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Introduction 

Simon (1962) defines a complex system as one that consists of many elements that interact in 

a non-trivial way. A strategy of a firm then is certainly complex, since it encompasses a number of 

decisions and since those decisions are interdependent. 

Complexity poses a problem of conflicting constraints in designing the optimal strategy, and 

has been in the focus of economic analysis at least for the last half a century. One of the most  

extensively studied methods of dealing with complexity, and the one that dates back to Simon’s 

work, is the decomposition of the strategy into quasi-independent modules. 

On the organizational level such decomposition would result in division of labour between 

different units and departments, while on the technological level it would mean independent design 

of the constituent parts of an artefact. 

Modularization of the problem structure has been shown to be an impressive tool for solving 

complex problems (classical text is Simon 1969, recent contributions include Frenken et al. 1999, 

Baldwin & Clark 2000, Fleming & Sorenson 2001a, Ethiraj & Levinthal 2004). However, there are 

several serious problems or dangers of modularity. 

The most obvious one is that complex structures might well just not be decomposable or even 

near-decomposable, so that the agents would be unable to divide the problem into patches or else 

find valid interfaces to start with. Any decomposition in this case would lead to neglecting some 

fraction of interconnections within the system, and depending on how important those links are, the 

efficiency achieved might be quite substantially lower than desired. 

Moreover, while it is generally true that the average solution of a more complex problem 

would be worse than that of a simpler one, it is just as true that the relation would be turned upside 

down when we look at the best possible solution of the respective problems (Fleming & Sorenson 

2001ab, 2003 provide the intuition behind this result, Evans & Steinsaltz 2002, Durrett & Limic 

2003 provide its formal proof; see also Figure 7 for simulation analysis results). 

More complex settings provide more opportunities in which elements can influence each 

other, and we do need to remember that despite the fact that more attention has been given to the 

possible negative feedback loops between the elements, modularization of a landscape discards of 

just as large a fraction of possible positive feedbacks. Thus, ceteris paribus, if we want to achieve a 

higher efficiency level in absolute terms (rather than as a fraction of a globally optimal result), more 

complex landscape is simply a better place to look for it. As Fleming and Sorenson (2001b) point 
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out: “By placing a premium predictability in their product development efforts, companies create a 

technology landscape that’s easier to navigate – but one that may produce fewer breakthroughs”1 

Another interesting insight into dangers of a modular design has been provided by Rivkin 

(2000), who claims that: “As the elements of a firm’s decision problem grow numerous and 

interdependent, imitation of a successful strategy becomes very difficult. Indeed it can become 

“intractable” in a technical sense of the word”.2 This would suggest that strategies (or technologies) 

that are more complex are naturally codified, and hence their use hedges the firms against the risk 

of being imitated by the competitors. 

Finally, as found by Ethiraj and Levinthal (2004): “[…] in the long run, erring on the side of 

greater integration poses lower performance penalties than erring on the side of greater 

modularity”3 This suggests that when the underlying structure of the landscape is not perfectly 

known to a decision maker, and thus the correct decomposition is not attainable, choosing a more 

complex strategy may well be a better idea than choosing a less complex one. 

Summing up all the abovementioned a conclusion can be made that while to a certain degree 

modularization is a valid strategy of dealing with complexity, it should be used with great caution. 

Moreover, and what this paper will deal with, the “correct” decomposition will still leave the 

resulting “blocks” rather large and the elements within them interrelated, so that alternative ways of 

dealing with complexity have to be sought. 

Modularization can be seen as an objective way to simplify the problem to be solved. The 

problem itself changes as a result, and the new problem that we obtain is objectively simpler both 

for the decision-maker herself, and for the others. Alternatively, in order to still be able to reap the 

fruits of a more complex structure and prevent the others to imitate it, a subjective way to make the 

problem simpler have to be designed, a way that doesn’t change the problem itself, but our 

knowledge and abilities to solve it. 

As a framework of the analysis we take Stuart Kauffman’s model of fitness landscapes 

(Kauffman & Levin 1987, Kauffman 1993). The original model deals with the evolution of coupled 

natural (biological) systems. It is therefore plausible to assume absence of any strategic intentions 

or foresight possessed by the agents of the system. However, this is no longer a valid assumption 

when a transition from natural to social evolution analysis is being made. 

                                                 
1 Fleming, Lee & Olav Sorenson (2001b) The Dangers of Modularity. Harvard Business Review, September, pages 
20-21 
2 Rivkin, Jan W. (2000) Imitation of Complex Strategies. Management Science, vol. 46, No. 6 (June), page 825 
3 Ethiraj, Sendil K. & Daniel Levinthal  (2004) Modularity and Innovation in Complex Systems. Management Science, 
vol. 50, No. 2 (February), page 169 
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Take a game of chess4 as an example of a complex coupled system. Each figure on the board 

can be placed in a number of different positions, with the “value” of a given figure being in a given 

position depending on where the rest of the figures are placed. What the model in its original 

setting, as well as its current applications to the economics proper (see e.g. Levinthal 1997, Frenken 

et al. 1999, Kauffman et. al. 2000) assume, is that a player randomly chooses one (and only one) 

figure on the board at a time and decides whether to move it to a new position or not possessing 

perfect information of the consequences of that move for the next period, while at the same time 

being completely ignorant on how that move influences the options a player will have when she is 

called upon to make subsequent moves. 

