) = −λ− r

σ2
· V ′(x(t)

)

x(t)V ′′(x(t)
) , b∗(t) = b0 +

1
2v

V ′(x(t)
)
.

In order to prove the theorem we need to prove the following proposition.

Proposition 7 Suppose (C1, C2, z0, z∗, x∗) constitutes either a Type 1 solution or a Type 2 solution
constructed as above. Then

a) −∞ < X ′(z) < 0 for z∗ ≤ z < z0;

b) V (x)−K(x) ≤ 0 for 0 ≤ x ≤ x∗.

Proof.
a) This follows directly by the construction of the solution. In fact, if we are in situation 1 or 2 and
we have a solution Type 2, then X(z) is decreasing until the minimum reached in z = z0. If we
have a solution Type 1, then the minimum of X(z) is negative and z0 is defined as the minimum
point z where X(z) crosses 0. Therefore, X(z) is decreasing between 0 and z0. Finally, if we are in
situation 3, then X ′(z) < 0 for all z > 0.

b) The proof consists of a series of lemmas.

Lemma 8 Suppose there exists x̃ ∈ (0, x∗) such that

V ′(x) ≤ K ′(x) for 0 < x < x̃
V ′(x) ≥ K ′(x) for x̃ < x < x∗. (4.2)

Then
V (x)−K(x) ≤ 0 for 0 ≤ x ≤ x∗.

Proof. We know that V (0)−K(0) ≤ 0 and V (x∗) = K(x∗). For any x ∈ (0, x̃],

V (x)−K(x) = V (0)−K(0) +
∫ x

0
(V ′(s)−K ′(s)) ds ≤ 0;

similarly, for any x ∈ (x̃, x∗),

V (x)−K(x) = −
∫ x∗

x
(V ′(s)−K ′(s)) ds ≤ 0

2
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Lemma 9 Define F (z) = V ′(X(z)
)−K ′(X(z)

)
for z ∈ (z∗, z0).

(a) If F (z) > 0 for z∗ < z < z0, then V (x) ≤ K(x) for 0 < x < x∗.
(b) If F is concave on (z∗, z0), then either there exists x̃ ∈ (0, x∗) such that the condition (4.2) is
satisfied or F is strictly positive on (z∗, z0).

Proof. (a) V (X(z))−K(X(z)) =
∫ z
z∗ [V

′(X(ζ))−K ′(X(ζ))]X ′(ζ) dζ =
∫ z
z∗ F (ζ)X ′(ζ) dζ ≤ 0.

(b) Suppose F is concave for z ∈ (z∗, z0). Recall that F (z∗) = V ′(X(z∗)) − K ′(X(z∗)) = 0 and∫ z0

z∗ F (z)X ′(z) dz = V (0) −K(0) ≤ 0. F cannot be strictly negative throughout (z∗, z0), since this
would violate the integral condition. Therefore either F is strictly positive or there exists some
z̃ ∈ (z∗, z0) such that F (z) is positive for z∗ < z < z̃ and negative for z̃ < z < z0. 2

Lemma 10 V ′(X(z)) − K ′(X(z)) is either concave for z ∈ (z∗, z0) or strictly positive for z ∈
(z∗, z0).

Proof.

F (z) = V ′(X(z))−K ′(X(z)) = −z +
2k2w

ρ + δ

(
b1

k
−X(z)

)

If either (a) r < γ or (b) r > γ and zU > z∗ > zU (1 + 1
2β2α2/r), then

F ′′(z) = −2k2w

ρ + δ
X ′′(z) < 0,

proving that F is concave.

If, on the other hand, r > γ and z∗ < zU (1 + 1
2β2α2/r), then C1 < 0 and

F ′(z) = −1−2k2w

ρ + δ

[
− 1

2v(r − γ)
+ α1C1z

α1−1 + α2C2z
α2−1

]
=

φ

r − γ
−2k2w

ρ + δ

[
α1C1z

α1−1 + α2C2z
α2−1

]
.

Every term on the right hand side is positive, so F is strictly increasing on the range (z∗, z0). As
F (z∗) = 0, it follows that F (z) > 0 for z∗ < z < z0. 2

The proof of (b) of the proposition is now straightforward by application of the previous lemmas.
2

4.1 Proof of Theorem 6

(i) is clear, since the function X(z) given by (3.13) is continuous and, due to Proposition 7, strictly
decreasing, hence invertible over the range.

