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Abstract

In this paper we show that the widely used normalization constraint
∑

n

i=1
wi = 1

does not apply to the priority vectors associated with reciprocal relations, whenever

additive transitivity is involved. We show that misleading applications of this type

of normalization may lead to unsatisfactory results and we give some examples from

the literature. Then, we propose an alternative normalization procedure which is

compatible with additive transitivity and leads to better results.

Keywords: reciprocal relation; fuzzy preference relation; priority vector; normal-

ization.

Introduction

Vector normalization is a widespread technique used in many fields of math-
ematics, physics, economics, etc. in order to obtain uniqueness from an infi-
nite set of vectors. A well known example is given by the Eigenvectors of a
square matrix. Usually, normalization is obtained by dividing every compo-
nent wi of a vector w by a suitable value k. Frequently used values of k are
k = ‖w‖, i.e. the norm of w, and k =

∑n
i=1 wi. In the first case a unit–norm

vector is obtained, ‖w‖ = 1, while in the second case the components of the
obtained vector sum up to one,

n
∑

i=1

wi = 1. (1)



Clearly, normalization is meaningful only if all the vectors of the infinite
set we are dealing with are equivalent for our purpose, so that the nor-
malized vector can correctly represent the whole vector set. Eigenvectors
corresponding to a single eigenvalue are again a suitable example. In the An-
alytical Hierarchy Process (Saaty, 1980), as well as in other similar methods,
the decision maker’s judgements aij estimate the ratios of priorities wi/wj .
Therefore, priorities (or weights) wi can be multiplied or divided by the
same arbitrarily chosen positive number without changing ratios wi/wj . In
this framework, normalization (1) is justified and it is usually applied.

Nevertheless, careful attention must be payed in order to avoid mislead-
ing applications of (1) in problems where this constraint is not only unnec-
essary, but leads to unsatisfactory results. More precisely, we show that,
as long as reciprocal relations are concerned, constraint (1) is incompatible
with additive consistency. Since in many papers on reciprocal relations con-
straint (1) is imposed, it is important, in our opinion, that researchers are
aware of this incompatibility. We cite Lee and Tseng (2006); Lee (2006);
Lee et al. (2008); Lee and Yeh (2008); Xu (2004, 2007a,b,c); Xu and Chen
(2007, 2008a,b,c) as examples, but they are probably not the only ones.

This paper is organized as follows. In section 1 we prove that the nor-
malization (1) conflicts with additive consistency of reciprocal relations and
we propose an alternative normalization procedure that can substitute (1)
and is compatible with additive consistency. In section 2 we discuss the
optimization models proposed in some of the papers mentioned above and
we show that better results are obtained if the normalization constraint (1)
is substituted with our alternative proposal. Finally, in section 3 we present
some comments and conclusions.

1 Reciprocal relations and vector normalization

We assume that the reader is familiar with reciprocal relations on a set
of alternatives Λ = {A1, A2, ..., An}, RRs in the following. We only recall
that they are nonnegative relations R : Λ × Λ → [0, 1] satisfying additive
reciprocity, rij + rji = 1, i, j = 1, ..., n where rij := R (Ai, Aj). Therefore,
a n × n matrix R = (rij)n×n is a suitable way to represent a RR. In this
domain, RRs express preferences according to the following rule:

rij =























1, if Ai is definitely preferred to Aj

α ∈ (0.5, 1), if Ai is preferred to Aj

0.5, if there is indifference between Ai and Aj

β ∈ (0, 0.5), if Aj is preferred to Ai

0, if Aj is definitely preferred to Ai.

Let us also note that, in literature, RRs are often called fuzzy preference
relations. Despite it, we prefer to distinguish between them and use the
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former terminology (De Baets et al., 2006).

Tanino (1984) defines additive consistency (transitivity) for a RR as follows,

(rih − 0.5) = (rij − 0.5) + (rjh − 0.5) i, j, h = 1, . . . , n . (2)

He proves also the following proposition, characterizing an additively con-
sistent RR,

Proposition 1. (Tanino, 1984) A RR R = (rij)n×n is additively consistent
if and only if a non negative vector w = (w1, ..., wn) exists with |wi − wj | ≤
1 ∀i, j, such that the entries rij of R are given by

rij = 0.5 + 0.5(wi − wj) i, j = 1, ..., n. (3)

Components wi are unique up to addition of a real constant.

We set the following definition in order to avoid misunderstandings.