This might be the “strategy” of someone who has never heard of the game before, but I’d be 

very skeptical to take it as a reasonable approximation for a firm’s perception of the technological 

evolution it undergoes. 

Even quite a bad chess player would consider several possible moves at a time, and, a 

relatively better one would also be able to think several steps ahead when making the decision on 

the move at the current period. Indeed, this is exactly what differentiates a good from a bad player. 

The game of chess remains the same, the problem itself does not become less complex, but, 

subjectively, it is simpler for a more experienced player than for the novice precisely for the reason 

that the former is more able to think in breadth and in depth. Experience of a player allows her to 

draw a better “cognitive map” of the problem.5 

Apart from the mere reason of implausibility (after all a model is not supposed to replicate the 

real world perfectly), there are much more grounded justifications of enriching the original model in 

the proposed manner. Introducing depth and breadth of search opens up a way to consider and 

compare the whole spectrum of local search strategies from extremely basic and myopic to 

overwhelmingly sophisticated, and measure in effect the level of sophistication needed in order to 

solve problems of different complexity. Moreover, when strategic intent enters the picture, some of 

the most important conclusions drawn from the analysis of the economic applications of the model 

in its original setting fail to hold. 

The basic insight gained from the analysis of the NK-based models of local search6 is that for 

at least partially interconnected systems that are characterized by the existence of multiple 

                                                 
4 Think of it as a variation of a chess game played against nature, rather than an opponent 
5 See Gavetti & Levinthal 2000 and below for more detailed review of their model. 
6 The analysis is not limited to the scenario of a search being strictly local, however it has been shown that for the 
tightly coupled systems the so-called long jumps (changing the state of several elements at a time) are beneficial only 
for low initial efficiency levels. In the current paper it is therefore assumed that the firms employ only local search 
strategies. 
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equilibria, the agents are getting trapped on local efficiency maxima, hardly ever reaching the 

global optimum. Alternatively it is shown that exhaustive search through the whole space of 

possible configurations (something only a perfectly rational agent can undertake) guarantees 

reaching the global optimum, but, due to an astronomic number of such configurations on a 

multidimensional  landscape, is extremely costly. 

Bringing the measures of depth and breadth of search into the analytical framework, the 

current paper investigates the whole space of the possible strategies of local search between the 

myopic search scenario, as in the original NK model (breadth=depth=1), and the perfect foresight 

scenario (breadth=depth=N). The main point of the current research is to show that while quite 

obviously perfect foresight is a sufficient condition for the attainment of the globally optimal 

solution, it is by no means a necessary condition for that. 

 

2. Breadth and Depth of Search. Preliminarities 

Much of the existing applications of the NK Model of Fitness Landscapes in the fields of 

strategy and organizational design center around the idea of decomposability and creation of  

modular quasi-independent structures. Despite being an impressive analytical tool, however, 

modularization has been shown to have certain limits. Such limits can usually be reached quite 

quickly, leaving the resulting block-structures still too complex for a usual myopic and purely 

experiential trial and error strategy. This would lead the agents to reach solutions that while being 

possibly better than those obtainable with leaving the problem structure purely integral, are still 

inferior in most of the cases to the globally best solution existing on the landscape. 

We can see the whole problem of a decision maker as consisting of two parts: (a) finding the 

optimal level of decomposition, thus obtaining the block-structures of optimal size and complexity, 

and, (b) finding a strategy of search that given the resulting characteristics of the block-structures 

obtained, would lead us to an optimal solution of the problem. 

While much attention has been given lately to the first part of the problem, the second part of 

it is clearly underinvestigated. The task of the current paper is precisely in attempting to close that 

gap. I assume here that an optimally sized block-structures have already been obtained in the ways 

proposed e.g. by Frenken et al (1999) or Ethiraj & Levinthal (2004), and having that assumption as 

a starting point of the analysis, extend the model to find the simplest strategy that leads the agents to 

the global optimum in shortest time and with least possible requirements on the agents’ rationality 

level. 
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2.1. Breadth of Search on Technology Landscape 

The idea of parallelism of search has been analyzed quite extensively in prior research both 

within mainstream economics (Vishwanath 1988, 1992) and in its evolutionary branch (Kauffman 

& Macready 1995). In fact, the idea has been analyzed deeper still in the field of genetic algorithm 

based evolutionary programming (Azencott 1992, Macready et al. 1996). 

Despite such a wide field of application, there is one particular nuance that at least to my 

knowledge has been left unchallenged in formal modeling exercises. It is always the case that 

parallelism refers to the actual moves made, and hence, there is an acquired necessity to treat 

parallel search as non-local in nature. However, implicit in the models is the fact that at each step of 

the process of evolutionary search agents undergo two distinct stages: firstly they evaluate the value 

added of a possible change, and only secondly, if the analysis proves the change to be beneficial, 

they actually do move. A move here is understood to be the action of changing the state of an 

element. So by a parallel search it is usually meant that the state of more than one element is 

attempted to be changed at a single step. 

Intuitively this should lead to a faster rate of adaptation, but there is a significant problem 

embedded in such strategy. While at the stage of evaluation changes are considered one-by-one (in 

parallel but independently), at the stage of the actual move the changes are made together 

(simultaneously). In consequence, a situation might arise that due to internal connectivity of the 

system, while a change in any of those elements’ states leads to a higher overall efficiency given the 

other elements’ states are left unchanged, this is no longer true when those other elements’ states do 

change. Thus, the information that is used for making a decision on whether or not to flip the state 

of some particular element becomes outdated in the presence of parallel moves. 

