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ABSTRACT 

 

Despite the rich and interdisciplinary debate on the role of diversity and communication in 

group problem solving, as well as the recognition of the interactions between the two topics, 

they have been rarely treated as a joint research issue. In this paper we develop a 

computational approach aimed at modeling problem solving agents and we assess the impact 

of various levels of diversity and communication in teams on agents’ performance at solving 

problems. By communication we intend a conversation on the persuasiveness of the features 

characterizing the problem setting. By diversity we mean differences in how agents build 

problem representations that allow them to access various solutions. We deploy the concept 

of diversity along two dimensions: knowledge amplitude, that is, the amount of available 

knowledge (compared to the complete representation of a problem), and knowledge variety, 

which pertains to the differences in agents’ knowledge endowments. 

Our results show the different impact of these two sources of variety on problem solving 

performance in teams, as well as their interplay. Regarding knowledge amplitude, when 

agents’ representation of the problem is considerably incomplete, communication provides 

confusion as it is difficult to find a common language for sharing thoughts, and agents 

perform better alone. Adding knowledge variety to this scenario, the effects of 

communication are even more negative. Conversely, as the representation of the problem gets 

more and more complete, communication becomes more and more effective. Albeit 

displaying a clear non-monotonic effect: increasing the communication strength, performance 

increases until an optimal point, after which it declines and gets very rapidly worse than 

individual behavior. In this case, the introduction of knowledge variety further increases 

performance in teams, since benefits from integrating partial representations of the problem 

occur more frequently than communication clashes. Finally, highly diverse teams seem to be 

less sensitive to changes in communication strength, while as diversity declines, even small 

discrepancies from the optimal communication strength level might account for a strong 

variability of performance. In particular, overestimation of the required communication effort 

might cause severe performance breakdowns. 

Our results suggest that organizations and firms should jointly consider communication 

intensity and different sources of diversity in teams, since interactions among these variables 

might result in problem solving groups resembling more a Tower of Babel than an effective 

and helpful workplace. 

 

Keywords: Problem solving, diversity, heterogeneous agents, communication, constraint 

satisfaction, neural networks, causality. 
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INTRODUCTION 

 

In this paper we analyze problem solving by a set of diverse agents with bounded abilities in 

collecting the relevant features characterizing a problem setting and we compare their 

individual performance to performance within a team for various levels of communication. 

In the previous literature, the issue of effectiveness has been explored in teams of problem 

solvers along the dimensions of communication and diversity taken separately. Some studies 

(Hutchins 1995, Marchiori and Warglien 2005) investigated to what extent communication 

might play a corrective role for agents with limited exposure to information. Other 

contributions addressed the role of diversity in problem setting (Hong and Page 2001) or in 

solution strategies (Hong and Page 2004) but they modeled teams as collection of agents 

working sequentially on a common task, without introducing any form of communication. 

These studies have shown that communication alone or diversity on its own, might explain 

why groups of agents outperform individuals. Nevertheless, there is a clear interplay between 

these two variables that calls for further investigation, and our paper can be regarded as an 

attempt to address this gap. 

Considering communication and diversity together, the contribution of diversity to collective 

problem solving turns out, in the existing literature, to be controversial. On the one hand, 

some authors (Hong and Page 2001) showed that diverse agents are meant to offer different 

perspectives on problems that increase problem solving success, others highlighted that 

communication can correct diverse or even wrong perspectives (Marchiori and Warglien 

2005). On the other hand, other perspectives on diversity (we refer to the similarity-attraction 

paradigm – see Williams and O’Reilly 1998 or Mannix and Neale 2005 for a review), point 

out the limits of diversity: when diversity is taken too further, agents face obstacles in sharing 

thoughts, in finding a common language and in negotiating meanings that build upon a 

communal background knowledge. When agents are very diverse, irreconcilability or 

disregard of each other’s ideas are more likely to appear and conflict is more likely to 

emerge. Accordingly, problem solving in teams displays outcomes worse than individuals’ 

ones, meaning that exchange of ideas among too diverse people confounds thoughts instead 

of illuminating minds. 

Communication per se, seems to display a non-monotonic relation with performance. In fact, 

over a certain level, communication strength impacts on the ability of the individual to think 

correctly. In some models, this effect has been represented as a high pressure to conform to 

the whatever shared outcome – as suggested, for instance, by the  “Credulous Theorem” of 
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Marchiori and Warglien 2005 – similarly, in other models high levels of communication 

display the emergence of confusion in agents judgments up to the point of being unable to 

select one over many alternatives (Frigotto and Rossi, forthcoming). These models, though, 

have not highlighted to what extent communication effects depend on agents’ diversity and, 

vice versa, if the role of diversity is affected by the strength of communication. 

This paper intends to tackle the reciprocal influence of communication and diversity in 

collective problem solving. Our research question is twofold. On the one side, we ask how 

much diversity supports collective problem solving allowing effective communication among 

agents or whether it adds confusion and noise in the interpretation of the problem setting. On 

the other side, we are interested in understanding if more communication can valuably 

support lower levels of diversity among agents. 

We address these questions though a computational model deploying teams of diverse agents 

communicating with each other. The model shows two main novelties with respect to 

existing agent-based models. 

First, we model diversity in terms of differences in how agents encode and approach 

problems. Hong and Page 2001 signed a shift between models in which problem 

representations were fixed among agents, to a model in which perspectives varied. In their 

model, agents’ perspective on the problem is represented through an internal language of the 

agent, normally a binary string of a certain length. This binary string defines what points in 

the landscape the agent is able to see, and to evaluate, thus showing her view of the problem. 

Given the abstraction of these perspectives, many explanations are possible of what internal 

language is meant to represent: different perceptions of the problem, given the same set of 

information and the same knowledge information for interpreting them, or different 

interpretations of the problem referring to different knowledge basis, etc. In essence, the 

nature of diversity in this model has not been specified nor made explicit in model 

components and, even though abstraction adds interpretive power to simulated results, it also 

limits them, because does not enable to distinguish among different cases. In addition, this 

choice does not allow to evaluate how distant two diverse agents having different binary 

strings are in terms of representations. As a result, a measure of diversity and an assessment 

of the impact of its variability on performance are not possible. We address this limit 

modeling agents’ diversity in terms of two different dimensions both referring to knowledge. 

We assume as the reference point the knowledge required for the complete representation of 

a problem and we model diversity in terms of different knowledge bases available to agents. 

We measure knowledge amplitude in terms of the level of completion in the problem 
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representation, and knowledge variety in terms of differences in available knowledge 

constituents. We then explore how agents’ interactions and problem solving outcomes vary 

along these two features of diversity. 

Second, the class of models we refer to is a peculiar class of connectionist networks, namely 

constraint satisfaction (CS) networks, originally proposed by Rumelhart et al. (1986). Other 

contributions on team diversity have built upon the constraint satisfaction approach, 

assuming problem solving as a patterns matching activity (Hutchins 1995, Marchiori and 

Warglien 2005). One novelty of our model lies in that we suggest the use of such models 

abandoning the pattern matching perspective, thus extending the class of cognitive 

phenomena that might be represented though CS models. 

