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1. Introduction

During the last decade there has emerged an exhaustive literature on the evolution
of behavior in games. Only some contributions to this literature have examined the
interaction of different behavioral rules. All but a few presume a stable environment in
which interaction takes place. Typically, the interaction of different behavioral rules is
focused on the interaction of imitative behavior and myopic optimization. Prominent
examples include Conlisk (1980), Kaarbøe and Tieman (2001), Schipper (2001), and
Droste et al (2002). In all these papers imitators and optimizers interact in a stable
environment where cost and demand conditions continue to be the same every period.
As one of the main insights in this literature we have learned that the less sophisti-

cated imitators outperform the more sophisticated (though myopic) optimizers. Imita-
tors of successful behavior experience an evolutionary advantage in that they generally
earn at least as high payoff as other types of behavior. Sometimes, and in particular in
submodular (or Cournot type) games, this can lead to strictly higher payoff. In this case
the imitation rule works like a commitment device, inducing the imitator to bring higher
quantities to the market and leading to higher relative payoff. The obvious question
arises when and under what circumstances a higher degree of sophistication would pay.
The purpose of our paper is to shed light on the role of stability in the environ-

ment. Therefore, we analyze the dynamic interaction between an imitator and a myopic
optimizer within the changing environment of a Cournot type game. Our focus is to
determine which type of behavioral rule, imitation or myopic optimization, earns higher
payoff in a changing environment. To this end, we consider a model where players inter-
act recurrently in a world of changing marginal payoff, playing a symmetric quadratic
game of strategic substitutes.

In our view the assumption of a stable environment represents a strong assumption
for at least two reasons. First, cost and/or demand function normally change over
the business cycle. In that sense, the models referred to above, make an unrealistic
assumption. More importantly, however, stability implicitly builds in an advantage for
imitation. This is due to the fact that imitators always and only look into the past
when deciding which quantity to put into the market. In contrast, myopic optimizers
play a best response to past behavior, but take into account the current state of the
environment. When demand and/or cost function can change from period to period,
imitation is a more risky behavioral rule to follow than it is within a stable environment.
For instance, it might be that one imitates a firm producing a high quantity last period
and does not take into account that demand is lower in this period. Whenever this leads
to a market price below average cost, imitators will incur a higher loss than optimizers.
Similarly, if demand has increased, an optimizer will in general respond with a higher
quantity, whereas the imitator will stick to some relatively low quantity. In this case,
both will presumably earn positive payoff, but the optimizer a higher one. To emphasize
this difference between imitation and myopic optimization, we will exclusively focus on
permanently changing environments.
However, it turns out that this is not generally true. Permanently changing environ-
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ments alone do not suffice to make the optimizer better off. Rather, it depends (i) on
how sensitive players’ actions depend on each other and (ii) on the size of environmen-
tal shocks whether the payoff advantage of imitators prevails in changing environments.
Here, we unfold a trade-off between the degree of interaction and the size of environ-
mental shocks.
Optimizers do better if the degree of interaction is sufficiently small (for some given

set of environmental states). In the limit where the degree of interaction is zero this
becomes palpable. In this limit, both firms will act like independent monopolists, serving
separate but identical markets. On the one hand, the myopic optimizer will always
choose the payoff-maximizing quantity, a monopolist would choose. This quantity will
no longer depend on what the imitator did in the previous period, precisely because the
degree of interaction is zero. On the other hand, the imitator will pick the quantity
that the optimizer chose in the previous period, which would have been optimal in that
period. Obviously, the imitator will always earn strictly less payoff than the optimizer
(whenever the different environmental state implies a different monopolistic quantity).
Thus, for some given environment, the optimizer will be better off, whenever interaction
is sufficiently weak.
While the intuition is straightforward if interaction is weak, the picture becomes

blurred when we address the reverse question. It is not at all clear whether there exists
an environment for any degree of interaction such that the optimizer outperforms the
imitator. To answer this question, we provide an upper boundary on the degree of
interaction such that for all lower degrees the question can be answered in the positive.

Introducing changing environments, we have to decide on how to model the envi-
ronmental space. We impose a natural assumption and restrict attention to irreducible
environments. The main reason is that reducible environments, as the name suggests,
can be decomposed into irreducible components, which then can be studied separately.
To prepare the analysis of stochastic environments, we start with investigating deter-

ministic environments. Irreducibility implies that cost and/or demand functions follow a
cyclical pattern that is independent from the starting-point. We show that, in this case,
the dynamic process globally converges to a unique limit cycle and that, from some pe-
riod on, the optimizer earns higher payoff every period. Contrary to most of the existing
literature, such as referenced above, this represents a situation where there is selection
pressure against the imitator. Therefore, this preliminary result already indicates that
one critical assumption behind the advantage of imitation is a stable environment.
However, the assumption of a deterministically changing environment is compara-

tively strong. To give strength to our result, we proceed with analyzing the stochastic
case. We show that long-run average per-period payoff is higher for the optimizer than
for the imitator. Hence our claim that changes in the environment typically imply selec-
tion pressure against imitative behavior does not only hold true for cyclically changing
environments, but applies to more general, stochastic environments. To establish this
result, we have to impose a restriction on the set of feasible payoff parameters, capturing
the above-mentioned trade-off between the degree of interaction and the size of environ-
mental shocks. Optimizers earn higher payoff than imitators if interaction is sufficiently
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weak or shocks are sufficiently large.
To establish our main result, we rely heavily on the theory of Markov chains. In

particular, we show that introducing a stochastic environment with finitely many states
suffices to make an otherwise deterministic process ergodic. Our setup, with uncountable
state space and no mutations does not allow us to apply the well-known ergodicity
theorems directly, in contrast to what is typically the case in the literature (cf. e.g.
Kandori et al 1993, Young, 1993 and Vega-Redondo, 1997). In this literature, random
mutations and/or experimentation induce ergodicity of the stochastic process. As a
further obstacle, our process does not satisfy the (weak) Feller property on the whole
state space. It will become clear from the proof of our main theorem that this intuitively
is due to the imitator’s response being discontinuous on one of the zero profit lines. In
consequence, we cannot apply the standard ergodicity theorems (cf. e.g. Stokey and
Lucas, 1989, chap. 12).
The main step in establishing the material advantage of optimizers in changing en-

vironments is then to find a recurrent absorbing subset of the state space on which the
optimizer earns strictly higher payoff than the imitator and that will be reached in an
uniformly expected finite number of periods from all states outside this set. It follows
that, on this subset, the imitator’s response becomes a continuous function of the op-
timizers previous quantity. Hence, even though the process defined on the whole state
space does not possess the (weak) Feller property, its restriction on the absorbing set
turns out to be a T-chain — a much stronger property than the Feller property.
Notice that it is not at all clear whether any such decomposition exists. Searching

for a decomposition, we encounter a number of trade-offs. For instance, if we make
the absorbing set — in whatever sense — too small, then it might loose its characteristic
property. On the other hand, if it is taken too large in order to make sure it is absorbing
then the process might not satisfy the other desired properties, such as e.g. the (weak)
Feller property. Similarly, if the set is chosen too small then the process might spend
too much time in its complement set. Thus, one insight of our results below is that it
is actually possible to find a decomposition, where the optimizer realizes higher payoff
than the imitator on some recurrent absorbing subset of the state space.

To our knowledge, the only other papers in the (evolutionary) literature that examine
the dynamic interaction between different behavioral rules in a changing environment
are Gale and Rosenthal (1999), its sequel Gale and Rosenthal (2001) and Rhode and
Stegeman (2001). The papers by Gale and Rosenthal study the interaction between one
single experimenter and a finite number of imitators. While the experimenter randomly
searches for a better strategy, the imitators adjust towards the average action of other
agents. This sharply contrasts with our behavioral rule of imitation in that it is not
related to success. (According to our behavioral rule of imitation, the imitator adopts
the most successful action of the previous period.)
Both in our paper and in the two papers of Gale and Rosenthal, assuming a random

environment makes the overall process ergodic. In contrast to Gale and Rosenthal,
however, we get two important properties without relying on random experimentation.
First, in terms of Gale and Rosenthal, our overall process is stable in the large. That
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is, it converges with probability one to the aforementioned absorbing subset of the state
space. Second, it is unstable in the small: Any small subset of the absorbing set is left
with probability one. The latter result is of course trivial, as it is a direct consequence of
our focus on changing environments. Interestingly, a changing environment thus suffices
to obtain these two properties.
Finally, Rhode and Stegeman (2001) examine a model where two players interact

within an environment of changing quadratic payoff functions. In the main part of the
paper, each player imitates the most successful previous action. Additionally, random
noise (interpreted as imperfect control over the strategic variable) superimposes on action
adjustment. In their appendix B, Rhode and Stegeman present simulations where two
players with different behavioral rules — one imitator and one so-called econometrician —
interact within an occasionally changing environment. The econometrician regresses the
payoff function on all strategies observed in the past, relying on the correct parameter
specification. Among other results they report the following (p. 451): ”In particular,
imitators tended to do well when structural changes were large and [random noise was]
small. [...] As structural changes became larger, it was always better to be an imitator.”
The authors conclude that ”imitation may be more profitable than apparently more
sophisticated learning rules, in the presence of frequent structural change”.
A first objection to Rhode and Stegeman’s conclusion would of course challenge

whether the adopted version of an ”econometrician” is meaningful within a world of
changing payoffs. Rather than elaborating on this criticism, we have chosen to stress
the informational differences between imitative behavior and myopic optimization. It
turns out that imitation is less profitable compared to the arguably more sophisticated
learning rule of myopic optimization if interaction takes place in permanently changing
environments and if structural changes are large. In that case, sophistication pays off.