An alternative way is proposed here. As in the parallel search scenario several possible 

changes are considered one-by-one on the evaluation stage of the process. However, at the stage 

when the move is being made, the state of only one single element is being changed. 

So, the parallelism implicit in the evaluation stage is meant to determine in which direction it 

is more rewarding for the agent to move. The agent simply confronts the efficiency of the currently 

employed technological configuration with a set of b∈[1;N]  alternative configurations, all from its 

direct neighborhood, and chooses to move to the one that has the highest efficiency (or, if all the 

probed neighbors are less efficient than the current configuration, the agent just stays put). 

Going back to the example of chess, breadth of search then is a measure of how many 

different possibilities are analyzed before the player chooses which figure to move. 
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2.2. Depth of Search on Technology Landscape 

While breadth of search enriches the structure of the model horizontally, it still remains 

completely “flat”. The efficiency of the alternatives is estimated on the basis of an extremely short-

run assessment, so that while gaining in breadth, the strategy remains myopic. 

Existence of bounds on rationality and limited organizational abilities to assess far-stretching 

consequences of today’s choice is a known fact; however, going from an extreme of endowing the 

agents with perfect foresight, as commonly done in neoclassical microeconomic models, directly to 

another extreme of providing them with no insight at all, like it is done as commonly in 

evolutionary economic modeling, we actually “fly over” the most interesting cases. 

It serves then for the purposes of the current analysis to add a vertical measure of search, its 

depth. Depth of search here determines how insightful the agents conducting the search are. Just 

like in the case of breadth, we have a set D∈[1;N] . 

The model thus recognizes the fact that the value of each alternative is comprised of (1) its 

correspondent efficiency (direct present reward of being in a given position), and (2) the options for 

further improvements that alternative creates (possible future rewards of it). The original NK Model 

was limited to evaluating alternatives solely on the basis of the former criteria. While it is possible 

to combine the two, the current paper, alternatively, is focused on strategies that are based on the 

latter criteria of assessment. 

It is important to highlight at this point that even after introduction of a vertical measure of 

search, it still remains local in nature. An agent characterized by a higher value of depth is capable 

to base its current decision on shifting to a specific technological configuration on the possibilities 

for future evolution towards higher fit such shift provides her with. This is not to say, however, that 

having spotted an attractive high-efficiency configuration, the agent is able to make a shift to it 

directly, as would have been the case for the scenario of long-jump search with foresight.7 The 

agent would still have to change the state of one element at a time, possibly having to suffer from 

being positioned in low-efficiency points before the goal is reached. This is one of the ways in 

which more insightful search is costly. 

 

2.3. Drawing Cognitive Maps 

The idea is rather similar to the scenario proposed by Gavetti & Levinthal (2000). Their 

simulation analysis reveals the interplay between drawing a cognitive map of reality, and the 

                                                 
7 This is the scenario proposed in Gavetti & Levinthal 2000. See below for more detailed review of their model. 
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experience bases possessed by the adapting agents. Thus, the agents are seen as both forward- and 

backward-looking. 

In their treatment of the issue, the agents are first building a partial representation of the 

landscape. Such representation provides them with an opportunity to spot the globally optimal 

configuration of some particular area of the actual landscape. 

So far the strategy is very similar to the one proposed in this paper. However, in their model, 

the agents move directly to that point in the landscape, and from there start the usual local trial-and-

error search. So after the initial insightful long jump such a strategy provides for, nothing really 

changes. If we consider the actual evolution towards better fit after step 1, the treatment is identical 

to the original NK Model with the initial point is exogenously set by the modeler. 

In the extensions of the model the authors deal with the issue of representations changing with 

time, but the logic remains: representation building and experiential search are treated rather 

separately than simultaneously. 

Spotting the global optimum on a lower-dimensional sub-landscape in the current model, 

instead of giving the agents the opportunity to start the local search from a “better neighborhood”, 

provides them with an insight on what direction of search might prove to be more fruitful. As noted 

above, no long jumps are allowed for in the present treatment, and thus, having identified the 

current goal, the agents can make just one single local step towards it in each period. 

The other important way in which the two models differ, is that goals are reconsidered again 

and again at each step of the process. The agents here are constrained to observe the efficiencies of 

some given neighborhood around the currently used configuration only. However, at each step of 

the evolution with a positive probability the agent accepts a different technological configuration, 

and while the maximum dimension of the “observable” neighborhood stays the same, such shift in a 

position occupied by an agent would result in a different set of points on the landscape that fall into 

it. So then, for any dimensionality of the observable neighborhood, there is a positive probability 

that at any step the agent would evaluate an yet unencountered configuration with an efficiency 

level higher than that of the current goal. Whenever that happens, the goal, and in consequence the 

direction in which the search is conducted would change over and over again. 

The dimensionality of the observable neighborhood is a function of the depth and the breadth 

of search, and thus, ultimately, depending on the values of those two parameters, the agents would 

either reach the global maximum or else find themselves stuck on a sub optimal peak. 
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3. Simulation Model. Technicalities 

3.1. Simulation Toolkit 

All the simulations below were run using Laboratory for Simulation Development (Lsd) 

language, developed by Marco Valente. Lsd is a freeware that can be downloaded from 

http://www.business.auc.dk/~mv/Lsd/lsd.html. This simulation language is built on C++ platform, 

and thus is characterized by the speed and flexibility of a low-level language. However, the layer of 

interfaces embedded in its structure make it much more user-friendly than the former, and possible 

to use by non-programmers. 

