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| ntroduction

Simon (1962) defines a complex system as one traists of many elements that interact in
a non-trivial way. A strategy of a firm then is @@nly complex, since it encompasses a number of

decisions and since those decisions are interdepéend

Complexity poses a problem of conflicting consttaiim designing the optimal strategy, and
has been in the focus of economic analysis at leasthe last half a century. One of the most
extensively studied methods of dealing with comiyexand the one that dates back to Simon’s

work, is the decomposition of the strategy intosiadependent modules.

On the organizational level such decomposition @Waelsult in division of labour between
different units and departments, while on the tetbgical level it would mean independent design

of the constituent parts of an artefact.

Modularization of the problem structure has beeswshto be an impressive tool for solving
complex problems (classical text is Simon 1969em¢écontributions include Frenkex al. 1999,
Baldwin & Clark 2000, Fleming & Sorenson 2001a,iEh& Levinthal 2004). However, there are

several serious problems daingers of modularity

The most obvious one is that complex structuresitmigell just not be decomposable or even
near-decomposable, so that the agents would bdeut@ldivide the problem intpatchesor else
find valid interfacesto start with. Any decomposition in this case wolddd to neglecting some
fraction of interconnections within the system, aegpending on how important those links are, the

efficiency achieved might be quite substantiallyéo than desired.

Moreover, while it is generally true that the aggasolution of a more complex problem
would be worse than that of a simpler one, it & ps true that the relation would be turned upside
down when we look at the best possible solutiothefrespective problems (Fleming & Sorenson
2001ab, 2003 provide the intuition behind this hgedtivans & Steinsaltz 2002, Durrett & Limic

2003 provide its formal proof; see aBigure 7 for simulation analysis results).

More complex settings provide more opportunitiesnnich elements can influence each
other, and we do need to remember that despitéathieéhat more attention has been given to the
possiblenegativefeedback loops between the elements, modularizatia landscape discards of
just as large a fraction of possilgesitivefeedbacks. Thugeteris paribusif we want to achieve a
higher efficiency level in absolute terms (ratheart as a fraction of a globally optimal result),reno
complex landscape is simply a better place to lookt. As Fleming and Sorenson (2001b) point



out: “By placing a premium predictability in theroduct development efforts, companies create a
technology landscape that’s easier to navigatet-etel that may produce fewer breakthroughs”

Another interesting insight into dangers of a maduesign has been provided by Rivkin
(2000), who claims that: “As the elements of a fgndecision problem grow numerous and
interdependent, imitation of a successful stratbggomes very difficult. Indeed it can become
“intractable” in a technical sense of the wofdlhis would suggest that strategies (or techno&gie
that are more complex amaturally codified and hence their useedgeshe firms against the risk

of being imitated by the competitors.

Finally, as found by Ethiraj and Levinthal (2004)..] in the long run, erring on the side of
greater integration poses lower performance pe@salthan erring on the side of greater
modularity™ This suggests that when the underlying structdréhe landscape is not perfectly
known to a decision maker, and thus the correcbmosition is not attainable, choosing a more

complex strategy may well be a better idea tharosing a less complex one.

Summing up all the abovementioned a conclusionbeamade that while to a certain degree
modularization is a valid strategy of dealing withmplexity, it should be used with great caution.
Moreover, and what this paper will deal with, theorrect” decomposition will still leave the
resulting “blocks” rather large and the elementthimithem interrelated, so that alternative ways of
dealing with complexity have to be sought.

Modularization can be seen as @ljectiveway to simplify the problem to be solved. The
problem itself changes as a result, and the newlgmothat we obtain is objectively simpler both
for the decision-maker herself, and for the othAklgrnatively, in order to still be able to redpet
fruits of a more complex structure and preventdtieers to imitate it, aubjectiveway to make the
problem simpler have to be designed, a way thasmbehange the problem itself, but our

knowledge and abilities to solve it.

As a framework of the analysis we take Stuart Kaaff's model of fithness landscapes
(Kauffman & Levin 1987, Kauffman 1993). The origimaodel deals with the evolution of coupled
natural (biological) systems. It is therefore plhlesto assume absence of atyategic intentions
or foresightpossessed by the agents of the system. Howevsristinio longer a valid assumption

when a transition from natural to social evolutanalysis is being made.

! Fleming, Lee & Olav Sorenson(2001b)The Dangers of ModularityHarvard Business Review, Septemiperges
20-21

2Rivkin, Jan W. (2000)Imitation of Complex StrategieManagement Science, vol. 46, No. 6 (Jupayje 825

3 Ethiraj, Sendil K. & Daniel Levinthal (2004)Modularity and Innovation in Complex Systemsnagement Science,
vol. 50, No. 2 (Februarypage 169

2



Take a game of chesas an example of a complex coupled system. Egahefion the board
can be placed in a number of different positiongh wthe “value” of a given figure being in a given
position depending on where the rest of the figuaes placed. What the model in its original
setting, as well as its current applications togbenomics proper (see e.g. Levinthal 1997, Frenken
et al. 1999, Kauffmaret. al 2000) assume, is that a player randomly chooseg@nd only one)
figure on the board at a time and decides whethendve it to a new position or not possessing
perfect information of the consequences of that enfov the next period, while at the same time
being completely ignorant on how that move infllesthe options a player will have when she is

called upon to make subsequent moves.