We assume that agents, viewed as problem solvers, struggle for building convincing and 

internally coherent representations of problems, based on a satisfactory understanding of the 

nature and relationships of the constituents of the problem setting. This means that they try to 

give sense to the scraps of evidence they consider important for the issue at stake, to give an 

explanation to the causes of their manifestation in order to understand how to intervene on 

the situation. In fact, building on Simon (1991), we hypothesize that representations give 

access to alternative solutions (Figure 1 sketches a stylized model). Our perspective is 

particularly interesting if we consider problem solving in novel and inexperienced situations 

as opposed to familiar and more routinized cases in which stored solutions are ready to use 

and choice is based on an assessment on the similarity of the case at point with the one in 

memory. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Problem Representations and Solutions. 
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We hypothesize that representations are built through causality and that they are evaluated 

according to their ability to offer a persuasive explanation of the situation. 

Our view of agents as solvers building explanations of problems is new, but is not without 

foundation. We refer to Paul Thagard’s works on explanatory coherence (1989, 1992b, 2000) 

and we draw the idea of expanding his theory to problem solving from the numerous 

applications he proposed in the domains of scientific revolutions (1989), scientific 

discoveries (1998a), medical discoveries (1998b), adversarial problem solving (1992a), 

juror’s decisions (2004). 

The psychological literature (Keil 2006 for a review) displayed that explanation is ubiquitous 

and used for a variety of purposes. Also children and lay people provide and ask for 

explanations, not only experts: they explore phenomena that puzzle them attempting to 

uncover an explanation of why an effect occurred. They are willing to see the events they 

face as the result of causes; the identification of these causes is necessary to understand what 

is going on and how they may intervene on that situation for reaching their goal. 

Explanations are relevant in the past perspective, in order to justify and rationalize action. 

Our explanations are attempts to represent our actions to others or to ourselves as logical, 

well intentioned or appropriate. In this view, explanation can be seen as a form for 

retrospective rationality (March 1975; 1994). 

Among various functions, the most interesting one for the purpose of our discussion, is the 

use of explanations in diagnosis. Typically one asks why a system failed and the aim is to 

identify the causally critical component and to bring it back to its normal function. Patriotta’s 

(2003) analysis of accidents on the shop floor of a traditional pressing plant at Fiat Auto 

displayed the use of explanations in the form of detective-stories, for repairing disruptive 

occurrences. He disclosed the role of such narratives in solving problems and eventually, in 

shaping knowledge creation, utilization and institutionalization, in a forward looking 

perspective. Psychology clarified that explanations also serve to help people know how to 

weight information or how to allocate attention when facing a situation (Keil 2006). 

Organizations working in highly risky environments, such as military organizations, nuclear 

companies, aviation safety organizations (grouped under the name of High Reliability 

Organizations – HRO), deploy the practice of building narratives and exploring explanations 

of their everyday experience in order to expand their knowledge and preparation for the more 

risky events they will face (March, Sproull and Tamuz 1991; Morris and Moore 2000; Weick 

and Sutcliffe 2001). This evidence can contribute to the idea of explanation as a form of 
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rationality that is not only useful in the past perspective, as justification, but also in the 

perspective of the future. 

The role of explanations as a form in which forward looking rationality happens, has also 

been investigated by the experimental literature (Shafir et al. 1993). Through typical 

laboratory methods and tools, though, it is not easy to distinguish the justification use from 

the supportive use of explanations; thus, this function of explanation has remained partially 

unexplored. 

Moreover, it is interesting noting that, traditionally, psychological studies presented 

explanation-based processing information as slow and later in tasks, whereas early processing 

was more associative and fast. Recent findings illustrate that in many cases, explanation 

based effects occur in the early steps of processing (Keil 2006). 

Our agent-based model also adds to extant managerial literature on team performance. 

Studies on the field have addressed the issue of diversity and communication in the context of 

top management teams and, more broadly, in the perspective of the collective working place. 

One of the main assumptions that was tested, is the one linking diversity in team members’ 

cognition to problem solving performance. Demographic and educational differences have 

often been used as proxies for cognitive diversity, for the difficulty in grasping real cognitive 

characteristics, though displaying apparent limits (Kilduff et al. 2000; Pitcher and Smith 

2001; Jackson et al. 2003). Simulation models, as ours, can contribute to shed some light on 

the impact of cognitive diversity in managerial teams, offering a stylization of cognition in 

action. 

Before proceeding with the rest of the paper, it might be worth mentioning several features 

that are not included in our model. Foremost, our model is not a model of search for 

solutions. We ignore problems of search since our purpose is to focus on how diverse 

solutions can circulate among agents in a way in which each can benefit from one another’s 

ideas and knowledge, and eventually take a wiser decision. Our agents have already searched 

for their solutions and the way this has happened is not considered within the model. 

Then, our agents are bounded rational also in the sense that they can assess only two 

alternatives at a time. We restrict our analysis on what they chose among the two 

representations given the way they build them. 

We have organized the remainder of the paper in Five Sections. In the next Section we 

review some models of teams of agents that address the issue of diversity and 

communication. In Section 2 we present our model and in Section 3 we display the structure 
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of our simulations. Section 4 is devoted to the presentation of the results and we further 

discuss them in Section 5. 

 

1. MODELING AGENTS’ DIVERSITY, INFORMATION AVAILABILITY, AND 

COMMUNICATION 

 

There is a rich and interdisciplinary debate on the role of diversity within teams of agents. A 

large share of contributions has focused into domain-specific models and empirical studies, 

targeted at better understanding the phenomenon within a particular field. In this section, we 

limit our analysis to a more general class of models of diversity in collective problem solving 

that have been developed at a more abstract level, without close reference to a specific field 

of application involved. Nevertheless, in many cases, the implications for the different 

domains of problem solving might be easily derived. 

We consider in this Section four models of diversity in group problem solving. Recalling 

Newell and Simon (1972) distinction between problem solving and problem setting, these 

contributions are organized in Table 1 according to the source of diversity. Specifically, we 

distinguish diversity deriving from differences in problem solving, problem setting and in 

information availability among agents. 

The first model of diversity that we review is the one developed by Hong and Page (2001, 

2004), in which agents search in a landscape of solutions for the configuration displaying the 

maximum fitness value. The available searching strategies though, do not allow agents to 

easily find an optimal solution, but only to explore locally, and in a path-dependent way, the 

solution landscape on the basis of simple search heuristics. Diversity is introduced modeling 

agents as having heterogeneous problem solving abilities in a twofold way. (i) agent-specific 

knowledge embedded in framing the task problem, and (ii) different problem solving 

strategies, that is, knowledge represented by the cognitive tools used to solve the problem. 