NK Model in the original setting is included in the Lsd package as one of the example models. 

The code for the modified version of it, used in the subsequent analysis in the present paper is 

available on demand from the author. 

 

3.2. Model. Formal Setting 

As in the original model by Kauffman (1987) we define the landscape with the help of the two 

main parameters: N and K. 

N measures the size of the system, or, more precisely, the number of elements it is comprised 

with. The “system” in our case is the smallest independent block structure obtained through the 

process of decomposition. K reflects the complexity of such system through measuring the level of 

interconnectedness between its elements. It is the number of other elements a change in the state of 

the given element affects (or else the average number of other elements that affect the given 

element changing their state). Formally the system is represented by a binary string, so a change in 

the state of an element means a flip from “0”  to “1”  or vice versa. 

At the zeroth step of the simulation run all the agents are randomly placed on some point of 

the landscape from where the search is to be conducted. That starting point is defined by a random 

assignment of the binary strings. 

Each point on the landscape is characterized by some efficiency value, θ(ω) that is measured 

as an average over the efficiency contributions of the elements’ states in the system. 

Just as in the original model of random local search, at each step an agent can change the state 

of one element only. However, the judgment on whether to change or not the state of a chosen 

element is made on different grounds in this model, formalized below. 

The following table presents a summary of the key parameters used:  
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Table 1: Summary of parameters 

Parameter Description Range 
N number of elements (operations) per configuration positive integers 

K number of intranalities (interdependencies) per element {0, … , N-1} 

b number of directions sampled per step per element {1, … , N} 

d current depth of search {1, …, dmax } 

dmax current maximum depth of search {1, … , D} 

D maximum depth of search of the agent defined by nature {1, … , N} 

τmax frequency of updating of d positive integers 

τ time steps elapsed since the last update of d {1, …, τmax } 

Hi,ωj set of recipes i levels away from ωj  NA 

Πωcur,ωmax set of elements on the shortest path between ωcur &  ωmax NA 

θcur efficiency of the currently used recipe {0, …, 1} 

θmax efficiency of the best recipe currently observable (ωmax) {0, …, 1} 

ωcur currently used recipe 2N 

ωmax most efficient recipe currently observable Ud∈{1, …, dmax} Ωd 
Ωd set of recipes sampled at the current step at depth d see below 

 
 

The search strategy algorithm employed by the agents of the model can be described 

technically in the following way: 

0. Observe the initial values for N, K, D, b, ωcur and τmax, given by nature (supplied by the 

modeler), and go to step (1) 

1. Set initially d=1; dmax=1; τ=0; θmax=0, and go to step (2) 

2. If τ=τmax, increase dmax by 1, and go to step (3) 

3. Observe the current value of dmax 

a. if dmax>D set dmax=1 and go to step (6) 

b. else if dmax≤ D go to step (4) 

4. Choose randomly b recipes from a set H1,ωcur. Denote the resulting set Ω1 

a. if dmax=1 go to step (5) 

b. else if dmax>1, for each level d∈{2, …, dmax} and each element in Ωd-1 choose randomly b 

recipes from the corresponding H1,ωi∈d-1 sets of recipes, denoting the resulting set Ωd. Go to 

step (5) 
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5. Observe and compare the efficiencies of the resulting set Ud∈{1, …, dmax} Ωd of b+b2…+bdmax 

sampled recipes with the efficiency of ωcur and identify ωmax 

a. if θcur = θmax increase τ by 1, and go to step (2) 

b. else if θcur ≠ θmax 

i) if ωmax∈ H1,ωcur shift to ωmax, set ωcur=ωmax, τ=0, dmax=1, and go to step (2) 

ii)  else if ωmax∉ H1,ωcur shift to ωi∈ [Ω1 ∩ Πωcur,ωmax], set τ=0, ωcur=ωi, dmax=1, and go 

to step (2) 

6. Evolution stops here 

 

4. Simulation Results. Limit Cases 

4.1. Strategies of Greedy Myopic Search 

Let us first consider a set of firms that are able to evaluate many options for change at every 

point in time, but lack foresight. So then, the structure of the problem is completely flat at every 

step. In terminology of the current model this would cover the set of strategies with b∈ [1, …, N] 

and D=1. In broader terminology these strategies are variations of so-called strategies of greedy 

local search. The algorithm above is valid for the case, although much of its loops and cycles 

become redundant. 

What do we want to see at this point is whether increased breadth of search can be of any 

help even when the process lacks any depth. For that purpose we would run simulations for each of 

the combinations of b∈ [1, …, N] and K∈ [0, …, N-1]. Setting N=20 for all the simulations this 

gives us 202=400 combinations. To avoid having results biased due to some particular random 

event, the simulations are run for 10 different initial seeds of random numbers (thus for different 

realizations of the landscape structure), and within each seed we have 10 agents differing in staring 

point of the evolution. That gives us a total of 4.000 observations, 100 for each node in the graph. 



 11 

The figures below represent the results of the simulation runs. 