(ii) In order to show that the function V defined in the Theorem is the optimal value function, we
need to show, first, that it satisfies (3.3). Second, that the controls specified in the Theorem are
admissible.

The first requirement is that

inf
b,y

{
Lb,yK − (ρ + δ)K +

v

ρ + δ
(b0 − b)2

}
≥ 0 for all x ∈ U c.

This is guaranteed by the fact that U c ⊂ U c
0 (see 3.7). Furthermore, V (x) = K(x) by definition.
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Next we need to show that

inf
b,y

{
Lb,yV − (ρ + δ)V +

v

ρ + δ
(b0 − b)2

}
= 0 for all x ∈ [0, x∗).

By construction, the function V does satisfy this condition as long as V ′′(x) > 0 for all x ∈ (0, x∗),
i.e., as long as V ′′(X(z)

)
> 0 for all z ∈ (z∗, z0). But V ′′(X(z)

)
= −1/X ′(z), so Proposition 7 is

sufficient to demonstrate that this is true.
Furthermore, again due to Proposition 7, we have V (x) ≤ K(x) for x ∈ (0, x∗).

Next we turn to the proof of admissibility. By construction, b∗(t) and y∗(t) are functions of x(t), and
τ∗ is adapted to the filtration generated by x(t). It therefore remains only to prove that |y∗(t)x(t)|
has a finite bound with probability 1. Under the stated policy, given that x(t) = x, we have

xy∗(x) = −λ− r

σ2
· V ′(x)
V ′′(x)

= −λ− r

σ2
zX ′(z),

Now |X ′| is a continuous function on a compact interval, so has a finite maximum, C0, say, over the
interval. Thus |y∗(t)x(t)| ≤ λ−r

σ2 C0z0 for all t ≤ τ∗.

(iii) follows from Theorem 12. Showing that U takes this shape is rather technical and follows from
the analysis contained in section 3.3.

(iv) follows from Theorem 12, by observing that b∗ and y∗ are the minimizers of LV (x).

This ends the proof. 2

5 Numerical applications

In this section we show two numerical applications of the model presented.

Firstly, with the help of a Perl program that finds the solution with the methodology described
in section 3.6 above, we have found the triplet solution (z0, z∗,x∗) with a number of different sce-
narios for market and demographic conditions as well as risk profiles. Recalling the form of the
continuation region U = [0, x∗), where x∗ < b1/k, it seems of crucial interest to study the depen-
dence of the width of the continuation region on the parameters of the problem. This is done by
analyzing the ratio x∗/(b1/k). Results are reported in section 5.1.

Secondly, we have chosen a typical scenario for all the parameters and have simulated the behav-
iour of the risky asset, by means of Monte Carlo simulations. We have then analyzed the optimal
investment/consumption strategies and the time of optimal annuitization as well as the size of the
annuity upon annuitization. We have also focused on the impact of optimal annuitization rules,
by comparing this model with a similar one that allows for fixed annuitization time. Results are
reported in section 5.2.

5.1 Dependence of the solution on the scenario

Recall that in a realistic setting some of the parameters are chosen by the retiree and some are
given.
Parameters that can be chosen are the weights given to penalty for running consumption, v, and
to penalty for final annuitization, w. We remark that the relevant quantity is the ratio of these
weights, w/v. Another parameter chosen by the retiree is the targeted level of annuity, b1, while it
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is reasonable to assume that the level of interim consumption b0 is given and depends on the size of
the fund at retirement. A typical choice for b0 is the size of annuity purchasable at retirement with
the initial fund x0. Thus, typically b1 is a multiple of b0, and the relevant quantity is (b1/b0) > 1. It
is easy to see this ratio as a measure of the risk aversion of the retiree: the higher b1/b0, the lower
the risk aversion and vice versa.
The parameters given are r, λ, σ (financial market), δ (demographic assumptions) and k (financial
and demographic assumptions).
A parameter that is somehow arbitrary and somehow given is ρ, the intertemporal discount factor:
although subjective by its own nature, in typical situations cannot differ too much from the riskfree
rate of return r. However, what is relevant in the problem is the sum ρ + δ, which measures the
patience of the retiree for future events, affected also by her age.

