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A great number of articles have dealt with stochastic comparisons of ordered random 

variables in the last decades. In particular, distributional and stochastic properties of 

ordinary order statistics have been studied extensively in the literature. Sequential order 

statistics are proposed as an extension of ordinary order statistics. Since sequential order 
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1 Introduction.

Models of ordered random variables are widely used in statistical modelling and inference.

If the random variables X1, . . . , Xn are arranged in ascending order of magnitude, then the

i ’th smallest of Xi’s is denoted by Xi:n. The ordered quantities

X1:n ≤ X2:n ≤ · · · ≤ Xn:n , (1.1)

are called order statistics (OS), and Xi:n is the i’th order statistic. These random variables

are of great interest in many areas of statistics, in particular, there is a very interesting

application of OS’s in reliability theory. The (n−k+1)’th OS in a sample of size n represents

the life length of a k-out-of-n system which is an important technical structure. It consists of

n components of the same kind with independent and identically distributed life lengths. All

n components start working simultaneously, and the system works, if at least k components

function; i.e. the system fails, if (n − k + 1) or more components fail. Special cases of

k-out-of-n systems are series and parallel systems.

Kamps [4] introduced the concept of sequential order statistics (SOS) as an extension of

OOS model. The SOS model is closely connected to several other models of ordered random

variables and, in particular it unifies type II censored order statistics, k-th record values and

kn records from nonidentical distributions. Sequential order statistics model the reliability

of certain k-out-of-n systems without the assumption of independence of the lifetime of the

components. In this model, the lifetime distribution of the remaining components in the

system may change after each failure of the components. At the beginning, the lifetimes of

the components are iid with a common distribution function F1. After the first component

fails, the distribution of the residual lifetimes of the remaining (n− 1) components changes

to that of the residual lifetime distribution of a second distribution F2. If we observe the

i ’th failure at time t, the remaining (n− i) components are now supposed to have a possibly

different distribution. Proceeding in this way we obtain a triangular scheme of random

variables where the i ’th line containing n− i+ 1 random variables with distribution function

Fi, 1 ≤ i ≤ n, indicating that i− 1 components previously failed.

In its general form the SOS model is linked with nonhomogeneous pure birth (NHPB)
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processes. In this field, there are several papers which study ageing notions of epoch times

under conditions on the parameters of the NHPB process. Pellerey et al. [12] give conditions

for the log-concavity of the density function of epoch times and inter-epoch times. Shaked

et al. [15] highlight the relationship between l∞-spherical densities and NHPB processes and

provide applications to load sharing models, noting that studying the first n epoch times of

a NHPB process is equivalent to studying the lifetimes of n components of a load sharing

system. Results about multivariate stochastic comparisons of epoch times of two NHPB

process have been given by Belzunce et al. [2]. They illustrate their results with applications

to generalized Yule processes, load-sharing models, and minimal repairs in reliability theory.

Distributional and stochastic properties of ordinary order statistics have been studied

extensively in the literature. Since SOS models unify various models of ordered random

variables, it is interesting to study their distributional and stochastic properties. Cramer

and Kamps [3] give an expression for marginal distributions of SOS in terms of the so-

called relevation transform (cf. Krakowski [8]). Zhuang and Hu [16] present some results on

multivariate stochastic comparisons of SOS models and in particular, investigate conditions

on the underlying distributions on which the SOS models are based.

The purpose of this article is to present some results on univariate stochastic comparisons

of SOS in order to establish stochastic ordering of the epoch times of NHPB processes.

The article is organized as follows. In Section 2, we review various types of stochastic

orders and in Section 3, we recall the marginal distributions of SOS models and give some

important auxiliary results. In Section 4, we discuss stochastic ordering of SOS models,

respectively. Examples of the underlying distributions, on which the SOS models are based,

which satisfy these conditions are given. Finally, some applications of the main results are

presented in Section 5.

2 Definitions and useful lemmas.

In this section we review some definitions and well-known notions of stochastic orders and

also give some useful lemmas which will be used later. Throughout this article “increasing”

means “non-decreasing” and “decreasing” means “non-increasing”.
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Let X and Y be univariate random variables with cumulative distribution functions

(c.d.f.’s) F and G, survival functions F (= 1− F ) and G (= 1−G), p.d.f.’s f and g, hazard

rate functions hF
(
= f/F

)
and hG

(
= g/G

)
, and reversed hazard rate functions rF (= f/F )

and rG (= g/G), respectively. The following definitions introduce the stochastic orders that

we consider in this article.

