
Modularity in Action: GNU/Linux and

Free/Open Source Software Development

Model Unleashed

Alessandro Narduzzo∗ e Alessandro Rossi†

May 27, 2003

Quaderno DISA n. 78

Rock
Coordination & Knowledge

Research on Organizations

∗Dipartimento di Discipline Economiche–Aziendali, Alma Mater Studiorum – Univer-

sità di Bologna e ROCK (Research on Organizations, Coordination and Knowledge), Uni-

versità di Trento, email:narduz@economia.unibo.it.
†Dipartimento di Informatica e Studi Aziendali e ROCK (Research on Organizations,

Coordination and Knowledge), Università di Trento, email:arossi@cs.unitn.it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6462918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Organizational and managerial theories of modularity applied to the

design and production of complex artifacts are used to interpret the

rise and success of Free/Open Source Software methodologies and

practices in software engineering. Strengths and risks of the adoption

of a modular approach in software project management are introduced

and are related to the achievements of the GNU/Linux project as a

whole, as well as to the outcomes of some of its sub–projects. It is

suggested that mindful implementation of the principles of modularity

may improve the rate of success of many Free/Open Source software

projects. Specific case studies here depicted, as well as indirect ob-

servation of common programming practices employed by Free/Open

Source developers and users, suggest a possible revision towards an

improved theory of modularity that may be extended also to settings

different from software production.

Keywords: modularity, software project management, Free/Open Source

Software, division of labor, coordination, information hiding.

1 Introduction

The GNU/Linux operating system growing popularity has conveyed increas-

ing attention to the Free/Open Source Software (F/OSS) development model,

usually described as a radically different system of rules, practices, and rela-

tionships, shared within a large and virtually distributed software developers

community, alternative to proprietary and closed development techniques

employed by traditional hierarchical organizations in the software industry.

From a variety of complementary perspectives, a growing number of stud-

ies are analyzing some key issues, in the attempt to understand the bases of

such successful phenomenon. Our study is a rigorous and analytical attempt

2

to interpret the design and the development of F/OSS in terms of a theory

of modularity.

We argue that modularity, which can be regarded as an innovative manu-

facturing paradigm for the design and the production of complex artifacts, is

a key element in explaining the development and the success of many F/OSS

projects, and it offers a comprehensive explanation of many key issues in

F/OSS development, such as how division of labor takes place within devel-

opers, how coordination is achieved and how code testing and integration is

deployed, how innovation occurs, and so on.

Our reconsideration of the history of the GNU/Linux operating system

highlights how the development process benefited from the typical advantages

of implementing modular architectures (e.g. fast speed of development, re-

combination of modules, innovation through projects competition, reuse of

previously developed code), while, at the same time, many critical pitfalls

usually related to the architectural design of modules and interfaces were

avoided. As we show in the paper, the design of the system was clearly in-

herited from a previously existing operating system platform, namely Unix.

Further, we will argue that, while traditionally information hiding has

been viewed as the key principle guiding the design and the implementation

of modular software artifacts, F/OSS development successful case studies

seem to massively disregard this principle at the implementation level.

As a result, the GNU/Linux case study and the empirical observation on

the rise and success of many F/OSS projects, suggest a possible step further

in one of the most critical and controversial software engineering debate (Par-

nas’s vs. Brook’s view on information hiding of software modules). Further-

more, this empirical study suggests some neat observations pushing ahead

our view of modularity, more and more often proposed as a new paradigm

for design and production, even though it is still regarded by some authors

as a black box. Moving from a stereotypical definition, centered on mod-

ules and interfaces, this paper will sketch some answers for several critical

3

unsolved issues related to modularity, such as (i) the relationships between

organizational structure and architecture design in modular projects, (ii) the

role of the designer of a modular architecture as problem solver, (iii) how

modularity copes with unforeseen interdependencies.

The paper is organized as follows: Section 2 introduces some of the most

relevant topics of modularity in management and organization science. Then,

it turns to software development, suggesting the idea of modularity as one of

the fundamental issues in the evolution of the software engineering debate.

In Section 3 some F/OSS case studies are described and interpreted through

the lens of the theory of modular systems. Finally, Section 4 sketches some

reflections on how F/OSS methodologies and practices may fully benefit by

employing a mindful modular approach to the design and implementation of

complex software projects, and suggests how the peculiar implementation of

the principles of modularity represented by F/OSS may help in refining both

existing theories of modularity, and their empirical application to domain

different from software production.

2 Modularity

Modularity has being receiving increasing attention and popularity in a vari-

ety of fields, like neuroscience, artificial intelligence, architecture and urban

design, management. Nowadays a modular approach is applied to complex

projects in R&D, industrial manufacturing and software engineering, and

modularity has been assumed as a key–concept in the design and production

of a great number of artifacts, both physical, like buildings, cars, furniture,

and immaterial ones, like software.

The interdisciplinary interest is largely due to the fact that modularity is

regarded as a general property of complex systems, pertaining to the degree

of decomposability of a system in loosely coupled sub–parts made by tightly

coupled components [Schilling, 2000]. Literature on modularity emphasizes

4

the importance of structures and relationships, and the outlined models all

rely on an underlying system theory which provides a framework for under-

standing and describing in a suitable way the specific object of study (arti-

facts, objects, machines, tasks, molecules, spaces, projects, etc.). A modular

system is thus represented as a complex of components or sub–systems where

designers try to minimize and standardize the interdependencies among mod-

ules.

In the paper we argue that, in order to outline a theory of modularity

it is important to make a step forward and understand how modularization

(modularity in action) takes place. From this point of view, the design of

modular architectures gains special attention, as well as the process by which

modular representations of the problem space are introduced and used in the

design.

Herbert Simon’s influence in the way modularity has been represented,

is particularly evident [Devetag and Zaninotto, 2001]. First of all, modu-

larity is often introduced within a problem solving framework and modular

design is regarded as a solution to cope with uncertainty and variability. Sec-

ond, Simon’s analysis of the Artificial as a complex system is extended to

both activity (tasks) and objects (hierarchies), involves the decomposition of

the system and have to deals with residual interdependencies [Simon, 1981].

As a matter of fact, speculations about modularity in management science

are addressed to both production [Schilling, 2000, Badwin and Clark, 2000,

Langlois, 2002] and product [Ulrich, 1995, Schilling, 2000].

Nonetheless, Simon’s lesson goes further and has to be extended in order

to understand the modularity black–box. Tempus and Hora parable is often

introduced as a general problem analogous to the one modularity deal with:

decomposition of product and task. Unfortunately, the decomposition itself

is a complex problem to solve, since decompositions in sub-subproblems im-

ply that the problem solvers have already structured a situation and they

rely on that representation in order to define the problem space. Then, from

the problem solver perspective the representations of the problem space of

5

new complex artifacts, like for instance an operative system, do no exist per

se, and need to be encountered in problem-solving fashion1. Designers are,

first of all, cognitive problem solvers that deal with the representation of new,

undetermined objects. They usually develop and introduce concepts, beliefs,

practices and routines that are they use to progressively structure in a very

specific manner what at the beginning was a blurry context. Likewise, mod-

ular architectures of complex artifacts are a consequence of particular kinds

of problem space representations that do not exist by themselves, but that

come out at the end of process of exploration (generation and evaluation) of

possible solutions. Among all the possible representations, modular archi-

tectures are distinguished for some fundamental traits: the decomposition of

the problem in sub-problems binds most of the interdependencies inside sub-

problems (modules) that are usually specialized and that interact through

standardized units (interfaces).