 

Figure 1 shows that the implied ability to conduct off-line search in several distinct directions 

in parallel improves the overall performance. However, the improvements are not very substantial: 

for no combination of b and K it is over 5% from the benchmark case, and for the main mass of the 

possible combinations it is just about 1-2%. These improvements are definitely not even close to be 

of the magnitudes needed to level off the deleterious effects on the efficiency that more complex 

landscapes bring about. This is clearly visible in Figure 2, where the average levels of terminal 

efficiency are plotted as a fraction of the global maximum. In fact, because of the changed scale, the 

high peaks clearly visible on Figure 1 are no longer obvious. 
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As we can also observe from the Figure 2, for any technology with interrelated elements (any 

technological landscape with K≠0), breadth alone, no matter small or large does not guarantee the 

firms employing the strategy to achieve the globally optimal efficiency other than by chance. 

Another interesting result is presented in Figure 3. Here we can see that while the 

improvements over the benchmark case are positively correlated with an increase in b as an average 

over all K, increasing K contributes to improvements in the efficiency up to some point only, 

making an overall effect of increasing both b and K ambiguous. Indeed, the highest improvements 

are achieved for large b and average values of K. 
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Increased breadth of search has a double effect. From the one hand it has a positive effect in 

what rather than just sampling a single adjacent technology at a time and making a decision on 

whether to accept or reject the shift, the firms in this setting are able to view several options for 

change, and choose the best one. 

However, on the other hand, the more greedy the search process becomes, the more crucial 

difference does the assumption of it being completely myopic makes, so, the more is the probability 

that a firm would end up on a local peak after a very short time. Indeed, as the Figure 4 shows 

search time is a strictly decreasing function of both b and K. 
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This means, however, that strategies with higher breadth are faster on average, and thus, for a 

market populated by firms differing only in this characteristic, this would be a clear-cut advantage if 

competition enters the general picture. 

 

4.2. Strategies of Search with Narrow Insight 

Let us now go to the other extreme, and consider the limit case when the insight into the 

future that the firms possess is a tunable parameter, while only one direction for change is 

investigated at each time step. So, while the firms are not myopic anymore, their search instead is 

set to be extremely narrow. 

The intuition behind such set of the strategies is that while being rigid in defining a strategy, 

the firms nevertheless are able to think the strategy through for more than one step ahead. So the 

firm designs a long-term plan at each given step, analyzing whether the direction of change chosen 

would be fruitful for the future growth, but, is flexible enough to reconsider the exact direction of 

change in the next period, if the new information that became available calls for such action. If that 

happens a new long-term plan is designed, and is accepted as a guideline for future change unless at 

any future period an alternative is found that has a higher maximum payoff in the future. 
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Technically, similarly to the previously analyzed limit case of greedy myopic search, it would 

mean that this would cover the set of strategies with D∈ [1, …, N] and b=1 on the set of the 

landscapes with varying complexity, so that K∈ [0, …, N-1]. 

All the rest of the settings are left like before, so once again that gives us a total of 4.000 

observations, 100 for each node in the graphs below. While the setting remains almost unchanged, 

the results we obtain from running the simulations differ quite substantially. 

 

Figure 5 (compare with Figure 1) shows us the magnitude of improvements over the 

benchmark case that such strategies bring about. The results are much more impressive than in the 

previous setting, with the improvements of about 15% not being stand outs, and an average (over all 

combinations of D>1 and K>0) of about 7% observed. 

This is being further confirmed by the results summarized in Figure 6 (compare with Figure 

2) where the average levels of terminal efficiency are plotted as a fraction of the global maximum. 

Here, we see that while the improvements are still not enough to cover the gap with the global 

maximum, the firms are getting much closer to it even for very complex landscapes. 



 16 

 

However, as it had been hinted above in the discussion on dangers of modularity, in absolute 

terms the average efficiency of the global maximum on the technology landscape is positively 

correlated with the complexity of the latter. 

 This is obvious from the Figure 7 where the average results over 400 (20 for each value of K) 

landscapes are presented. This means that the results reported as a fraction of the corresponding 

global maximum are biased towards lower levels of complexity. If we adjust the results 

accordingly, we observe in Figure 8 that when applying a strategy that is not myopic, the firms 

would quite often prefer using more complex and interconnected technologies rather than modular 

ones. As the graph shows this is actually true even for the benchmark case. Despite the fact that the 

global maximum is obtained only for K=0 landscapes, in the absolute terms the highest efficiency is 

reached when K is as high as 5. 
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However, not all is as bright as it seems. While clearly having a significant positive impact on 

the terminal efficiency of the technological configuration, a strategy with insight take longer to 

actually get us there. Such strategies lead to an increase in checking and double checking whether 

the technological configuration attained is indeed the best of what’s around, and, given the structure 
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of the algorithm, the agents would leave a relatively high local peak even if they spotted another 

one only marginally better, no matter how far that new target is. All this leads to increased search 

times, and thus, higher costs and the danger of being outcompeted by less “insightful” but faster to 

adapt rivals. 

 

5. Simulation Results. General Case 

5.1. Striving for the Global Optimum 

What we have seen until now is that both breadth and depth of search taken separately 

improve the terminal efficiency of the technology used by the firms, albeit to a different extent and 

with differing side effects. It has also been shown that while in relative terms, measured as a 

fraction of the global optimum, the improvements in the efficiency level due to an increase in either 

depth or breadth of search taken separately do not manage to outshadow the negative effects of 

growing complexity, in absolute terms, the levels of efficiency achieved, with an increase in 

complexity first grow and then only start to fall. These results already cast some doubt on whether 

an extreme modularization of the landscape as proposed in the related literature is indeed justified. 