The paper is organized as follows. In section 2 we outline the model, while section 3
contains the analysis. Finally, section 4 concludes.

2. The model

2.1. The stage game

We consider the following symmetric two-player game with players O and I. Every
period t ∈ N0, each player chooses an action q ∈ Q := [0, q] . Given the action profile
(qO, qI) and payoff parameters π = (π11, π12, π1, π0) , player O’s payoff is

uO = −π11
¡
qO
¢2
/2− π12q

OqI + π1q
O + π0,

while

uI = −π11
¡
qI
¢2
/2− π12q

OqI + π1q
I + π0

represents player I’s payoff. Focussing on strategic substitutability, we assume π11 >
π12 > 0 and π1 > 0.
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2.2. Changing environments

To model a changing environment, let payoff parameter π1 follow a Markov process
with state space Θ = {θ1, . . . , θH}, H ≥ 2, and strictly ordered states, 0 < θ1 < . . . <
θH ≤ q. Let H := {1, . . . , H}, be the corresponding index set. If no ambuigity arises,
we sometimes refer to h ∈ H as the environmental state θh. For simplicity, we fix the
remaining environmental parameters π11,π12, and π0. With slight abuse of notation, we
write θt to denote the environmental state in period t ∈ N.
The environmental process can be completely described by its transition matrix R =

(rij)(i,j)∈H2 . The numbers rij represent the probability of reaching environmental state
j ∈ H in the next period if the current environmental state is i ∈ H, i.e. rij = Pr{θt+1 =
θj|θt = θi}. Observe that, by the Markov property, these probabilities do not depend on
time. Finally, let X := Q2 × Θ denote the overall state space, x =

¡
qO, qI , θ

¢
represent

any feasible state x ∈ X and x0 =
¡
qO0 , q

I
0, θ0

¢ ∈ X be an arbitrary initial state at time
t = 0.
As we intend to contrast our results with those obtained by other authors for the

case of a stable environment, we focus on the polar opposite case. We suppose that the
environment is never identical in two subsequent periods. We impose:

Assumption (CE): Let R = (rij)(i,j)∈H2 be the transition matrix of the envi-
ronmental process. Then we assume rii = 0 for all i ∈ H.
Given the environment-dependent payoff parameter π1, both players’ payoff functions

depend on time via the environmental state θt,

unt (x) := u
n
t (q

O, qI , θt) := −π11 (qn)2 /2− π12q
OqI + θtq

n + π0, for n = O, I.

The following example illustrates the meaning of a changing environment for the case of
Cournot duopoly.

Example 1. (Cournot duopoly). Suppose two firms engage in Cournot competition.
Let qn ∈ Q, n = O, I, denote the quantity produced by firm n where the cost of pro-
duction qn is C(qn) = c2 (q

n)2 + c1q
n + c0. Inverse demand is p(q

O, qI) = a− b(qO + qI).
Individual payoff is then

un
¡
qO, qI , θ

¢
= p(qO, qI)qn − C(qn)
= − (qn)2 (b+ c2) + qn (a− c1)− bqOqI − c0, for n = O, I,

where θ = a− c1 > 0 and (π11,π12, π0) = (2 (b+ c2) , b,−c0). Accordingly, changes in the
environmental state θ represent shocks in the maximum willingness to pay, a, and/or
marginal cost, c1. Since θ changes over time, the payoff function is time-dependent.

2.3. Adjustment rules

Every period t, both players update their previous action from period t − 1. In this
paper we investigate the interaction between two types of action adjustment or learning
rules. While player O plays a (myopic) best response to the previous action of player
I, taking into account the current state of the environment, player I chooses the action
that earned highest payoff in the previous period.
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Definition 1. (Optimization) A player adjusting by myopic optimization chooses his
updated action according to

qOt := BR(q
I
t−1; θt) := max{0,

θt
π11
− ρqIt−1}, (O)

where ρ := π12
π11

and θt ∈ Θ.

Recall that the slope of the reaction curve, 0 < ρ < 1, measures the degree of
interaction between players. In case ρ is close to zero the degree of interaction between
players is weak, and vice versa for ρ close to one.

Definition 2. (Imitation) A player adjusting according to imitation chooses his updated
action qIt such that

qIt :=

½
qOt−1 if uOt−1 ≥ uIt−1
qIt−1 otherwise

. (I)

Notice that we assume an imitator sticks to his strategy if and only if he has realized a
strictly higher payoff. The mere purpose of this assumption is to simplify the exposition
of the analysis. Alternatively, the imitator could use either action, qIt ∈ {qOt−1, qIt−1}, with
some positive probability, when both players realized the same payoff in the previous
period, i.e. when uOt−1 = u

I
t−1. This would not affect our results.

To determine the imitator’s behavior, we characterize which of the two players earns
higher payoff, given some arbitrary state x ∈ X.
Lemma 1. For any x =

¡
qO, qI , θ

¢ ∈ X we have uO
¡
qO, qI, θi

¢ ≥ uI ¡qO, qI , θi¢ if and
only if

qO ≥ qI and qO + qI ≤ 2θ

π11
, or

qO ≤ qI and qO + qI ≥ 2θ

π11
.

Proof. The claim follows from

uO
¡
qO, qI, θ

¢− uI ¡qO, qI , θ¢ = −π11
2

³¡
qO
¢2 − ¡qI¢2´+ θ

¡
qO − qI¢

=
¡
qO − qI¢ ·−π11

2

¡
qO + qI

¢
+ θ

¸
.

Figure 1 represents the plane of the two players’ quantities for any fixed environmental
state θ ∈ Θ. With varying θ, this gives the overall state space X. Observe that qO is
depicted on the vertical axis, while qI corresponds to the horizontal one. The figure also
contains the best response curve, according to which the optimizer updates his action.
The line qO = qI indicates the response of the imitator, whenever the optimizer realizes
higher payoff. Finally, the figure displays the four relative payoff regions, which result
from the two zero relative payoff lines qO = qI and qO + qI = 2θ

π11
derived in Lemma 1.
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Figure 1: The action space and relative payoff

2.4. The overall process

The overall process is completely described by the environmental transition matrix R and
adjustment rules (O) and (I). It induces a time-homogeneous Markov chain on the overall
state space X = Q2 × Θ, with corresponding σ−field B (X) . The following proposition
states that the overall transition function, implicitly defined by Definitions 1, 2 and the
environmental Markov chain on Θ, represents a transition probability kernel or Markov
transition function.

Proposition 1. Let P = {P (x,A) , x ∈ X, A ∈ B (X)} be given by (O), (I) and the
Markov chain on Θ. Then
i) for each A ∈ B (X) , P (x,A) is a non-negative measurable function on X, and
ii) for each x ∈ X, P (x, ·) is a probability measure on B (X) .

Proof. The claims can easily be established using techniques supplied in Schenk-
Hoppé (1997, Prop. 1).
Given the one-step transition probability kernel from Proposition 1, we can re-

cursively define the corresponding n-step transition probability kernal (cp. Meyn and
Tweedie, 1996, p.67). We set P 0 (x,A) := δx (A) , the Dirac measure defined by

δx (A) :=

½
1 if x ∈ A
0 if x /∈ A ,
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and, for n ≥ 1,

Pn (x,A) :=

Z
X

P (x, dy)P n−1 (y, A) ,

where x ∈ X and A ∈ B (X) . Intuitively, P 1 (x,A) = P (x,A) represents the transition
probability of reaching the set A ∈ B (X) when starting in state x ∈ X in the previous
period. Similarly, Pn (x,A) is the probability of reaching A in precisely n periods,
starting in x ∈ X in period 0. By the Markov property we have

Pr {xt+n ∈ A | xt = x} = Pn (x,A) , ∀t ≥ 0.

Observe that the general process does not have the (weak) Feller property. This is
due to the imitator’s response being discontinuous on the relative payoff lines qO + qI =
2θ
π11
, θ ∈ Θ. As a consequence, we cannot directly apply standard decomposition results to

show uniqueness of an invariant distribution. Fortunately, however, we can circumvent
the problem for the important class of irreducible environments.

3. Irreducible environments

Focussing on irreducible environments, this section provides a sufficient condition on the
environment such that, from some period on, the optimizer always realizes higher payoff
than the imitator. This contrasts with most of the existing literature1 in that it represents
a situation displaying selection pressure against the imitator. We thus conclude that one
critical assumption behind the advantage of imitation is a stable environment.
To prove this result, we develop a new decomposition technique, which — to our

knowledge — has not been used in the economic literature so far. Notice that the overall
process on state space X does not satisfy the (weak) Feller property. Basically this
is due to the imitator’s response being discontinuous on the zero relative payoff lines
qO + qI = 2θh

π11
(h ∈ H). As a consequence, we cannot apply standard decomposition

results to show uniqueness of an invariant distribution.
Our decomposition technique, however, allows to circumvent the problem. The basic

idea is to find a decomposition of the state space into two disjoint subsets, X = bX ∪ bXC ,
such that the process satisfies the following two conditions. First, the complement setbXC is uniformly transient. I.e., there exists a uniform upper boundary on the expected
occupation time of bXC , i.e. applying to all x ∈ bXC . This uniform upper boundary then
implies that the process will occupy bXC only for an expected finite number of periods.
Second, having reached bX, the process always remains in bX and the optimizer earns

strictly higher payoff than the imitator. By the latter, the imitator’s response is no
longer discontinuous on the zero relative payoff line, entailing that the process, restricted
to bX, satisfies the (weak) Feller property. More specifically, we can show that the
restricted process constitutes a ϕ−irreducible aperiodic positive Harris chain. It follows

1See e.g., Conlisk (1980), Rhode and Stegeman (2001), Schipper (2001), and Droste, Hommes, and
Tuinstra (2002).
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that the restricted process has all the desired properties such as uniqueness of an invariant
distribution, the strong law of large numbers and ergodicity.
To derive bX, we put a restriction on the size of shocks reflecting a trade-off between

the degree of interaction — measured by the slope of the reaction function — and the size
of shocks in the environment. This trade-off can be put in two ways. First, for any
(finite) set of environmental states the optimizer will be better off (than the imitator) if
the degree of interaction is sufficiently weak. Secondly, given some (not too high) degree
of interaction, there always exists a minimum size of environmental shocks such that (for
larger shocks) the optimizer outperforms the imitator.
Finally, recall that an irreducible finite environment is one where the environmental

process reaches every environmental state from every other environmental state with
positive probability. Since the environmental state space is finite, irreducibility implies
positive recurrence, i.e. the environmental process returns to every environmental state
with probability one.
We proceed as follows. In subsection 3.1, we provide the restriction and decompose

the state space into two sets, X = bX ∪ bXC . Lemma 2 shows that bX is absorbing and
that the optimizer earns strictly higher payoff on bX. Lemma 3 establishes that bXC

is uniformly transient. To derive the stochastic properties of the restricted process, it
is helpful first to analyze the case of deterministic environments, which is the core of
subsection 3.2. Subsequently, subsection 3.3 examines the stochastic properties of the
restricted process. In subsection 3.4, we analyze relative long-run average payoff. To
this end, we construct an environmental co-chain, which allows us to derive upper and
lower boundaries on long-run average payoff.