The authors do not consider issues of asymmetric and imperfect information, as the available 

landscape for searching is the same to every agent. Rather, they conceive diversity as 

emerging from differences in knowledge at two distinct levels (i) and (ii). In Hong and Page 

(2004), diversity is modeled as difference in solution strategies (“heuristics”), while 

differences in both problem solving strategies and problem setting issues (“perspectives”), 

are the sources of diversity in Hong and Page (2001). 

In their 2004 article, the authors claim that the more diverse – with respect to heuristics – 

agents are, the better the group performance, due to the larger landscape that is possible to 
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explore. Results show that groups of diverse problem solvers outperform the group of the 

best performing agents. Note that in this model agents do not communicate with each other 

but they are rather considered as a set of independent problem solvers operating sequentially 

or simultaneously on the same problem. In fact, teams are defined with reference to each 

agent’s performance: groups result from the evaluation of the average individual and totally 

autonomous performance of n best agents with regards to n randomly extracted agents, where 

diversity is assumed to derive from random selection. 

In the 2001 article, instead, Hong and Page examine diversity in terms of pairs of 

perspectives and heuristics. In particular, diverse perspectives imply that agents translate their 

landscape into a problem space that is unique. As a result, the authors show that, ceteris 

paribus, diversity in perspectives enlarges the set of solutions considered during the search 

process. Even in this case, though, communication is not considered into the analysis. 

Communication and information availability are at the center in Hutchins (1995) and in 

Marchiori and Warglien (2005); both contributions model teams of agents through a 

connectionist approach. Building on the distinction between problem setting and problem 

solving, Hutchins (1995) considers diversity in problem setting as externally generated by 

imperfect information – where poor information depends only on poor problem settings – or 

as internally generated from agents’ misperception of correctly provided information – while 

information might even be complete in this case the agent’s perception is faulty. Marchiori 

and Warglien (2005) explore these distinctions running a series of computational simulations.  

They conceive the inferential process, and more broadly problem setting, as deriving from the 

activity of comparing environmental stimuli with the knowledge agents have collected and 

stored under the form of memorized patterns. Once the pattern matching activity leads to the 

identification of a specific case that has been encountered before, choice derives almost 

automatically as a consequence of stored solutions attached to that setting. 

As a matter of fact, in their models, agents search for a solution among a repertoire of 

previously encountered cases. They assess the similarity of the case at point with those which 

direct or indirect experience has provided, trying to match environmental signal they have 

received with organized inference-ready cases. Once they have identified the nearest solution, 

the stored associated solution is applied. 

Marchiori and Warglien (2005) offer a first model in which the various agents receive 

different (noisy) signals from the environment, thus they identify different pattern cases to 

apply, misperceiving the correct true state of the world. As a result, diversity stems from the 
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exposition to different aspects of the environment and the authors show to what extent 

communication can correct this kind of erroneous problem setting. 

In a second and third series of simulation, the authors model diversity as an inner 

characteristic of the agents: knowledge regarding the possible patterns (also known as 

“schemata”) is distorted or incomplete. Diversity here originates from incomplete knowledge 

or distorted understanding regarding the patterns of experienced cases. The authors show that 

communication corrects problems these cases, although the corrective power follows a non-

monotonic trend. 

All revised models explore diversity displaying the underlying assumption that 

communication among team members does not bear any dysfunctional facets (with the 

relevant exception of Marchiori and Warglien “credulous theorem”, described earlier). 

However, the issue of diversity in teams opens the door to considerations on how much 

effective can be communication of ideas between diverse agents, especially when diversity is 

considerable and it is not only related to differences in information access but also to 

underlying knowledge differences. It is worth to mention that in most of these models the 

outcome considered is not a unique solution shared by all the team members, rather agents 

interact and exchange ideas while every individual maintains the autonomy of taking her own 

decision. Agents with identical knowledge basis should communicate with one another 

easily. Solvers having diverse perspectives on the problem though, may have troubles 

understanding each other’s solutions. In order to balance potential benefits and mishaps 

related to the introduction of communication in diverse agents, it is worth addressing the 

issue of how much knowledge agents need to have in common in order to understand each 

other and conversely, how much diversity is best. In other words, how much background 

knowledge, including language and vocabulary, do they need to have in order to benefit most 

from each other’s specialization without wasting time and energy in search of a common 

basis to refer to? We address these questions in the following Sections where we also provide 

our definition of diversity. 
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2. THE MODEL 

 

We model problem solving in teams using a constraint satisfaction approach stemming from 

the contribution of the PDP Group (Rumelhart et al. 1986) and we build on the ECHO model 

proposed by Thagard (1992b). 

Agents’ perspective on a problem is made of a schemata of causality in which agents draw 

explanations of why some evidence appeared in order to figure our how to intervene. 

Explanations are built on the basis of agents’ knowledge, and they connect evidence to 

knowledge. Information is meant to report about collected evidence. Formally, in the model, 

knowledge and evidence are represented by units, causal explanations by links among 

knowledge and evidence units. For every problem, each agent builds two alternative 

explanations that compete one against the other. Agents assess these perspectives of the 

problem on the internal consistency of the argument. The more internally consistent, the more 

convincing, thus the preferred is the alternative. Subsequently, they implement the 

choice/action which is associated with the preferred alternative. 

Let us specify how, formally and substantially, our model differs to more popular CS models 

assuming pattern matching activities. According to the latter models, a series of patterns Xi 

(for i=1, …, n) are stored into the network through a careful selection of the weights and the 

aim of the relaxation process is to assess the ability of the model to recognize the correct 

pattern Xi when the signal coming from the environment is noisy (the initial activation is  

Xi + E). Conversely, in our model, each weight is assigned on the basis of the existence of an 

explanatory relationship that links two different unit of the network according to a rule that 

will be explained in the next Subsection, and, similarly to other constraint satisfaction 

models, such as Axelrod (1997), the aim of the relaxation process is to observe what solution 

the model displays. 

 

2.1 Structure of the Model 

 

Agents.  

Agents are represented by their schemata, which denote how they make sense of the world on 

the basis of their available data and knowledge. 

Agents are modeled as a causal map of two theories or alternatives each composed by a series 

of hypotheses causally explaining bits of evidence. It is assumed that these competing 
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theories have been elaborated on the basis of the agent’s logical reasoning, knowledge and 

access to evidence. 

Formally, an agent is modeled as a constraint satisfaction network of n units representing 

either scraps of available evidence (a.k.a. evidence units) or hypotheses giving causal 

explanations for one or several evidences (a.k.a. units of hypothesis, explanatory units or 

explainers); moreover, special evidence units (units that are only connected with evidence 

units) are introduced in the model in order to clamp evidence units to positive activation 

values (see below for the details). 

Explanatory units are grouped into two competing sets (theories, say A and B), representing 

alternative interpretations of the problem setting. Thus, the network can be imagined as a 

three-layer graph, in which the top layer represents explanatory units belonging to theory A, 

the middle layer represents evidence units, while the bottom layer collects the explanatory 

units belonging to theory B. 

 

Units’ Activation. 

Units’ initial activation represents the agent’s original beliefs regarding the units, that is, the 

agent’s preliminary confidence on the environmental evidence and on the various theories’ 

constituents. 