2.1 Modularity in management and organization sci-

ence

In management and organization science literature, modularity has been in-

troduced as a new paradigm for firm manufacturing [Ulrich, 1995, Schilling,

2000], organization design [Badwin and Clark, 2000] and for a general theory

of the firm [Langlois, 2002]. Modularity provides relevant advantages that

have been neatly identified in the literature. Modularity allows of products

variety that is obtained by recombination (mix and match) of components.

Modularity is viewed as a base for differentiation strategy: firms may enrich

their product catalog and adapt to customers needs with limited additional

costs. Moreover, modularity has also a great impact on production process

as it positively affects flexibility, division of labor and specialization [Devetag

and Zaninotto, 2001].

1Some relevant analysis along this direction has been done [Marengo et al., 2001, 2000,

Gavetti and Levinthal, 2000], even though it still lacks of strong emprical evidence.

6

According to Badwin and Clark [2000] modularity in production systems

is obtained following some general rules, originally drowned from computer

science and software development, concerning two different categories of in-

formation: visible and hidden information. Modular systems design needs to

specify only the visible rules, namely the information about: a) architecture

definition, b) interfaces specifications and c) modules integration tests. The

amount of information about the inner description of each modules and their

working is hidden from outside; it does not need to be defined ex–ante or

shared during the process, since modules interactions follow exclusively the

rules specified in the interfaces parameters.

Unfortunately, this neat description of modular design sometimes does

not succeed; most of the times, after the integration of the independently

developed modules, inconsistencies come upon and the system does not work

properly. The most common reason for this failure is the emergence of some

interdependencies which were left out at the beginning, at the time of ar-

chitecture and interfaces definition. The decomposition of a complex system

is not at all a trivial activity, especially because most of the time it pro-

duces quasi–decomposable modules with some degree of interdependencies

that may be out of control.

In our view, modularity design and development (modularization) are the

key activities that have to be investigated in order to get into this black box,

as Brusoni and Prencipe [2001] call it. Who is the designer? How come a de-

signer develop from scratch a representation of the complex integrated system

that has to be reduced in terms of quasi–decomposable modules (modular-

ization)? Even in Badwin and Clark [2000] remarkable study on design and

modularity, these issues are not fully considered and modularization is mainly

regarded as abstract definition of some design rules about the architecture,

the interfaces and the integration protocols. From our perspective, modu-

larization needs to be analyzed as an activity and our attention is focused

on three main research goals: first, understanding the initial problem which

is a cognitive activity that comes out with the definition of modules bound-

7

aries. Second, finding empirical evidence that modular design may be more

complex than interconnected design, due to the strong constraints posed by

the ex–ante definition of the visible information. Third, considering under

which conditions the amount of interdependencies that have been neglected

at the design stage may be reduced further on during implementation of the

architecture.

2.2 Modularity in software development

The notion of modularity is central in the design and production of software

artifacts, especially for large and complex projects. Since from the early days

of software engineering the issue of designing, developing, testing and releas-

ing a large software project brought into discussion the trade–off between

simplicity and speed of development. The dilemma that software engineers

were facing is, in the words of Brooks [1975], the following one:

“For efficiency and conceptual integrity, one prefers a few good minds

doing design and construction. Yet for large systems one wants a way to

bring considerable manpower to bear, so that the product can make a timely

appearance. How can these two needs be reconciled?”

Frederick Brooks, the author of one of the most influential software project

management textbook, clearly recognized that small sharp teams performed

better than large ones, but they were not enough staffed to deliver large

software projects under schedule pressure. Conversely, while larger teams

potentially increased the pace of the development process, they also resulted

in overwhelming needs for coordination of individual efforts and in dimin-

ishing marginal returns of manpower on productivity (also known in the

extreme case of negative marginal returns as the “Brooks’ Law”). As a re-

sult, efficiency and conceptual integrity of the whole project were at risk,

since men and months where not fully interchangeable units in the decision

of dimensioning and staffing of a project.

8

Efficient software engineering methodologies are meant to solve this fun-

damental trade–off between task partition and division of labor, on the one

hand, and coordination and communication costs, on the other one. Brooks’

recipe for coping with the design and the production of complex software

was to divide labor vertically so to separate as much as possible high level

activities (such as the design of a software artifact) from lower ones (such as

implementation of code). As a result, even a large software project might

have been guided by a small number of architectural designers, hence reduc-

ing coordination and communication costs needed to conceive the architec-

tural blueprint of the project. A second related element in Brook’s recipe

was then to assign the implementation of each part of the project to small

and focused teams (the so called “surgical team”).

In terms of a modern theory of modularity, the basic assumption inside

Brook’s seminal work is that large software projects are integral and non–

decomposable, therefore complex, systems, where interactions among parts

are nontrivial and generate high communication and coordination costs. Ver-

tical division of labor is viewed as the way to avoid as much as possible these

cost inefficiencies by concentrating design and architectural activities on few

heads. What is clearly overlooked from Brook’s perspective is that inter-

dependencies may be not only considered as given constraints, but rather

they may be strongly reduced at the architectural design level, by effective

decomposing the complex system in quasi–independent subparts.

As a matter of fact the introduction of a fully modular approach in mod-

ern software engineering methodologies has been fostered by the recognition

that the degree of interdependencies may be strongly reduced if a complex

software project can be decomposed in independent subparts, that is, divid-

ing the whole project in smaller components that are loosely coupled and

highly independent one to each other [von Hippel, 1990, Langlois, 2002].

Hence, when subparts are almost independent it is possible to divide labor

minimizing in miscoordination and communication costs.

Conceiving the design of a complex software artifact as a modular system

9

means to apply the basic principle of “information hiding”, originally devel-

oped by Parnas [1972], that prescribe to treat software modules as opaque

entities, whose relevant information is only available to its inner programmer,

while not being accessible to external programmers. Here module interfaces

are the only information that is revealed, while all information regarding the

design and how the module works is not communicated.

This approach to the design of software artifacts has been radically criti-

cized since the beginning by Brooks and other scholars. As noted by Brooks

[1995]:

“Harlan Mills have argued pervasively that ‘programming should be a

public process’, that exposing all the work to everybody’s gaze helps quality

control, both by peer pressure to do things well and by peers actually spotting

flaws and bugs”.

Conversely, information hiding limits this process in that the innards

of modules not their own are not available so that one has to infer what’s

on the other side of the fence (the module interface) just looking at the

interface details. As a matter of fact, if we take a look at current software

practices nowadays, the widespread adoption of object oriented languages,

the diffusion of component based development and many other popular trends

in software engineering seems to have at large affirmed information hiding

and modularity as the winners in the debate between interconnected versus

modular software design. Even Brooks, in the 20th year anniversary edition

of his “The Mythical Man–Month” , admits the following: “Parnas was right,

and I was wrong on information hiding”.

One of the key ideas of this paper is to show that the rise and affirma-

tion of F/OSS development techniques, may be interpreted as the latest step

in this 30–year old debate, since it shows that eventually Brooks was not

completely wrong on information hiding. We will highlight in the following

advantages and drawbacks of modular design and production of software ar-

tifacts. In the next Subsections, then, we will prove evidence of how F/OSS

10

coding practices can be seen as unorthodox implementation of standard mod-

ular production techniques. Notably, we will argue that the power and the

real novelty of F/OSS techniques lie in being modular at the design and early

implementation stages of a project, while at the same time avoiding the typi-

cal pitfalls and limits of information hiding at the integration, debugging and

testing phases of a project, where strict encapsulation and hiding is violated

on a regular basis and where programming activities again are regarded, as

in the Brooks’ original vision, as a “public process”.