By varying the values of r ∈ (0.03, 0.05), λ ∈ (0.07, 0.12), σ ∈ (0.1, 0.25) (with these values,
the Sharpe ratio β varies between 0.08 and 0.9), ρ ∈ (0.03, 0.05), δ ∈ (0.005, 0.02), k ∈ (0.07, 0.1),
b1/b0 ∈ (1.2, 2), w/v ∈ (0.275, 1.25), and combining them in many possible ways, we have observed
the following results:

1. with typical values of the market parameters, situation 1 (r < γ) is the most likely to occur

2. the case of no solution seems to occur only with situation 2 (r > γ)

3. with typical values, solution Type 2 is the most frequent one

4. everything else being equal, solution Type 2 becomes solution Type 1 when

(a) decreasing β; furthermore, if β is reduced too much solution Type 1 becomes ”no solution”

(b) decreasing w
v

(c) decreasing b1
b0

(provided that the values of ρ and w
v are respectively high and low enough

to permit solution Type 1)

(d) increasing ρ + δ

5. everything else being equal, the ratio x∗
(b1/k) , i.e. the width of the continuation region

(a) increases by increasing β, in both solutions Type 1 and Type 2

(b) increases by increasing w
v , in both solutions Type 1 and Type 2

(c) increases by increasing b1
b0

, in both solutions Type 1 and Type 2

(d) generally slightly decreases by increasing ρ + δ when the problem has solution Type 2,
slightly increases by increasing ρ + δ when the problem has solution Type 1

The results 5a, 5b and 5c for solution Type 2 are illustrated in Figures 1, 2 and 3 respectively
(similar figures can be obtained for solution Type 1). For instance, Figure 1 reports β on the x-axis
and the ratio x∗

b1/k on the y-axis, the legenda reports the values of all the other relevant parameters
(left constant in order to isolate the effect of β on the width of the continuation region). All the
figures show two different lines to report some of the variety of combinations of parameters tested.
Similarly, Figure 2 reports w/v on the x-axis, and Figure 3 reports b1/b0 on the x-axis.
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The observed results can be explained. Due to 4a, 4b, 4c and 5a, 5b, 5c, it is clear that, every-
thing else being equal, by increasing either β or w/v or b1/b0 one passes from solution Type 1 to
solution Type 2 and the ratio x∗

(b1/k) , that determines the width of the continuation region, increases.

This shows that, in general, the continuation region is larger with solution Type 2 than with
solution Type 1.

The intuition behind this is that it is optimal for longer time to trade your own wealth if you
choose and/or are given a set of parameters that lead to solution Type 2 than if you are in a so-
lution Type 1 case. On the other hand, if you choose and/or are given a set of parameters that
lead your problem to a solution Type 1, then you are likely to annuitize earlier than if you are in
a solution Type 2 case. This is consistent also with the fact that annuitization occurs in solution
Type 1 also in the case of ruin, whereas it does not with a solution Type 2.

The dependence of the type of solution from the parameters is now easy to understand and ex-
plain. In fact, if β is high, the risky asset is good compared to the riskless one, and in this situation
it is reasonable to delay annuitization as much as possible (this result was also found in Gerrard
et al. (2004a)). If w/v is high, the penalty to be paid in case of annuitization before reaching
b1/k is high compared to that associated to the choice investment-and-consumption, which is then
preferable. If b1/b0 is high, the retiree has a low risk aversion, thus will be likely to take chances
in the financial market instead of locking her position into an annuity. Furthermore, higher values
of ρ + δ are associated to old retirees, who have higher force of mortality and higher subjective
discount factor (as they are less patient for future events), and it is reasonable to expect them to
be more willing to annuitize rather then continuing investing in the market.
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5.2 Simulations

In this application we consider the position of a male retiree aged 60, who retires with initial fund
x0 = 1000. We have selected the following values of the parameters:

r = 0.04, λ = 0.08, σ = 0.1, ρ + δ = 0.045, w = v = 0.04, b0 = 69.95, b1 = 120, k = 0.095

This implies

β = 0.4
w

v
= 1,

b1

b0
= 1.72,

b1

k
= 1263.16,

In turn, the solution (Type 2) is

x∗ = 1257.14,
x∗

b1/k
= 0.995

We have simulated the behaviour of the risky asset with Monte Carlo simulations in 1000 scenarios,
and in each scenario we have adopted the optimal investment and consumption strategies until
the minimum between time of annuitization and 15 years. The choice of a terminal time of the
optimization program is consistent with current regulation in UK, whereby annuitization becomes
compulsory at age 75.