Units’ activations, that may take values in the [-1, 1] interval, are updated overtime according 

to the relaxation rule (see below); the fixed point that is reached at the end of this process 

represents the final belief of the agent regarding the units of the model.  

This steady state may highlight that the agent favors one theory over the other if all 

explanatory units from one theory – say A – are positive while vice versa occurs for the units 

of the other theory – say B. If such a configuration does not occur, the model does not give a 

clear indication in terms of choice of one theory over the other, suggesting a case in which 

the agent does not judge the collected evidence and/or the supporting hypotheses conclusive. 

 

Connections. 

Connections or weights in each agent’s network wij are set in order to reflect the competitive 

or cooperative relationship that exists between two units of the network (see Thagard 1992b 

for the full rationale). This procedure follows the rationale according to which agents’ try to 

build theories as series of arguments that support one with each other. For sake of simplicity, 

we restrict our analysis to simple direct causality, thus explanatory links might only be set 
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between units of evidence and explanatory units, while longer causal chains are not 

considered. 

Positive connections between units of evidence and explanatory units represent direct causal 

relations (e.g., event x is causally explained by hypothesis y) and their intensity is coded 

through positive weights, such that higher weights correspond to higher causal relationships. 

In order to introduce positive feedback between co-hypotheses, positive connections are also 

introduced between explanatory units (from the same theory) that jointly explain the same set 

of evidence units. 

Finally, competitive relationships are modeled by introducing negative connections between 

explanatory units, belonging to opposing theories, which jointly explain the same units of 

evidence. 

 

Formal Procedure for Connections’ Initialization. 

Let  

! 

s = s
1
,...,s

i
,...,s

n( ) = a
1
,...,a

k
,b

1
,...,b

l
,e

1
,...,e

m( )"  | R
n  be the vector of the activations of 

all the units of the network, where k and l represent the number of explanatory units 

belonging, respectively, to theory A and B, m is the number of units of evidence (note that 

! 

n = k + l + m ). Let also 

! 

f = f
1
,..., f i,..., fn( )"  | R

n  (with 

! 

fi = 0  for 

! 

i =1,...,k + l) be the vector 

of the activations of the special evidence units. 

Let W be a n x n null matrix. Define

! 

"  as the excitatory default value for assigning positive 

connections among units and 

! 

"  as the inhibition default value for assigning negative 

connections among units. Then, the weights 

! 

wij  (for 

! 

i =1,...,n,  j =1,...,n ) are assigned 

according to the following steps: 

Step 1. Positive connection between an explanatory unit and a unit of evidence: for each unit 

of type e that is causally explained by one or more explanatory units of type a: 

i. let i corresponds to the position of the unit e in 

! 

s; 

ii. compute the number r of explanatory units of type a that explain si; 

iii. for each one of the r explanatory units of type a that explain si: 

a. let j correspond to the position of the unit a in 

! 

s; 

b. set 

! 

wij = w ji =" /r; 

iv. repeat step 1. for theory B. 

Step 2. Positive connections between explanatory units that belong to the same theory: for 

each couple of units of type a that are co-hypotheses (they jointly explain one or more units 

of evidence: 
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i. let i correspond to the position of one unit of type a in 

! 

s and j correspond to the 

position of the other unit in 

! 

s; 

ii. set 

! 

wij = w ji = wie

e= k+ l+1

n

" # I ; 

where 

! 

I =
1 if wie = w je

0  otherwise

" 
# 
$ 

; 

iii. repeat step 2. for theory B. 

Step 3. Negative connections between explanatory units belonging to different theories: for 

each couple of units, one belonging to theory A and the other one belonging to theory B, that 

competitively explain one or more units of evidence: 

i. let i correspond to the position of the unit of type a in 

! 

s and j correspond to the 

position of the unit of type b in 

! 

s; 

ii. set p as the number of units of evidence that are jointly explained by si and sj; 

iii. set q as the overall number of co-hypotheses (of type a and b) that jointly explain the 

units of evidence at step ii; 

iv. set 

! 

wij = wji = "p /(q / 2). 

Note that W is symmetric, 

! 

w
ii

= 0 for i =1,...,n  and 

! 

wij = 0  for 

! 

i =1+ k + l,...,n  and 

! 

j =1+ k + l,...,n . 

 

Relaxation rule. 

Units’ activation values are updated through a connectionist algorithm that is meant to 

increase the degree of coherence of the network in the sense that it performs a gradient-

descent path towards levels of activation of the units that better satisfy constraints (see 

Rumelhart et al. 1986 for a formal treatment of analogous formalizations). 

At each iteration, units’ activation levels are synchronously updated according to the 

following rule (Thagard 1992b, 2000; Rumelhart et al. 1986): 

 

! 

s j (t +1) = (1" d)s j (t) +
net j (max" s j (t))   if net j > 0,

net j (s j (t) "min)   otherwise 

# 
$ 
% 

                               (1) 

 

where sj(t) is the activation of unit j at time t, d is a decay parameter that, at each iteration, 

weakens the activation value of every unit. Min and max represent, the lower and upper 

boundaries of the units’ activation and are generally set, respectively, at -1 and 1.  
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Finally, 

 

                        

! 

net j = wijsi(t)
i

" + f j                                                            (2) 

 

is the net input to unit j, computed as the sum of the activation of all the units weighted by the 

connections wij linking each of these units with unit j. Note also that, in the case of evidence 

units, their net input also includes the value of the corresponding special evidence unit. 

It is worth to mention that the formal treatment of this model is still incomplete. In particular, 

there is no proof of convergence of the system to a stationary state, nor of coherence 

maximization, since through relaxation the system might settle on a local maximum. 

However, there is a considerable body of literature (Thagard 1989, 1991, 1992a, 199b, 

Nowak and Thagard 1992a, 1992b, Eliasmith and Thagard 1997) that has shown convergence 

towards fixed points in finite time. In the simulations reported in the next Section, we will 

employ a choice of parameters consistent with previous literature and we will study the issues 

of convergence and of multiplicity of local maxima (fixed points). 

 

Communication. 

A group is a set of p agents modeled as a “network of agents’ networks” (Hutchins 1995; 

Marchiori and Warglien 2005). Communication between two agents is modeled by linking 

each unit sj of one agent with the corresponding unit sj of the other agent. In this respect, 

communication is here intended as a parsimonious activity of beliefs exchange, in which only 

the activation of the units, and not the whole schemata is shared. This means that in our 

model agents exchange beliefs on how important or how credible a hypothesis or a scrap of 

evidence is, without sharing how they constructed their causal relations or how their entire 

causal map looks like. 