This might be the “strategy” of someone who hasenéxeard of the game before, but I'd be
very skeptical to take it as a reasonable appraxdmdor a firm’s perception of the technological

evolution it undergoes.

Even quite a bad chess player would consider skeyassible moves at a time, and, a
relatively better one would also be able to thiekesal steps ahead when making the decision on
the move at the current period. Indeed, this ic#xavhat differentiates a good from a bad player.
The game of chess remains the same, the problath dees not become less complex, but,
subjectively, it is simpler for a more experiengdayer than for the novice precisely for the reason
that the former is more able to thinkbreadthand indepth Experience of a player allows her to

draw a better “cognitive map” of the problém.

Apart from the mere reason of implausibility (afadira model is not supposed to replicate the
real world perfectly), there are much more groungdstlfications of enriching the original model in
the proposed manner. Introducing depth and breafigearch opens up a way to consider and
compare the whole spectrum of local search strdgefiom extremely basic and myopic to
overwhelmingly sophisticated, and measure in effieetlevel of sophistication needed in order to
solve problems of different complexity. Moreovehen strategic intent enters the picture, some of
the most important conclusions drawn from the asialgf the economic applications of the model
in its original setting fail to hold.

The basic insight gained from the analysis offtiebased models of local seafdh that for

at least partially interconnected systems that @raracterized by the existence of multiple

* Think of it as a variation of a chess game plaggdinst nature, rather than an opponent

® See Gavetti & Levinthal 2000 and below for moreaied review of their model.

® The analysis is not limited to the scenario ofearsh being strictly local, however it has beenvwshthat for the
tightly coupled systems the so-called long jumps(ging the state of several elements at a tineepaneficial only
for low initial efficiency levels. In the currentaper it is therefore assumed that the firms emploly local search
strategies.
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equilibria, the agents are getting trapped on lefitiency maxima, hardly ever reaching the
global optimum. Alternatively it is shown that exiséive search through the whole space of
possible configurations (something only a perfeatiyional agent can undertake) guarantees
reaching the global optimum, but, due to an astmoonumber of such configurations on a

multidimensional landscape, is extremely costly.

Bringing the measures afepth and breadth of search into the analytical framework, the
current paper investigates the whole space of tssiple strategies of local search between the
myopic search scenario, as in the origiN&l model(breadth=depth=), and the perfect foresight
scenario freadth=depth=N. The main point of the current research is towsliosat while quite
obviously perfect foresight is a sufficient conaliiti for the attainment of the globally optimal

solution, it is by no means a necessary conditoritfat.

2. Breadth and Depth of Search. Preliminarities

Much of the existing applications of the NK Moddl itness Landscapes in the fields of
strategy and organizational design center aroumdidiea of decomposability and creation of
modular quasi-independent structures. Despite beaingimpressive analytical tool, however,
modularization has been shown to have certain din®uch limits can usually be reached quite
quickly, leaving the resulting block-structureslistbo complex for a usual myopic and purely
experiential trial and error strategy. This woudd the agents to reach solutions that while being
possibly better than those obtainable with leawimg problem structure purely integral, are still

inferior in most of the cases to the globally kmsdtition existing on the landscape.

We can see the whole problem of a decision makeoasisting of two parts: (a) finding the
optimal level of decomposition, thus obtaining bieck-structures of optimal size and complexity,
and, (b) finding a strategy of search that gives ésulting characteristics of the block-structures

obtained, would lead us to an optimal solutionhef problem.

While much attention has been given lately to thst part of the problem, the second part of
it is clearly underinvestigated. The task of therent paper is precisely in attempting to closé tha
gap. | assume here that an optimally sized blogkeires have already been obtained in the ways
proposed e.g. by Frenken al (1999) or Ethiraj & Levinthal (2004), and having@tlassumption as
a starting point of the analysis, extend the méaléihd the simplest strategy that leads the agents
the global optimum in shortest time and with lgass$sible requirements on the agents’ rationality

level.



2.1. Breadth of Search on Technology Landscape

The idea of parallelism of search has been analypéé extensively in prior research both
within mainstream economics (Vishwanath 1988, 19898) in its evolutionary branch (Kauffman
& Macready 1995). In fact, the idea has been aralydeeper still in the field of genetic algorithm
based evolutionary programming (Azencott 1992, Madyet al. 1996).

Despite such a wide field of application, thereore particular nuance that at least to my
knowledge has been left unchallenged in formal riegleexercises. It is always the case that
parallelism refers to the actual moves made, amtéiethere is an acquired necessity to treat
parallel search as non-local in nature. Howeveplicit in the models is the fact that at each sikp
the process of evolutionary search agents undergalistinct stages: firstly they evaluate the value
added of a possible change, and only secondlfeifanalysis proves the change to be beneficial,
they actually do move. Anovehere is understood to be the action of changiregstite of an
element. So by a parallel search it is usually méaat the state of more than one element is
attempted to be changed at a single step.

Intuitively this should lead to a faster rate ofpthtion, but there is a significant problem
embedded in such strategy. While at the stagevaluationchanges are considered one-by-one (in
parallel but independently), at the stage of th&uacmove the changes are made together
(simultaneously). In consequence, a situation mayige that due to internal connectivity of the
system, while a change in any of those elemerdtestieads to a higher overall efficiency given the
other elements’ states are left unchanged, tms i®nger true when those other elements’ states do
change. Thus, the information that is used for mgd decision on whether or notftip the state

of some patrticular element becomes outdated ipr#sence of parallel moves.

