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Abstract 

In this study, the estimation power of Extended Kalman Filter is tested within a simple 
Keynesian macroeconomic model. After the model is written in a non-linear state space 
form, Extended Kalman Filter emerges as the appropriate methodology to estimate both state 
variables and the parameters. The simulation results suggest that such a methodology can 
also be employed in explaining more complex macroeconomic dynamics. 
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1. Introduction 

Kalman Filter has been extensively used in recent economics literature as a 
recursive estimation technique. It is a powerful algorithm, which can be easily 
employed in linear state space models, as noted in (Harvey 1990). Recently, 
(Ljungqvist and Sargent 2000) make usage of this method in various dynamic 
macroeconomic models. However, Kalman Filter fails to be appropriate in cases of 
non-linear state space forms. In this context, Extended Kalman Filter (EKF 
henceforth) has been proposed as the only possible algorithm. Although powerful, 
EKF has only been employed in a few studies such as (Grillenzoni 1993) and 
(Tanizaki 2000), where the main motivation was to compare the effectiveness of 
EKF with other possible solution algorithms. 

This paper employs the above-mentioned EKF within a simple ad-hoc Keynesian 
model with no microeconomic foundations. Although the model is highly stylized, 
it is the first attempt of its rank for Turkish economy, which presents encouraging 
results of EKF algorithm to be used in future studies. In addition, such a 
preliminary exercise also allows us to test the estimation power of EKF. 

The simulation results show that the parameters of the model are very close to 
their expected values and all of the simulated series are successfully estimated. 
Such a result implies that EKF can be viewed as a promising estimation technique 
to be employed in more realistic models with real-time data applications. 

The outline of the paper is as follows: The next section introduces non-linear 
state space models and EKF in details. Next, the simple macroeconomic model 
along with its implications is discussed. Then, the simulation results are displayed. 
The final section concludes.   

2.1. Discrete-Time Linear State Space Model 

Discrete-time linear state space models have been employed in 1960’s mostly in 
controlling and signalling processes in defence industry. The extension and 
application of such models in other fields have taken place in the beginning of 
1990s. Some of these studies include (Chui and Chen 1991), (Efe and Ozbek 1999), 
(Ozbek 2000,2001), and finally (Durbin and Koopman 2001). 

A general state space model takes the following form: 

 x x G wk k k k k+ +1 = Φ    (1) 



 
 
 

Levent Özbek, Ümit Özlale and Fikri Öztürk / Central Bank Review 1 (2003) 53-65 

 

55

 y H x vk k k k= +          (2) 

Here, xk
n∈ℜ  represents the state vector while yk

m∈ℜ  represents the 
observation vector. Φk  is the nxn system transition matrix, Hk  is the mxn  
observation matrix. wk

n∈ℜ  and vk
m∈ℜ  are white noises with zero mean, for 

which the following assumptions can be made for each k j,   values: 

 E vk = 0       (3) 

 E wk = 0       (4) 

 E v v Rk j k kj′ = δ       (5) 

 E w w Qk j k kj′ = δ       (6) 

 E v wk j′ = 0      (7) 

 E x x0 0=       (8) 

 E x x x x P( )( )0 0 0 0 0− − ′ =      (9) 

 E x wk0 0′ =               (10) 

 E x vk0 0′ =     (11) 

Moreover, for k = 0 1 2, , ,...Φk , Hk , Gk , Qk  and Rk  are assumed to be known. 
As introduced in (Jazwinski 1970), the filtering problem is to estimate the state 
vector xk , given the observation vector { }Y y y yk k= 0 1, ,..., , which can be 
denoted as:  

 [ ] [ ]kkkkkk YxEyyyxEx == ,...,,ˆ 10  

with the covariance matrix: 

 [ ]P E x x x x Yk k k k k k k k k= − − ′( � )( � )  

Let the observation matrix take the form: { }Y y y yk k− −=1 0 1 1, ,..., , then 

estimating the state vector xk  will be as 

 [ ] [ ]� , ,...,x E x y y y E x Yk k k k k k− − −= =1 0 1 1 1  

with the covariance matrix 
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 [ ]P E x x x x Yk k k k k k k k k− − − −= − − ′1 1 1 1( � )( � )  

In this case, the Kalman Filter, depending on the starting values 

 P P0 1 0− =  

 �x x0 1 0− =  

is characterized by the following algorithms: 

 � �x xk k k k k− − − −=1 1 1 1Φ                 (12) 

 [ ]� � �x x K y H xk k k k k k k k k= + −− −1 1        (13) 

 K P H H P H Rk k k k k k k k k= ′ ′ +− −

−

1 1

1
               (14) 

 P I K H Pk k k k k k= − −1    (15) 

 P P G Q Gk k k k k k k k k− − − − − − − −= ′ + ′1 1 1 1 1 1 1 1Φ Φ   (16) 

As described in (Anderson and Moore 1979) and (Chen 1993), equation (14) is also 
known as the “Kalman Gain”.  