3.1. State space decomposition

The following assumption mirrors the trade-off between the degree of interaction, ρ, and
the size of shocks in the environment.

Assumption (E) Let Θ = {θ1, . . . , θH}, θ1 < . . . < θH , denote the state space
and refer to the slope of the reaction function, ρ = π12

π11
, as the degree of interaction.

Then we assume that

θh+1 − θh > 2ρθH , for all h ∈ H \ {H}. (E)

Notice that summing up these inequalities implies θH−θ1 > 2ρ(H−1)θH . Moreover,
in the equidistant case Θ = Θθ := {θ, 2θ, . . . , Hθ}, condition (E) becomes equivalent to
ρ < 1/(2H). Therefore, H = 2 provides an upper boundary on ρ, namely ρ = 1/4, such
that for any ρ < ρ there exists an environment Θ satisfying condition (E).

We start with decomposing the state spaceX into two subsets bX and bXC such that bX
is absorbing and bXC is uniformly transient. First we construct bX from single pairwisely
disjoint sets, bXij. Part iii) of Lemma 2 below establishes that, from some period on, the
process (xt)t≥0 will visit these sets bXij if and only if the previous environmental state
was θt−1 = θi and the current environmental state is θt = θj . Recall that we focus on
changing environments. Accordingly, only transitions (i→ j) with j 6= i are of interest,
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since transitions (i → i) have zero probability under the environmental process. The
following index set J = {(i, j) ∈ H2 : j 6= i} reflects this observation.
We define bXij for (i, j) ∈ J as

bXij := nx = (qO, qI , θ) ∈ X : qO ∈ [q
j
, qj], q

I ∈ [q
i
, qi], θ = θj

o
,

where q
h
:= BR( θH

π11
; θh) and qh := BR(0; θh) for h ∈ H. To construct bX from the setsbXij , we set bX :=

[
(i,j)∈J

bXij.
Lemma 2 summarizes the properties of bX.

Lemma 2. i) The sets bXij ((i, j) ∈ J ) form a partition of bX, i.e., bXij ∩ bXi0j0 = ∅,
for i 6= i0 or j 6= j0 (and bX =

S
(i,j)∈J bXij , which is true by definition).

ii) On bX, the optimizer realizes higher payoff than the imitator, i.e., uO(x) > uI(x)
for all x = (qO, qI , θ) ∈ bX.

iii) bX is absorbing.

iv) If xT ∈ bX for some T < ∞, then xt+1 ∈ bXij ⇐⇒ (θt = i and θt+1 = j), for all
t > T and all (i, j) ∈ J .

Proof. See Appendix.

Second, we decompose the complement set of bX in X, which we denote by bXC :=
X \ bX. To this end, we define the following ”level” sets:

X1 : =

½
x ∈ X : qO >

θH
π11

¾
,

X2 : =

½
x ∈ X : qO ≤ θH

π11
, qI >

θH
π11

¾
,

X3 : =

½
x ∈ X : qO, qI ≤ θH

π11
, x /∈ X4 ∪ bX¾ ,

where

X4 :=

½
x = (qO, qI , θ) ∈ X : qO ∈ [q

h
, qh], q

I ≤ θH
π11
, θ = θh, x /∈ bX¾ .

The following Lemma shows that (i) the sets X1, . . . ,X4 form a partition of bXC ; (ii)
having left any level set Xi (for some level i = 1, . . . , 4), the process will never return

to any lower level set Xj, j ≤ i; and (iii) the complement set bXC is uniformly transient.

The last result implies that the absorbing set bX is reached within an expected finite
number of periods.
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Lemma 3. i) The four sets X1, ..., X4 form a partition of the complement set bXC .

ii) Set X5 := bX. Then ∪5i=kXi is absorbing for any k = 1, . . . , 5.
iii) bXC is uniformly transient.

Proof. See Appendix.
The proof of Lemma 3 iii) provides an upper boundary on the expected occupation

time of bXC that holds for all starting points x0 ∈ bXC . Notice that restricting the set
of feasible starting-points to — in whatever sense — economically reasonable ones, would
allow to reduce this boundary.
Leaving bXC in an expected finite number of periods, it is clearly warranted to in-

vestigate the properties of the process that is restricted to the absorbing set bX. This is
the core of the following two subsections. We start with analyzing the special case of an
irreducible deterministic environment, before turning towards aperiodic environments.

3.2. Deterministic environments

The main purpose of investigating irreducible deterministic environments is to prepare
the analysis of the subsequent subsection. To this end, we show that in deterministic
environments behavior of the myopic optimizer and the imitator converges to a unique
limit cycle. As a by-product we obtain the quantities chosen by the optimizer and the
imitator along that limit cycle.
Notice that imposing deterministic transitions on the irreducible environmental pro-

cess entails a cyclically changing environment. Since irreducibility implies that all en-
vironmental states can be reached from each other with positive probability, this cycle
must be unique and visit all environmental states. Correspondingly, the length of the
cycle coincides with the number of environmental states.
We first define deterministic environments and then state our results. Recall, (i) that

R = (rij)(i,j)∈H2 denotes the transition matrix of the environmental (Markov) process
(θt)t≥0, (ii) that the set of environmental states, Θ = {θ1, . . . , θH}, is strictly ordered,
i.e. θ1 < . . . < θH , and (iii) that H = {1, . . . ,H} represents the corresponding index
set.

Definition 3. We call the environment deterministic if and only if for each environmen-
tal state, h ∈ H, there exists a unique successor, s(h) := h0 ∈ H, such that rhh0 = 1.

Obviously, it follows from the assumption of changing environments, (CE), that
s(h) 6= h for all h ∈ H. Moreover, as mentioned above, an irreducible, deterministic
process (with finite state space) must in fact form a unique cycle of length H. The
following notaton takes account of this observation.
Define the (k+1):th successor to (the smallest) environmental state θ1 recursively as

follows: Set sk+1(θ1) := s(s
k(θ1)) for k = 0, . . . , H − 1 and s0(θ1) := θ1. Irreducibility

implies that (θ1, s
1(θ1) . . . , s

H−1(θ1)) constitutes a permutation of Θ. We then relabel
the states to capture their order of appearance along the cycle, i.e. we set eθh := sh−1(θ1)

12



for all h ∈ H and eΘ = {eθ1, . . . ,eθH}. Obviously, we have s(eθH) = eθ1. Notice that we do
not impose any order on subsequent states of the cycle, i.e., it may be that eθh > eθh+1
for some h ∈ H \ {H}. Finally, we paste two cycles to the left and one the right of eΘ,
i.e., we set eθh+H := eθh−H := eθh−2H := eθh for all h ∈ H.
We can now state the main result of this subsection.

Proposition 2. Suppose the environment is irreducible and deterministic. Then, from
all starting points x0 = (q

O
0 , q

I
0 , θ0) ∈ X, the process converges to a unique limit cycle,

(x∗1, . . . , x
∗
H). This cycle can be completely characterized by the optimizers quantities

(q∗1, . . . , q
∗
H) since, starting on the cycle, an optimizer chooses q

O
t = q

∗
h if and only if θt =eθh, while the imitator is always one period behind, playing qIt = qOt−1. Correspondingly,

we can write the cycle as x∗1 := (q
∗
1, q

∗
H ,
eθ1) and x∗h := (q∗h, q∗h−1,eθh) for h ∈ H \ {1}.

If H is even, the limit cycle is given by

q∗h =
1

(1− (−ρ)H/2)π11

H
2
−1X

k=0

(−ρ)keθh−2k for h ∈ H. (3.1)

If H is odd, we have

q∗h =
1

(1 + ρH)π11

H−1X
k=0

(−ρ)keθh−2k for h ∈ H. (3.2)

Proof. See Appendix.

Notice that the order of actions along the limit cycle, (q∗1, . . . , q
∗
H), corresponds with

the order of states along the environmental cycle (eθ1, . . . ,eθH).
The proof of Proposition 2 is divided into two parts. First we establish that, for

deterministic environments, the property of bXC being uniformly transient transforms
into a lower boundary of 2H + 6 periods, after which the process has left the set bXC

with certainty. The second part then deals with its behavior in bX, where the process
remains the rest of the time. Having reached bX, the optimizer always realizes strictly
higher payoff than the imitator, uO > uI , inducing the imitator to mimic the optimizer’s
previous action. In fact, this means that the optimizer plays a best response to his own
action from two periods ago, however, taking into account the current periods’ state of
the environment:

qOt+2 = BR(q
I
t+1; θt+2) = BR(q

O
t ; θt+2).