An alternative way is proposed here. As in the lpgr@earch scenario several possible
changes are considered one-by-one oretr@uationstage of the process. However, at the stage

when the move is being made, the state of onlysomgle element is being changed.

So, the parallelism implicit in the evaluation stag meant to determine in which direction it
is more rewarding for the agent to move. The aganply confronts the efficiency of the currently
employed technological configuration with a sebof1;N] alternative configurations, all from its
direct neighborhood, and chooses to move to thetlmatehas the highest efficiency (or, if all the

probed neighbors are less efficient than the cuenfiguration, the agent just stays put).

Going back to the example of chess, breadth ofcketiren is a measure of how many
different possibilities are analyzed before the/ptachooses which figure to move.



2.2. Depth of Search on Technology Landscape

While breadth of search enriches the structurehef model horizontally, it still remains
completely “flat”. The efficiency of the alternatig is estimated on the basis of an extremely short-

run assessment, so that while gaining in brealéhstrategy remains myopic.

Existence of bounds on rationality and limited ongational abilities to assess far-stretching
consequences of today’s choice is a known fact;elvew going from an extreme of endowing the
agents with perfect foresight, as commonly donedaclassical microeconomic models, directly to
another extreme of providing them with no insight all, like it is done as commonly in

evolutionary economic modeling, we actually “flyesVthe most interesting cases.

It serves then for the purposes of the currentyaisato add a vertical measure of search, its
depth Depth of search here determines hogightful the agents conducting the search are. Just

like in the case of breadth, we have al¥gf1;N].

The model thus recognizes the fact that the vafusaoh alternative is comprised of (1) its
correspondent efficiency (direct present rewarbeihg in a given position), and (2) the options for
further improvements that alternative creates (jptess$uture rewards of it). The originalK Model
was limited to evaluating alternatives solely oa bHasis of the former criteria. While it is possibl
to combine the two, the current paper, alternagivisl focused on strategies that are based on the

latter criteria of assessment.

It is important to highlight at this point that evafter introduction of a vertical measure of
search, it still remains local in nature. An agelmaracterized by a higher value of depth is capable
to base its current decision on shifting to a dpetéchnological configuration on the possibiliie
for future evolution towards higher fit such shgfovides her with. This is not to say, howevert tha
having spotted an attractive high-efficiency couofagion, the agent is able to make a shift to it
directly, as would have been the case for the siewé long-jump search with foresightThe
agent would still have to change the state of dement at a time, possibly having to suffer from
being positioned in low-efficiency points beforeetgoal is reached. This is one of the ways in

which more insightful search is costly.

2.3. Drawing Cognitive Maps

The idea is rather similar to the scenario propdsgdGavetti & Levinthal (2000). Their
simulation analysis reveals the interplay betweesmwithg a cognitive map of reality, and the

" This is the scenario proposed in Gavetti & Levaht®000. See below for more detailed review ofrtheidel.



experience bases possessed by the adapting agkuoss.the agents are seen as both forward- and
backward-looking.

In their treatment of the issue, the agents at building a partial representation of the
landscape. Such representation provides them witlopoortunity to spot the globally optimal

configuration of some particular area of the actaatlscape.

So far the strategy is very similar to the one psgal in this paper. However, in their model,
the agents move directly to that point in the |laage, and from there start the usual local tria-an
error search. So after the initimisightful long jump such a strategy provides for, nothindlyea
changes. If we consider the actual evolution towdretter fit aftestep 1 the treatment is identical
to the originaNK Modelwith the initial point is exogenously set by thedeler.

In the extensions of the model the authors dedl thi¢ issue of representations changing with
time, but the logic remains: representation bugdend experiential search are treated rather

separately than simultaneously.

Spotting the global optimum on a lower-dimensiosab-landscape in the current model,
instead of giving the agents the opportunity totdtee local search from a “better neighborhood”,
provides them with an insight on what directiorseérch might prove to be more fruitful. As noted
above, no long jumps are allowed for in the presesditment, and thus, having identified the
currentgoal, the agents can make just one single local steartts it in each period.

The other important way in which the two modeldatifis thatgoalsare reconsidered again
and again at each step of the process. The agemsate constrained to observe the efficiencies of
some given neighborhood around the currently usediguration only. However, at each step of
the evolution with a positive probability the ageacepts a different technological configuration,
and while the maximum dimension of the “observaloleighborhood stays the same, such shift in a
position occupied by an agent would result in éedéint set of points on the landscape that fadi int
it. So then, for any dimensionality of the obseteateighborhood, there is a positive probability
that at any step the agent would evaluate an yehaountered configuration with an efficiency
level higher than that of the current goal. Whemnekiat happens, the goal, and in consequence the

direction in which the search is conducted wouldnge over and over again.

The dimensionality of the observable neighborh@od function of the depth and the breadth
of search, and thus, ultimately, depending on tidaes of those two parameters, the agents would
either reach the global maximum or else find théwesstuckon a sub optimal peak.



3. Simulation Moddl. Technicalities

3.1. Simulation Toolkit

All the simulations below were run using Laboratdoy Simulation Development (Lsd)
language, developed by Marco Valente. Lsd is awaee that can be downloaded from

http://www.business.auc.dk/~mv/Lsd/Isd.htrifthis simulation language is built on C++ platform

and thus is characterized by the speed and fléyilil a low-level language. However, the layer of
interfaces embedded in its structure make it muorenuser-friendly than the former, and possible

to use by non-programmers.