In order to do that, we previously have to speculate a little bit more on

the topic of interdependencies in software modules. A software product ar-

chitecture may be defined as a mapping of required functions of the product

in functional components. The system as a whole is decomposed in a set

of functional modules whose interactions provide the overall functionality of

the system [Ulrich, 1995, Sanchez and Mahoney, 1996]. As in the case of

hardware artifacts, one has to determine not only how to divide the whole

system in subparts, and how to assign functional requirements to subparts,

but also how any component has to communicate and interact with every

other component in the architecture [Sanchez, 2000]. Software seem to be a

peculiar artifact if compared to physical artifacts when it comes to the topic

of component interactions. As a matter of fact, components interface speci-

fication, defining interactions between components, seems, at a first glance,

to result in system of less rigid constraints for the modules. In particular,

physically specifications on how one component has to be connected to the

other ones (“attachment interfaces”, following the taxonomy developed by

Sanchez [2000]), spatial, volume, weight constraints of a component (“spatial

interfaces”) and other environmental interactions pertaining the generation

of heat, vibrations, magnetic fields bearing consequences to other components

(“environmental interfaces”2), clearly do not apply to the case of software

2More precisely, it should be noted that while this may be true for “hardware–based”

environmental interactions, other kinds of environmental interactions, software–based,

may emerge, such as the influence in common resources affecting the use of those common

11

modules.

Then, at a first sight, it may be reasonable to expect that, given the exis-

tence of fewer sources of components interactions, designing and developing

loosely coupled software artifacts would be easier than the case of hardware

products such as standard physically assembled goods.

On the contrary, both theoretical software engineering literature and em-

pirical case studies of software product development suggest that integrat-

ing software components may be harder than assembling hardware artifacts:

Brooks’ famous essay on the difficulties of software engineering techniques

in granting improvements in productivity, reliability and simplicity in de-

veloping software programs, may help us in refining our explanations of why

integrating software modules and thus as a whole producing modularized soft-

ware may be difficult [Brooks, 1986]. The author speculate on the fundamen-

tal properties of software entities that may account for the difficulties in sep-

arating interdependencies and decompose large software projects: software

entities differ from physical artifacts for their highly nonlinear complexity,

leading to the impossibility to enumerate (not to mention understand) all the

possible state of a program. As the size of a software project increases, it be-

comes more and more difficult to decompose interdependencies and to design

an architecture that preserve the initial conceptual integrity of the software

project by combination of loosely coupled functional software components.

Moreover, software is invisible. The same intangible attributes that seem to

free software entities from standard physical constraints that hardware ones

have to satisfy, seem at the same time to affect human abilities of antic-

ipating correctly component interface specifications and interdependencies.

While geometric abstraction are powerful tools that may help the architec-

tural design for assembly goods (“Contradictions become obvious, omissions

can be caught.” [Brooks, 1986]), similar geometrical representations do not

help much during the design phase of software structures because source of

interdependencies are more subtle, not visible, and related to a series of ele-

resources by other components.

12

ments (“flow of control, flow of data, patterns of dependency, time sequence,

name–space relationships” [Brooks, 1986]) whose interrelations may be only

partially caught by diagrams and flow charts.

As a consequence, the process of modular software design tends to be a

faulty one, where testing, debugging and integration phases may be much

more relevant in terms of resources needed compared to the production of

manufacturing artifacts. This is largely due to the fact that even the act

of decomposing a large software project into components is an activity that,

given the multidimensional and invisible nature of interdependencies com-

bined to bounded rationality of human designers of architectures, result, at

its best, in a suboptimal outcome where while some source of interdependen-

cies are well determined and taken into account in the design of components

and in the design of interfaces, others are not. In some sense, even careful

modularization of large software projects tends to be accomplished making

trade–offs between source of interdependencies, recognizing the more visible

ones and disregarding the less evident or less important ones. These reasons,

combined with the huge size of large software project, account for the diffi-

culties in the subsequent integration – testing – assembly phases. Likewise,

less careful modularization result in even greater problems at the final stages

of code integration.

This is what originally struggled Brooks when he was criticizing Parnas’

principles of information hiding. Brooks thought that programming should

have been a public process where all information should have been completely

available in order for failures in the design of software to become evident and

to be corrected.

In the following we will review some well known case studies of F/OSS

projects, trying to describe how F/OSS practices have uniquely adopted the

paradigm of modularity. In particular we will try to highlight and to relate

success or failure of specific projects to advantages and strengths of modular-

ity, on the one side, and to risks, pitfalls and drawbacks of modularity on the

other hand. Furthermore, we will try to better understand how F/OSS prac-

13

tices and pragmatics result in an improved implementation of the paradigm

of modular software production, where the principle of information hiding

is invoked at the design level while being later disregarded, at the imple-

mentation level, in the later stages of the process, where the free flow of

information is effectively used in order to speed up the production process,

taking advantage of what Brooks originally described as “programming as a

public process”.

3 Rise and success of a F/OSS project: the

GNU/Linux case

GNU/Linux is part of a wider phenomenon that has its historical roots in an

attempt to use intellectual property rights against a group of software devel-

opers. The leader of this group of hackers was Richard Stallman, the software

that was covered by copyright was Unix, an operative system developed in

a few years by a group of developers working for universities and private

companies, the company that suddenly patented the system was AT&T, the

time was 1979. As a reaction to the legal ties imposed on what had been de-

veloped as shared and open product, in 1984 Stallman started a new project

called GNU (GNU is Not Unix) to develop free software. According to the

GNU manifesto, people are free to read and use the software, free to change

and improve it, free to make copies and distribute it. The only restriction is

that new modified code inherits the same freedom of the original code. This

form of hereditary freedom rights in using, changing and copying software

was stated in special kind of copyright, the GNU Public Licence (GPL, also

known as “copyleft”). This way Stallman succeeded in using copyright laws

to preserve freedom on software use and manipulation. A growing community

of software developers started to publish their application under GPL and in

a few years a library of stable, efficient and well–done GNU applications were

available. What GNU was still lacking of was the core part of an operative

14

system, the kernel, as the GNU kernel project (HURD) was developing very

slowly. Linus Torvalds’ kernel filled this gap and GNU/Linux, a complete

free operating system alternative to existing commercial and proprietary de-

veloped ones, started to be distributed in 1991.

3.1 Free/Open Source Software: origins, myth and

stereotypes

Put it this way, the most prominent and visible example of F/OSS develop-

ment seems to loose much of the radically revolutionary elements suggested

by many popular accounts on the rise and success of the Linux operating

system [Raymond, 1999]. Rather than being a completely innovative piece

of code that was obtained using radically new techniques of software de-

velopment, more mature interpretations of the phenomenon have already

highlighted the existing similarities both at the architectural level with older

operating systems (namely, the Unix operating system) and at the develop-

ment level with formerly diffused coding practices among computer scientists

and hackers (namely, to share the source code) [Stallman, 1999, Bezroukov,

1999a, Kuwabara, 2000].