2.2. Non-Linear State Space Models and EKF 

A non-linear state space model takes the form of 

 x f x H xk k k k k k+ = +1 ( ) ( )ξ               (17) 

 y g xk k k k= +( ) η                             (18) 

Here, f k  and gk  are vector-valued functions, whileξk  and ηk  represent white 
noise processes with the covariance matrices, Qk  and Rk , respectively. The starting 
values for the EKF algorithm are: 

 P x0 0= cov( )  

 )(ˆ 00 xEx =  

As mentioned in (Chui and Chen 1991) and (Chen 1993), for k = 1 2, ,...  

)ˆ()ˆ()ˆ()ˆ( 111111
1

1
11

1

1
1 −−−−−−

−

−
−−

−

−
− ′+

′

�
�

�
�
�

�
�
�

�
�
�

�
= kkkkkk

k

k
kk

k

k
kk xHQxHx

x
f

Px
x
f

P
∂
∂

∂
∂

  (19) 
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 )ˆ(ˆ 111 −−− = kkkk xfx                              (20) 

1

11111 )ˆ()ˆ()ˆ(

−

−−−−− �
�

�

�

�
�

�

�
+

′

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
= kkk

k

k
kkkk

k

k
kk

k

k
kkk Rx

x
g

Px
x
g

x
x
g

PK
∂
∂

∂
∂

∂
∂

 (21) 

 11 )ˆ( −− �
�

�
�
�

�
�
�

�
�
�

�
−= kkkk

k

k
kk Px

x
g

KIP
∂
∂

  (22) 

 [ ])ˆ(ˆˆ 11 −− −+= kkkkkkkkk xgyKxx   (23) 

represent the EKF updating equations. 

In order to apply EKF, the matrices in the state space model above should be 
written as the functions, which depend on the unknown parameter vector,θ . That 
is, let the matrices be represented as Φk ( )θ , Gk ( )θ , Hk ( )θ . Furthermore, let θ  
be a random walk process. In this case the following equations,  

 x x G wk k k k k k k+ +1 = Φ ( ) ( )θ θ    (24) 

 y H x vk k k k k= ( )θ +    (25) 

and the parameter vector 

 θ θ ζk k k+ = +1     (26) 

form the new state space model: 

 �
�

�
�
�

�
+�

�

�
�
�

�Φ
=�

�

�
�
�

�

+

+

k

kkk

k

kkk

k

k wGxx

ζ
θ

θ
θ

θ
)()(

1

1
  (27) 

 [ ] k
k

k
kkk v

x
Hy +�

�

�
�
�

�

θ
θ 0)(=                 (28) 

The above model is non-linear for which EKF can be readily applied. ζk  in 
equation (26) shows the white noise process for which the covariance matrix is 
assumed to be cov( )ζk kS S= = > 0 . In the particular case where S = 0 , the 
parameter vector is assumed to be time-invariant, where EKF cannot be operative. 
If EKF algorithm is applied to equations (27)-(28), depending on the following 
starting values 
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 �
�

�
�
�

�
=

�
�
�

�

�
�
�

�

)(

)(
ˆ

ˆ

0

0

0

0

θθ E

xEx
 and �

�

�
�
�

�
=

0

0
0 0

0)cov(
S

x
P  

for k = 1 2, ,...  we get: 

 
�
�
�

�

�
�
�

�Φ
=

�
�
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�

�
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�

�

−

−−−

−

−

1

111

1

1

ˆ
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   (29) 

( ) ( )
′
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�
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�
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� ΦΦ
�
�
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 + �
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−−−−−

1

11111

0
0)ˆ()ˆ(

k

kkkkk
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GQG θθ
                (30) 

[ ] [ ] [ ]
1

11111 0)ˆ(0)ˆ(0)ˆ(=
−

−−−−− �
�

�
�
�

� +
′′

kkkkkkkkkkkk RHPHHPK θθθ (31) 

 [ ][ ] 11 0)ˆ(-= −− kkkkkk PHKIP θ    (32) 

 [ ][ ]11

1

1
ˆ)ˆ(ˆ

ˆ

ˆ

ˆ
−−

−
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−+

�
�

�

�

�
�

�
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=
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�
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�
kkkkkk

kk

kk

k

k
xHyK

xx
θ

θθ
   (33) 

The algorithm above has the potential to be used in many non-linear processes. 
The previous studies that have used EKF both in statistics and economics include 
(Ljung and Söderström 1983), (McKiernan 1996), (Bacchetta and Gerlach 1997), 
(Ozbek and Efe 2000, 2003). It should also be mentioned that, convergence 
problem in EKF may exist, for which (Aliev and Ozbek 1999) and, (Reif et al. 
1999) propose answers for. 