NK Modelin the original setting is included in the Lsd pagk as one of the example models.
The code for the modified version of it, used ie Subsequent analysis in the present paper is

available on demand from the author.

3.2. Model. Formal Setting

As in the original model by Kauffman (1987) we aefithe landscape with the help of the two

main parameterdy andK.

N measures the size of the system, or, more prgcitbel number of elements it is comprised
with. The “system” in our case is the smallest petedentblock structureobtained through the
process of decompositioK. reflects the complexity of such system through sneag the level of
interconnectedness between its elements. It iadhger of other elements a change in the state of
the given element affects (or else the average eurob other elements that affect the given
element changing their state). Formally the sysgerepresented by a binary string, so a change in
the state of an element means a flip fr@h to “1” or vice versa.

At the zerothstep of the simulation run all the agents are oamyg placed on some point of
the landscape from where the search is to be comdlu€hat starting point is defined by a random

assignment of the binary strings.

Each point on the landscape is characterized by séficiency valued(w) that is measured
as an average over th#ficiency contributionsf the elements’ states in the system.

Just as in the original model of random local deaat each step an agent can change the state
of one element only. However, the judgment on wieto change or not the state of a chosen

element is made on different grounds in this mademalized below.

The following table presents a summary of the kanameters used:



Table 1:Summary of parameters

Parameter Description Range
N number of elements (operations) per configuration positive integers
K number of intranalities (interdependencies) pemelet | {0, ..., N-1}
b number of directions sampled per step per element {1, ..., N}
d current depth of search {1, ..., Ghax}
Omax current maximum depth of search {1, ..., D}
D maximum depth of search of the agent defined byreat {1, ... , N}
Tmax frequency of updating af positive integers
T time steps elapsed since the last update of {1, ..., Tmax}
Hio set of recipes levels away fronw; NA
Hweyrwmax | S€t Of elements on the shortest path betwagr& wmax NA
Ocur efficiency of the currently used recipe {0, ..., 1}
Omax efficiency of the best recipe currently observabigay) {0, ..., 1}
Wcur currently used recipe 2N
®max most efficient recipe currently observable Uda, ... dnat S
Qq set of recipes sampled at the current step at depth  see below

The search strategy algorithm employed by the ageftthe model can be described

technically in the following way:

0. Observe the initial values faX, K, D, b, wcyr and 7max given by nature (supplied by the

modeler), and go to step (1)

a.

Set initiallyd=1; dna=1; =0; 6na=0, and go to step (2)
If 7= Tmax iNCreasealnaxby 1, and go to step (3)
Observe the current value @fax

if dmax>D setdma=1 and go to step (6)

b. else ifdma< D go to step (4)

a.

b.

recipes from the correspondibty,w; .1 Sets of recipes, denoting the resulting8gtGo to

step (5)

if dmax=1 go to step (5)

Choose randomlig recipes from a sétl;, ... Denote the resulting séh

else ifdnae>1, for each leved/42, ..., dwad and each element €241 choose randomly



5. Observe and compare the efficiencies of the remukiet Ugg, ... duay 2 Of b+b?...+bima

sampled recipes with the efficiencyof,; and identifywmax
a. if Ocur = Omaxincreaser by 1,and go to step (2)

b. else ifOcyr # Omax
i) if omaxZH1,0cur Shift t0wmax S€twcur=wmax =0, dmax=1, and go to step (2)

“) else ifa)maxﬂ H]_,COcur Shlft to wiU[Ql m HCOCur’COma)J, set Z:O, Wcur— Wi, d’nax:l, and gO

to step (2)

6. Evolution stops here

4. Simulation Results. Limit Cases

4.1. Strategies of Greedy Myopic Search

Let us first consider a set of firms that are dblevaluate many options for change at every
point in time, but lack foresight. So then, theusture of the problem is completelat at every
step. In terminology of the current model this wbuabver the set of strategies whih/[1, ..., N]
and D=1. In broader terminology these strategies are wania of so-calledstrategies ofgreedy
local search The algorithm above is valid for the case, altiffounuch of its loops and cycles

become redundant.

What do we want to see at this point is whethereasedoreadth of searcltan be of any
help even when the process lacks dapgth For that purpose we would run simulations forheaic
the combinations ob//[1, ..., NJandK//[O, ..., N-1} SettingN=20 for all the simulations this
gives us 26=400 combinations. To avoid having results biased tb some particular random
event, the simulations are run for 10 differenti@iseeds of random numbers (thus for different
realizations of the landscape structure), and widach seed we have 10 agents differing in staring

point of the evolution. That gives us a total &fGD observations, 100 for each node in the graph.
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The figures below represent the results of the kitimn runs.

Figure T; Groeady Myopic Search. provemerls over Herchmark Case
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Figure 1shows that the implied ability to conduct off-lisearch in several distinct directions
in parallel improves the overall performance. Hoarethe improvements are not very substantial:
for no combination ob andK it is over 5% from the benchmark case, and fomtlaén mass of the
possible combinations it is just about 1-2%. Theggrovements are definitely not even close to be
of the magnitudes needed to level off the deletsrieffects on the efficiency that more complex
landscapes bring about. This is clearly visible=igure 2, where the average levels of terminal

efficiency are plotted as a fraction of the glotalximum. In fact, because of the changed scale, the
high peaks clearly visible drigure 1are no longer obvious.
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Figare 2: Greedy Myopic Search. Terminal Efficiency as a
Fraction of the Glohbhal Maximum
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As we can also observe from thiggure 2 for any technology with interrelated elementsy(an
technological landscape with20), breadth alone, no matter small or large doegynatantee the

firms employing the strategy to achieve the globaptimal efficiency other than by chance.