As Bezroukov [1999b] neatly stated regarding open source:

“To me it is just another form of a scientific community. Similarly for me

the development of Linux is not a new and revolutionary model, but just a

logical continuation of the Free Software Foundation’s (FSF) GNU project.”

Accordingly, in the following we argue that, in order to understand the

real revolutionary terms of GNU/Linux, one has in the first place to adopt

an historical perspective on the evolution of GNU/Linux, through the lens

of the theory of modular systems design and production.

15

3.2 Mimicking a previously existing design

At a closer inspection the Unix operating system can be viewed as a highly

modular, scalable and portable platform. The Unix architecture is a complex

and massively decomposed architecture of independent modules, character-

ized by high specialization of programs (“programs that do one thing and do

it well”), working together by means of “pipes” (making possible to connect

the standard output of one program as the standard input of another one,

allowing to communicate between different program and to execute complex

tasks by means of composition of elementary actions), and sharing as a fun-

damental interface of communication text streams (also known as the “Unix

philosophy” as formulated by McIllroy, the inventor of pipes [Salus, 1994]).

Unix was the first modern operating system not developed using a hard-

ware dependent assembly language. The kernel was written in C, ensuring

portability to different hardware platform [Evers, 2000].3

The highly modular nature of its design structure had strong conse-

quences both at the level of developers coding activities and at the level

of users experience. Developers were able, thanks to the modular design,

to carry out development of specific parts of the system in autonomy and

without any need to coordinate their efforts with other sub–projects. Mod-

ularity not only allowed parallel development but also contribution of new

components and modules allowing to substantially improving the overall de-

sign of the system via module innovation and competition between similar

projects (both completely new modules and variation and improvements in

existing ones). Since the design of Unix elicited experimentation and explo-

ration of new solutions via module innovation, the community of hackers and

computer scientists quickly developed systems to share working solutions to

3As originally noted by Badwin and Clark [2000], another interesting feature of Unix is

represented by being modular not only at the architectural level (static design modularity)

but also in the way, as an operating system, it treats computer resources (dynamic design

modularity). Here we mainly concentrate on the first facet of modularity, while we will

comment dynamic memory management in the final Section.

16

common problems both in the terms of improvements of existing modules

and creation of new modules [Badwin and Clark, 2000]. At the end–user

level, modularity invited mere users to employ mix and match strategies (re-

combination of different modules), allowing them to generate a wide variety

of different implementation of the operating system where a large part of

the modules pertaining to the user space were highly customizable and were

chosen according to specific tastes or needs.

Even through this rather short and incomplete account of the early days

of Unix hackerdom, the past arguments should suggest that many of the

elements pertaining to the decentralized and spontaneous nature of Linux

development process are not as innovative and original as many Linux advo-

cates and pasdarans underline. They are rather mostly inherited by Linux

direct ancestor, the Unix operating system. Strangely enough, this almost

self evident argument seems to be mysteriously overlooked in many popular

contributions to the Linux debate.

The GNU project, started in 1984, represented at its beginning a titanic

effort to offer a free alternative to currently existing commercial and propri-

etary operating system. In Stallman [1999] words:

“The principal goal of GNU was to be free software.”

In this respect, Stallman’s design strategy consisted in cloning an already

existing project, a stable and mature architecture that had been originally

conceived around fifteen years before. As suggested by Rosenberg [2000]):

“Stallman says that he chose Unix as his model because that way he

would not have to make any design decisions.”

As a matter of fact, the whole GNU project represented the attempt to

recreate the pre–AT&T Unix arcadic era, where the original architecture was

preserved in essence and only some limited and marginal reworking in the

design took place, in order to solve some minor technical disadvantages of

Unix (e.g. the introduction of 32–bit support).

17

This reinforces one of the key argument about modularity, that was intro-

duced in the former section: the act of properly designing a complex system

characterized by a modular architecture is not a trivial task. On the contrary,

modularity bears high costs: careful modularization is a cognitive challenging

activity, since it translates in devising a decomposition of the whole system

in autonomous subparts whose interdependencies are reduced to the mini-

mum. Moreover, failure to perfectly modularize an architecture results in

costs of dealing with fine tuning and tempering activities aimed at solving

unexpected and unforeseen interdependencies. We will speculate further on

this principle in Subsection 3.5, when discussing Torvalds’ kernel architec-

tural choice for GNU/Linux. Within the present Subsection, it is enough to

note that the architectural choice followed since the beginning by Stallman,

and later widely adopted by the hacker community, has been a conservative

one. A more risky option such as undertaking a radically innovative project

based on the design of a new architecture was disregarded in favor of a safe

and well known alternative.

As was suggested in the Halloween–I document:

“The easiest way to get coordinated behavior from a large, semi–organized

mob is to point them at a known target”.

In this respect, the FSF community was able to consciously handle what,

through the lens of the theory of modularity, is a fundamental trade–off

between threats at the design level and opportunities at the implementation

level. As a result, the decision of establishing the GNU project upon a

stable, mature and carefully modularized architecture was the key element

to profit from the typical advantages of modularity (concurrent engineering,

division of labor, decentralized development, innovation via module based

evolutionary dynamics, and much more), while at the same time avoiding the

classic pitfalls and drawbacks of modularity, concerning the risks of imperfect

decomposition in the design of an innovative modular architecture as the

backbone for the project.4

4See also further on how in the case of the GNU/Linux kernel failure to correctly

18

3.3 Horizontal division of labor, task interdependen-

cies and Brooks’ Law

The perspective of modularity seems also to offer other different interpre-

tations contrasting many other recurring stereotypes in the debate over the

revolutionary nature of Linux development.

One of the most criticized principle of the by other means seminal and

evocative essay The Cathedral and the Bazaar [Raymond, 1999] is the one

prefiguring the demise of Brooks’ Law within F/OSS development. This view

is supported by a reductio ad absurdum argument, claiming that, if Brooks’

Law were at work, it would not possible to observe such a thing as Linux

development. Conversely, the observation of the Linux case study suggests to

the author that the effects of Brooks’ Law may be overcome by other forces,

such as the project leader’s capabilities in attracting, motivating and coor-

dinating a team of skilled and talented developers, in a distributed process

strongly facilitated by Internet connectivity as a shared medium of commu-

nication. This argument, that Brooks’ Law does not apply to Internet–based

distributed development, has been widely criticized by many authors (see

for instance Bezroukov [1999b], Jones [2000]). Modularity allows us to refine

and clarify those critics suggesting that a large number of participants in a

project may be not a sufficient condition to generate dysfunctional effects

such as diminishing or negative marginal return of manpower to productiv-

ity, since the key aspect in this respect is represented by the degree of task

interdependency between the various members belonging to the project. In

this view, the high productivity experimented in the GNU/Linux develop-

ment is interpreted as largely due to the massively modularized structure of

the project, allowing to have highly independent sub–projects joined by a

limited number of developers, resembling in essence the theory of Brooks’

surgical (small, skilled and focused) team, while the role of the Internet in

modularize the architecture resulted in serious troubles for the developers of the HURD

micro–kernel.

19

this interpretation is of mere medium of exchange allowing distant commu-

nication.

Actually, our latest claim seems to run straightforward if we look at a

general sub–project within the whole GNU/Linux architecture, but seems

to be rather difficult to accept in some other cases, such as in the case of

the development of the kernel, that have been undertaken thanks to the

coordinated effort of hundreds of contributors. Consequently, we need to

extend and clarify our latest claim, since it is not possible to address the

problem of Brooks’ Law and division of labor only at the horizontal level.

