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1.INTRODUCTION

Long memory random fields arise in applications in the most disparate areas such as astron-
omy, economics, hydrology and the telecommunications, for a pretty complete set of references
to applications the reader is referred to the book of Beran (1994). Our aim is to present some
results on the rate of convergence to the normal law of the Least Squares Estimators (LSE) of the
regression coefficients in models with multidimensional inputs and long memory errors. The same
problem, for single input regression has been considered in Leonenko, Sharapov and El-Bassiouny
(1999), and here we will use the methods adopted therein. Note that we consider regression on
continuous homogeneous random fields; this is of importance in view of the fact that procedures of
discretization lead sometimes to loss of information (see, for example, Leonenko, 1999, pp. 14-16).

Statistical problems related with long memory random processes and fields have been considered
in the book by Ivanov and Leonenko (1989), Chambers (1996) considers the problem of estimation
of continuous parameters in long memory time series models, in Comte (1996) we find an analysis
of different methods of simulation and estimation methods for long memory continuous models.
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Leonenko and Bengié (1996, 1998) and Leonenko and Taufer (1999) present Gaussian and non-
Gaussian limit distributions of univariate and multivariate regression for long memory random
fields and processes, their results have been obtained by the methods presented in the works of
Dobrushin and Major (1979) and Taqqu (1979).

For other results of interest here see Yajima (1988, 1991), Kiinsch, Beran and Hampel (1993),
Dahlhaus (1995), Robinson and Hidalgo (1997), Deo (1997), Deo and Hurvich (1998) which con-
sider regression models with long memory errors in discrete time. One can also consult Koul
and Mukherjee (1993,1994), see also their references, which consider the asymptotic properties of
various robust estimates of regression coefficients.

The paper is organized as follows. In Section 2 we will state our model and assumptions exactly
and formulate the main result which show the rate of convergence of Kolmogorov’s distance between
the distribution of the normalized LSE and the standard normal distribution. The proof of the
main result, together with some preparatory lemmas, is given in Section 3. Section 4 contains the
discussion for an extension to a wider case which can be done at the price of a slower convergence
rate.

We do not take into consideration here the problem of estimation of the dependence index (or
Hurst parameter), for this, see Giraitis and Koul (1997) and their references.

2. MAIN RESULTS

Let R™, n > 1 be a n-dimensional Euclidean space, A C R" be a bounded and convex subset
containing the origin, and A(T) be the image of the set A under the homotetic transformation
with center at the origin and coefficient T' > 0. Practical situations often claim that A is a sphere
but we can allow this weaker condition.

Assumption 1. Consider the regression model of the form

((z) = O'g(z) +n(z), zeR"
where g(x) = [g1(x),...94(x)]" is a known vector function whose coordinate functions g;(z), i =
1,...,q form a linearly independent set of real functions positive on A and square integrable over
the same set for all bounded A C R™ containing the origin. 8 = [64,...,8,] is an unknown vector of
parameters and n(z) is an homogeneous random field of errors with En(z) = 0 and En(z)? < oo.
The problem is to estimate the vector of parameters 6 using the observations ((z), x € A(T),
T — oc.

Assumption 2. Let {(w,z) = &(z), z € R", w € Q, be a real valued measurable mean square
continuous homogeneous Gaussian random field on the probability space (2, F, P) with E¢(x) = 0,
E¢(x)? =1 and correlation function

B(r) = £0)&(z) = o] L(2]) @ (ﬂ)  0<a<n,

where a(-) is a continuous function on the n-dimensional sphere s,_1(1) = {x € ™ : |z| = 1}, and
L(t) > 0,t > 0 is a slowly varying function at infinity (lim; %(%l =
on each finite interval.

Under assumption 2 we have

1, for every s > 0) bounded

/ |B(z)| dz = 00

Assumption 3. Let n(z) = G(£(x)), © € R™, where £(z) is a random field satisfying Assump-
tion 2, and G(+) is a non random measurable function such that EG(¢(z)) = 0 and EG?(£(x)) < oo,
z € R™.