However, to make the picture complete we would try here to answer whether there is any 

combination of b and D other than that corresponding to the strategy with perfect foresight that 

leads even the firms adapting on quite complex technology landscapes to the global maximum. 

For that purpose we would leave the limit cases, and consider the whole family of strategies 

with both b∈ [1, …, N] and D∈ [1, …, N]. For brevity, we would not however consider all the 

possible combinations of b, D and K, running the simulations for K=1, K=4 and K=11. 

The results summarized in the Figures 9, 10 and 11 speak for themselves: not only perfect 

foresight is not a necessary condition for reaching the global maximum, but in fact there is a very 

large set of less “perfect” alternative strategies that do just as good. 
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It comes as no surprise that for more complex landscapes reaching the global peak requires 

more sophisticated strategy. More interesting is the observation we can make that perfect 

knowledge of the underlying structure of the connections between different elements or operations 
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comprising the technology set is not a necessary condition even where such connections create a 

tremendously perplex web. 

5.2. Actual vs. Maximum Depth 

Do we require too much rationality from the agents? Is it true that having even a modest D 

would be too much to ask for? The answer is probably negative. 

Non-stringency of the strategy sophistication is reinforced fist of all by an observation we can 

make with the help of a more thorough analysis of the results obtained. Recall from the setup of the 

search algorithm above that D is the maximum depth of search of the agent defined by nature rather 

than the depth of search used at each step of the evolutionary process. Indeed if we observe the 

actual depth used throughout the evolution towards the ultimate sticking point, its average value 

even for the firms endowed by the modeler with high levels of D is much lower on average. For the 

large part of the life-cycle the firms still use the low-cost myopic reasoning that suffices for 

dismissing clearly inferior directions of search, while going deep into analyzing only several 

promising ones. Indeed the value of d (see Table 1 for definition) is being increased only when its 

current value is not enough to justify the dismissal of a particular direction; it is only in this case 

that a firm endowed with D>1 uses the insight, and even then, the increase in d is gradual, rather 

than abrupt, and as soon as its level is sufficient to spot an alternative direction leading to a more 

efficient technological configuration starts the new cycle of evaluation process from d=1. 

To show this we ran simulations for the landscape with N=20, K=10, D∈ [1, …, N], and b∈ 

[1, …, 6] and take the average over the actual depth d for each class of agents. As the results in 

Figure 12 show, only for the case of b=1 and high values of D do we observe average actual values 

of d higher than 2, and even in this case the highest value observed is just over 3 for the case when 

D was set to 20. 
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Figure 12 
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Another important thing that this figure tells us is that d grows with the growth of D only for 

the classes of agents whose breadth and depth of search are not sufficient to guarantee reaching the 

global optimum in all instances. When for a given b, the value of D exceeds that threshold, the 

further increase of the latter does influence the average value of d. This leads us to suggest that for a 

given b all the strategies with the value of D higher than the lowest needed to guarantee 100% of 

the agents to find themselves at the global peak, are almost identical. All of them spot the global 

maximum at exactly the same time, and reach it after exactly the same number of steps, the only 

difference being that more “insightful” agents take more time to double check the fact that this 

indeed is the global maximum, putting it through a test of confronting to a larger number of points 

on the landscape. Before reaching the global maximum such strategies are identical in all respects. 

Indeed, the only reason the lines on the graph are not completely flat after some point lies in 

stochastisity of the landscape structure. 

 

5.3. Further Arguments on Non-Stringency of Rationality Assumptions 

Another important characteristic implicit in the current design of the search algorithm is that 

the search is redundant, in the sense that the firm can encounter exactly the same configuration of 

the technology over and over again. This is due to two main factors: 

(1) given the definition of the technological distance of any two recipes as being 

symmetric, if we made a local move from technology 1 to technology 2 at a given step, the 

former becomes a part of the adjacent technologies set for the latter, and given the random 

nature of choosing the b alternative elements with which the firm can experiment at each 

step, with a positive probability, increasing with an increase in the value of b, it well might 

also become a part of the set Ω1 as defined above. 

(2) given the definition of the technology landscape as a graph, each two technological 

configurations can be converted into each other in a huge number of ways different in 

length. The shortest way to reach technology 2 from the technology 1 is termed the 

Hamming distance between the technologies. However, a variety of other, longer ways to 

do exactly the same exist, which leads to further redundancy of the search process. 

Thus, the actual number of new technological configurations sampled at each step is much 

lower than the equation in the search algorithm would suggest, implying in sequence that just as in 

the case with high values of D, high values of b do not necessarily depict overly-sophisticated 

nature of the strategy in use. 
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Another way in which the strategies are clearly boundedly rational is that nothing prevents a 

firm to lose the track of the exact path that leads it to the targeted high-efficiency technological 

configuration. While its efficiency would become in a way the aspiration level that the other 

sampled technological opportunities would be compared with, the actual direction the target lies in 

can become blurred by the random choice of the directions for change in the next period. 

Finally, we can also observe from the graphs that even when the strategy does not suffice for 

attainment of the globally optimal technological configuration for all the studied realizations of the 

landscape structure and all the sampled starting points of the evolutionary process, it usually does so 

in most of the cases, leading to average results just 1-2% lower than the global maximum. This 

would let us suggest that in a world where the ε-satisficing solutions8 (even if only the ones with ε 

very small) are acceptable alternatives to the globally optimal result, the requirements necessary to 

impose on the level of sophistication of the strategy in use are far from being stringent. 