An interesting result is that the probability of annuitization within 15 years from retirement is
88.60% and on average optimal annuitization occurs after 5.26 years after retirement. The mean
size of annuity is 90.39 and in 43.90% of the cases the annuity value lies between 90 and 100. More
detailed information can be gathered from the histograms of Figures 4 and 5 that report, respec-
tively, the distribution of time of optimal annuitization (measured in years from retirement) and
the distribution of size of final annuity. In Figure 5, the presence of a number of annuity values of
size lower than 60 is motivated by the cases in which optimal annuitization does not occur within
the time frame (114 cases out of 1000).
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Figure 6 reports some statistics (mean, standard deviation, 5th and 95th percentiles) of the optimal
consumption in the 15 years after retirement. The interim target consumption, b0 is reported for
comparison. We notice from (3.18) that optimal consumption cannot exceed b0. However, in Figure
6 we see that on average optimal consumption is higher than b0. This is due to the fact that here
in the 886 scenarios in which optimal annuitization occurs before age 75, the consumption reported
after annuitization time is the annuity value, which is always higher than b0. This highlights the
financial convenience for the retiree of deferment of annuitization until a more propitious time, in
this particular example. Last but not least, the event of negative consumption never occurs: in all
the 1000 simulations run the fund has always kept well above the undesirable level of fund below
which optimal consumption is negative (here equal to X(zneg) = 69.5).
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Similarly, Figure 7 reports some statistics (mean, standard deviation, 5th and 95th percentiles) of
the optimal fraction of portfolio to be invested in the risky asset over time. We notice that although
the control is not constrained between 0 and 1, the optimal y∗(t) is never negative. This interesting
and desirable feature comes directly from the form of the optimal control (3.17), observing that the
fund is by construction always non-negative and the function X(z) is decreasing. Let us notice that
this characteristic was also present in the model by Gerrard et al. (2006). Furthermore, on average
y∗(t) is decreasing from one to zero, and deviations above one, though undesirable, are not huge.
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Comparison with a model without optimal annuitization time.

It is now our aim to try to compare the results obtained in our model with a model that al-
lows for compulsory annuitization at terminal date without possibility of earlier annuitization. We
acknowledge that the comparison is very hard if not impossible to make because two different models
are considered. However, we think that an attempt to compare different choice models available to
the retiree can be useful to help the member in the decision of what model should be adopted. The
comparison is done with the model introduced by Gerrard et al. (2006), because this is the most
similar to the one presented here and the comparison allows us to isolate and measure the effect
of adopting optimal annuitization rules. In particular, by choosing, in the mentioned paper, u = 0
we have the same loss function. All the other parameters either have equal meaning or play similar
roles in the definition of the model. The main difference is, clearly, the absence in the mentioned
paper of an optimal exit from the optimization program, which is run until terminal time T , when
the fund is annuitized.

From now onwards, we will call the model of this paper ”model A”, and the model of the pa-
per without optimal annuitization time ”model B”. In order to compare the results in a consistent
way, we have run the same simulations for the risky asset used above and in each of the 1000 sce-
narios we have applied the optimal investment and consumption rules indicated by the mentioned
paper. Annuitization occurs at age 75, and the values of the parameters have been chosen all equal,
apart from the value of k, here chosen equal to 0.11 (the value of k has to be different from the one
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chosen before for this formulation of the problem to make sense). As already noted in Gerrard et al.
(2006), in model B the final target b1 is approached in a very satisfactory way after 15 years. This
is highlighted by the distribution of the final annuity in this case, reported in Figure 8. In 76% of
the cases the final annuity amounts between 115 and 120, in 11% of the cases between 110 and 115.
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In fact, in most of the cases (85%) the ultimate annuity received by the retiree is higher in model
B than in model A. This is due to the fact that in the model without optimal annuitization, the
fund approaches the target b1/k very closely, whereas in model A annuitization occurs whenever the
fund reaches x∗, that is lower than b1/k. However, the fact that optimal annuitization occurs before
T implies that optimal consumption before T is generally higher with model A than with model
B. Therefore, the comparison has to be done between different paths of consumption, ideally from
retirement up to time of death. There are many possible ways to make a comparison of different
streams of money at different times, and a thorough discussion about appropriateness of different
methods is beyond the scope of this paper. Here, with illustrative purpose only, we choose the
criterium of the expected present value (EPV) of the streams. In particular, we discount flows from
retirement to T with the rate ρ+δ and we then add the expected present value of the actuarial value
of the annuity achieved from T until death. In Table 1 we separate the expected present values of
the consumption streams from 60 to 75 and from 75 to death, in order to show the different effect
of the two different periods on the total expected present value (reported in the last two columns).