We need to extend our analysis in order to consider also vertical division of

labor.

3.4 Vertical division of labor and organization and ar-

chitectural ladders

Another rather famous postulate in Raymond’s The Cathedral and the Bazaar

is the following:

“I had been preaching the Unix gospel of small tools, rapid prototyping

and evolutionary programming for years. But I also believed there was a

certain critical complexity above which a more centralized, a priori approach

was required. I believed that the most important software (operating systems

and really large tools like the Emacs programming editor) needed to be built

like cathedrals, carefully crafted by individual wizards or small bands of

mages working in splendid isolation, with no beta to be released before its

time.

Linus Torvalds’s style of development – release early and often, dele-

gate everything you can, be open to the point of promiscuity – came as

a surprise. No quiet, reverent cathedral–building here – rather, the Linux

community seemed to resemble a great babbling bazaar of differing agendas

and approaches (aptly symbolized by the Linux archive sites, who’d take

20

submissions from anyone) out of which a coherent and stable system could

seemingly emerge only by a succession of miracles.” [Raymond, 1999]5

While finding this quote intriguing and insightful in many senses, since it

clearly describes the evolutionary dynamics nature of GNU/Linux develop-

ment [Kuwabara, 2000], we also are convinced that it conveys many mislead-

ing interpretation of the F/OSS phenomenon as a whole. Many authors have

criticized the cathedral versus bazaar metaphor. We hereby are particularly

concerned with a serious and common misinterpretation of this metaphor

when it comes to the topic of the architectural characteristics of GNU/Linux.

The misinterpretation of the above quote runs, simplifying a bit, as fol-

lows: GNU/Linux comes out of the blue from a chaotic mess of contributions

and organizes itself as a coherent system in an apparently self–regulating way,

showing mysteriously spontaneous order. This emergent view of the genesis

of GNU/Linux is misleading in that it suggests the existence of a deregulated

and emergent flat architecture. In contrast, we claim that the modular ar-

chitecture of Linux is characterized by being quite hierarchical, rather than

flat.

Reducing to the essence, it is indeed possible to distinguish at least two

different and hierarchically ordered ladders in GNU/Linux: a higher level, the

kernel space, and a lower one, the user space. As it happens, the celebrated

babbling bazaar, representing the decentralized and anarchic distributed pro-

cess, takes place at the user level and it is fostered by the highly modular

architecture, as described formerly. Conversely, at the higher inner level of

the operating system, the development process seems to be rather different:

Linux inner core started to be developed as a one–person hack and only at

a subsequent stage of the process contribution from other developers where

introduced. Moreover, while contributions to the kernel represent an open

process, the integration of code within the kernel has been a process firmly

regulated by the same Torvalds, at the beginning, and later supported by

5See also Subsection 3.6 for related comments on these statements.

21

a small group of zealots. In the next Subsection this process will be de-

scribed in much more detail, here we are specifically concerned of describing

its consequences at the organizational level. In order to preserve integrity

and coherence within the most important and complex part of the system, at

the kernel space ladder all initial relevant design decisions were largely taken

by Torvalds and by an inner team of developers. The same holds for most of

the subsequent activities of kernel development. While one has to acknowl-

edge the role of code contribution from the bottom (the hacker community),

it is also indisputable that its incorporation in the project has been fueled

by a highly structured and hierachical process of review and selection (albeit

not based on formal authority but rather on competence and reputation).

Sanchez and Mahoney [1996] where the first to highlight a basic feature

of modular product architectures, namely the isomorphic relationship be-

tween product architecture and organization traits. This seems to be indeed

the case of GNU/Linux that emerged as a stable system not by a succes-

sion of miracles, but rather by exploiting modularity at the user space level,

encouraging decentralization, and carefully crafting and controlling the over-

all consistency of the design at the kernel space, imposing a cathedral–like

hierarchy in code evaluation and integration.

To summarize our point, we find the cathedral vs. bazaar distinction

seriously misleading. Hence, if one really wants to compare the GNU/Linux

architecture to a bazaar–like structure, he should not look at an ordinary

bazaar, but rather at Kapali Carsi, Istanbul Grand Bazaar, the oldest (15th

century) and largest (over 4400 shops on 30 hectares of land) marketplace

of the world. The most prominent and uncommon feature of this market-

place is that it is not uncovered and out in the open as usually bazaars are.

On the contrary, it is a covered structure owning a complex architecture

protecting a giant labyrinth of shops and various commercial activities. It

has been observed by many that the covered architecture is a fairly regu-

lar structure, which makes the underlying bazaar even more maze–like and

confusing in practice. Just as the building architecture is not affected by

22

underlying bazaar activities, GNU/Linux higher ladder, i.e. the kernel, is

largely shielded from decentralized evolutionary dynamics happening at the

user space level.

We have until now emphasized that GNU/Linux is a massive modular

architecture, mostly inherited from a previous design and characterized by

a hierarchical two–ladder architecture that hardly resembles the flatness of

the common bazaar. To refine further our analysis we need to admit that,

albeit largely based on the Unix architecture, there does exist something truly

innovative and original in GNU/Linux. This pertains to the operating system

kernel. In the following Subsection we reflect on its origins, highlighting

the different approaches to modularity and interdependencies decomposition

followed by two different projects: the Linux project and the HURD project.

3.5 The kernel issue: modularizing a monolith

Compared to integrated models, modular architectures are characterized by

specialized, loosely–coupled components. Perfect decomposability of complex

systems, like total integration, are idealtypical cases, while real–life systems

are rather characterized by some degree of modularity. Most of the time,

modular design and modular production leave some residual interdependen-

cies among components, that are not managed by the interfaces. GNU/Linux

is known for being a modular complex artifact and its successfull develop-

ment, accomplished by a distributed community of hackers, largely benefited

from that. Therefore, it may be surprising that its core–component, the

so–called kernel, was initially conceived as a highly integrated product and

that eventually acquired a modular structure. Like other analyses (see for

instance [Moon and Sproull, 2000]) our examination is based on indirect

sources of data that come from quite large mass of original documents (e.g.

users groups archives) and first hand evidence (e.g. interviews and papers

written by the key actors themselves.

As a developer, Linus Torvalds’ major effort to the project afterward

23

called GNU/Linux was aimed to conceive and write the kernel, that is the

core part of the operative system that could use all the applications and

the libraries of software that had already been developed within the GNU

project.6

At the time Linus Torvalds started to work on its kernel, a long debate

was growing around the advantages offered by an alternative architecture,

called microkernel, designed to work in all possible and different processors.7

Compared to traditional, hardware dedicated kernels, microkernels appeared

to be more complex and less efficient. They were more complex because

even simple problems are treated as instances of general tasks that may

involve a higher number of specifications and instructions to interact with

other parts of the kernel; therefore, they may result to be less efficient as

they do not take advantage of specific features of the hardware they run on.

While microkernel architecture appeared to be a better solution because of

its recognized technical superiority, Torvalds decided to develop his kernel

in less general terms, thinking that microkernels at the beginning of the ‘90

were still experimental and too complex projects (at that time Microsoft was

developing its new Windows NT using a microkernel structure) and they

were exhibiting much worse performance [Torvalds, 1999]. By the way, when

Torvalds started to work on its kernel the Free Software Community and

GNU partisans were already involved in the development of a microkernel

(called HURD), but the task seemed to be much far away from its conclusion.