These two-period steps imply that two cases of behavioral cycles can occur, depending
on whether the number of environmental states, H, is even or odd. In the former case,
we have min{k ≥ 1 : s2k(θt) = θt} = H/2. In contrast, if H is odd, then min{k ≥ 1 :
s2k(θt) = θt} = H. Notice that both statements hold true for any t ≥ 0.
Correspondingly, if H is even, then the limit cycle comprises two independent cycles

each of length H/2, whereas for H being odd, there is only one cycle of length H. In the
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former case, the two cycles can again involve an even or odd number of states, depending
on whether H/2 is even or odd. This explains why the feedback of the last time that
quantity q∗h was played might be positive or negative:

q∗h = BR(q∗h−2;eθh)
= BR(. . . BR(q∗h;eθh+2) . . . ;eθh)
=

1

π11

H
2
−1X

k=0

(−ρ)keθh−2k + (−ρ)H/2q∗h.
(For notational simplicity, q∗h−H := q

∗
h+H := q

∗
h (for h ∈ H) pastes the cycle to the left

and to the right of (q∗1, . . . , q
∗
H)).

3.3. Aperiodic environments

Turning towards the case of aperiodic (and hence ergodic) environments, the following
theorem shows that ergodicity of the environment suffices to make an otherwise deter-
ministic process of behavioral adjustment ergodic as well.

Theorem 3.1. Suppose the environmental process is irreducible and aperiodic. Then
the restriction of P on bX, P bX , constitutes a ϕ−irreducible aperiodic positive Harris
chain.

Proof. See Appendix.

Corollary 1. i) The process P bX admits a unique invariant distribution µ,
µ(A) =

Z
bX µ(dx)P (x,A),

for any A ∈ B( bX).
ii) For any initial distribution λ, the distribution at time t converges to the invariant
distribution µ,

lim
t→∞

k
Z

λ(dx)P t(x, ·)− µk = 0,

where kνk := supf :|f |≤1 |v(f)| = supA∈B( bX) v(A)− infA∈B( bX) v(A) denotes the total
variation norm.

iii) Let µ(g) := Eµ[g(x0)] be the steady state expectation, corresponding to the invari-
ant measure µ. Then, the Law of Large Numbers holds for any function g satisfying
µ(|g|) <∞ :

lim
t→∞

1

t

tX
τ=1

g(xτ ) = µ(g) a.s.
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Proof. Results i) - iii) follow from Theorems 10.0.1, 13.3.1 and 17.0.1 (Meyn and
Tweedie, 1996), respectively.

According to iii), the historical frequencies with which a certain subset, A ∈ B( bX),
has been visited in the past converge to the probability mass that the invariant dis-
tribution µ assigns to A. (To see this, set g(xτ ) := IA(xτ ), the indicator function

associated with the set A ∈ B( bX).) Similarly, average per-period payoff and relative
average per-period payoff converge to their respective steady state expectations. Let
gn(xτ ) := un(xτ ), n = I, O, and grel(xτ ) := uO(xτ ) − uI(xτ ) denote these payoffs, re-
spectively. Then, part iii) implies limt→∞ 1

t

Pt
τ=1 g

n(xτ ) = µ(g
n), for n = I,O, rel. Note

that we can apply the corollary, since all gn(·) are bounded on bX.
3.4. Long-run average payoffs

As noted earlier, Lemmas 2 and 3 characterizes the behavior of the process. In particular
statement iv) in Lemma 2 implies that the process only visits those subsets bXij with
rij > 0. We introduce the index set, bJ := {(i, j) ∈ H2 : rij > 0} , which encompasses
precisely these subsets. Because of rii = 0 for all i ∈ H, we have that bJ ⊂ J . Moreover,
statement iv) of Lemma 2 allows to describe the original process’ transitions between

these subsets bXij by a much simpler Markov co-chain with state space bJ and transition
probabilities R bJ = (r(i,j),(i0,j0))(i,j),(i0,j0)∈ bJ such that

r(i,j),(i0,j0) =

½
rjj0 if j = i0 and
0 otherwise.

Theorem 3.2 below states that the co-chain on bJ , defined by R bJ , is irreducible and
(positive) recurrent. By standard results from finite state space Markov chain theory,
the co-chain then has a unique invariant distribution and the strong law of large numbers
applies (cf. e.g. Resnick, 1994, sec. 2).

Theorem 3.2. Suppose the environmental process is irreducible. Then the co-chain
on bJ defined by R bJ is irreducible and positive recurrent. It has a unique invariant

distribution µ
bJ and, for any bounded function g : bJ → R and any starting point

(i0, j0) ∈ bJ , we have
lim
t→∞

1

t

tX
τ=1

g(iτ , jτ ) = Eµ bJ [g], (3.3)

where Eµ bJ [g] =P(i,j)∈ bJ g(i, j)µ bJ(i,j).
Proof. We only establish irreducibility of the co-chain on bJ . Positive recurrence

follows from bJ being finite.
We have to show that for any (i, j), (i0, j0) ∈ bJ , there exists a finite path bP :=

{(i0, j0), (i1, j1), . . . , (iT , jT )} ⊂ bJ such that (i0, j0) = (i, j), (iT , jT ) = (i0, j0), and
r(it−1,jt−1),(it,jt) > 0 for all t = 1, . . . , T.
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Let (i, j), (i0, j0) ∈ bJ be arbitrary. If j = i0 we are done, because (i0, j0) ∈ bJ implies
r(i,j),(i0,j0) = rjj0 = ri0j0 > 0. On the other hand, if j 6= i0 then, by irreducibility of the
environmental process, there exists a path P = {h0, h1, . . . , hT} ⊂ H such that h0 = j,

hT = i
0 and rht−1ht > 0 for all t = 1, . . . , T. Set bP := {(i0, j0), (i1, j1), . . . , (iT , jT )} where

(i0, j0) := (i, h0), (it, jt) := (ht−1, ht) for t = 1, . . . , T − 1 and, finally, (iT , jT ) := (hT , j0).
By construction of bP, we have r(it−1,jt−1),(it,jt) = rjt−1jt = rht−1ht > 0 for all t = 1, . . . , T,
which completes the proof.
If the environment is deterministic, then, by Proposition 2, the process (xτ )τ∈N0

converges to a unique limit cycle, (x∗1, . . . , x
∗
H). This cycle is characterized by equations

(3.1) or (3.2) and allows us to calculate long-run average per-period payoff to both the
optimizer and the imitator and hence long-run relative average per-period payoff .

Theorem 3.3. Suppose the environment is deterministic, let (x∗1, . . . , x
∗
H) denote the

unique limit cycle, and let (xτ )τ∈N0 represent any sample path of the overall process.
Then we have

lim
t→∞

1

t

t−1X
τ=0

grel(xτ ) =
1

H

HX
h=1

grel(x∗h) > 0, (3.4)

i.e. long-run average per-period payoff is strictly higher to the optimizer than to the
imitator. Moreover, from some period on, the optimizer earns strictly higher payoff than
the imitator in every period.

Proof. The last claim follows from Proposition 2 and Lemma 2, since the process
enters bX after at most 2H +6 periods. To show the equality, we rearrange the left hand
side and get

lim
t→∞

1

t

t−1X
τ=0

grel(xτ ) = lim
t→∞

1

tH

t−1X
τ=0

HX
h=1

grel(xτH+h)

=
1

H

HX
h=1

Ã
lim
t→∞

1

t

t−1X
τ=0

grel(xτH+h)

!

=
1

H

HX
h=1

grel(x∗h),

where the second equality holds true, because each of the limits in the paranthese exists
by Proposition 2 and Cauchy’s limit theorem. Finally, the right-hand side of (3.4) is
strictly positive by part ii) of Lemma 2.

Notice that 1
H

PH
h=1 g

rel(x∗h) = Eµ bJ [grel(x∗h)], since bJ corresponds to the limit cycleeΘ = {eθ1, . . . ,eθH} = {θκ1 , . . . , θκH} in that bJ = {(κ1,κ2)), . . . , (κH−1,κH), (κH ,κ1)}
and because of µ

bJ = ( 1
H
, . . . , 1

H
).