Definition 1. Given an additively consistent RR R = (rij), a vector w
is called ‘associated’ with R if and only if it satisfies (3) as well as the
assumptions of Proposition 1. Vector w is said to ‘represent’ the associated
RR.

Tanino’s characterization (3) has been used as optimization criterion in
some papers (Lee and Tseng, 2006; Xu, 2004; Xu and Chen, 2008b), but
in all of them constraint (1) is imposed. With the following proposition we
prove incompatibility of (1) with Tanino’s characterization (3).

Proposition 2. For every positive integer n ≥ 3, there exists at least an
additively consistent RR such that none of its associated weight vectors sat-
isfies the constraint

n
∑

i=1

wi < n − 1. (4)

Proof. Let us consider the following additively consistent RR

R̂ = (rij)n×n =

















0.5 0.5 · · · · · · 0.5 1
0.5 0.5 · · · · · · 0.5 1
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0.5 0.5 · · · · · · 0.5 1
0 0 · · · · · · 0 0.5

















. (5)

We prove that every vector w associated with (5) cannot satisfy (4). By
substituting rin = 1 in (3) for i = 1, ..., n − 1, one obtains

wi = wn + 1 i = 1, ..., n − 1,
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and therefore

n
∑

i=1

wi = (n − 1)(wn + 1) + wn = nwn + n − 1.

Since wn ≥ 0, inequality (4) is violated and the proposition is proved.

Proposition 2 can clearly be reformulated in the following way,

Proposition 3. For every positive integer n ≥ 3, condition

n
∑

i=1

wi ≥ n − 1. (6)

is necessary, in order to represent every additively consistent RR by means
of a weight vector w.

The following proposition shows that the bound n − 1 is tight.

Proposition 4. For every positive integer n ≥ 3, every additively consistent
RR can be represented by means of a weight vector w satisfying

n
∑

i=1

wi ≤ n − 1 . (7)

Proof. Let us consider an arbitrary additively consistent RR R = (rij)n×n.
Proposition 1 guarantees the existence of a vector v = (v1, ..., vn) repre-
senting R, i.e. satisfying (3). Let us assume, without loss of generality,
vn ≤ vn−1 ≤ · · · ≤ v1. Since components of v are unique up to addition of a
real constant k (Proposition 1), by choosing k = −vn, it is always possible
to represent R by a vector w with wn = 0, obtaining w = (w1, · · · , wn−1, 0).
From wn = 0 and proposition 1, it follows 0 ≤ wi ≤ 1. Then it is
∑n

i=1 wi ≤ n − 1.

Note that (1, 1, · · · , 1, 0) is the priority vector representing (5) with the
minimum value of the sum of its components and it is

∑n
i=1 wi = n − 1.

One might argue that (5) is a borderline and implausible example, as
it corresponds to the case where the first n − 1 alternatives are strongly
preferred to the last one. Let us then briefly consider a very common case,
where the preferences on the alternatives are uniformly distributed from the
most preferred alternative A1 to the less preferred An. This is perhaps the
most simple and frequent reference case and it is represented, for n = 4, by
the additively consistent RR

4



R̄ = (r̄ij)n×n =









3/6 4/6 5/6 6/6
2/6 3/6 4/6 5/6
1/6 2/6 3/6 4/6
0/6 1/6 2/6 3/6









. (8)

As it can be easily verified by means of (3), w̄ = (1, 2
3 , 1

3 , 0) represents (8) and
has the minimum value of the sum of the components, w̄1+w̄2+w̄3+w̄4 = 2.
Note that the priority vector w̄ indicates that it is A1 ≻ A2 ≻ A3 ≻ A4 with
uniformly spaced (as the preferences r̄ij are) priority weights.

Example (8) can be extended to the general n–dimensional case,

R̄ = (r̄ij)n×n =

(

n − 1 + j − i

2n − 2

)

n×n

(9)

where the priority vector satisfying (3) and representing (9) with the min-
imum value of the sum of the components is w̄ = (1, n−2

n−1 , · · · , 2
n−1 , 1

n−1 , 0),
with

∑n
i=1 w̄i = n

2 . Let us prove this result. First, by substituting w̄i and
w̄j in (3) it can be verified that w̄ represents (9). Then, by summing the

components of w̄ one obtains
∑n

i=1 w̄i =
∑n

i=1
n−i
n−1 = 1

n−1(n2− n(n+1)
2 ) = n

2 .
All other priority vectors associated to (9) have component sum larger than
n
2 , since they are obtained by adding a positive constant to each component
of w̄. Therefore, also in this case, condition (1) cannot be satisfied and the
larger n, the larger the spread between left and right hand side of (1).