Note that the marginal distributions of a field n(x), x € R", satisfying Assumption 3 need not
be Gaussian.
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The LSE of @ can be found by minimizing
. @ - 09K - 8'g())ds
A(T)

with respect to 8. The final form of LSE is given by (the integral is taken with respect to every
element of the matrices)

or=07' [ g)@)dr =6+Q;! / 9(2)G(¢(x)) dz 2.1)
A(T) A(T)
where
Qr= [ g@gla) da.
A(T)
The existence of Q7" follows from linear independence and square integrability of g1(z), ..., g,(z).

It is straightforward to verify that

A~

E0r)=90
and that ) ) )
Var(OT) = E[OT - ][GT - 0]’

- _1/ / z)' EG({())G(£(y)) dody Q7" (2.2)
A(T)

Let Hp,(u) = (=1)™ exp{u2/2}8u—m exp{u?/2},u € R, m =0,1,..., be the Chebyshev-Hermite
polynomials with the leading coefficient equal to 1. As it is well known, they form a complete
orthogonal system in the Hilbert space Lo(R', ¢(u)du), where ¢p(u) = (2m)~1/2 exp{—u?}, u € R'.
Note that Ho(u) = 1, Hy(u) = u, Ho(u) = u?—1 ... It is well known that (see, for example, Ivanov
and Leonenko 1989, p.55) that if (£,n) is a Gaussian vector with E€ = En =0, E¢2 = En? =1,
Eén = p, then for all m,p > 0

EHm(§)Hp(n) = 67,p"m! (2.3)

where 7, is the usual Kronecker’s delta. Under Assumption 3 the function G(u), u € R' allows
the following representation in the Hilbert space La(R!, #(u)du):

G =Y %Hm(u), Cpn = /ER G () Hyp () $(u)dus (2.4)

m>0

and by Parseval’s relation:

EG?(£(0)) = / G?(u)p(u)du < oo (2.5)

Note that Co = EG(£(0)) = 0. From (2.1)-(2.4) we obtain:

Var(fr) = Q7' Y ¥, (2.6)

m>1
where

/ / y)' B™(x —y)dz dy
A(T) A(T)

Now we need some extra assumptions upon the regression vector function g(-) and the covariance
function B(-).
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Assumption 4. Suppose that g;(z) > 0 for all z > 0,i=1,...,¢q and, for 0 < a < n/m,
m =1 or m = 2, and the following limits exist and are finite:

L, (a,n) = lim Dz / / g(zT)g(yT)' m( )|;U— y|~™* de dy D'
T—oo A(T) A(T) lz -yl

where

Dr = diag[gl(qu)a s 7911(qu)]

and that L,,(a,n) is positive definite matrix (1, is a g-vector of ones).
After the transformation z = z*T € A(T), y = y*T € A(T), T > 0, z* € A(T), y* € A(T)
we obtain the following expressions for the matrix ¥,,(T), 0 < a < n/m:

Cm L™(|z" —y*|T)

v, (T) = - —mq2n=mapm(T) Dr Dy, /A(T) /A(T) z*T)g(y*T)’ Lm—(T)X

* 0% d *d *
x“m(|m* y*|) sy Di'Dry 0<a<n/m.
T*—y T*—y

Assumption 5. Let m = 1 or m = 2. Suppose that the matrix

_ T—y 1 L™(|lz —y|T _
FmT(xay):DTlg(xT)g(yT)lam<|$_y|) |$_y|ma|: .([!m(T)| )_1 DTISFm(xay)7

0 < a < n/m, where the sign ' <' means this relationship between all single elements of the matrix

F,.r(z,y), and that
/ F(z,y)dxdy < co.
A(T) JA(T)

Let m =1 or m = 2 and Cy, # 0. Then, from Assumptions 4 and 5 and Lebesgue dominated
convergence theorem we obtain (for details, see Leonenko and BenSic, 1998):