A similar result obtains for the case of aperiodic stochastic environments. In addition,
Theorem 3.2 allows us to provide an upper and a lower boundary on the long-run relative
average per-period payoff.
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Let gmax(i, j) := max{grel(x) : x ∈ bXij} and gmin(i, j) := min{grel(x) : x ∈ bXij}
denote maximum and minimum relative payoff in bXij , respectively, for (i, j) ∈ bJ . Since

grel(·) is continuous and each bXij is compact, this notation is well defined. Moreover, let
g := min(i,j)∈ bJ gmin(i, j).
Theorem 3.4. Suppose the environmental process is irreducible and aperiodic. Then
long-run relative average per-period payoff converges to its steady state expectation, i.e.

lim
t→∞

1

t

tX
τ=1

grel(xτ ) = Eµ[g
rel(x0)], (3.5)

where Eµ[g
rel] denotes the steady state expectation, corresponding to the invariant mea-

sure µ. Moreover, the co-chain provides upper and lower boundaries on (3.5),

Eµ bJ [gmax] ≥ Eµ[grel(x0)] ≥ Eµ bJ [gmin] ≥ g > 0. (3.6)

Proof. First, equality (3.5) follows from the corollary, part iii). Second, the strict
inequality in (3.6) holds true by part ii) of Lemma 2. To see this, notice that grel(x) > 0

for all x ∈ bX implies

g := min
(i,j)∈ bJ gmin(i, j) = min

(i,j)∈ bJ min{grel(x) : x ∈ bXij} > 0,
since bX is compact and grel(·) is continuous. Third, the last weak inequality in (3.6)
holds true because of g ≤ gmin(i, j), for all (i, j) ∈ bJ .
Finally, to establish the remaining inequalities in (3.6), we make use of the co-chain

P bJ . Let ι(x) denote the index function assigning the set bXij to any x ∈ bX, i.e., ι(x) = ij
if and only if x ∈ bXij. Notice that gmax(ι(xt)) ≥ grel(xt) ≥ gmin(ι(xt)), for any sample
path (xt)t≥0 on bX and hence

lim
t→∞

1

t

t−1X
τ=0

gmax(ι(xτ )) ≥ lim
t→∞

1

t

t−1X
τ=0

grel(xτ ) ≥ lim
t→∞

1

t

t−1X
τ=0

gmin(ι(xτ )). (3.7)

By Theorem 3.2 we have that

lim
t→∞

1

t

t−1X
τ=0

gmin(ι(xτ )) =
X
(i,j)∈ bJ

gmin(i, j)µ
bJ
(i,j) = Eµ bJ [gmin]

and

lim
t→∞

1

t

t−1X
τ=0

gmax(ι(xτ )) =
X
(i,j)∈ bJ

gmax(i, j)µ
bJ
(i,j) = Eµ bJ [gmax],

which completes the proof.

To illustrate the role of Assumption (E), we reconsider the example of Cournot com-
petition.
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Example 2. (Cournot duopoly continued). Recall that shocks were represented
by changes in θ = a − c1 > 0 and that ρ = b/(2(b + c2)). Notice that ρ = 0 (or
b = π12 = 0) corresponds to the polar case of two independent monopolists.
Let Θ = {θ1, . . . , θH} with 0 < θ1 < . . . < θH denote the environmental state space.
Then Assumption (E) requires

θh+1 − θh > 2ρθH =
b

b+ c2
θH , for all h ∈ H \ {H}. (3.8)

As mentioned above, condition (3.8) mirrors a trade-off between the degree of interaction,
ρ, on the one hand and the minimum size of shocks, θ := min{θh+1− θh : h ∈ H\{H}},
on the other hand. In the context of Cournot duopoly, the former is related to both the
degree of convexity, given by c2, and to how responsive market price is to changes in
market quantity, reflected in b.
On the one hand, for any fixed set of environmental states Θ, there exists a minimum
degree of convexity c2 (given some b) such that Assumption (E) is satisfied for all c > c2
(where c2 solves θ(b+ c2) = bθH). Alternatively, given some c2, there exists a maximum

degree of price responsiveness b such that Assumption (E) applies for all b < b (let b
solve θ(b+ c2) = bθH).
On the other hand, for any fixed degree of convexity, c2, and any fixed degree of price
responsiveness, b, resulting in some ρ < ρ, there exists an environment Θ and a minimum
size of shocks, bθH/(b + c2), such that Assumption (E) holds true for all larger shocks,
i.e. if θ > bθH/(b+ c2).
In any of these cases, it follows from Theorems 3.3 and 3.4 that the optimizer earns
strictly higher payoff than the imitator and hence experiences a relative evolutionary
advantage.

We conclude this section by discussing the role of Assumption (E). Apparently, As-
sumption (E) is sufficient to establish our results in this section. To address whether is
also necessary, let us check first where it enters the analysis.
First, we use Assumption (E) to show that the setX2 will be left in H+1 periods with

strictly positive probability. In the proof, however, we only need that θH − θ1 > ρθH .
This obviously represents a weaker condition than provided by assumption (E), for (E)
implies θH − θ1 > 2ρ(H − 1)θH .
Second, Assumption (E) entails qh < qh+1 for all h ∈ H\{H} and hence bXij∩ bXi0j0 = ∅

for i 6= i0 or j 6= j0. To guarantee these properties, we could get by on a slightly weaker
condition, namely,

θh+1 − θh > ρθH , for all h ∈ H \ {H}. (E0)

In addition, condition (E0) would also be sufficient for θH − θ1 > ρθH .

Third and finally, we employ Assumption (E) to show that, on bX, the optimizer
realizes higher payoff than the imitator. In this case, Assumption (E) is necessary to

derive that uO(x) > uI(x) applies for all x = (qO, qI , θ) ∈ bX. To see this, let us drop the
18



assumption and replace it by condition (E0). It follows that there exists some h ∈ H\{H}
such that ρθH < θh+1− θh ≤ 2ρθH . Consider bx := (bqO, bqI ,bθ) := (qh, qh+1, θh). Obviously,
we have bx ∈ bXh+1,h and bqO ≤ qh < qh+1 ≤ bqI . Moreover, it follows from π11qi = θi− ρθH
that π11(bqO+bqI) = θh+θh+1−2ρθH ≤ 0. Hence, by Lemma 1, we obtain uO(bx) ≤ uI(bx).
Of course, our last observation does not mean that Assumption (E) is necessary to

establish the results in this section. It only says that our technique of establishing the
results requires assumption (E). However, notice that, without Assumption (E), even the
restricted process will no longer display the (weak) Feller property, since the imitator’s
response will be discontinuous again. It will be difficult to overcome this problem.

4. Conclusions

The purpose of this paper has been to analyze the dynamic interaction between imitators
and optimizers in a changing environment. To this end, we put forward a symmetric
quadratic two-player game, recurrently played by one imitator and one myopic optimizer
within an environment of a changing marginal payoff parameter. Restricting attention
to permanently changing environments, we looked at the polar opposite case of a stable
environment in order to create an as stark contrast as possible. To prepare the later anal-
ysis, we start with considering the special case of deterministically cycling environments.
In these types of environments, the dynamic process globally converges to a unique limit
cycle. After some finite number of periods, the process enters a subset of the state space,bX, on the entire of which the optimizer earns higher payoff than the imitator. Subse-
quently, we investigated the more interesting case of aperiodic stochastic environments.
Here, the same subset bX turns out to be the core element of the analysis. Starting from
an arbitrary state of the dynamics, the process enters bX within an expected finite num-
ber of periods. We provided a uniform upper boundary on this number. Earning higher
payoff on bX than the imitator, the optimizer is again better off. Thus, both scenarios
represent situations in which there is selection pressure against the imitator.
Our results rely on a number of assumptions on which we will comment now. First

and most importantly, we have to put a restriction on the environment capturing a
trade-off between the size of environmental shocks on the one hand and the degree of in-
teraction (=slope of the reaction function) on the other. Only if interaction is sufficiently
weak or environmental shocks are sufficiently large, the optimizer will be better off. We
illustrated this assumption by means of a quadratic duopoly game displaying strategic
substitutes. In this context, the size of environmental shocks translates into shocks in
the difference between consumers’ maximum willingness to pay and a marginal cost pa-
rameter. Similarly, the degree of interaction relates to responsiveness of the market price
and convexity in cost. Interaction is weak, if convexity is strong or if responsiveness is
low. Correspondingly, the following circumstances will support the evolutionary advan-
tage of optimizing behavior: highly convex cost or weakly responsive demand (implying
a low degree of interaction) and/or large changes in the difference between maximum
willingness to pay and marginal cost (meaning large shocks). One application fitting to
our framework would be the economically important example of business cycles.
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Second, focussing on irreducible environments, we only examined deterministic and
aperiodic stochastic environments. While irreducibility represents a natural assumption,
as we reasoned in the introduction of Section 3, it remains an open question what we can
say with regard to periodic stochastic environments. As to these types of environments
we encounter the problem that, in general, we do not know whether long-run payoff
converges at all. Standard results for the case of countable state spaces indicate that it
does so. However, even without knowing this, we have established that the absorbing setbX will be reached in an expected finite number of periods and that, on bX, the optimizer
earns strictly higher payoff. Thus, even without convergence of long-run payoffs, the
optimizer will always be better off, once the process has reached the absorbing set.
Third, by assuming the environmental state space to be finite, we implicitly ruled out

that the environmental process might be transient. In a sense, this excludes environments
that represent technological progress. For, if we think that technological progress results
in subsequently lower states of marginal cost and/or higher maximum willingness to
pay then the environmental process might never return to former environmental states.
As to this case, two scenarios obtain, depending on whether or not there exists an
upper boundary on the difference between marginal cost and maximum willingness to
pay. First, if the environmental state space is unbounded, then the overall process will
eventually enter a subset of the state space on which the optimizer outperforms the
imitator every period. Regarding average long-run payoff per period, we again face the
problem of divergence. Second, if the environmental state space is bounded then shocks
will be eventually too small such as to make the optimizer better off than the imitator.
Under this scenario, the imitator will earn higher payoff, once the size of shocks in the
environment falls below a certain threshold.
Thus, the analysis in this paper as well as our latter excursion into transient environ-

mental spaces allow us to conclude that the advantage of imitation is strongly connected
to the assumption of play taking place in a stable environment. In changing environ-
ments, optimizers do better than imitators if interaction is weak or when changes in the
environment are sufficiently large. Both cases create selection pressure against imitative
behavior.
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A. Appendix

Proof of Lemma 2.
Part i): By construction of bX, we only have to show that bXij∩ bXi0j0 = ∅, for i 6= i0

or j 6= j0. Recall the definition
bXij := nx = (qO, qI , θ) ∈ X : qO ∈ [q

j
, qj ], q

I ∈ [q
i
, qi], θ = θj

o
.

Then the claim follows because Assumption (E) and θh < θh+1 ≤ θh0 imply

qh = BR(0, θh) =
θh
π11

<
θh+1
π11
− 2ρ θH

π11

<
θh0

π11
− ρ

θH
π11

= BR(
θH
π11
; θh0) = qh0 .