Another interesting result is presented figure 3 Here we can see that while the
improvements over the benchmark case are positoghglated with an increaselias an average
over all K, increasingK contributes to improvements in the efficiency wpsbme point only,

making an overall effect of increasing bditlandK ambiguous. Indeed, the highest improvements
are achieved for largeand average values Kf
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Figure 3: Average mprovemoerls over Bepchmark Case as @ Fenction of
Kand Bragditk
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Increased breadth of search has a double effemtn Ere one hand it has a positive effect in
what rather than just sampling a single adjacecttirtelogy at a time and making a decision on
whether to accept or reject the shift, the firmghis setting are able to view several options for

change, and choose the best one.

However, on the other hand, the mgreedythe search process becomes, the more crucial
difference does the assumption of it being complateyopicmakes, so, the more is the probability
that a firm would end up on a local peak after ey\&hort time. Indeed, as tha@gure 4 shows

search time is a strictly decreasing function dhibdmandK.

13



Figure 4: Search Time 35 3 Funcition of b and K

This means, however, that strategies with higheadith are faster on average, and thus, for a
market populated by firms differing only in thisazhcteristic, this would be a clear-cut advantége i

competition enters the general picture.

4.2. Strategies of Search with Narrow Insight

Let us now go to the other extreme, and considerlithit case when the insight into the
future that the firms possess is a tunable parametkile only one direction for change is
investigated at each time step. So, while the fiamesnot myopic anymore, their search instead is

set to be extremely narrow.

The intuition behind such set of the strategietha while beingigid in defining a strategy,
the firms nevertheless are able to think the gsaterough for more than one step ahead. So the
firm designs a long-term plan at each given staplyaing whether the direction of change chosen
would be fruitful for the future growth, but, iseitible enough to reconsider the exact direction of
change in the next period, if the new informatibattbecame available calls for such action. If that
happens a new long-term plan is designed, anccepéed as a guideline for future change unless at

any future period an alternative is found that a&sgher maximum payoff in the future.
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Technically, similarly to the previously analyzewhit case of greedy myopic search, it would
mean that this would cover the set of strategied Wi’/ [1, ..., N] andb=1 on the set of the
landscapes with varying complexity, so tKat/ [0, ..., N-1]

All the rest of the settings are left like befos®, once again that gives us a total of 4.000
observations, 100 for each node in the graphs bealdgwile the setting remains almost unchanged,

the results we obtain from running the simulatidiiter quite substantially.

Figure 5: Search with Narrow hisight. inprovemenis over
Bepchmark Case
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Figure 5 (compare withFigure 1) shows us the magnitude of improvements over the
benchmark case that such strategies bring aboetrd3ults are much more impressive than in the
previous setting, with the improvements of abo@Itot being stand outs, and an average (over all

combinations oD>1 andK>0) of about 7% observed.

This is being further confirmed by the results suamed inFigure 6 (compare withFigure
2) where the average levels of terminal efficienoy plotted as a fraction of the global maximum.
Here, we see that while the improvements are stitl enough to cover the gap with the global
maximum, the firms are getting much closer to grefor very complex landscapes.
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Figure 6: Search with Narrow msight Terminal Efficiency as
a Fraction ofthe Global Maximum

However, as it had been hinted above in the dismuss dangers of modularity, in absolute
terms the average efficiency of the global maximoamthe technology landscape is positively
correlated with the complexity of the latter.

This is obvious from thEigure 7where the average results over 400 (20 for ealtle\dHK)
landscapes are presented. This means that thesrespbrted as a fraction of the corresponding
global maximum are biased towards lower levels ofnglexity. If we adjust the results
accordingly, we observe iRigure 8that when applying a strategy that is not myophe, tirms
would quite often prefer using more complex anérncdnnected technologies rather than modular
ones. As the graph shows this is actually true éoethe benchmark case. Despite the fact that the
global maximum is obtained only f&=0 landscapes, in the absolute terms the highesiesftiy is
reached wheK is as high as 5.

16



Figuere 7: Global Maximum as 3 Fukction of K
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Figuro 8: Search with Narrow Ingight. Terminal Efficioncy as a Funcltion
of K
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However, not all is as bright as it seems. Whitadly having a significant positive impact on
the terminal efficiency of the technological conifigtion, a strategy witinsight take longer to
actually get us there. Such strategies lead tmeamase in checking and double checking whether
the technological configuration attained is indéselbest of what's around, and, given the structure

17



of the algorithm, the agents would leave a rel&givegh local peak even if they spotted another
one only marginally better, no matter how far thatv target is. All this leads to increased search
times, and thus, higher costs and the danger ofjomitcompeted by less “insightful” but faster to

adapt rivals.

5. Smulation Results. General Case

5.1. Striving for the Global Optimum

What we have seen until now is that both breadith @epth of search taken separately
improve the terminal efficiency of the technologed by the firms, albeit to a different extent and
with differing side effects. It has also been shatlvat while in relative terms, measured as a
fraction of the global optimum, the improvementdha efficiency level due to an increase in either
depth or breadth of search taken separately danaoiage to outshadow the negative effects of
growing complexity, in absolute terms, the levefsefficiency achieved, with an increase in
complexity first grow and then only start to fallhese results already cast some doubt on whether
an extreme modularization of the landscape as gexpm the related literature is indeed justified.