3. The Macroeconomic Model and the State-Space Representation 

The estimation methodology that has been introduced above has not been 
employed within the context of a macroeconometric model in prevous studies. 
Therefore, in this section, a simple macroeconomic model will used to test the 
effectiveness of EKF algorithm in such a setting. A highly stylized Keynesian 
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model without any microeconomic foundations is employed for this purpose. This 
framework views interest rates as primary policy variable and takes government 
expenditures along with taxes as given. The model can be presented as: 

Let      yk : Output at time k 

      ck  : Consumption at time k 

      ki  : Investment at time k 

     kg  : Government expenditures at time k 

Furthermore, let consumption expenditures be related to the lagged values of 
output, and assume that investment is a function of the change in the consumption 
for the previous year. These two assumptions make perfect sense: an increase in 
output will lead to an increase in income, which, in turn affects the consumption 
positively. Also, investments adjust to meet the new level of consumption demand. 
Finally, let government expenditures follow a random walk. Formally, 

                                           0,1 >= − aayc kk  

                                            0,)( 1 >−= − bccbi kkk  

                                          kkkk gicy ++=  

                                          0,1 >+= − dwdgg kkk  

Consistent with the previous explanation about consumption and investment 
equations, the parameters “a”, which is a measure of marginal propensity to 
consume, and “b”, which shows the sensitivity of investment to lagged 
consumption change are expected to be positive. For simplicity, we employ a closed 
economy model. 

In order to present the model in state-space form, we can rewrite the equations as 

                       kkkkk gayaybayy +−+= −−− )( 211  

                       kkkk gabyyabay =++− −− 21)(  

                       kk ayc =+1  

                       1111 ++++ ++= kkkk gicy  

                                1111 )1()( ++++ +−+=+−+= kkkkkkk gbcaybgccbc  
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Next, we can form the state and observation matrices as 
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  (34) 

 [ ] k

k

k

k

k v

g

y

c

y +
�
�
�

�

�

�
�
�

�

�

= 010    (35) 

In order to estimate the state variables and the unknown parameters in equation 
(34), we construct the parameter vector in equation (26) as [ ]'dbak =θ  and 
form the state-space model in equations (27) and (28). After taking the derivatives, 
EKF algorithm that is specified in equations (29) through (33) is applied. 

4. Simulation  

In simulation, to generate data from equations (34) and (35), the following 
starting values for parameters and variances of the disturbances are taken: 

[ ] [ ]101010000 =′gyc  

01.1,6.0,6.0 === dba  

1)var( =kw  

1)var( =kv  

where )1,0(: Nwk  and )1,0(: Nvk  are generated from a Gaussian distribution. 
The values, which are necessary to employ the EKF updating equations (29) 
through (33), are taken as: 
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In figures 1, 2, and 3, the data that has been generated from the model are displayed 
along with the estimations that have been obtained via EKF. Also, the recursive 
estimates for the parameters can be seen in figures 4, 5 and 6. Figure 4 implies that 
the parameter “a” takes values between 0.45 and 0.65, which makes sense as a 
measure of marginal propensity to consume. The parameter “b”, on the other hand, 
can be viewed as being stable around 0.5 after a sharp drop in the first 10 periods. 
Finally, in figure 6, parameter “d” in the equation for government expenditure has 
been stable around 1, consistent with the random walk assumption. As a result, it 
will not be wrong to claim that the recursive estimates for the parameters are 
meaningful and the estimated state variables are very close to their simulated 
values.  

5. Results 

In this study, a simple ad-hoc Keynesian model has been employed to test the 
estimation power of Extended Kalman Filter, which is the appropriate methodology 
to be used in non-linear state space models. Although the model can be criticized 
for being too stylized, it is the first attempt to estimate a macroeconometric model 
for the Turkish economy using Extended Kalman Filter. The results obtained from 
the simulation exercise show that the estimated state variables are very close to the 
simulated series, and the recursive parameter estimates are fairly reasonable. These 
findings suggest that the estimation methodology that has been introduced in this 
study has the potential to be used in more complex and realistic models with real-
time data applications. 
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Fig. 1. Consumption and Its Estimate 

Fig. 2. Output and Its Estimate 
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Fig. 3. Government Exp. and Its Estimate 

Fig. 4. Parameter 'a' 
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Fig. 5. Parameter 'b' 

Fig. 6. Parameter 'd' 
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