Part ii): To show uO(x) > uI(x) for all x ∈ bX, fix x = (qO, qI , θ) ∈ bXij , for any
(i, j) ∈ J .
Consider i < j first. On the one hand, x ∈ bXij implies qI ≤ qi < qj ≤ qO. On the

other hand, it also implies qO+qI ≤ qj+qi < 2θj/π11 = 2θ/π11. The claim hence follows
from Lemma 1.
Now consider i > j. In this case, we have qO ≤ qj < qi ≤ qI . Moreover, we obtain

qO + qI ≥ q
j
+ q

i

=
θj
π11
− ρ

θH
π11

+
θi
π11
− ρ

θH
π11

>
2θj
π11
,

where the last inequality holds true by Assumption (E). Again, the claim follows
from Lemma 1.
Part iii): To establish that bX is absorbing, suppose x = xt ∈ bX. Let s(x) = xt+1 ∈

X denote the direct successor to xt under the process induced by Definitions 1 and 2.
We have to show that s(x) ∈ bX. Similar to the above definition, let s(qO) and s(qI)
denote the direct successors to the optimizer’s and the imitator’s quantity, respectively.
First, x ∈ bX implies qO ∈ [q

j
, qj], q

I ∈ [q
i
, qi] and θ = θj for some (i, j) ∈ J .

Let s(θj) = θk (θk 6= θj) denote the subsequent environmental state that is induced by
the environmental Markov chain. From Definition 1 it follows that s(qO) = BR(qI ; θk).
Hence qI ∈ [q

i
, qi] ⊂ [0, θH/π11] implies

s(qO) = BR(qI ; θk) ∈ [qk, qk]. (A.1)

Second, by part ii) we have that s(qI) = qO and hence s(qI) ∈ [q
j
, qj]. It thus follows

that s(x) ∈ bX.
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Part iv): Suppose xT ∈ bX for some T < ∞ and let θt = θi and θt+1 = θj for

any t > T such that i 6= j. Since bX is absorbing, it follows that xt−1, xt, xt+1 ∈ bX
and hence qIt−1, q

I
t ∈ [0, θH/π11]. On the one hand, q

I
t ∈ [0, θH/π11] implies q

O
t+1 =

BR(qIt ; θj) ∈ [qj, qj]. On the other hand, it follows from θt = θi and q
I
t−1 ∈ [0, θH/π11]

that qOt = BR(q
I
t−1; θi) ∈ [qi, qi]. From part iii) we hence obtain that qIt+1 = qOt ∈ [qi, qi],

which completes the proof of xt+1 ∈ bXij .
To show the converse, fix xt+1 ∈ bXij such that t > T . Again, since bX is absorbing,

xT ∈ bX implies xt−1, xt ∈ bX. By definition of bXij, it follows that θt+1 = θj . To show

θt = θi, notice on the one hand that xt−1 ∈ bX implies qIt−1 ∈ [0, θH/π11] and hence
qOt = BR(qIt−1; θh) ∈ [qh, qh], for some h 6= j. On the other hand, xt+1 ∈ bXij implies
qIt+1 ∈ [qi, qi]. Because of uO(xt) > uI(xt), it hence follows that qOt = qIt+1 ∈ [qi, qi]. Then
however, since the intervalls [q

k
, qk] (k = 1, . . . , H) are pairwisely disjoint by Assumption

(E), it must be that [q
h
, qh] = [qi, qi], i.e. θt = θi, which completes the proof of part iv).

¥
Proof of Lemma 3.
Part i): To show that the sets X1, . . . , X4 form a partition of bXC , one has to show

that bXC = ∪4i=1Xi and Xi ∩Xj = ∅ for all i, j = 1, . . . , 4; j 6= i.
Let us establish bXC = ∪4i=1Xi first. Suppose x ∈ Xi for some i = 1, . . . , 4. If i = 3

or i = 4 then x /∈ bX holds true by definition of X3 and X4, respectively. For i = 1
and i = 2 the claim follows because x ∈ bX implies max{qO, qI} ≤ θH/π11, whereas
max{qO, qI} > θH/π11 applies for x ∈ X1 ∪ X2. To show the opposite inclusion, fix
x ∈ X such that x /∈ Xi for all i = 1, . . . , 4. First, by definition of X1 and X2, we
have that x /∈ X1 ∪X2 implies max{qO, qI} ≤ θH/π11. Second, it hence follows from the

definition of X3, that x ∈ X4 ∪ bX. Finally, x /∈ X4 implies x ∈ bX. This completes the
proof of bXC = ∪4i=1Xi.
To see that Xi∩Xj = ∅ for all i, j = 1, . . . , 4; j 6= i, notice that x ∈ X4 implies qO ≤

θH/π11. Hence, X1 ∩X4 = ∅. The remaining intersections are empty by construction.
Part ii): Recall that X5 := bX. We have to show that ∪5i=kXi is absorbing for any

k = 1, . . . , 5.
First, if k = 1, then ∪5i=1Xi = X trivially implies xt+1 ∈ X, for any xt ∈ X. Second,

for k = 2 and arbitrary xt ∈ ∪5i=2Xi, we have qOt+1 = BR
¡
qIt , θt+1

¢ ≤ θt+1
π11
≤ θH

π11
. Hence

xt+1 ∈ ∪5i=2Xi. Third, if k = 3 then xt ∈ ∪5i=3Xi implies max
©
qOt , q

I
t

ª ≤ θH
π11
. Therefore,

it follows from qIt+1 ∈
©
qOt , q

I
t

ª
and qOt+1 ≤ θH

π11
that xt+1 ∈ ∪5i=3Xi. Fourth, if k = 4 and

xt ∈ X4∪ bX, we have qIt+1 ∈ ©qOt , qItª ⊂ [0, θH/π11]. Let θt+1 = θh for some h = 1, . . . , H
such that θh 6= θt. Then

qOt+1 = BR
¡
qIt , θh

¢ ∈ hq
h
, qh

i
,

i.e. xt+1 ∈ X4 ∪ bX. Finally, for k = 5, the claim has been established in Lemma 2.
Part iii): We have to show that bXC is uniformly transient, i.e., ∃M < ∞ :

Ex[η bXC ] ≤ M for all x ∈ X, where η bXC :=
P∞

n=1 I{xn∈ bXC} denotes the number of
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visits of xn to bXC . By Proposition 8.3.1 iv) in Meyn and Tweedie (1996, p.184), it is
sufficient to show that there exists some m ∈ Z+ such that

Px(τ bXC (m) <∞) ≤ ε < 1 for all x ∈ bXC , (A.2)

where τ bXC (m) denotes the mth hitting time of xn to bXC . If this condition holds then

Ex[η bXC ] ≤ 1+ m
1−ε for all x ∈ X, that is, bXC is uniformly transient. According to (A.2),

it suffices to find a path of finite length m from bXC to bX that has probability 1− ε > 0
under the overall process for all x ∈ bXC .
In order to derive m, we first determine, for any set Xi (i ≤ 4), a number m(i) and a

probability ε(i) such that Px(τXi (m(i)) <∞) ≤ ε(i) < 1 for all x ∈ Xi. Since ∪5i=kXi is
absorbing for any k = 1, . . . , 5, we can then derivem from the m(i)0s asm :=

P4
i=1m(i).

Moreover, an upper boundary ε < 1 satisfying (A.2) is given by ε := 1−(Q4
i=1(1−ε(i))).

To derive the above-mentioned numbers, we introduce the following notation. Define
sτ+1(x) := s(sτ (x)), recursively, for any τ ≥ 0, and set s0(x) := x, where s(x) represents
the direct successor to x under the overall process governed by the environmental process
on Θ and the adjustment rules (O) and (I). Similarly, let sτ+1(qO), sτ+1(qI) and sτ+1(θ)
represent the analogous operators with respect to the optimizers’ quantity, the imitator’s
quantity and the environmental state, respectively. The operator sτ+1(·) gives the (τ +
1):th successor to its argument.
Case k = 1: Let x = (qO, qI , θ) ∈ X1 be arbitrary. Because of s(qO) = BR(qI ; s(θ)) ≤

θH/π11, we have s(x) ∈ ∪5i=2Xi. Since ∪5i=2Xi is absorbing, setting m(1) := 2 and
ε(1) := 0 implies Px(τX1 (m(1)) <∞) ≤ ε(1) < 1 for all x ∈ X1.
Case k = 2: Let x = (qO, qI , θ) ∈ X2 be arbitrary, i.e. 0 ≤ qO ≤ θH/π11 < qI .