However, to make the picture complete we wouldheye to answer whether there is any
combination ofb and D other than that corresponding to the strategy wetect foresight that

leads even the firms adapting on quite complexrteldyy landscapes to the global maximum.

For that purpose we would leave the limit cased, @mnsider the whole family of strategies
with bothb/7[1, ..., NJandD//[1, ..., N]. For brevity, we would not however consider ak th

possible combinations &f D andK, running the simulations fa€=1, K=4 andK=11.

The results summarized in ti@égures 9, 10and 11 speak for themselves: not only perfect
foresight is not a necessary condition for reaclireggglobal maximum, but in fact there is a very

large set of less “perfect” alternative stratedined do just as good.
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Figure 9: Terminal Effficiency as a Franction of the Glohal
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Figure T0: Terminal Efficiency as a Fraction of the Giohal
Maximum. N=20, K=4
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Figure TT: Terminal Efficiency L evel a5 a8 Fraction of ifie
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It comes as no surprise that for more complex leayass reaching the global peak requires
more sophisticated strategy. More interesting ie tbservation we can make that perfect

knowledge of the underlying structure of the cotilmes between different elements or operations
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comprising the technology set is not a necessangitton even where such connections create a

tremendously perplex web.

5.2. Actual vs. Maximum Depth

Do we require too much rationality from the ageritsi true that having even a modést

would be too much to ask for? The answer is probaégative.

Non-stringency of the strategy sophistication iafaced fist of all by an observation we can
make with the help of a more thorough analysiefresults obtained. Recall from the setup of the
search algorithmabovethatD is the maximum depth of search of the agent définenature rather
than the depth of search used at each step ofviblatenary process. Indeed if we observe the
actualdepthused throughout the evolution towards the ultinsdieking point its average value
even for the firms endowed by the modeler with Hegrels ofD is much lower on average. For the
large part of the life-cycle the firms still useettiow-cost myopic reasoning that suffices for
dismissing clearly inferior directions of searchhi going deep into analyzing only several
promising ones. Indeed the valuedbfseeTable 1for definition) is being increased only when its
current value is not enough to justify the dismlisgaa particular direction; it is only in this eas
that a firm endowed witib>1 uses the insight, and even then, the increaseisngradual, rather
than abrupt, and as soon as its level is suffidiergpot an alternative direction leading to a more

efficient technological configuration starts thevneycle of evaluation process froaa1.

To show this we ran simulations for the landscaph W=20, K=10, D/7/[1, ..., N}, andb/7
[1, ..., 6] and take the average over the actual depibr each class of agents. As the results in
Figure 12show, only for the case bE1 and high values dd do we observe average actual values
of d higher thar, and even in this case the highest value obsasvedt over3 for the case when
D was set t@0.
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Figure 12
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Another important thing that this figure tells ssthatd grows with the growth oD only for

the classes of agents whose breadth and deptlahsare not sufficient to guarantee reaching the
global optimum in all instances. When for a giygnthe value ofD exceeds that threshold, the
further increase of the latter does influence treyage value aofl. This leads us to suggest that for a
givenb all the strategies with the value Dfhigher than the lowest needed to guarantee 100% of
the agents to find themselves at the global peakabknost identical. All of them spot the global
maximum at exactly the same time, and reach it &tactly the same number of steps, the only
difference being that more “insightful” agents takere time to double check the fact that this
indeed is the global maximum, putting it througtest of confronting to a larger number of points
on the landscape. Before reaching the global maxirsuch strategies are identical in all respects.

Indeed, the only reason the lines on the grapmareompletely flat after some point lies in

stochastisity of the landscape structure.

5.3. Further Arguments on Non-Stringency of RatiibnAssumptions

Another important characteristic implicit in therant design of the search algorithm is that
the search isedundant in the sense that the firm can encounter exalslysame configuration of

the technology over and over again. This is dugtomain factors:

(1) given the definition of the technological distangk any two recipes as being
symmetric, if we made a local move fraethnology 1o technology 2t a given step, the
former becomes a part of thdjacent technologies sktr the latter, and given the random
nature of choosing thie alternative elements with which the firm caxperimentat each
step, with a positive probability, increasing wéth increase in the value lofit well might

also become a part of the $2tas defined above.

(2) given the definition of the technology landscapegsaph each two technological
configurations can be converted into each othea imuge number of ways different in
length. The shortest way to reatdéchnology 2from the technology 1lis termed the
Hamming distance between the technologies. Howeveariety of other, longer ways to

do exactly the same exist, which leads to furtedundancy of the search process.

Thus, the actual number of new technological camions sampled at each step is much
lower than the equation in the search algorithmld/guggest, implying in sequence that just as in
the case with high values @, high values ofb do not necessarily depict overly-sophisticated

nature of the strategy in use.
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Another way in which the strategies are cledtyindedly rationals that nothing prevents a
firm to lose the trackof the exact path that leads it to the targetedh-eificiency technological
configuration. While its efficiency would become & way theaspiration levelthat the other
sampled technological opportunities would be comgavith, the actual direction the target lies in

can become blurred by the random choice of thetlnes for change in the next period.