2
lim |@,,,(7) — S —AT L™ (T) DrLy(a,n) Dr| = o), 0<a<n/m
—00

where o(1) is the matrix function such that lim_, |o(1)(T)| = 0.
Let
Oie,d|={ueR?:¢; <u; <djyi=1,...,q}

be a parallelepiped in 7, and let X and Y be arbitrary g-dimensional random vectors. Introduce
the uniform (or Kolmogorov’s) distance between distributions of random vectors X and Y via the
formula:
K(X,Y) =sup|P(X € Iloo, 2]) — P(Y € II[oo, 2])|
z

Let N be a standard normal random g¢-vector with zero mean and unit covariance matrix and
consider the random vector

_1 A
kr =¥, *(T)Qr([6r — 6],
where the LSE @7 are defined in (2.1) and ¥ 3 (T) is a nonsingular matrix such that

T2 (T) 8] 3 (T) = Uy (T)!

The main result of this paper describes the rate of convergence to the normal law of the random
vector k as T" — 00. The result is presented in the following theorem
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Theorem 2.1. Suppose that assumptions 1-5 hold for 0 < a < n/2, and

C, = / uG(u)p(u)du # 0,
R
then the following quantity exists:
lim sup[T®/L(T)]**K(k, N)
T—oo

and is bounded by
2¢1(g)*® [ea(q) e(@)]'® tr[La(a,m) ™" La(a,n)]

where Li(a,n) and Ly(a,n) are defined in Assumption 4 and
) =07 | [ ot ci]
R
alg) =+2/m, if g=1

Cla-1/2

W (\/§+ \/q(q—l))2
C2\q) = > .
q

3. PROOF OF THE MAIN RESULT

Before proving Theorem 2.1 we mention some preliminary results. The following lemma provides
an estimate of the Kolmogorov’s distance of a sum of random vectors from a standard Gaussian
vector. For its proof see Leonenko and Woyczynski (1998).

Lemma 3.1. Let XY be two arbitrary random q-vectors and N be a standard Gaussian q-vector
such that, for all a,b € RY,

|P(X € Ifa,b]) - P(N € Ifa, b])| < K,
where K > 0 is a constant. Then, for any € > 0,
K(X+Y,N)<K+P(Y ¢II[-14¢,e1,]) + cc1(q) (3.1)

where ¢1(q) is defined in Theorem 1 and 1, is a g-vector of ones.

In the proof of Theorem 2.1 we need an estimate on the tails of the maxima of a general second-
order random vector’s components which is provided by the following Lemma (see Leonenko and
Woyczynski, 1998).

Lemma 3.2. Let Y be a random g-vector with mean EY = 0 and covariance matrix EYY' =

Y = (04j)1<i,j<q, and let Z; = Y;/(k;0;) where o7 = 0, and K1, ..., kq > 0 are some constants.
Then 1 2

1> < _ — ) 2

P(max1z121) < & (Vi Vo D) | (32)

where t = tI‘H, s = liIqu, II=EZZ = (ﬂ'z’j)lgi,qu; Tij = O'ij/(O'iO'inz’K:]’), and ].q is a q—Vector
of ones.

Remark. Note that

q q q q
OSSZZM'-F?ZZWUS?ZWu:% (3.3)
=1 =1

i=1 i<j



6 N.LEONENKO, E. TAUFER

and hence a less tight version of Lemma 3.2 which will allow us to obtain a more compact result

can be stated as R
(\/5 + Vala— 1))
2

q

’

p (max | Zi| > 1) <t
1<i<

for later convenience let
(x/i +valg— 1))
2

q

2

c2(q) =
Proof of Theorem 2.1. The expansion 2.4 implies the following expansion in the Hilbert space

LQ(Q):
Cm

We now consider the random vectors
(@) = [ g@Hn(E@)ds, m=12...
A(T)
In order to apply Lemma 3.1, we represent K1 as

kr =¥, > (T)[ X7 + Y7]

where

Cm
Xr=Cm(T), Yr= Z W"?m(T)

m>2

Note that X is a Gaussian random vector with EX7 = 0 and EX7 X/} = ¥1(T). So we have
_1
K(®, *(T)X7,N) =0

and we may choose K = 0 in Lemma 3.1. We are left with the term

PO# DY ¢ -2,61,) = PO ()Y 2 #T11-1,,1,) < P ((max 12> 1)