Since the environmental process (θt)t≥0 is irreducible and recurrent, there exists a finite
sequence (s0(θ), s1(θ), . . . , sT (θ)), having positive probability under the environmental
process, such that sT (θ) = θ1 for some 0 ≤ T < H.
If there exists τ ∈ {0, . . . , T − 1} such that uO(sτ (x)) ≥ uI(sτ (x)), then sτ+1(qI) =

sτ (qO). Since ∪5i=2Xi is absorbing, it follows that sτ (qO) ≤ θH/π11 for all τ > 0. In
particular, we have sτ+1(qI) = sτ (qO) ≤ θH/π11 and s

τ+1(qO) ≤ θH/π11 and hence
sτ+1(x) ∈ ∪5i=3Xi.
If, to the contrary, uO(sτ (x)) < uI(sτ (x)) for all τ = 0, . . . , T −1, then sτ (qI) = qI >

θH/π11 for all τ = 1, . . . , T. In particular, this implies

sT (qO) ≤ θH/π11 < s
T (qI). (A.3)

Moreover, it follows that

sT (qO) + sT (qI) =
θ1
π11
− ρsT−1(qI) + sT−1(qI)

=
θ1
π11

+ (1− ρ)qI

>
θ1
π11

+ (1− ρ)
θH
π11

>
2θ1
π11
, (A.4)
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where the last inequality follows from Assumption (E) because of

θ1 < (1− 2ρ(H − 1))θH < (1− ρ)θH

which, in turn, holds true because adding up the inequalities in Assumption (E) yields

θH − θ1 > 2(H − 1)ρθH . (A.5)

By Lemma 1, inequalities (A.3) and (A.4) imply uO(sT (x)) > uI(sT (x)) so that sT+1(x) ∈
∪5i=3Xi.
Thus, in both cases we have sT+1(x) ∈ ∪5i=3Xi for some T < H.
We can now derive the values for ε(2) and m(2). To define ε(2), let rh1 be the joint

probability of all environmental paths from θh to θ1 (h > 1) that involve strictly less
than H transitions. Similarly, let r1 be the minimum of all joint probabilities rh1, i.e.
r1 := minh>1 rh1. Since the environmental process is irreducible it must be that rh1 > 0,
for all h > 1, and hence r1 > 0. Thus, setting m(2) := H + 1 and ε(2) := 1− r1 implies
Px(τX2 (m(2)) <∞) ≤ ε(2) < 1 for all x ∈ X2.
Case k = 3: Let x = (qO, qI , θ) ∈ X3 be arbitrary so that 0 ≤ qO, qI ≤ θH/π11. It

follows that s(qO) = BR(qI , s(θ)) ∈ [q
h
, qh] for some h = 1, . . . , H such that s(θ) = θh.

Thus, s(x) ∈ ∪5i=4Xi so that m(3) := 2 and ε(1) := 0 imply Px(τX1 (m(3)) < ∞) ≤
ε(3) < 1 for all x ∈ X3.
Case k = 4: Let x = (qO, qI , θ) ∈ X4 be arbitrary, i.e. 0 ≤ qO, qI ≤ θH/π11 and

qO ∈ [q
h
, qh] such that θh = θ. Define eq implicitly by

BR(eq; θ1) + eq = 2θ1
π11
. (A.6)

We distinguish two cases depending on whether qI > eq or not. Notice that (A.6) is
equivalent to

(1− ρ)eq = θ1
π11
. (A.7)

Consider qI > eq first. Similar to case k = 2 above, there exists a finite sequence
of environmental states, (s0(θ), s1(θ), . . . , sT (θ)), having positive probability under the
environmental process, such that sT (θ) = θ1 for some T < H. On the one hand, if
uO(sτ (x)) ≥ uI(sτ (x)) for some τ = 0, . . . , T − 1, then sτ+1(qI) = sτ (qO) ∈ [q

i
, qi],

where i satisfies θi = sτ (θ). Similarly, sτ+1(qO) = BR(sτ (qI); θj) ∈ [qj , qj ], such that
sτ+1(θ) = θj. It follows that s

τ+1(x) ∈ bXij, which implies sτ+1(x) ∈ X5 because ofbXij ⊂ bX = X5. On the other hand, if u
O(sτ (x)) < uI(sτ (x)) for all τ = 0, . . . , T − 1,

then sτ (qI) = qI for all τ = 1, . . . , T. It follows that sT (qI) = qI > eq and
sT (qO) = BR(sT−1(qI); sT (θ)) = BR(qI ; θ1) =

θ1
π11
− ρqI .
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From (A.7), we hence obtain

sT (qO) + sT (qI) =
θ1
π11

+ (1− ρ)qI

>
θ1
π11

+ (1− ρ)eq = 2θ1
π11
. (A.8)

Moreover, eq < qI implies θ1/π11 < (1− ρ)qI < (1 + ρ)qI and hence

sT (qO) =
θ1
π11
− ρqI < qI = sT (qI).

By Lemma 1, we thus have uO(sT (x)) > uI(sT (x)). An argument similar to the one

above (now applied w.r.t. T rather than τ) shows sT+1(x) ∈ bXij ⊂ X5, where θi = sT (θ)
and θj = s

T+1(θ).
Second, consider qI ≤ eq. Again, since the environmental process is irreducible, there

exists a finite sequence (s0(θ), s1(θ), . . . , sT (θ)), having positive probability, such that
sT (θ) = θH for some T < H. If u

O(sτ (x)) ≥ uI(sτ (x)) for some τ = 0, . . . , T − 1, then,
by the same argument used above, we have sτ+1(x) ∈ bXij ⊂ X5, where θi = s

τ (θ) and
θj = s

τ+1(θ). On the other hand, if uO(sτ (x)) < uI(sτ (x)) for all τ = 0, . . . , T − 1, then
sτ (qI) = qI for all τ = 1, . . . , T. In particular, we obtain sT (qI) = qI ≤ eq and

sT (qO) = BR(sT−1(qI); sT (θ)) = BR(qI ; θH) =
θH
π11
− ρqI .

First, from (A.7), it follows that

sT (qO) + sT (qI) =
θH
π11

+ (1− ρ)qI

≤ θH
π11

+ (1− ρ)eq
=

θH
π11

+
θ1
π11

<
2θH
π11

. (A.9)

Second, notice that sT (qO) > sT (qI) is equivalent to θH/π11 > (1 + ρ)qI . Therefore, it is
sufficient to show that

(1 + ρ)θ1 < (1− ρ)θH , (A.10)

since (A.10) and (A.7) imply

(1 + ρ)qI ≤ (1 + ρ)eq = θ1(1 + ρ)

π11(1− ρ)
<

θH
π11
.

To see (A.10), notice that (A.5) is equivalent to

θH(1− ρ(H − 1)) > θ1 + ρ(H − 1)θH ,
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and hence implies

θH(1− ρ) > θH(1− ρ(H − 1)) > θ1 + ρ(H − 1)θH > θ1(1 + ρ),

which yields sT (qO) > sT (qI). Combined with (A.9), it thus follows from Lemma 1 that
uO(sT (x)) > uI(sT (x)). The same argument as the one applied for the case qI > eq then
shows sT+1(x) ∈ bXij ⊂ X5, where θi = sT (θ) and θj = s

T+1(θ).
We can now derive the values for ε(4) and m(4), respectively. To define ε(4), recall

(i) that rh1 denotes the joint probability of all environmental paths from θh to θ1 (h > 1)
involving strictly less than H transitions, (ii) that r1 represents the minimum of all these
joint probabilities rh1, i.e. r1 := minh>1 rh1, and (iii) that r1 > 0. Similarly, (i) let rhH
be the joint probability of all environmental paths from θh to θH (h < H) involving
strictly less than H transitions; (ii) let rH be the minimum of all joint probabilities rhH ,
i.e. rH := minh>1 rhH and notice (iii) that it must be rhH > 0, for all h < H, and hence
rH > 0, since the environmental process is irreducible. Fix r := min{r1, rH} > 0.
Then, settingm(4) := H+1 and ε(4) := 1−r implies Px(τX2 (m(4)) <∞) ≤ ε(4) < 1

for all x ∈ X4, which completes the proof of Lemma 3. ¥

Proof of Proposition 2. Suppose the environment is irreducible and deterministic.
The proof is divided into two parts. We first establish that bX is reached within 2H + 6
periods. Subsequently, we show that, having entered bX, the process converges to a
unique limit cycle.
Part i): To show that bX is reached within 2H + 6 periods, recall the numbers

m(k), k = 1, . . . , 4, provided in the proof of Lemma 3 iii). Notice that, for deterministic
environments, these numbers translate into lower boundaries after which the respective
level set Xk has been left with certainty. Correspondingly, we can set ε(k) := 0, for all
k = 1, . . . , 4. It follows that m =

P4
k=1m(k) = 2H + 6 and ε = 1−Q4

k=1(1− ε(k)) = 0,
which finally implies

Px(τ bXC (2H + 6) <∞) = 0, for all x ∈ bXC .

Thus, bX is reached within 2H + 6 periods.
Part ii): Fix T < ∞ such that xT ∈ bX. By Lemma 2, it follows that uO(xt) >

uI(xt) and hence q
I
t+1 = q

O
t for all t ≥ T . Hence,

qOt+2 = BR(q
I
t+1; θt+2) = BR(q

O
t ; θt+2) for all t ≥ T. (A.11)

Iterative application of (A.11) yields

qOT+2K = BR(qOT+2K−2; θT+2K)
= BR(. . . BR(qOT ; θT+2) . . . ; θT+2K)

=
θT+2K
π11

− ρ

·
θT+2K−2

π11
− ρ

·
...

·
θT+2
π11
− ρqOt

¸¸¸
=

1

π11

K−1X
k=0

(−ρ)kθT+2(K−k) + (−ρ)KqOT , (A.12)
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for any K ∈ N. For some arbitrary θt ∈ Θ, let K := min{k ∈ N : θt+2k = θt} denote
the minimum number of double periods such that the environmental process returns to
θt. Notice first that K does not depend on θt, since the environment is deterministic.
Second, we have K = H if H is odd, whereas K = H/2 holds true for H being even.
Next, we make use of the cycling environment, which implies that θt = θt+2lK for all

l ∈ N and all t ≥ T . Let L ∈ N. Then, substituting K := LK in equation (A.12) yields

qO
T+2LK

=
1

π11

LK−1X
k=0

(−ρ)kθT+2(LK−k) + (−ρ)LKqOT

=
1

π11

L−1X
l=0

K−1X
k=0

(−ρ)lK+kθT+2(LK−(lK+k)) + (−ρ)LKqOT

=
1

π11

L−1X
l=0

(−ρ)lK
K−1X
k=0

(−ρ)kθT+2(L−l)K−2k

+ (−ρ)LKqOT
=

1

π11

Ã
L−1X
l=0

(−ρ)lK
!K−1X

k=0

(−ρ)kθT+2K−2k

+ (−ρ)LKqOT . (A.13)

Because of ρ < 1, we can take the limit L→∞ in (A.13) to obtain

lim
L→∞

qO
T+2LK

=
1

(1− (−ρ)K)π11

K−1X
k=0

(−ρ)kθT+2K−2k. (A.14)

If H is odd, we have K = H and hence (A.14) results in

lim
L→∞

qO
T+2LK

=
1

(1 + ρH)π11

H−1X
k=0

(−ρ)kθT+2H−2k,

whereas for H being even, K = H/2 implies

lim
L→∞

qOT+LH =
1

(1− (−ρ)H/2)π11

H
2
−1X

k=0

(−ρ)kθT+H−2k.