Finally, we can also observe from the graphs thahevhen the strategy does not suffice for
attainment of the globally optimal technologicahfiguration forall the studied realizations of the
landscape structure and all the sampled startinggof the evolutionary process, it usually does s
in mostof the cases, leading to average results just 1e®8ér than the global maximum. This
would let us suggest that in a world where gratisficing solutions(even if only the ones with
very small) are acceptable alternatives to theajlploptimal result, the requirements necessary to
impose on the level of sophistication of the sggt®m use are far from being stringent.

6. Enter the Competition

In such an abundance of strategies leading to lthizally efficient solution or to a one just
marginally inferior to it, we have to specify whicbombination ob andD we would actually want
to choose. We have concluded so far that up to donmiethe more insight is used in the search
process, the more likely it is to end up at thébglanaximum. However, as we have also seen, after
the minimal level oD sufficient for the attainment of the global maximéon all the agents in the

class is reached, the further increasb imo longer has a positive effect.

Costsper sedo not enter the analysis in this paper explicigvertheless, the costliness of
search here can be implicitly measured by the geerafficiency of the technologies used
throughout the evolution towards the peak, as aglthe length of time it takes the firms to get

there.

Simulations ran and discussed above lead to sufgssearch time is an increasing function
of D, and decreasing function bf So, if we necessarily want to secure the gloffaiency for all
the agents, and have no budget constraints, amuwdehoice of the strategy would be to maximize
b, and use the smalleBt/D(b)™® whereD(b)"*is the set of depth values that lead to the global

maximum for a givet.

8 Defined by Frenkeet al.(1998) in the following way: “The set afsatisficing solutionss the set of strings whose
value is at most lower than the global optimumpage 157
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However, from the one hand, the breadth of seadaostly, and thus, we should be more
interested in modest valueslmfand from the other, as was noted above, thest axvhole set of

max

strategies that although do not belong B{b)™" set, allow a large fraction of the agents in the

respective classes to reach the global maximuralserto come very close to it, while, at the same
time economizing on search time. Moreover, thisaet-satisficing strategies that we can term
D(b)*® have another important advantage. Due to a Idvéne agents suffer less from the low-
efficiency intermediate positions. This effect wast pronounced in our simulations, since the
terminal efficiency only was measured, and it was af importance how well do the agents do a

the intermediate steps of the simulation run.

In the real world, however, not only the final risuatters, but also, the intermediate ones.
To be able to study this factor, | introduce contfmet between the agents. The simulation proceeds
as follows. At its start we have two classes, eamitaining 50 agents and they run on a landscape
with N=20, K=10. For each pair of competitors simulations wereeatpd for 20 times. With
frequencyF, a certain numbe® of worst-performing agents are being replaced leycibpies of the
agents that perform the best. With probabiflty,q the agents copy just the strategy of tipairents
while with probabilityl-Pnq they copy as well the position of thearentson the landscape.

We set the breadth of searbs3. The classes differ in the value®f One of the classes is

max

characterized by a lowest value@fD(3) " which isD=11 and thus is the quickest strategy of the

D(3)™ set. The other class, alternatively is populatg@dents using-satisficingstrategies. First

we ran simulations for agents witl=8 against the ones witb=11. The controls were:
e Speed of competitive pressufe[10, 25, 50, 100, 250kteps
e Strength of competitive pressugel[l, 2, 5, 10Jagents
« Probability of random relocatioBanc=[0, ¥/2,1]

Changing those three controls didn’t alter the lkssa any significant manner, for which

reason the rest of simulation runs were perfornoe&£50, S=2andP,ang =/>.
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We ran simulations to compare all the one-to-onalinations ofD/]2; 3; 5; 8; 11]. The
simulation run would stop either if one of the slas achieved 100% of tinearket shareor if all
the agents in both classes reached the global nuaxjrar if neither happened for more than 10000

steps. The table below summarizes the results:

Table 2: Market Share (Fraction of Agents Belondimghe Class) at the End of the Simulation Run

D=2 D=3 D=5 D=8 D=11
D=2 X XX-- 24‘4\75,6 0\100 0\100 3'5\96,5
D=3 75,6\2414 XX X-- 0\100 0\100 15,4\84,6
D=5 100" 100" - XXX-- 504 0 6ad '
D=8 100\ 100\ 49,6\50’4 - XXX-- 61,3\38’7
D=11 96,5\3'5 84,6\15’4 35,7\64’3 38,7\61’3 -~ XXX--

As the results show, we observe that Ho##b andD=8 agents outcompete more insightful
D=11 ones, leaving them just a little more than a tlufdhe market share. This means that the
value addedof the increased insight after some point is dwadewed by the slower speed of

adaptation and low intermediate efficiency levels.

D=5 agents perform marginally better thAr8 ones against more insightful agents, while
in direct competition they each get about 50% & #hare.D=2 and D=3 agents lose against
higher-depthagents, but even they find a small market shamenvdompeting again§i=11 agents,
while losing it all for thee-satisficingD=5 andD=8 ones. The reason for a positive market share
values forD=2 and D=3 is to a large degree explained again by the sladaptation speed of
D=11 agents. Running simulation for longer than 1008fqals let the latter get the 100% market

share in most of the cases, especially so fordlse of competition witb=2 agents.