6By the time Torvalds started to conceive the Linux kernel, the GNU project had

developed to the stage of an almost complete free operating system, including all the major

system components, such as terminals, assemblers, compilers, interpreters, debuggers, text

editors, mailers, and many more, but the fundamental one: the kernel.
7As Torvalds put it “When I began to write the Linux kernel, there was an accepted

school of thought about how to write a portable system. The conventional wisdom was

that you had to use a microkernel–style architecture.” [Torvalds, 1999]. See also the

well known “Linux is obsolete” flamewar in the comp.os.minix newsgroup (reported in

Appendix A of DiBona et al. [1999]), where Linus Torvalds, Andrew Tanenbaum and

other relevant hackers passionately debated on OS design issues and on the strength and

weakness of micro versus monolithic kernels.

24

Therefore, the very first version of Linus’ kernel had a monolithic struc-

ture and was also extremely hardware specific, since it was conceived for

working on Intel 80386 processors only . The first effort to port Linux ker-

nel to another processor (Motorola 68K) showed all the drawbacks of having

a hardware–specific architecture, since the developers of 68K Linux had to

write another hardware–specific kernel from scratch. When Torvalds started

to think about porting Linux to Alpha (another popular processor different

from Intel 80386 and Motorola 68K), he realized that the original design was

no longer effective and in 1993 he started to rewrite completely the kernel

code. He decided to keep a monolithic architecture, but he introduced some

degree of modularity in the system design, in order to simplify the portability

task. Therefore, the general kernel model made use of modules and it was

conceived having in mind those elements common to all typical architectures

(even though it was not as rigorous and general as microkernels are). Fol-

lowing this scheme Torvalds could treat separately and confine in modules

out of the core kernel all the hardware–specific pieces of code. These mod-

ules could be later updated or changed by Torvalds himself and by the other

Linux developers with no effect on the kernel core.8 Device drivers struc-

ture is a good example of the third way followed by Torvalds. One extreme

solution is to put all the hardware specific into the core kernel: this is eas-

ier to do, it increased the performance, but the kernel is totally unportable.

The other extreme solution, consistent with the microkernel design, urges to

leave all the specific in the user space, which declines the performance and

the stability of the system.

In later discussions Torvalds explained the reasons for its choice: a fully

modular architecture, like the one adopted for HURD, would have posed

problems to a degree of complexity that it could compromise the accom-

plishment of the project. To avoid such risks and keep as low as possible the

8Version 2.1.110, released in July 1998, counts around 1,5 million lines of code: 29%

is the kernel and the file systems, 54% are platform–independent drivers and still 17% is

architecture–specific code.

25

degree of complexity of the project, he decided to design a monolith and he

actually wrote all the architectural specs himself,9 avoiding all the hassles

due to collective projects (e.g. division of labor, coordination, communica-

tion). On the other hands, Torvalds was aware of other advantages Linux

could gain from introducing some degree of modularity, besides the porting

issue: modular architectures would allow an incremental development of the

system through the involvement of a mass of hackers working in parallel on

different components.

“With the Linux kernel it became clear very quickly that we want to have

a system which is as modular as possible. The open–source development

model really requires this, because otherwise you can’t easily have people

working in parallel. It’s too painful when you have people working on the

same part of the kernel and they clash.

Without modularity I would have to check every file that changed which

would be a lot, to make sure nothing was changed that would effect any-

thing else. With modularity, when someone sends me patches to do a new

filesystem and I don’t necessarily trust the patches per se, I can still trust the

fact that if nobody’s using this filesystem, it’s not going to impact anything

else.”[Torvalds, 1999]

The validity of Torvalds choice is under our eyes and it is difficult to

overestimate the consequences of this modular solution with regard to the

subsequent portability and extensibility of the system trough the distributed

effort of the community. Nowadays Linux run on an increasing number of

computers, from workstations to handheld devices and its development is

assured by the effort of tens of thousands developers in the world. Torvalds

and a few other people close to him control the kernel core and have the final

word in the decisions related to the development of the system. Other de-

velopers, on the other hand, offer their contribution to improve and upgrade

the system.

9Releasing version 0.11 in December 1991, he credited on three other people.

26

We already showed how critical were the consequences of inheriting a

modular Unix–like architecture based on complementary and interconnected

components. To a more hidden and critical level the development of the core

of the operative system, the kernel, followed an analogous destiny. The mod-

ular structure adopted by Torvalds for its kernel happened to be successful,

nevertheless it does not prevent the system from emergence of unforeseen

interdependencies within the modules that may rise with the future develop-

ment of hardware and software. While HURD rose as an attempt to develop

a fully general and modular system, Linux’s kernel took advantage of some

architectural shortcuts: as it is, the problem related to emergent interdepen-

dencies that were not expected at the beginning may become a problem for

the future successful endurance of Linux, even though this can be regarded

as a future cost for the straightforwardness of its design. Some of these emer-

gent interdependencies may be faced by rewriting or adding some modules,

as it happened for instance with a memory manager module; sometimes the

adopted solutions are not adequate and the communities of developers that

not agree with the final decision may introducing new alternative versions

of the system. These forks are expression of a coordination failure when

a community does not converge on an unique satisfying solution. Further,

unanticipated interdependencies may end up in more serious problems than

just forks, as it happens when the existing operative systems reveal to be in-

consistent with the architecture of new processors. Torvalds himself is fully

aware of this situation when he describes a future scenario of Linux’s decline:

“They’ll say Linux was designed for the 80386 and the new CPU’s are

doing the really interesting things differently. Let’s drop this old Linux stuff.

This is essentially what I did when creating Linux. And in the future, they’ll

be able to look at our code, use our interfaces, and provide binary compati-

bility, and if all that happens I’ll be happy.”[Torvalds, 1999]

It is worthwhile to point out some observations that are suggested by this

story:

27

• The design of modular architectures from scratch may reveal to be

extremely complex tasks and therefore designers may prefer integrated

solutions that are easier to manage.

• To avoid out of control increasing of interdependencies the first phase

of new projects may be more efficiently accomplished by individuals,

rather than groups of developers; on the other hand, most of the most

successful F/OSS stories have been started to solve specific problems

and at the beginning are one-man projects: Sendmail was initially

developed by Eric Allman to route email for other users within UC

Berkely, Perl by Larry Wall to solve some bothersome problems in sys-

tem administration, World Wide Web by Tim Berners-Lee as group en-

vironment for academic information sharing among high-energy physi-

cists, etc. [O’Reilly, 1999].

• The evolution of Linux kernel towards modular design offers some in-

sights to a general theory of modularity: it is possible and effective to

combine together under the same architecture modular components and

integrated parts. Later on the designers may introduce a higher degree

of modularity by adapting the original architecture. In other words,

modularity arises more as a process of evolutionary design (modular-

ization), rather than as ultimate property of an artifact.

• Our intuition is that the general violation of the information hiding

principle allowed by the openness of the source code was especially im-

portant in this case. In general terms a partially-modular architecture,

as the one designed for Linux kernel by Torvalds, seems to be more vul-

nerable by the emergence of unforeseen interdependencies that come

out on later development, compared to a fully-modular architecture

(like HURD). Nevertheless Torvalds architecture could bear these situ-

ations more easily because of the violation of one the fundamental rules

of modular implementations, that is the information hiding. Since the

source code is open, developers may better handle with the weaknesses

28

of the architecture, avoiding or preventing major inconsistencies.