Tanino (1984) also considers an alternative kind of consistency for RR
which is called multiplicative. A RR is multiplicatively consistent if and only
if the following condition of transitivity holds

rih

rhi

=
rij

rji

rjh

rhj

i, j, h = 1, . . . , n . (10)

If (10) holds, then a positive vector v = (v1, . . . , vn) exists such that

rij =
vi

vi + vj

i, j = 1, . . . , n. (11)

Components vi are unique up to multiplication by a positive constant.
Therefore, a priority vector satisfying (11) can be normalized using (1), since
the ratio in (11) remains unchanged, as it is in wi/wj for Saaty’s case. Pref-
erence relations used in Saaty’s AHP are also called multiplicative preference
relation and we recall that, by means of a suitable function, a RR R = (rij)
can be transformed into a multiplicative preference relation A = (aij) like
those used, for example, in Saaty’s AHP (Saaty, 1980). By using function
aij = 92rij−1 (see Fedrizzi, 1990), additive reciprocity rij + rji = 1 is trans-
formed into multiplicative reciprocity aijaji = 1 and additive consistency (2)
into multiplicative consistency aih = aijajh, while Tanino’s characterization
(3) corresponds to aij = wi/wj .
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By using function aij = rij/(1 − rij), additive reciprocity rij + rji = 1 is
still transformed into multiplicative reciprocity aijaji = 1 and multiplicative
consistency (10) into multiplicative consistency aih = aijajh, while charac-
terization (11) corresponds to aij = wi/wj .

To conclude, normalization (1) can be properly applied in the frame-
work of multiplicative preference relations as well as in the framework of
multiplicatively consistent RRs. In the following section we propose a nor-
malization condition compatible with additive consistency for RRs.

1.1 An alternative normalization

Uniqueness of priority vector satisfying (3) can be achieved simply by adding
the constant k = −min{w1, ..., wn} to each component wi, thus obtaining a
vector with the minimum component equal to zero. Assuming wn ≤ wn−1 ≤
· · · ≤ w1, it is k = −wn and the normalized vector becomes

w = (w1, · · · , wn−1, 0). (12)

Contrary to (1), this alternative normalization procedure is compatible with
(3) and, as proved above, it guarantees that all the priorities wi are in the
interval [0, 1]. This is a good standard result that also allows an easier and
more familiar understanding of the obtained priorities. To summarize, the
normalization constraint we propose is

min{w1, ..., wn} = 0
0 ≤ wi ≤ 1 i = 1, ..., n

(13)

2 Consistency optimization and vector normaliza-

tion

In the previous section we have considered the case of additively consistent
RRs. Let us now consider the case in which additive consistency is not a
priori satisfied, but it is the goal of a proposed optimization model. Xu
(2004), for instance, considers incomplete RRs R = (rij) and proposes some
goal programming models to obtain the priority vector. The author refers
to Proposition 1 (see Xu, 2004) and constructs the following multiobjective
programming model (denoted by (MOP1))

(MOP1) min εij = δij | rij − 0.5(wi − wj + 1)| i, j = 1, ..., n

s.t. wi ≥ 0, i = 1, .., n,
n

∑

i=1

wi = 1.

6



To solve (MOP1), the author introduces the following goal programming
model, denoted by (LOP2); we skip the more general model (LOP1) for
brevity (see Xu, 2004),

(LOP2) min J =
n

∑

i=1

n
∑

j=1,j 6=i

(d+
ij + d−

ij )

s.t. δij [rij − 0.5(wi − wj + 1)] − d+
ij + d−

ij = 0, i, j ∈ N, i 6= j

wi ≥ 0, i ∈ N,
n

∑

i=1

wi = 1

d+
ij ≥ 0, d−

ij ≥ 0, i, j ∈ N, i 6= j .

Optimization models (MOP1) and (LOP2) are clearly based on the idea of
moving as close as possible to satisfying (3). The proposal is appropriate and
effective but, as proved in the previous section, the normalization constraint
(1) required in both (MOP1) and (LOP2) conflicts with the goal.