 

6. Enter the Competition 

In such an abundance of strategies leading to the globally efficient solution or to a one just 

marginally inferior to it, we have to specify which combination of b and D we would actually want 

to choose. We have concluded so far that up to some limit the more insight is used in the search 

process, the more likely it is to end up at the global maximum. However, as we have also seen, after 

the minimal level of D sufficient for the attainment of the global maximum for all the agents in the 

class is reached, the further increase in D no longer has a positive effect. 

Costs per se do not enter the analysis in this paper explicitly. Nevertheless, the costliness of 

search here can be implicitly measured by the average efficiency of the technologies used 

throughout the evolution towards the peak, as well as the length of time it takes the firms to get 

there. 

Simulations ran and discussed above lead to suggest that search time is an increasing function 

of D, and decreasing function of b. So, if we necessarily want to secure the global efficiency for all 

the agents, and have no budget constraints, an obvious choice of the strategy would be to maximize 

b, and use the smallest D∈D(b)max, where D(b)max is the set of depth values that lead to the global 

maximum for a given b. 

                                                 
8 Defined by Frenken et al. (1998) in the following way: “The set of ε-satisficing solutions is the set of strings whose 
value is at most ε lower than the global optimum”, page 157 
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However, from the one hand, the breadth of search is costly, and thus, we should be more 

interested in modest values of b, and from the other, as was noted above, there exist a whole set of 

strategies that although do not belong to  D(b)max set, allow a large fraction of the agents in the 

respective classes to reach the global maximum, or else to come very close to it, while, at the same 

time economizing on search time. Moreover, this set of ε-satisficing strategies that we can term 

D(b)sat have another important advantage. Due to a lower D the agents suffer less from the low-

efficiency intermediate positions. This effect was not pronounced in our simulations, since the 

terminal efficiency only was measured, and it was not of importance how well do the agents do a 

the intermediate steps of the simulation run. 

In the real world, however, not only the final result matters, but also, the intermediate ones. 

To be able to study this factor, I introduce competition between the agents. The simulation proceeds 

as follows. At its start we have two classes, each containing 50 agents and they run on a landscape 

with N=20, K=10. For each pair of competitors simulations were repeated for 20 times. With 

frequency F, a certain number S of worst-performing agents are being replaced by the copies of the 

agents that perform the best. With probability Prand the agents copy just the strategy of their parents, 

while with probability 1-Prand they copy as well the position of their parents on the landscape. 

 We set the breadth of search, b=3. The classes differ in the value of D. One of the classes is 

characterized by a lowest value of D∈D(3)max which is D=11 and thus is the quickest strategy of the 

D(3)max set. The other class, alternatively is populated by agents using ε-satisficing strategies. First 

we ran simulations for agents with D=8 against the ones with D=11. The controls were: 

• Speed of competitive pressure F=[10, 25, 50, 100, 250] steps 

• Strength of competitive pressure S=[1, 2, 5, 10] agents 

• Probability of random relocation Prand=[0, 1/2,1] 

Changing those three controls didn’t alter the results in any significant manner, for which 

reason the rest of simulation runs were performed for F=50, S=2 and Prand =
1/2. 
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We ran simulations to compare all the one-to-one combinations of D∈[2; 3; 5; 8; 11]. The 

simulation run would stop either if one of the classes achieved 100% of the market share, or if all 

the agents in both classes reached the global maximum, or if neither happened for more than 10000 

steps. The table below summarizes the results: 

Table 2: Market Share (Fraction of Agents Belonging to the Class) at the End of the Simulation Run  

 D=2 D=3 D=5 D=8 D=11 
D=2 --XXX-- 24,4\

75,6 0\
100 0\

100 3,5\
96,5 

D=3 75,6\
24,4 --XXX-- 0\

100 0\
100 15,4\

84,6 
D=5 100\

0 100\
0 --XXX-- 50,4\

49,6 64,3\
35,7 

D=8 100\
0 100\

0 49,6\
50,4 --XXX-- 61,3\

38,7 
D=11 96,5\

3,5 84,6\
15,4 35,7\

64,3 38,7\
61,3 --XXX-- 

 

As the results show, we observe that both D=5 and D=8 agents outcompete more insightful 

D=11 ones, leaving them just a little more than a third of the market share. This means that the 

value added of the increased insight after some point is out shadowed by the slower speed of 

adaptation and low intermediate efficiency levels. 

D=5 agents perform marginally better than D=8 ones against more insightful agents, while 

in direct competition they each get about 50% of the share. D=2 and D=3 agents lose against 

higher-depth agents, but even they find a small market share when competing against D=11 agents, 

while losing it all for the ε-satisficing D=5 and D=8 ones. The reason for a positive market share 

values for D=2 and D=3 is to a large degree explained again by the slower adaptation speed of 

D=11 agents. Running simulation for longer than 10000 periods let the latter get the 100% market 

share in most of the cases, especially so for the case of competition with D=2 agents. 

 

Conclusions and Further Research Agenda 

Trying to build a theory or a model in one scientific field using the framework adapted from 

another is a challenging and a very dangerous venture. Both evolutionary economics, and even if 

we consider it as such to a lesser extent, the mainstream neoclassical economics are firmly 
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grounded in evolutionary biology and classical physics respectively. However, what works for 

biological and physical systems, might well not be appropriate for the social domain, and even if it 

is, major changes have to be made in order to fine tune the borrowed insights into the new field of 

application. 