It is worth to note that our approach is far to be the only way to introduce communication 

between agents: Hutchins (1995) and Marchiori and Warglien (2005) experiment various 

settings varying symmetry and introducing hierarchic structures. Other possible ways of 

modeling communication among agents have been explored in other domains for instance 

Thagard (2000) studied how scientific consensus is reached modeling agents that exchange 

verbal inputs and Thagard and Kroon (forthcoming) introduced emotional connections 

between agents. 
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In this group model, the vector of units is represented by the union of the p agents’ vectors of 

units (s), while the weight matrix contains both the individual weight matrices (that are 

arranged as 

! 

n " n  blocks along the main diagonal) and the communication matrices (that are 

arranged as 

! 

n " n  blocks outside the main diagonal). The strength of communication is 

modeled through the communication intensity parameter 

! 

" # 0 ; note that for 

! 

" = 0  no 

communication occurs and the model reduces to a mere collection of independent agents. 

Also, as mentioned above, we assume the simplest form of communication: each agent 

communicates with everyone else with the same strength (each communication matrix has 

! 

"#  over the main diagonal and 0 elsewhere). This model is still a constraint satisfaction 

network and we apply the same relaxation rule for modeling the individual case. 

 

Diversity. 

The first source of diversity that we model is represented by differences in the number of 

causal explanations that agents might possess. The larger the set of explanatory links 

available to one agent, the larger his knowledge amplitude. 

By limiting the available explanatory links we can model two different types of restrictions in 

agents’ cognitive capabilities related to problem solving. If one causal link is missing, it 

might be the case that, the agent, albeit exposed to an evidence unit (that is already explained 

by one or more other explanatory units) and despite having already expressed a hypothetical 

unit (that already explains one or more evidence units) is not able to formulate correctly the 

existence of a causal explanation which links the two units together. On the whole, this 

suggests that agents have fragmented knowledge that only allows them to poorly interpret 

and understand the problem setting. This case can properly be understood as a problem of 

bounded rationality of the agents or of high specialization. 

According to an alternative interpretation, the lack of explanatory links may point out that 

agents are diverse in the way they select scraps of information from the broader set of 

environmental stimuli, or in the way they are exposed to this information or are able to 

capture it. In this case, if an (evidence/exploratory) unit is not available to the agent, all 

explanatory links departing from this unit are unavailable as well. This case might be 

considered as a problem of information scarcity. In what follows, we do not distinguish 

properly between these two different class of cognitive restrictions: we will focus explicitly 

on restrictions of the first kind (decrease in the number of available links), albeit in some 

cases they would also imply the introduction of information scarcity (e.g.: if we remove a 
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link that is the last one connecting a unit to the schemata, the unit is not considered in the 

agent’s problem solving process). 

As a second dimension of diversity, we model agents that are different because they might 

vary in the explanatory links they own. We will refer to this dimension as knowledge variety. 

For instance, two agents might be identical in terms of knowledge amplitude, but still diverse 

in the sense that the explanatory links belonging to each agent might be only partially 

overlapped. In our simulations, knowledge variety is been defined in relation to a given level 

of knowledge amplitude in order to simplify cases to be investigated. In this way, we focus on 

the contribution that knowledge variety offers to a group of peers (agents displaying the same 

level of knowledge amplitude). 

Formally, in order to define a setting in which diversity can vary in a controlled way, we will 

model these two dimensions of diversity by introducing restrictions in the set of the available 

knowledge constituents (explanatory links) from a complete scenario defined as the reference 

point:. The specifications included in the next Section will clarify our modeling choices. 

 

3. THE SIMULATION MODEL 

 

For the purpose of providing a common basis for the analysis of agents’ performance under 

various communication and diversity settings, we model a simplified problem which allows 

two alternative representations (theory A and B) each giving access to different actions, or 

highlighting a specific solution strategy. We define this baseline problem in terms of the sets 

of environmental evidence (ei), explanatory units (ai and bi), and causal connections (wij) 

which are displayed in Table 2 and Figure 2. The number of units is 

! 

n =12 , with 

! 

k = l = m = 4  and the number of explanatory links is g=15. Note that, in Figure 2, solid lines 

represent positive connections between evidence and explanatory units while dashed lines 

represent competitive links between alternative theories. Note also that special evidence units 

(and their links to evidence units), cooperative links between explainers and actual weights 

values are omitted for clarity. 

An agent having this complete representation of the problem – named “fully endowed” agent 

in the following – will always select theory A over theory B as the result of the relaxation 

process. 
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Table 2: List of Explainers in the Full Endowment Setting. 

 

unit of 

evidence 

explainers in 

theory A 

explainers in 

theory B 

e1 a1, a2, a3 b1 

e2 a3 b2, b3 

e3 a2, a3, a4 b3, b4 

e4 a3, a4 b4 

tot. nr. 9 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Representation of the Schemata in the Full Endowment Setting. 

 

Given this case as the reference point, we introduce agents’ diversity in the model by 

introducing diverse partial representations of the problem. Each agent is represented by one 

of these partial representations that display a differently bounded perspective for 

understanding the problem. Formally, each agent is a represented by a subset of the g 

explanatory links which jointly characterize the full problem setting. 

  

E1 E3 

A1 A3 

B1 

A2 

B2 

 

 

 

E2 

  

 

 

  

 

A4 

B3 B4 

E4 
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In our simulations, subsets, and thus diversity, differ along two dimensions that we have 

called knowledge amplitude and knowledge variety. First, subsets vary according to the 

number of explanatory links (shown by the h parameter). We treat the h parameter as a proxy 

of agent’s knowledge amplitude, so we will refer to “fully endowed agents” (for h=g) or 

“partially endowed agents” (for h<g). 

Second, subsets of explanatory links for different partially endowed agents vary in terms of 

knowledge variety, by distinguishing between agents’ shared vs. personal explanatory links. 

Here we restrict our analysis to the case of 2-person teams with peers (agents having the 

same knowledge amplitude – the same value for h). We introduce knowledge variety through 

the parameter v (with 0!v!h), that measures, for a couple of h-partial agents, the number of 

explanatory links, belonging to one agent, which differ from the explanatory links belonging 

to the other agent. Note that v=0 if the two h-partial agents are identical (they have exactly 

the same explanatory links), and v=h if all explanatory links of one agent are different from 

all the explanatory links of the other agent (to improve readability, the figures collected in the 

Section “Results” will show knowledge variety through the complement to h of v, that is the 

number of explanatory links that are shared in common by the couple of agents – the lower 

this value, the higher knowledge variety). 

Formally, let us define the fully endowed agent as the agent having a complete representation 

of the problem (g=15) in terms of environmental evidence (ei), explanatory units (ai and bi), 

and causal connections (wij). We refer to this case also as the full endowment treatment. 

The fully endowed treatment will function as benchmark for comparing the performance of 

partially endowed agents acting individually or in teams. Partially endowed agents are agents 

having a partial representation of the schemata represented in Figure 2 and are modeled using 

a table of explainers that is a subset of the corresponding table in the baseline treatment. 

Given that the number of causal links available to the fully endowed agent is g=15, and a h-

partial agent (for 

! 

h =1,...,g "1) is a bounded agent having only h causal links (over the g 

links of the full endowment treatment). There are 

! 

Cg

h
 possible different h-partial agents. 