3.6 Beyond the principles of modularity

We have so far advocate the perspective that the theory of modular systems

may help in interpreting the rise and success of GNU/Linux and of F/OSS

methodologies in general. Nevertheless, in the previous sections, we have also

argued that modular design and production of software artifacts is not new

to software engineering and that it would be misleading and unrepresentative

of reality to attribute its original genesis or to restrict its current application

to the world of F/OSS development.

As a matter of fact, successful examples of production of modularized

software may be found also in proprietary developed code: take for instance

the case of the development of Microsoft Internet Explorer 3.0, Microsoft

first internally developed Internet browser, that hit final product release less

than 9 month after the design of the first initial specifications.

As one developers described it:

“We had a large number of people who would have to work in parallel

to meet the target ship date. We therefore had to develop an architecture

where we could have separate component teams feed into the product. [. . .]

In fact if someone asked what the most successful aspect of IE3 was, I would

say it was the job we did in ‘componentizing’ the product.”10

Hence, the occasional reader may be concerned over our emphasis on the

role of modularity in explaining the emergence of F/OSS development. In

particular, he might as well treat modularity as one of the common trends

present both in F/OSS and proprietary software development, and look else-

where for differences and peculiarities of F/OSS practices. This is for in-

stance what happened to some of the assumed peculiarities of Linus’s devel-

opment style highlighted by Raymond [1999]: subsequent contributions have

10Cited in MacCormack [2001]).

29

suggested close resemblance of some of these elements to practices of rapid

development common in closed and proprietary development.11

Still, we are convinced that modularity is helpful in clarifying the debate

and has a great explaining power in characterizing F/OSS. Hence, to address

this potential critiques one has to take a step forward in the theory of mod-

ularity and has to reflect on how GNU/Linux, and more generally F/OSS

development, originally adapted the principles of modularity.

We have already speculated on advantages and risks of modularity: a

well–decomposed architecture seems to reconcile considerations about divi-

sion of labor and size of a project with concerns of high speed of development.

Nevertheless, for large complex software artifacts it may be almost impossi-

ble to separate ex-ante all interdependencies, so unforeseen coupling between

components at later stages (like for instance, integrating new and existing

modules), may strongly affect the final outcome of the process.

The fundamental innovation in F/OSS practices lies in how the basic

postulate of information hiding is adapted to face these difficulties. While

information hiding is clearly at the core of designers activities when ini-

tially decomposing a software project in modules, the same principle is then

disregarded, at the implementation level, in day by day coding, test and in-

tegration activities. As a matter of fact, in the F/OSS community, hackers

actually are overexposed to, rather then shielded from, a huge amount of

code.

The free availability of the source makes programming a true public pro-

cess, since good coding solution are shared and adapted to solve new similar

problems, and ex-post interdependency conflicts are handled by employing a

wider set of fine tuning strategies. The absence of code ownership, typical

of proprietary closed development, allows to cope with unforeseen interde-

pendencies in many alternative ways: bugs are highlighted and corrected by

11See for instance Bezroukov [1999b] addressing a critical revision of some Raymond’s

postulates or Cusumano and Selby [1995] on rapid development methodologies in a large

software corporation).

30

other eyeballs, design incoherencies are anticipated and discussed by peers

reviewing code elsewhere written, and so on.

In short, the lesson of F/OSS development is the following: since it is

impossible to design a zero–defect software architecture, it is worth to em-

brace adaptive and flexible strategies that ease modules integration by using

all the available (not anymore hidden) information.

4 Discussion

In the end, modularity may be conceived as simple as it is, as long as we

do not open the black box and keep track of the organizational processes

behind the structure. Most quoted contributions in management studies

[Badwin and Clark, 1997, 2000, Ulrich, 1995, Sanchez and Mahoney, 1996]

unfold a neat and smooth theory of modularity, introduced as a cornerstone

for artifact design.12 According to this olympic version, modularity is defined

as a “particular design structure, in which parameters and tasks are interde-

pendent within units (modules) and independent across them” (Baldwin and

Clark 2000, p. 88). Modularity copes with complex systems, as it comprises

the interdependencies at the level of modules. Modularization is a design

process aimed to specify the architecture, the interfaces and the protocols of

integration and testing. The architecture design encompasses to state which

are the modules and what they do and it shapes the border between visible

and hidden information; the interfaces set the rules of interactions among the

modules. Finally, integration and testing steps assess whether unexpected in-

consistencies come out when modules are combined together, revealing some

weaknesses in the architecture or in the interface design. After some refine-

ments the design rules set is complete and the final architecture is supposed

to take into account all the (relevant) interdependencies.

12For an insightful assessment of this topic see also Langlois [2002] and Devetag and

Zaninotto [2001].

31

Unfortunately, this perspective underestimates that modularization of

complex systems generally resolves on a quasi–decomposition and not in a

full decomposition, as some interdependencies may not be predicted or are

left out on purpose, simply because they are regarded as marginal ones.

GNU/Linux is a story of modularity and modularization, but things are

less neat and smooth than it is spelled out by the theory. Mimicking UNIX,

GNU/Linux inherits its modular structure; analyzing UNIX architecture,

Baldwin and Clark (2000, p. 334–336) point out that its modular design has

a static and a dynamic dimension. This operative system has modular static

design based on programs, file structure and pipes. Programs are the actual

modules that are activated to perform the tasks, file structure defines how

the modules are organized and pipes allow to concatenate different modules

in order to accomplish compound tasks. Moreover, UNIX is modular in a

dynamic sense, as the activity of the modules is regulated according to an

hierarchical organization (runtime configuration) that allows multiple users

working on multiple tasks to minimize the interdependencies in time sharing

of common resources (processors, printers and other devices).

GNU/Linux, on the other hand, is a story of unorthodox modularity :

information hiding principle is significantly ignored and the artifact evolves

mainly through a repertoire of practices (e.g. peer coding and debugging,

frank discussions, open decisions) where developers and users work aside,

tinkering and patching the original modular product and, overall, violating

another of the law of the olympic modularity stating that the only operators

are manipulation at the module level (splitting, substituting, augmenting,

excluding, inverting, porting) (Baldwin and Clark (2000, p. 123–146).

In our view, reading the GNU/Linux case according to the modular-

ity perspective provides a complementary understanding of the F/OSS phe-

nomenon and, at the same time, offers some insights to think about the way

we conceive a theory of modularity for complex systems.

With respect to the first issue, taking advantage of existing architectures

32

like UNIX and standards (e.g. POSIX) has been a successful strategy as the

community of developers avoided to design a modular structure from scratch.

The comparison between the HURD project and Torvalds’ monolithic ker-

nel shows that to develop decomposable architectures for complex products

expose the designers to the risk of unforeseen interdependencies that may

ultimately endanger the whole project. Besides, as F/OSS developers are

distributed organizations and the community members communicate only

remotely, coordination and collective decision making seem to be two funda-

mental issues in F/OSS development. Following the same rationale, F/OSS

communities should be aware that forking may become a serious potential

thread, as the in the long run a growing number of alternative, incompatible

modules ultimately increases the degree of interdependence of the system. In

fact, new modules (programs, upgrades, patches) either deepen the forking

effect or try to handle it and in this case they need to take into account all

the possible different user configurations.