A: EPV cons. B: EPV cons. A: EPV cons. B: EPV cons. A: EPV cons. B: EPV cons.
ages 60-75 ages 60-75 age 75-death age 75-death age 60-death age 60-death

min 29483 35556 259 -539 29622 35468
5th perc. 36410 38569 749 826 36864 38987
25th perc. 46021 39110 773 961 46499 39598
50th perc. 48779 39300 819 985 49190 39799
75th perc. 49361 39391 911 995 49757 39896
95th perc. 49945 39463 1137 999 50337 39970
max 50893 39533 1229 1000 51296 40042
mean 46657 39194 861 955 47095 39681
st.dev. 4416 339 126 111 4381 382
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Table 1.

According to Table 1 and to the criterium of EPV, model A seems to perform better than model
B. In fact, the generally higher values of the EPV of consumption streams from retirement to death
in A-model w.r.t. to B-model indicate that the generally higher income received in model B from
75 to death does not compensate the reduced income in years between optimal annuitization and
75. However, the dramatically lower standard deviation of the EPV in model B, indicating a much
higher stability of final outcomes, could be more appealing to a risk averse retiree and push her to
choose model B.

As noted above, here there are only some guidelines for possible comparisons between different
decision making models to be adopted after retirement, and a full discussion of pro and contra of
these models is left to further research. Beyond the scope of this paper, but certainly interesting
and left to future research is the comparison of our model with one giving optimal annuitization
rules driven by optimization criteria different from ours (such as e.g. in Milevsky et al. (2006),
where the criterium is the minimization of the probability of financial ruin, or Milevsky and Young
(2007), where the agent maximizes expected utility of lifetime consumption and bequest).

6 Conclusions and further research

In this paper we have considered the problem faced by a retiree of a defined contribution pension
scheme who defers annuitization of the fund and has to decide about investment allocation, con-
sumption strategy and time of annuitization.

The problem is naturally formulated as a combined stochastic control and optimal stopping prob-
lem. The optimization criterion consists of a quadratic running cost penalizing deviations of interim
consumption from a target and a quadratic final cost penalizing the deviation of the annuity size
achieved from a certain desired level of annuity. We tackle the delicate issue of ruin by imposing the
constraint that the optimization program stops whenever the fund becomes negative. This implies
that, depending on the values of the parameters of the model, the problem either has no solution or
has a solution that can be of two different types. By construction we find closed form solutions to
the HJB equation which, by means of the verification technique, is shown to satisfy the optimization
problem. The construction leads to an algorithm that is applied for numerical investigations of the
solution.

The numerical applications presented are twofold. Firstly, we investigate the dependence of the
type of solution and of the width of the continuation region on the values of the parameters of the
model. In particular, we find that the key values in determining type of solution and width of con-
tinuation region are the Sharpe ratio of the risky asset, the importance given by the retiree to the
loss associated to running consumption relative to that associated to final cost, the ratio between
desired annuity size and that purchasable at retirement (i.e. the risk attitude of the retiree). This
investigation shows the reasonable result that, ceteris paribus, it is optimal to defer annuitization
for longer time if either the Sharpe ratio is high, or the penalty paid in case of annuitization is low
with respect to that paid for low running consumption, or the pensioner has a low risk aversion.

Secondly, we select a particular scenario for market and demographic conditions and risk profile
of the retiree, find the solution and simulate the behaviour of the risky asset via Monte Carlo
method. Simulation results indicate that in the particular scenario chosen optimal annuitization
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occurs within 15 years from retirement in most (86%) of the cases and on average should occur a
few years after retirement. Furthermore, the event of ruin never occurs and optimal consumption is
never negative, as the fund keeps always well above the level of the fund below which consumption
should be negative. A few guidelines are given for possible comparison of results with a model
without optimal annuitization and, based on the criterium of expected present value of consump-
tion streams from retirement to death, we find that a model with optimal annuitization should be
preferred to one with fixed annuitization time.