We measure performance in terms of the frequency with which partially endowed agents’ 

choices coincide with the fully endowed agent’s ones. Given that the numerousness of 

partially endowed agents becomes quickly very large for the presence of the binomial 

coefficient, we will be able to offer statistics for the whole population only in extreme cases, 

that is for h close to g or to zero, while in all other cases we will derive our results via Monte 



 20 

Carlo simulations with randomly generated h-partial agents, as will be explained better in the 

next Section. 

A final remark regarding the parameterization of the model: we run all the instances of the 

model according to a choice of parameters (d=0.05, "=0.04, #=-0.06, sj=0.01 for j=1, …, n, 

fj=0.1 for j=k+l+1, …, n) that has been commonly employed in the previous literature on 

ECHO, and it has shown a remarkable capability of fitting data from various empirical 

domains. While some sensitivity analysis on these parameters showed that qualitative results 

do not change over a considerable parametric space, results from robustness analysis are not 

reported in this paper. Also, in the following Section, in order to pursue computational 

tractability of the problem, we restrict to the case of the smallest possible team (p=2). Finally, 

we treat communication as an on-off variable (

! 

" = 0  or 

! 

" = 0.5) for all the simulations but the 

last one, where we focus on the effects of different communication strengths, increasing 

! 

"  to 

1 and to 1.5. 

 

4. RESULTS 

 

We organize our results into five Subsections. In the first one we show the performance of 

partially endowed agents as individual problem solvers (no communication occurs), and we 

explore the impact on performance of different levels of endowment. These results are used 

as a benchmark in the subsequent Subsections, in which we study how performance is 

affected by the introduction of team communication. 

In the second Subsection we introduce 2-person teams made by one fully endowed agent and 

one partially endowed agent as a way to study the impact of increasing differences in 

knowledge amplitude within a team. 

In the third Subsection we study 2-person teams made by two partially endowed agents 

having the same degree of knowledge amplitude. Here results are compared with the 

individual benchmark (Subsection 1) in order to assess to what extent communication can 

make up for partiality. In all these three treatments we measure performance by varying 

agents’ endowment within the whole domain of the h parameter. Treatment three is 

investigated also in the two remaining Subsections. 

Subsection four inquires the interplay between different sources of diversity in 2-person 

teams: we study to what extent performance is jointly affected by bounds in agents’ 

explanatory ability (that is h<g) and by agents’ knowledge variety (different elements in the h 



 21 

causal links). Finally, the last Subsection deepens the previous analysis providing a simple 

sensitivity analysis over the communication strength parameter. 

 

4.1 Agents as individual problem solvers: partial representations of the problem and 

performance 

 

Figure 3(a) shows the outcome on individual performance resulting from introducing limits 

in knowledge amplitude. Note that, since agents do not communicate in this case, we are not 

investigating issues of diversity among interacting agents: here we are interested in varying 

knowledge amplitude only as a means to understand how much, at the individual basis, 

performance is affected by the deterioration of knowledge regarding a problem. Data are 

organized in order to distinguish poorly endowed agents (low values of the h parameter) from 

“almost fully” endowed agents (high values); frequencies are computed over the whole 

populations of possible h-partial agents, whose sizes are shown in Figure 3(b). 

Recalling that a fully endowed agent always solves the problem in terms of theory A, the 

decline in the capability of correctly interpreting the problem is clearly visible if one moves 

from the right to the left side of the plot: agents that are more and more bounded in the 

representation of the problem display a decreasing rate of selecting theory A. Interestingly 

enough, the selection of theory B does not increase correspondingly. On the contrary, the 

decrease in performance is almost entirely due to the emergence of confusion as the result of 

the agents’ efforts to interpret the problem: agents select outcomes which are inconclusive as 

they do not highlight any winner between the two available theories. Formally, the system 

converges to fixed points in which the values of the sj units do not allow to clearly separate a 

winning theory (the theory whose units are all positive) from a losing one (the theory whose 

units are all negative). 

Note that in the case of very poor problem settings (for h!5), agents tend to get less stuck into 

inconclusive outcomes, as it becomes more and more probable that the few remaining links 

provide an unambiguous and strong support for one theory over the other one. 
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Figure 3. (a) Frequencies of the correct interpretation (“theory A”), wrong one (“theory B”) and of reaching an 

inconclusive outcome (inability of selecting between the two theories), computed for h-partial agents (according 

to the various values of h) and (b) frequencies of the possible h-partial agents, computed according to the 

binomial coefficient 

! 

C
15

h

, for h=1,…,14. 

 

4.2 Performance in Diverse Teams: the Role of Knowledge Amplitude 

 

We address the topic of diversity at first by studying the impact of increasing differences in 

knowledge amplitude in teams. For the sake of simplicity we restrict our analysis to the case 

of 2-person teams composed by one fully endowed agent and one partially endowed agent, 

and we model increases in diversity by decreasing the number of links available to the latter 

agent. A diffused practice in organizations is to group workers having a vast knowledge with 

novices. Through this simulation we evaluate if novices benefit from experienced buddies or 

if through interaction, they are able to confound even the most experienced colleagues with 

their poor knowledge. 
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Figure 4 collects the observed frequencies of performance, respectively for (a) the partially 

endowed agent and (b) the fully endowed agent. As it is evident from Figure 4(b), the effect 

of communicating with a bounded agent has no effect at all on the fully endowed agent 

performance. On the other hand, communication helps the partially endowed agent to avoid 

the trap represented by the wrong theory (B), which is never selected. Nevertheless, partially 

endowed agent’s performance is still far from the levels of the fully endowed one. In fact, 

similarly to the baseline treatment, when his knowledge is very poor, the frequency of 

inconclusive outcomes is still higher than the frequency of the correct interpretation (theory 

A). Despite this, an overall look at the results allows to claim that communication has a 

positive effect on teams composed by an experienced worker and a novice at any level of h, 

as summarized in Figure 5. 

  

 

Figure 4.  Frequencies of the correct interpretation (“theory A”), of the wrong one (“theory B”) and of reaching 

an inconclusive outcome, respectively, for (a) a partially endowed agent and (b) a fully endowed agent, 

communicating in a 2-person team. 
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Figure 5.  Frequencies of the correct interpretation (“theory A”) for a partially endowed agent with and without 

team communication with a fully endowed partner. 

 

4.3 Teams with Two Partially Endowed Agents 

 

In Figure 6 we introduce team communication between couples of partially endowed agents. 