1
where Z = ¥ 2(T)Y; L. By using the properties of the trace operator and in view of Lemma 3.2
and formula (3.3) we have that

1 _1 _1
t=twEZZ' = Str [\1:1  (T)EYr Y, ¥, ;(T)]

1
= St [¥,(T) 7 EY7Yy]

1 -1
= 5t [T,(T) 7' Z]

In order to evaluate an upper bound for ¢, note that from Assumption 2 we know that for r < m
and the following relation hold for any element of the matrices:

B ,(T) Lo < W (T) T

072‘_ @a 1§m§7',
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so that, for 0 < a < n/2

/ / y)'B™(x — y) dz dy
m>2 A(T) A(T)

/ / y) B%(x —y)drdy
A(T) A(T)

Next, note that ¥(T) is a symmetric positive definite matrix then, there exists an orthogo-
nal matrix P such that ¥, (T) = PAP' where A is a diagonal matrix containing the eigen-
values of Wy (T) which, by positive deﬁniteness are all real and positive. Hence we have that
tr [T (T)7'%] = tr [PA'P'S] = tr [A~'2] = 3, A; '0y;. Hence if we take constants k; > o3,
i=1,...,qit follows that 3, A\ oy < 3, A] 'k;. Following this line of reasoning we can obtain
the following estimate

m>2

2
= tr [¥,(T)7'%] < Z% tr [\Ill(T) CQ\IIQ(T)
m>2 :

Taking the limits, we know that, by assumptions 4 and 5 and Lebesgue dominated convergence
theorem %‘I’Q(T), as T — oo converges to
2

T2 2(T)DyLy(a,n) Dy, 0 < a<n/2.
Similarly, we have that ¥, (t)~!, as T — oo, converges to
C2 T *"L=YT)D;' 'Ly ' (a,n) Dy’

for 0 < a < n. Hence we obtain the following upper bound for ¢:

sl‘zC(G) LJ(E):) tr [L1'(a,n) La(a,n)], 0<a<n/2 (3.4)
where
e(G) = C7? ——C1 [/G2 w)du — C?

Finally, using Lemma 3.1 with X = \I!IE(T)XT and Y = ‘IIIE(T)YT we obtain from (3.4) that
for any € > 0:

Kikr, N) < ca(@) + ~e(@ea(@)tr [E7 (@m) Eaa,m)]

In order to minimize the r.h.s. of the inequality, set

. _ [d@e@tr (L7 (0,n) Lno, n»] v

c1(q)

and substituting into (3.5) we obtain the following

K(kr, N) < 2¢1(¢)**[e(G)ea(q)tr (L7 (o, n) La(a,n))]/* [—
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4. EXTENSIONS AND GENERALIZATIONS

As follows from the results of Leonenko and Bensic (1998), the asymptotic normality of the
normalized LSE takes place for all a € (0,n) (see Assumption 1) if Cy # 0, whereas Theorem 2.1
gives the convergence rate to Kolomogorov’s distance only for a € (0,n/2).

Nevertheless, our method is applicable also to the broader interval a € (0,n) at the price of a
slower convergence rate.

For simplicity we consider the homogeneous isotropic random field (the function a(-) = 1 in
Assumption 1) and the case of radial regression function: g(z) = g(|z|), z € R". We consider now
the case A(T) =v(T) ={z € R" : |z| < T}, T — oo. Thus the random field {(z) = 6'g(x) + n(z)
is observed on the ball v(T').

Assumption 6. Let £{(z), z € R™ be a real valued mean square continuous homogeneous
isotropic Gaussian field with E¢(z) = 0, E€%(x) = 1 and covariance function B(z) = B(|z|) =
cov(£(0),€(z)) — 0 as |z] — oo, and n(z) = G({(x)) where EG({(z)) = 0, EG*(¢(z)) < oo,
x € RN".