As a numerical example, let us consider the incomplete RR obtained
from (8) by considering r14 (and therefore also r41) as missing. Following
definition 2.5 of Xu (2004), this RR is called additively consistent incomplete
fuzzy preference relation. By applying (LOP2), vector w∗ = (2

3 , 1
3 , 0, 0) is

obtained, and the corresponding value of the objective function is J(w∗) = 2
3 ,

evidencing that (3) has not been completely fulfilled. Conversely, if the
constraint (1) is substituted by (13) in (LOP2), we obtain again vector
w̄ = (1, 2

3 , 1
3 , 0), with J(w̄) = 0, so that (3) is completely fulfilled. Note

that w∗ does not respect preference ordering, as it is w∗
3 = w∗

4 with r34 > 0.5.
Moreover, while w̄ is associated to (8), vector w∗ is associated to a different
consistent RR, more precisely to

R∗ =









3/6 4/6 5/6 5/6
2/6 3/6 4/6 4/6
1/6 2/6 3/6 3/6
1/6 2/6 3/6 3/6









. (14)

Analogous results are obtained if the goal of the optimization models is
still additive consistency for a RRs, but this goal is not fully achievable.

Xu and Chen (2008b) also consider interval RRs, represented by square
matrices whose entries are real intervals. This approach generalizes the
former (Xu, 2004), as each preference is quantified by using an interval
[r−ij , r

+
ij ], instead of a single value rij . Their optimization models (Xu and

Chen, 2008b) denoted by (M–1), (M–2), (M–3), (M–4) and (M–5) are still
based on the objective of best fulfilment of Tanino’s condition (3), but they
also contain constraint (1). Therefore, all the arguments exposed above can
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be repeated also in this case and we do not report, for brevity, a detailed
discussion with examples.

Nevertheless, it is necessary to draw the attention to the consequences
of imposing (1) in definitions 3 and 4 given by Xu and Chen (2008b) for an
‘additive consistent interval fuzzy preference relation’ (or ‘additive consistent
interval RR’, following our terminology). These definitions extend the well-
known case of additively consistent RR by requiring that in each entry of
the interval matrix a single value rij ∈ [r−ij , r

+
ij ] can be chosen to form an

additively consistent RR R = (rij) (i.e. satisfying (3)). In other words,
an interval RR is called additive consistent if it ‘contains’ an additively
consistent RR. 1 By including (1) in definitions 3 and 4, it is implicitly
required that Tanino condition (3) must be associated to (1) in order to
obtain additive consistency. As we stated above with proposition 3, the
two of them are incompatible. Coherence with the definition of additively
consistent RR can be achieved only by removing (1) or by substituting it
with (13). Otherwise, it is easy to check that an interval RR obtained simply
by adding a small spread to the entries of an additively consistent RR could
not satisfy the previous definitions and should be classified as inconsistent.
This is clearly unacceptable and an example can be constructed by means
of (8). It can be verified that the interval RR whose entries, for i 6= j, are
intervals centered in r̄ij , i.e. [r−ij , r

+
ij ] = [r̄ij − ε, r̄ij + ε], does not satisfy

the definitions 3 and 4 if ε < 0.166. To be more precise, since all the
considered values must remain in the interval [0, 1], we should better define
r−ij = max(0, r̄ij − ε) and r+

ij = min(1, r̄ij + ε), but this does not change our
conclusion. Definition 3 of Xu and Chen (2008b) is also reported in another
work on the same issue (Xu and Chen, 2008c) and in a survey of preference
relations (Xu, 2007a), where it is referred to as definition 10.

Without dwelling on their details, we end this section recalling some
more contributions which can be improved if (1) is removed or substituted
by (13). Xu (2007b) introduces some models to solve multiple-attribute
group-decision-making problems with three different preference formats. Xu
and Chen (2008a) propose a method for deriving the weight vector from an
incomplete RR. Intuitionistic preference relations under the form of RRs
have also been investigated (Xu, 2007c). Some other papers which mainly
follow the guidelines of the already cited contributions are those by Lee and
Tseng (2006); Lee (2006); Xu and Chen (2007); Lee et al. (2008); Lee and
Yeh (2008).

1An equivalent definition for fuzzy pairwise comparison matrices was given by Fedrizzi
and Marques Pereira (1995) in the framework of a fuzzy extension of Saaty’s AHP.
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3 Comments and conclusions

Given the very frequent use of vector normalization, it is important, in our
opinion, that researchers are warned not to consider it as a risk-free routine
when they are dealing with RR. Otherwise, interesting proposals can become
useless, due to an inadequate choice of the normalization constraint.
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