We restrict the analysis to the symmetric case and we assume that a h-partial team is 

composed by two h-partial agents (note that here we do not control for knowledge variety, 

that is investigated in the next Subsection). Since the sizes of the populations of the possible 

h-partial teams, as shown in Figure 6(b), are large, frequencies depicted in Figure 6(a) are 

collected through random sampling of 20.000 h-partial agents randomly grouped in 10.000 

teams (data for the two agents are pooled in the analysis). From Figure 6(a), and Figure 7, 

that compares the observed frequency of the correct interpretation over the three treatments 

(partial agent alone, partial agent matched with a full agent, partial agent matched with 

another similarly partial agent), it is possible to derive the following considerations: (i) 

communicating in a team with a fully endowed agent betters the performance of the partially 

endowed agent for all the levels of h. On this respect, the partially endowed agent should 

always prefer to team with the fully endowed agent than with similarly partially endowed 

fellows; (ii) when two partially endowed teammates form a group, performance deploys a 

less straightforward trend. When peers’ problem representation, albeit limited, still gives a 

rough picture of the situation (intermediate levels of h), team interaction can improve agent’s 

performance. On the contrary, as their limits in representing the problem increase, they might 
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reach a point after which performance as individuals seems more effective, since in the 

communication treatment the frequency of inconclusive outcomes becomes larger. 

 

  

 

    

  

 

Figure 6. (a) Frequencies of the correct interpretation (“theory A”), wrong interpretation (“theory B”) and of 

reaching an inconclusive outcome (inability of discriminating between the two alternative interpretations), 

computed for a h-partial agent communicating in a 2-person team with another h-partial agent (b) frequencies of 

the possible couples of h-partial agents, computed according to the formula 

! 

C
15

h( )
2

, for h=1,…,14. Frequencies 

in (a) are computed with respect to random samples of 10.000 couples of h-partial agents. 

 

An intuitive interpretation for these results is that, when agents can only represent poorly the 

problem they are facing, communication might drive them into a decision trap, making them 

incapable to reconcile messy suggestions coming from their teammate with their own, 

already fragmented representation. One possible explanation for the poor performance of 

communication might lie in the observation that, the more limited agents’ problem 
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representations, the higher the probability that their schemata would have very few element 

in common, something that we would expect to increase confusion. In order to investigate 

better this issue, we integrate another dimension of diversity into the analysis: knowledge 

variety. 

 

  

 

Figure 7.  Frequencies of the correct interpretation (“theory A”) for a partially endowed agent under three 

different treatments: individual behavior, communication with a fully endowed partner, communication with a 

partially endowed partner. 

 

4.4 The Interplay between Diversity dimensions: Knowledge Amplitude and Knowledge 

Variety in Teams of Two Agents 

 

We measure knowledge variety for a given couple of h-partial agents as the complement to h 

of the number of common causal links shared by the couple. In Table 3, which counts the 

possible h-partial teams with respect to h and to the number of shared causal links, the level 

of variety increases if we move from the right to the left side of the table. 
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Table 3. Frequencies of the possible couples of h-partial agents, computed distinguishing for the level of 

endowment (h) and for the variety among the h features available to each of the two agents (that can be 

measured in terms of the complement to h of the number of causal links that they share). Note that the elements 

aii  (for i=1,…, 14) correspond to the frequencies of the populations of h-partial agents shown in Figure 3(a), and 

horizontal sums corresponds to the frequencies of the population of h-partial teams shown in Figure 6(b). Also 

note that from the lower to the upper bound of the Table we move towards agents more bounded in their 

knowledge, and that from right to left we move, ceteris paribus, toward agents with less shared links, thus 

displaying more variety in their knowledge. 

 

      shared links          

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 210 15 - - - - - - - - - - - - - 

2 8190 2730 105 - - - - - - - - - - - - 

3 100100 90090 16380 455 - - - - - - - - - - - 

4 450450 900900 450450 60060 1365 - - - - - - - - - - 

5 756756 3153150 3603600 1351350 150150 3003 - - - - - - - - - 

6 420420 3783780 9459450 8408400 2702700 270270 5005 - - - - - - - - 

7 51480 1261260 7567560 15765750 12612600 3783780 360360 6435 - - - - - - - 

8 - 51480 1261260 7567560 15765750 12612600 3783780 360360 6435 - - - - - - 

9 - - - 420420 3783780 9459450 8408400 2702700 270270 5005 - - - - - 

10 - - - - - 756756 3153150 3603600 1351350 150150 3003 - - - - 

11 - - - - - - - 450450 900900 450450 60060 1365 - - - 

12 - - - - - - - - - 100100 90090 16380 455 - - 

13 - - - - - - - - - - - 8190 2730 105 - 

14 - - - - - - - - - - - - - 210 15 

 

Figure 8 shows the frequencies of selecting the correct interpretation (theory A) in a h-partial 

team for various levels of knowledge amplitude (h) and variety (measured in the horizontal 

axis). Frequencies are computed over the whole corresponding team population if, according 

to Table 3, its size is less than 10.000, otherwise frequencies refer to 10.000 random couples. 

The points displayed in the plot refer to the case in which the number of shared links is equal 

to h, thus representing teams between 2 identical agents. Note that in this case outcomes 

correspond exactly to the performance of individual agents that have been previously 

collected in Figure 3. Starting from every point, two different lines depart towards the left 

side of the plot: solid lines represent the frequency of the correct interpretation under team 

communication for increasing levels of variety in the couple of agents (data are pooled for the 

two agents); dashed lines represent how these agents would perform without communication 

(these frequencies are slightly different from the values at each corresponding right-end point 

because they are computed over different random samples). 
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Figure 8.  Frequencies of the correct interpretation (theory A) measured for h-partial teams under various level 

of endowment (h) and variety (measured on the horizontal axis, fewer shared links corresponds to a higher 

variety in the team). 

 

Overall, results shown in Figure 8 allow to shed some light on the interplay between three 

intertwined elements: team communication, agents’ knowledge amplitude in the problem 

representation and knowledge variety. For high levels of knowledge endowment (right side of 

Figure 8), communication always betters individual outcomes and the more various 

knowledge agents have, the better the probability of inferring the correct interpretation. This 

trend shows that when agents have an almost complete representation of the problem, they 

can benefit most from interaction, because they are able to enrich their view of the problem 

with aspects that they ignored or were not able to explain. In short, communication helps 

them closing the puzzle. The circulation of missing links of the problems representation is 

positive if the vision that is already available to the agents is complete enough so that these 

missing links can be added to a set of problem explanations which is relatively stable within 

the group. As a matter of fact, we observe that for intermediate levels of knowledge 

endowment (center), agent’s performance still benefits from communication, while there is 

an optimal amount of variety granting the highest performance levels, after which 

performance declines (up to a point in which extreme levels of variety might result in worse 

performance than in the case of independent individual problem solving). In fact, for lower 
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levels of knowledge endowment (left side) team communication always provides worse 

conclusions than the individual case. 

This evidence shows that groups can benefit most from being composed by diverse members 

– in terms of variability of knowledge – when all of them have a very good representation of 

the problem. Conversely, when they understand little of the situation, diversity gives rise to 

disorientation rather than improvements in problem solving. 