Conclusions and Further Research Agenda

Trying to build a theory or a model in one scigatffeld using the framework adapted from
another is a challenging and a very dangerous wenBoth evolutionary economics, and even if
we consider it as such to a lesser extent, the stteaem neoclassical economics are firmly
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grounded in evolutionary biology and classical ptysespectively. However, what works for
biological and physical systems, might well notappropriate for the social domain, and even if it
is, major changes have to be made in order totéine the borrowed insights into the new field of

application.

Although being itself designed as a contributiorthie evolutionary thinking in economics,
this paper is critical to both the competing fiel@oncentrating on the behavioral part of the
discourse, the starting point of the analysis hesnbmade with the claim that evolutionary and
neoclassical economic theories find themselveshé dpposite extremes as far as the ability to
foresee and the intentionality of the actions bgneic agents are treated. Both extremes can
sometimes be valid simplifications, but, too oftedeed, they lead to very local results.

Behavioral assumptions of the neoclassical the@yehbeen challenged from within the
evolutionary stream on many occasions and althdbghanalysis in this paper is meant to shed
some more light on that issue, the main motivaliehind is to analyze whether the assumption of
very limited myopic foresight of the agents in wlutionary economics itself does indeed have to

be revised.

The paper addresses primarily the recent and fastiigg stream of evolutionary modeling
exercises based on Kauffman¢K Mode| initially designed to study genetic evolution in
microbiology. The previous applications of the middeeconomics proper have addressed a variety
of topics in organizational and technological changnd have provided a number of extremely

interesting results and insights.

One particular issue that attracted a substansidl gf the research efforts in the field is the
idea of connecting the model with Herbert Simom'sight on decomposition of complex systems.
Indeed, with the rise in complexity of the probletemming from the increase in the level of
interconnectedness of the elements it is compogedl®comes more and more difficult to find an

efficient solution to it through local random sdanf the alternatives.

A way to tackle the issue proposed was to try tabrthe big problem into a number of
independent or almost independgattchesthat can be solved separately without affectinghea
other in any significant way. This way of decompgscomplex landscapes into more modular ones

has been shown to be an effective strategy foresscc

Modularity however has its own substantial drawlsadkhile making it easier to find the
global optimum on thasimplified landscape, discarding from the negative exterasalppresent on
more complex landscape, modularization discardsgsisvell of the possible positive externalities.

As Fleming and Sorenson (2001) note: “Although theerage peak height declines as
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interdependence rises, some of the ‘good’ positimmghe highK landscape dominate the best
points on the lowk landscape?

The problem with decomposition strategies is thaytare aimed to find an objective way to
make the landscape less complex, or, in other wandiead of trying to learn how to solve a more
complex problem, the agents in that setting sinsplystitute that problem with a less complex one.
However, taking technology as an example of a cemplstem, we might notice that apart from
the problem addressed in the previous paragraptgng@osing the system (1) can be simply
impossible to do, because of the difficulties oitrating the technology in question, and (2) makes

the technology more imitable, thus increasing thiegeirs posed by the competitors (Rivkin 2000).

It was argued above that noticing that complexstpartly a subjective matter, an alternative
way to cope with the issue can be proposed, anctlyathat of trying to endogenize some part of

the connections by learning their effects.

It has been claimed here that the treatment o&gjeats in the group of models as being able
to evaluate only a single alternative at a timg,séad then only to see just the immediate direct
effects of a possible shift to it, while valid ihet original biological domain of the model, is
extremely unrealistic when we shift our attentiom the issue of how firms develop their

technologies.

So then, by introducing the notions of breadth depth of search on a technology landscape,
the current model has dealt with the ways to siipplie complex landscapes subjectively through
learning of their underlying structure by samplimgseveral directions in parallel and giving a

weight to longer-term effects a shift to an altéineatechnology can have.

It has been shown through simulation analysis Wiate breadth and depth of search taken
separately contribute to an increase in the efimyeof the terminal “sticking point” technology, it
is only with both factors present when the agentpae the ability to effectively find the global

optimum even on a very rugged landscape.

The costs of increasing the “observable” regiothefoverall landscape have not at this stage
been modeled explicitly. However, it has been shdlat through increasing the probability of
getting stuck on a sub-optimal peak too early (@itea and increasing the length of time required
to find a sticking point, thus exposing themselwesre to the dangers of competitive pressure

(depth), such costs entered the picture implicitly.

° Fleming, Lee & Olav Sorenson(2001) Technology as a Complex Adaptive System: Evidence Patent Data
Research Policy 3@age 1022
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Introducing the competitive pressure was the masicdway to extend the model, and the
results shown that less “insightful” firms quitdexf outcompete the more “insightful” ones, but the

myopic firms of the benchmark model still die oust:

There are several other ways in our research agend#ich the model can be modified.
From the one hand, lifting the assumptions of emg@edundancy of search and inability to keep
the track of the direction in which the current lg@s, would reinforce the results of the current
model, letting firms possessing even lower levdldfoand D to effectively reach the globally
optimal configuration. From the other hand howeVifting the quite strong assumption of the
agents being able to estimate the efficiency of tdehnologies that are within their “eyesight”
precisely, no matter how distant they are, shoudkiin the opposite directidh

Moreover, several different ways of evaluating filugtfulness of some particular direction of
change might be interesting to explore, includiagibg the decision on the average (or weighted
average) efficiency over the resulteath of change, or a minimax criteria to deal with raskerse

decision makers.

19 even if such noisy evaluation in the myopic cass proven to be efficiency-enhancing to some ex(see
Hovhannisian 2003abc)
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