Although being itself designed as a contribution to the evolutionary thinking in economics, 

this paper is critical to both the competing fields. Concentrating on the behavioral part of the 

discourse, the starting point of the analysis has been made with the claim that evolutionary and 

neoclassical economic theories find themselves in the opposite extremes as far as the ability to 

foresee and the intentionality of the actions by economic agents are treated. Both extremes can 

sometimes be valid simplifications, but, too often indeed, they lead to very local results. 

Behavioral assumptions of the neoclassical theory have been challenged from within the 

evolutionary stream on many occasions and although the analysis in this paper is meant to shed 

some more light on that issue, the main motivation behind is to analyze whether the assumption of 

very limited myopic foresight of the agents in the evolutionary economics itself does indeed have to 

be revised. 

The paper addresses primarily the recent and fast growing stream of evolutionary modeling 

exercises based on Kauffman’s NK Model, initially designed to study genetic evolution in 

microbiology. The previous applications of the model to economics proper have addressed a variety 

of topics in organizational and technological change, and have provided a number of extremely 

interesting results and insights. 

One particular issue that attracted a substantial part of the research efforts in the field is the 

idea of connecting the model with Herbert Simon’s insight on decomposition of complex systems. 

Indeed, with the rise in complexity of the problem stemming from the increase in the level of 

interconnectedness of the elements it is composed of, it becomes more and more difficult to find an 

efficient solution to it through local random search of the alternatives. 

A way to tackle the issue proposed was to try to break the big problem into a number of 

independent or almost independent patches that can be solved separately without affecting each 

other in any significant way. This way of decomposing complex landscapes into more modular ones 

has been shown to be an effective strategy for success. 

Modularity however has its own substantial drawbacks. While making it easier to find the 

global optimum on that simplified landscape, discarding from the negative externalities present on 

more complex landscape, modularization discards just as well of the possible positive externalities. 

As Fleming and Sorenson (2001) note: “Although the average peak height declines as 
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interdependence rises, some of the ‘good’ positions on the high-K landscape dominate the best 

points on the low-K landscape.”9 

The problem with decomposition strategies is that they are aimed to find an objective way to 

make the landscape less complex, or, in other words, instead of trying to learn how to solve a more 

complex problem, the agents in that setting simply substitute that problem with a less complex one. 

However, taking technology as an example of a complex system, we might notice that apart from 

the problem addressed in the previous paragraph, decomposing the system (1) can be simply 

impossible to do, because of the difficulties of truncating the technology in question, and (2) makes 

the technology more imitable, thus increasing the dangers posed by the competitors (Rivkin 2000). 

It was argued above that noticing that complexity is partly a subjective matter, an alternative 

way to cope with the issue can be proposed, and namely, that of trying to endogenize some part of 

the connections by learning their effects. 

It has been claimed here that the treatment of the agents in the group of models as being able 

to evaluate only a single alternative at a time step, and then only to see just the immediate direct 

effects of a possible shift to it, while valid in the original biological domain of the model, is 

extremely unrealistic when we shift our attention to the issue of how firms develop their 

technologies. 

So then, by introducing the notions of breadth and depth of search on a technology landscape, 

the current model has dealt with the ways to simplify the complex landscapes subjectively through 

learning of their underlying structure by sampling in several directions in parallel and giving a 

weight to longer-term effects a shift to an alternative technology can have. 

It has been shown through simulation analysis that while breadth and depth of search taken 

separately contribute to an increase in the efficiency of the terminal “sticking point” technology, it 

is only with both factors present when the agents acquire the ability to effectively find the global 

optimum even on a very rugged landscape. 

The costs of increasing the “observable” region of the overall landscape have not at this stage 

been modeled explicitly. However, it has been shown that through increasing the probability of 

getting stuck on a sub-optimal peak too early (breadth), and increasing the length of time required 

to find a sticking point, thus exposing themselves more to the dangers of competitive pressure 

(depth), such costs entered the picture implicitly. 

                                                 
9 Fleming, Lee & Olav Sorenson (2001) Technology as a Complex Adaptive System: Evidence from Patent Data. 
Research Policy 30, page 1022 
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Introducing the competitive pressure was the most direct way to extend the model, and the  

results shown that less “insightful” firms quite often outcompete the more “insightful” ones, but the 

myopic firms of the benchmark model still die out first. 

There are several other ways in our research agenda in which the model can be modified. 

From the one hand, lifting the assumptions of extreme redundancy of search and inability to keep 

the track of the direction in which the current goal lies, would reinforce the results of the current 

model, letting firms possessing even lower levels of b and D to effectively reach the globally 

optimal configuration. From the other hand however, lifting the quite strong assumption of the 

agents being able to estimate the efficiency of the technologies that are within their “eyesight” 

precisely, no matter how distant they are, should work in the opposite direction10. 

Moreover, several different ways of evaluating the fruitfulness of some particular direction of 

change might be interesting to explore, including basing the decision on the average (or weighted 

average) efficiency over the resulted path of change, or a minimax criteria to deal with risk-averse 

decision makers. 

                                                 
10 even if such noisy evaluation in the myopic case has proven to be efficiency-enhancing to some extent (see 
Hovhannisian 2003abc) 
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