We believe that this paper leaves scope for further research in many directions, both on the applica-
tive side and on the theoretical one.
Due to space constraints, we have not carried out analysis of robustness for the numerical inves-
tigations. A greater variety of scenarios for the market and demographic assumptions and for the
decision maker’s risk profile would certainly add more useful insight for practical applications of the
model, as well as an accurate comparison with different models of optimal annuitization time.
The strong assumption of constant force of mortality could be relaxed and stochastic mortality
might be introduced in the model. Finally, we have considered unconstrained controls. Neverthe-
less, our optimal investment in the risky asset and optimal consumption are naturally constrained
to be greater than 0 and lower than the targeted consumption, respectively. The addition of bilat-
eral restrictions on the investment allocation is subject of ongoing research and the introduction of
further restriction on the consumption is in the agenda for future research.

Appendix

A For the general case

Lemma 11 Assume there exists a C2 function W that satisfies (2.6) and (2.7) and that for all
admissible controls

IE
∫ t

0
y(s)x(s)W ′(x(s)

)
e−(ρ+δ)s B(ds) = 0. (1.1)

for all t. Then W (x) ≥ V (x) for all x.

Proof. By Dynkin’s Formula and (1.1) we have for any control and stopping time T , that

IE[e−(ρ+δ)T W
(
x(T )

)−W (x)] = IE
∫ T

0
e−(ρ+δ)s

[
Lb(s),y(s)W

(
x(s)

)− (ρ + δ)W
(
x(s)

)]
ds. (1.2)

From (2.6) and (2.7) the integrand on the right hand side is smaller than −e−(ρ+δ)sU1

(
b(s)

)
. Hence

we obtain

W (x) ≥ IE
∫ T

0
e−(ρ+δ)sU1(b(s))ds + e−(ρ+δ)T W (X(T )).

From (2.6) and (2.7)

W (X(T )) ≥ U2(kX(T ))
ρ + δ

and it follows that W (x) ≥ V (x).

Theorem 12 (Verification theorem) Let W be as in Lemma 11. Assume that [0,∞) can be split
into two regions A and B such that (2.8) is satisfied in A and (2.7) in region B. Let B∗(x), Y ∗(x)
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be the maximizers of the second term in (2.7)and define the controls y∗(t) = Y ∗(x∗(t)) and b∗(t) =
B∗(x∗(t)), where x∗(t) is the solution of (2.2) with y(t), b(t) replaced by y∗(t), b∗(t). Define T ∗ =
inf{t > 0|x∗(t) ∈ A}. Assume that

IE[e−(ρ+δ)tW (X∗(t))1T ∗=∞] → 0 (1.3)

when t →∞. Then y∗(t), b∗(t) are optimal controls and T ∗ the optimal stopping time. Furthermore,
the function W (x) = V (x).

Proof. Consider the controls y∗(t), b∗(t). Since on t < T ∗, X∗(t) ∈ B and we get

IE[e−(ρ+δ)(T ∗∧t)W (x∗(T ∗ ∧ t))−W (x)]

= IE
∫ T ∗∧t

0
e−(ρ+δ)s(Lb∗(s),y∗(s)W (X∗(s))− (ρ + δ)W (x∗(s)))ds

= −IE
∫ T ∗∧t

0
e−(ρ+δ)sU1(b∗(s))ds

Letting t →∞, we get by (1.3) that

W (x) = IE
∫ T ∗∧t

0
e−(ρ+δ)sU1(b∗(s))ds + e−(ρ+δ)T ∗W (x∗(T ∗))1T ∗<∞

= IE
∫ T ∗∧t

0
e−(ρ+δ)sU1(b∗(s))ds + e−(ρ+δ)T ∗U2(x∗(T ))

ρ + δ
1T ∗<∞.

Now the result follows by applying Lemma 11.

Corollary 13 Assume that (ρ + δ)−1U2(x) satisfies (1.1) and

sup
b,y

[U1(b)− U2(x) + Lb,y(ρ + δ)−1U2(x)] ≤ 0 (1.4)

for all x. Then T ∗ = 0 and V (x) = (ρ + δ)−1U2(x).

Proof. The proof follows easily from Theorem 12. That (1.3) is satisfied in this case is obvious.

B For the special case

Lemma 14 Assume that φ ≤ 2krD/b1. Then, for any x(0) ∈ [0, b1/k], the optimal behaviour is to
annuitise immediately, implying that V (x) = K(x).

Proof. The proof follows from Corollary 13. By (5.2) we have that (1.4) is fulfilled. Notice we
still need to show that (1.1) is satisfied. It is simple if we have bounds on y, otherwise it is not
trivial, so that is still an open problem. The general technique is to show that we can reduced the
set of admissible controls to those satisfying (1.1), e.g. by showing that if (1.1) is not satisfied, the
return function will be infinite.
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