Assumption 7. Suppose that for the regression function it holds g(z) = g(|z|), z € R™ such
that g;(|z|) >0,i=1,...,qif |x| #0, and §;(|z]) < §i(Jy|]), i =1,...,q, for |z| < |y|.

Assumption 8. There exist a 0 € (0,1) such that any element of the matrix

T'r lJr‘”D_l/ / 'B(|z — y|) dedy D7'
o(T) v(T)

~re-osmp; [ f g(wT)g(yT)'iB(T'””‘y"
v(T) Jo(T)

~ dzdy D7 —
B(T) Tay T xO

as T — oo.

Note that if Assumption 2 (with a(-) = 1), and Assumptions 4 and 5 (with m = 1) hold, then
Tt — o0 as T — oo. Thus the random field £(z), x € R™ satisfying Assumption 8 is a long
memory random field.

We have the following result:

Theorem 4.1. Suppose that assumptions 6-8 hold, and

C = /éRuG(u)qb(u)du #0,

then the following quantity exists:

oné i ~1/3
lim sup [%1;1‘;11,, + B(T?) K(k,N)

T—oo

and is bounded by
2[c(G)ez (Q)]1/301 (Q)2/3

where ¢1(q) and c2(q) have been defined in Theorem 2.1, and

47" %(n/2)
n

c(n) =

Before proving the theorem, we need some preliminaries. For this purpose, let U; and U be
two independent random vectors selected in accordance to the uniform law on the ball v(T) € R™.
Then (see Ivanov and Leonenko, 1989, p.25) the density function pr(u) of the Euclidean distance
|U; — Us| between Uy and Uy is

11
pT(U) =T "nu"" Il (u/ZT)Z(n ks ) 5)3 0<u<2T,
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where

F u
B = pet 2 [Teta— i, a>0, b>0, pelol

T(@)T'(b) Jo

is the incomplete beta function.
Using Randomization we obtain for every function f(|z —yl), z € R", y € R™

/ f(lz — yl)dady = [o(T)PEF(Us — Us))
(T) Jo(T)

2T
=T*"u(1)]? | f(w)pr(u)du

2T
= e(n)T" / L gy (L Dz, (4.1)

where c(n) = 47"T'~2(n/2)/n and |v(T)| is the volume of a ball v(T').
Proof of Theorem 4.1: wee follow the scheme of proof of Theorem 2.1 including the necessary
modifications. Let us introduce the sets

Ay ={(z,y) s lz —y| <T°}

Ay ={(z,y) : |z —y| > T°}

Following the results of the previous section, in order to find an upper bound for ¢t = tr [\Ill (T)_IE]
consider

tr [\Ill(T) 122%(T)] = tr [xpl (//A1 //A) y)B*(lz —y|)dedy| (4.2)

On the set A; we have B%(-) < 1 and then, for the first term on the r.h.s. of (4.2), using (4.1) with
f(Jz — y|) = 14, we have the estimate

o [@1(T) ([ [, 9()g(w) Bz — y) dady )]

. [D;IDTMT)lg(T)g(T)' [/ day D;IDT]

Ay

2n6
= c(n)T"(l‘M)Ttr [Dy®,(T) ' Dy D3 g(T)g(T) D7

2n6
=c(n)T"(1+5)Ttr DT\IJI(T)—1DTD;lg(T)1;1qg(T)’D;1]

2n6
= ¢(n)T™H) Z_¢r
n

Where J, is a ¢ x ¢ matrix of ones. As far as the second term in the r.h.s. of (4.2) is concerned
note that on the set Ay we have B?(|z — y|) < B(T%)B(|z — y|) and then
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or [@1(1)7 ([ [, 9@)g () Bz — y) dz dy)]

<5ty [90) ! ([ [ oo Bz - vdsay)]
2
< B(T°)
Using Lemma 3.1 in the same fashion as in the proof of Theorem 2.1 we obtain that

c(n)2m

K(k,N) <eci(q) + %c(G) [ 1;r;11q + B(TzS)]

In order to minimize the r.h.s. of this inequality, set
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