The claim then holds true, since we can choose T ≥ min{t : xt ∈ bX} and hence θT = eθh
and h ∈ H arbitrarily (where h ∈ H denotes the position of θT in the environmental

cycle (eθ1, . . . ,eθH)). ¥

Proof of Theorem 3.1. The proof is divided into the following parts.

i) P bX is well-defined, i.e., P bX (x,A) := P
³
x,A ∩ bX´ defines a transition probability

kernel;
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ii) P bX is a (weak) Feller chain;
iii) P bX is a T-chain;
iv) P bX is Harris recurrent;
v) P bX is aperiodic;
vi) P bX is ϕ−irreducible;
vii) P bX is positive.
Part i): We will show that P bX (x,A) := P (x,A ∩ bX) defines a transition prob-

ability kernel (for a definition, see Meyn and Tweedie, 1996, p. 65). First, for all

A ∈ B( bX), P bX (·, A) is a non-negative measurable function on bX, because P (·, A∩ bX) is
a non-negative measurable function on X, for all A ∈ B( bX), which follows from Propo-

sition 1. Second, for all x ∈ bX, P bX (x, ·) is a probability measure on B( bX), because bX is
absorbing. This implies

P (x,A) = P
³
x,A ∩ bX´+ P ³x,A ∩ (X \ bX)´| {z }

=0

= P bX (·, A) ,

for all x ∈ bX, which completes the proof of Part i).
Part ii): By definition, a transition probability kernel is a (weak) Feller chain if and
only if P (·, O) is lower semicontinuous for any open set O ∈ B(X) (cf. Meyn and
Tweedie, 1996, Sec. 6, p. 127). Therefore, it is sufficient to show that the level sets

{x ∈ bX : P bX (x,O) ≤ c} are topologically closed, for any c ∈ R and any open set

O ∈ B( bX) (cf. Meyn and Tweedie, 1996, Appendix D.4, p. 520).
Let O ∈ B( bX) be such an open set and fix c ∈ R. Observen

x ∈ bX : P (x,O) ≤ c
o
=
[
k∈H

n
x ∈ bXh : P (x,O) ≤ co ,

where bXk := ∪g∈H\{k} bXgk, for k ∈ H, andn
x ∈ bXk : P (x,O) ≤ co = nx ∈ bXk : P ¡x,∪(i,j)∈J (Oij)¢ ≤ co

=

x ∈ bXk : X
(i,j)∈J

P (x,Oij) ≤ c
 , (A.15)

where Oij := O ∩ bXij . Consequently, it is sufficient to show that the last set in (A.15)
is closed, for any k ∈ H. Moreover, since the sum of lower semicontinuous functions
constitutes a lower semicontinuous function itself (cf. Berge, 1963, p. 77, Theorem 5),

we are done if we can show that the sets {x ∈ bXk : P (x,Oij) ≤ c} are closed for any set
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Oij ∈ B( bXij) that is open relative to bXij . Notice that, since the sets bXij, (i, j) ∈ J , are
disconnected, O is open relative to bX if and only if each Oij is open relative to bXij (i.e.
for all (i, j) ∈ J ).
Let (i, j) ∈ J be arbitrary and let Oij ∈ B( bXij) be open relative to bXij . Observe first

that P (x,Oij) ∈ {0, rij} for all x ∈ bX and all (i, j) ∈ J and that, second, P (x,Oij) > 0
only if x ∈ bXi.
If c < 0 then {x ∈ bXk : P (x,Oij) ≤ c} = ∅, which is closed. If c ∈ [0, rij) thenn

x ∈ bXk : P (x,Oij) ≤ co = nx ∈ bXk : P (x,Oij) = 0o
=
n
x ∈ bXk : P (x,Oij) > 0oC .

We show that
n
x ∈ bXk : P (x,Oij) > 0o is open. To this end, define fij : bXi |Q2→ bXj |Q2

for (i, j) ∈ J by

fij
¡
qO, qI

¢
:=
¡
BR

¡
qI ; θj

¢
, qO
¢
.

The fij ’s represent the deterministic transitions on the action space Q
2 given the envi-

ronment makes a transition from θi to θj and taking into account that u
O > uI on bX.

Observe that each fij is continuous. Furthermore, for any k = L,H,n
x ∈ bXk : P (x,Oij) > 0o = nx = ¡qO, qI , θk¢ ∈ bXk : ∃y ∈ Oij s.t. y = fij ¡qO, qI¢o .

On the one hand, if k 6= i then this set is empty and hence open. On the other hand, if
k = i then this set is open because it represents the inverse image of the open set Oij
under the continuous function fij . Thus, {x ∈ bXk : P (x,Oij) ≤ c} is closed, for any
c ∈ [0, rij) .
Finally, if c ≥ rij then {x ∈ bXk : P (x,Oij) ≤ c} = bXk, which is closed.

Part iii): P bX is a T−chain.
We have to establish that there is a distribution a = {a (t)}∞t=0 on N and a sub-

stochastic transition kernel T such that

a) Ka (x,A) :=
∞X
t=0

P t (x,A) a (t) ≥ T (x,A) ∀x ∈ bX, ∀A ∈ B( bX),
b) T (·, A) is a lower semicontinuous function ∀A ∈ B( bX),
c) T (x, bX) > 0 ∀x ∈ bX.

We first define T and show that T satisfies c). Set T (x,A) := P l (x,Ao) , for all

x ∈ bX and all A ∈ B( bX), where l is chosen such that P l(x, bXo) > 0 for all x ∈ X (Ao

denotes the interior of the set A). Such l <∞ exists because for some finite sequence of
environmental cycles the process comes arbitrarily close to the H-period cycle described
in Proposition 2, and because this cycle is contained in the interior of bX. It follows that
T (x, bX) = P l(x, bXo) > 0, for all x ∈ bX, which shows c).
Second, we establish that T defines a sub-stochastic transition kernel, that is,
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• T (·, A) is a non-negative measurable function on bX, for all A ∈ B( bX), and
• T (x, ·) is a probability measure on B( bX), with the exception that T (x, bX) ≤ 1, for
every x.

The first property holds true, because A ∈ B( bX) implies Ao ∈ B( bX) and since
P l (·, Ao) is a non-negative measurable function on bX.As to the second property, T (x,A) =
P l (x,Ao) ≥ 0, for all A ∈ B( bX), and T (x, bX) = P l(x, bXo) ≤ 1 follows from P l (x, ·)
being a probability measure on B( bX). Hence, it remains to be shown that

T

Ã
x,

∞[
i=1

Ai

!
=

∞X
i=1

T (x,Ai) (A.16)

for all pairwisely disjoint sets {Ai}i∈N (Aj 6= Ak , for all j, k ∈ N such that j 6= k). To
establish (A.16), notice that

∞X
i=1

T (x,Ai) =

∞X
i=1

P lbX (x,Aoi ) = P l
Ã
x,

∞[
i=1

Aoi

!

= P l

Ã
x,

Ã ∞[
i=1

Ai

!o!
= T

Ã
x,

∞[
i=1

Ai

!
because of (∪∞i=1Ai)o = ∪∞i=1Aoi . This shows that T (x, ·) constitutes a (sub)probability
measure, which in turn implies that T defines a substochastic transition kernel.
Third, T (·, A) is a lower semicontinuous function, because P l (·, Ao) is a lower semi-

continuous function. The latter holds true, since Ao is open and P l (·, Ao) is a (weak)
feller chain on bX. This completes b). Finally, setting a := fl (where fl : N0 → {0, 1}
such that fl(t) = 1 if t = l and fl(t) = 0 otherwise), we obtain P

l (x,A) = Ka (x,A) ≥
T (x,A) = P l (x,Ao) because of Ao ⊆ A, which completes a).
Part iv): P bX is Harris recurrent.
According to Tuominen and Tweedie (1979, Theorem 4.2.), P bX is Harris recurrent if

a) there exists x0 ∈ bX such that infx∈ bX Px {τN <∞} > 0 for every neighborhood N of
x0, and b) P bX is a T−chain. Since a) follows from Proposition 2, the claim holds true.

Part v): P bX is aperiodic, first, because ∪(i,j)∈J bXij forms a partition of bX, second,
because of Lemma 2 and, third, because the environmental chain is aperiodic.

Part vi): P bX is ϕ−irreducible.
By Proposition 2, we have

P
t∈N0 P

t (x,O) > 0, for any x ∈ bX and any neighborhood
O of the H-period limit cycle induced by some arbitrary environmental H-period cycle
(i.e., in terminology of Meyn and Tweedie, 1996, all states corresponding to any such

limit cycle are reachable). Because of P tbX (x,O) = P t (x,O) for all x ∈ bX and all

O ∈ B( bX), the claim follows from Proposition 6.2.1 in Meyn and Tweedie (1996, p.133).
Part vii): P bX is positive (i.e., it admits an invariant probability measure).
Since bX is bounded and topologically closed, bX is compact. The claim thus follows

from Theorem 12.10 in Stokey and Lucas (1993, p. 376). ¥
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