Our analysis seems to clearly highlight the strengths of employing a mod-

ular approach to software production, suggesting that the success of F/OSS

methodologies may rely on the power of modularity in leveraging massively

parallel and distributed development. Moreover, F/OSS practices seem to

overcome one of the traditional limit of modularity. Disregarding the infor-

mation hiding principle at the implementation level allows to fix more effec-

tively flawed modularization managing unforeseen interdependencies between

modules. Nevertheless, the principles of modularity have still a positive im-

pact in architecture design, since careful ex-ante modularization of complex

software architectures immensely speed up the development phases. The

modularization phase (the decomposition in modules) has been until now in

most of the successful F/OSS projects handled out largely by inheriting and

adapting existing architectures. As long as nowadays the F/OSS commu-

nity seems to be more and more committed in developing state of the art

software based on innovative complex architectures, answering to questions

about who should be the designer and how should innovative architectures

33

look like, seems to us one of the most challenging issue that the F/OSS

movement will be soon facing.

GNU/Linux case, on the other hand, suggests some general reflections

on modularity and modularization. F/OSS developers exploit all the ad-

vantages of a modular architecture as the massive parallel activity within

modules/programs witnesses; on the other hand, the modularization does

not stop with the architecture design. The unforeseen interdependencies

that come out as the operative system evolve, revealing some inconsistencies

are faced by violating the information hiding principle. In questioning how

exendible this experience is to other contexts where modularity has already

started to represent a promising approach, there are at least two fundamental

conditions that need to be clearly spelled out.

First, F/OSS distinctive trait is represented by the open access to knowl-

edge (source code and documentation) stored in the modules. In F/OSS

world imitation and copy are encouraged and protected by a reverse form

of copyright (copyleft). On the contrary, in many other contexts of produc-

tion, organizations and individual are characterized by actively preventing

this sharing, at least at the inter–organizational level.

Second, GNU/Linux case is characterized by a deep overlap between pro-

ducers and users. At least at the beginning of the story most users were

developers or had some skills that allowed them to perform successful tinker-

ing. Again, most of the traditional ways to conceive innovation and product

development in other domains keeps separated producers and users, even

though today customers are more and more often directly involved in the

definition of their own product.

Acknowledgments

The authors would like to thank the ROCK (Research on Organizations, Co-

ordination and Knowledge) Group members at the University of Trento, for

34

their helpful comments and the participants to the track session “Modular-

ity and division of innovative labour: design, organisation and cost analysis”

at EURAMs 2nd conference on Innovative Research in Management, May

9-11, 2002, in Stockholm. The usual disclaimer applies. Financial support

from MIUR under the projects COFIN 99 (“Innovating by modular projects,

division of labor and compatibility standards: models of organization and in-

dustrial dynamics”) and Giovani Ricercatori 2001 is gratefully acknowledged.

References

C. Y. Badwin and K. B. Clark. Managing in the age of modularity. Harvard

Business Review, 75(5):84–93, 1997.

C. Y. Badwin and K. B. Clark. Design Rules. Vol. I: The Power of Modu-

larity. The MIT Press, 2000.

N. Bezroukov. Open Source software development as a special type of aca-

demic research (critique of vulgar raymondism). First Monday, 4(10),

1999a.

N. Bezroukov. A second look at the cathedral and bazaar. First Monday, 4

(12), 1999b.

F. P. Brooks. The Mythical Man–Month. Essays on Software Engineering.

Addison Wesley, 1975.

F. P. Brooks. No silver bullet. In H. J. Kugler, editor, Information Processing

1986, Proceedings of the IFIP Tenth World Computing Conference, pages

1069–1076. Elsevier Science, 1986.

F. P. Brooks. The Mythical Man–Month. Essays on Software Engineering,

Anniversary ed. Addison Wesley, 1995.

35

S. Brusoni and A. Prencipe. Unpacking the black box of modularity: Tech-

nologies, products and organisations. Industrial and Corporate Change, 10

(1):179–205, 2001.

M.A. Cusumano and R.W. Selby. Microsoft Secrets How the World’s Most

Powerful Software Company Creates Technology, Shapes Markets, and

Manages People. The Free Press, 1995.

M.G. Devetag and E. Zaninotto. The imperfect hiding: Some introductory

concepts and preliminary issues on modularity. DISA Working Paper,

Università degli Studi di Trento, 2001.

C. DiBona, S. Ockman, and M. Stone. Open Sources: Voices from the Open

Source Revolution. O’Reilly & Associates, 1999.

S. Evers. An introduction to Open Source software development. Diploma

thesis, 2000.

G. Gavetti and D. Levinthal. Looking forward and looking backward: Cogni-

tive and experiential search. Administrative Science Quarterly, 45:113–137,

2000.

P. Jones. Brooks’ law and Open Source: The more the mer-

rier? IBM, 4(10), 2000. Accessed Jan 2, 2003, from http://www-

106.ibm.com/developerworks/library/merrier.html.

K. Kuwabara. Linux: A bazaar at the edge of chaos. First Monday, 5(3),

2000.

R. N. Langlois. Modularity in technology and organisation. Journal of Eco-

nomic Behavior & Organization, 49:19–37, 2002.

A. MacCormack. Product–development practices that work: How internet

companies build software. Sloan Management Review, winter:75–84, 2001.

36

L. Marengo, G. Dosi, C. Pasquali, and M. Valente. The structure of problem–

solving knowledge and the structure of organizations. Industrial and Cor-

porate Change, 9(4):757–788, 2000.

L. Marengo, C. Pasquali, and M. Valente. Decomposability and modularity of

economic interactions. In W. Callebaut, editor, Modularity: Understanding

the Development and Evolution of Complex Natural Systems. The MIT

Press, 2001.

J Y. Moon and L. Sproull. Essence of distributed work: The case of the

Linux kernel. First Monday, 5(11):1–20, 2000.

T. O’Reilly. Lessons from Open–Source software development. Communica-

tion of the ACM, 42(4):33–45, 1999.

D. L. Parnas. On the criteria for decomposing systems into modules. Com-

munication of the ACM, 15(12):1053–1058, 1972.

E. S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. O’Reilly & Associates, 1999.

D. K. Rosenberg. Open Source. The Unauthorized White Papers. IDG Book

Worldwide, 2000.

H. P. Salus. A Quarter Century of UNIX. Addison–Welsey, 1994.

R. Sanchez. Modular architectures, knowledge assets and organizational

learning: New management proceses for product creation. International

Journal of Technology Management, 19(6):610–629, 2000.

R. Sanchez and J. T. Mahoney. Modularity, flexibility, and knowledge man-

agement in product and organizational design. Strategic Management

Journal, 17(winter special issue):63–76, 1996.

M. A. Schilling. Toward a general modular systems theory and its application

to interfirm product modularity. Academy of Management Review, 25(2):

312–334, 2000.

37

H. A. Simon. The Sciences of the Artificial, 2nd ed. The MIT Press, 1981.

R. Stallman. The GNU operating system and the free software movement.

In C. DiBona, S. Ockman, and M. Stone, editors, Open Sources: Voices

from the Open Source Revolution. O’Reilly & Associates, 1999.

L. Torvalds. The Linux edge. In C. DiBona, S. Ockman, and M. Stone,

editors, Open Sources: Voices from the Open Source Revolution. O’Reilly

& Associates, 1999.

K. Ulrich. The role of product architecture in the manifacturing firm. Re-

search Policy, 24:419–440, 1995.

E. von Hippel. Task partitioning: An innovation process variable. Research

Policy, 19:407–418, 1990.

38