 

4.5 The Role of Communication Strength 

 

Results from the previous Subsections were obtained with a degree of communication 

strength that supposes a moderate interaction among agents. In this Subsection, we perform a 

discrete sensitivity test by doubling and tripling the value of the communication strength 

parameter. Recalling how the schemata is initialized, these three values correspond, 

respectively, to the case in which communication has a lower, similar or higher impact on the 

weights of the communication matrices in comparison with the default intensity of the causal 

relationships of the individual weight matrices. We restrict the analysis to these values, 

arguing that this choice is consistent with the aim of preserving enough intelligibility in the 

graphical presentation of the results, without losing depth in the analysis, since outcomes for 

lower or higher communication strengths can easily be derived from the analysis carried out 

at the levels that we focus on in the following. Results are collected in Figure 9, in which 

solid lines are arranged so that thicker lines correspond to higher communication strengths. 

Due to the multiple series of data, in order to improve readability, we show the results only 

for selected h values. 

We arrange our results distinguishing between low/high levels of endowment. For low levels 

(left side of Figure 9, for h!8), sensitivity analysis clearly confirms the negative contribution 

of communication: all communication levels produce a performance worse than individual 

outcomes. Communicating more does not help agents that have a poor understanding of the 

problem setting: there is a clear-cut and monotonic negative relationship linking performance 

and communication strength, resulting in communication mishaps that are particularly 

evident for the highest 

! 

"  value. This means that teams of agents having very poor 

representations and over-discussing the details of the problem are more likely to distort even 

those few elements they understand and to get stuck at a point in which they cannot see 

which choice should be made. 
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Figure 9. Frequencies of the correct interpretation (theory A) measured for h-partial teams under various level of 

endowment (h) and variety (measured on the horizontal axis, fewer shared links corresponds to a higher variety 

in the team), for different degrees of communication strengths: the thinnest (solid) line corresponds to the initial 

treatment displayed in Figure 8 (the lowest, with 

! 

" = 0.5), the thickest one to a highest communication level 

(

! 

" = 1.5), while the intermediate thickness corresponds to an intermediate strength level (

! 

" = 1).  

 

For higher levels of endowment (h"10) findings are less straightforward and can be 

summarized as follows. First, there is a clear non-monotonic relationship between 

communication strengths and performance: while we did not perform a complete exploration 

of the strength space in order to find an optimal value, it is clear that performance 

corresponding to the intermediate communication value is always better than both the lower 

and higher strength levels. Second, as endowment increases, sensitivity to changes in 

communication strength decreases, since differences in performance improvements get 

smaller. Third, the interplay between communication and variety in agents’ knowledge seems 

to be particularly unanticipated. In fact, while performance differentials for various 

communication strengths are negligible in the case of very diverse agents, they are 

considerably large as agents become more and more similar. In particular, the non-linearity of 

the phenomenon is startling: while doubling the communication strength results in relatively 

limited performance improvements, moving from 

! 

" =1 to 

! 

" =1.5 , we observe a severe 

performance breakdown. Finally, higher communication strengths might affect the behavior 

even in teams of identical agents: while for 

! 

" = 0.5  communication did not result in any 



 31 

observable difference with respect to individual behavior, as the strength of communication 

increases identical agents change their behavior when interacting in a team.  

More precisely, this results in improvements at the intermediate communication level, while 

for the highest level it corresponds to a considerable deterioration in agents’ problem solving 

abilities. 

 

5. DISCUSSION 

 

In this paper we investigated the impact of communication in teams of diverse problem 

solvers. We modeled diversity as differences in problem representation. Extant literature 

addresses the relation between team diversity and performance through models that do not 

allow to control for various determinants and sources of diversity in teams of heterogeneous 

agents. Our model, instead, defines diversity along two different dimensions: knowledge 

amplitude and knowledge variety, thus opening the door to explorations of the effects of 

distinct features and levels of diversity on the performance of problem solving teams. 

We studied interactions among diverse peers, which are agents having the same knowledge 

amplitude, but that might display diversity in terms of knowledge variety. Likewise, we 

provided results regarding agents’ interactions in teams composed by novices and more 

experienced problem solvers as a way for investigating the role of diverse levels of 

knowledge amplitude in problem solving performance. 

Our results allow to derive some implications on groups composition and interaction in firms 

and organizations. Our main findings show that teams are not always effective means for 

tackling problem solving in organizations. 

This is certainly not the case of teams pairing more experienced workers with partners having 

a poor understanding of the problem. In fact, the first are not diverted by their teammate’s 

doubts or partial understanding, since they prove to be able to lead the less experienced to 

solutions that are better off, without registering significant losses in their performance. 

Conversely, if we address the topic of communication effectiveness in teams of peers, results 

may vary. In particular, communication might have a negative impact when the 

understanding of the situation is very fragmented. We showed that when peers display a very 

limited understanding of the problem, their propensity for failure increases. In fact, when 

agents don’t share a considerable overlap in their problem representation, their perspectives 

on the world diverge and languages do not find a common basis for beneficial interaction. In 

this scenario, communication might eventually result in being more troublesome than helpful. 
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Moreover, adding variety into these poor interpretations makes the situation even worse: 

agents confound more and more each other as they become more diverse. 

Communication helps when peers have a vast knowledge domain that allows them to identify 

the majority of the relevant information and to define consistent and coherent explanations of 

the evidence. As a matter of fact, interaction allows them to complement each other’s 

knowledge in an effective way, and increases in knowledge variety allow to further improve 

the team performance, too. 

These results notwithstanding, we also showed that interacting too much might change the 

overall impact of communication. This is not the case of teams unfolding high variety in 

knowledge meaning that talking more or more intensely with people that are well-read in 

domains that are different from our own is enriching and eventually increases performance. 

Very similar agents though are extremely sensitive to higher than optimal communication 

strengths, as their performance declines considerably. This points out that discussing too 

much the same ideas does not make them clearer nor more effective. On the contrary, too 

many repetitive arguments make agents less sharp and incline to fail more often. Interesting 

enough, the opposite case of interacting too little is less disruptive as lower than optimal 

communication strengths have a less significant impact on performance. 

Our results are limited in various ways. First of all, they rely on a specific, albeit common in 

the literature, choice of the model parameters and run over a specific instance of a problem 

setting displaying an abstract and acceptable despite arbitrary structure. The reasons for 

starting from this unique and ad hoc instance can be justified if one takes into account that: 

(i) we needed to start from a full representation of the problem setting which relaxed towards 

one theory, something that is not granted by generating at random lists of explainers (as the 

one collected in Figure 2), since the corresponding fixed point might be inconclusive; (ii) 

computational parsimony suggested to restrict the analysis to one structure (as opposed to 

averaging results for a series of different instances) and to a limit the amount of units 

involved (n=12). Similar reasons suggested to limit our analysis to the case of 2-agent teams 

and of two competing theories. Finally, we explored knowledge variety only in the case of 

similarly endowed agents (peers) while more complex cases in which amplitude and variety 

still need to be addressed. 

The current model does not pretend to be complete, and several extensions could be made. 

We offer it with a twofold attempt: first, of investigating the contribution of diversity to team 

problem solving thus providing a deeper understanding of dynamics of collective problem 
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solving; second, for exploring models of decision making that detach from pattern matching 

basis or from bounded evaluations of consequences. 
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