Definition 1. X is said to be smaller than Y in the usual stochastic order, denoted by

X ≤st Y , if F (t) ≤ G(t) for all t.

Definition 2. X is said to be smaller than Y in the hazard rate order, denoted by X ≤hr Y ,

if G(t)/F (t) is increasing in t for which the ratio G(t)/F (t) is well defined.

When the failure rate function exists, it is easy to see that X ≤hr Y , if and only if

hF (t) ≥ hG(t) for all t.

Definition 3. X is said to be smaller than Y in the reversed hazard rate order, denoted by

X ≤rh Y , if G(t)/F (t) is increasing in t for which the ratio G(t)/F (t) is well defined.

When the reversed hazard rate function exists, it is easy to see that X ≤rh Y , if and only

if rF (t) ≤ rG(t) for all t.

Definition 4. X is said to be smaller than Y in the likelihood ratio ordering, denoted by

X ≤lr Y , if g(t)/f(t) is increasing in t ∈ (lX , uX) ∪ (lY , uY ).

Likelihood ratio ordering implies hazard rate ordering and reversed hazard rate ordering

which in turn imply usual stochastic ordering. For more details on stochastic orderings see

Shaked and Shanthikumar [14].

Definition 5. X is said to be smaller than Y in the dispersive ordering, denoted by X ≤disp

Y , if F−1(β)− F−1(α) ≤ G−1(β)−G−1(α), for all 0 < α < β < 1.

We recall that a function φ defined on [0,∞), which satisfies φ(0) = 0, is said to be

star-shaped (anti star-shaped) if φ(t)/t is increasing (decreasing) in t.

Definition 6. X is said to be smaller than Y in the star ordering, denoted by X ≤∗ Y , if

G−1F (t) is star-shaped in t when the two random variables are non-negative.
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We shall be using the following known results to prove our results in this paper. The

following lemma, regarding the preservation of the hazard rate and reversed hazard rate

orders under monotone increasing transformations, can be found in Keilson and Sumita [6].

Lemma 1. Let X and Y be two random variables. If X ≤hr (≤rh)Y , and if φ is any

increasing function, then φ(X) ≤hr (≤rh)φ(Y ).

Shaked [13] also established the following relation between star ordering and dispersion

ordering.

Lemma 2. Let X and Y be two non-negative random variables, then

X ≤∗ Y ⇔ ln X ≤disp ln Y.

The next lemma due to Bartoszewicz [1] lists some relations between the dispersion order

and other orders.

Lemma 3. Let X and Y be two random variables. Then:

i) if X and Y are non-negative and X ≤hr Y and X or Y is DHR, then X ≤disp Y ;

ii) if X ≤rh Y and X or Y is IRHR, then X ≥disp Y .

3 Preliminary results.

Sequential order statistics were introduced by Kamps [4] as a modification of order statistics.

The SOS model is more flexible than the model of order statistics in the sense that, after the

failure of some component, the distribution of the residual lifetime of the components may

change. Cramer and Kamps [3] inspired the following definition of SOS given by Lenz [10].

Definition 7 (Lenz[10]). Let G1, . . . , Gn be continuous distributions with G−11 (1) ≤ . . . ≤

G−1n (1) and let X∗0,n = −∞. Suppose that Ui, i = 1, . . . , n are independent random variables

with Ui ∼ U(0, 1). Then, the random variables

X∗i,n = G−1i
(
1− UiGi(X∗i−1,n)

)
are called SOS based on {G1, . . . , Gn}.
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The marginal distribution functions F∗,1, . . . , F∗,n of the SOS X∗1,n, . . . , X
∗
n,n based on

{G1, . . . , Gn} are given by:

F∗,1(t) = G1(t),

F∗,i(t) =

 F∗,i−1(t)−
∫ t

−∞

Gi(t)

Gi(z)
dF∗,i−1(z) if Gi(t) < 1,

1 if Gi(t) = 1.

(3.2)

From now on we shall assume that the distribution function of the i’th SOS is absolutely

continuous with density function:

f∗,i(t) = hi(t)
(
F ∗,i(t)− F ∗,i−1(t)

)
, (3.3)

where hi(t) = gi(t)/Gi(t), for all t. Cramer and Kamps [3] noted that the corresponding

distribution functions of SOS can be viewed as relevation transforms (Krakowski [8]). The

relevation transform F#G of the survival functions F and G is defined by the Lebesgue-

Stieltjes integral

(
F#G

)
(t) = F (t)−

∫ t

−∞

G(t)

G(z)
dF (z), for all t.

Assuming that the supports of F and G are positive, then the relevation transform may be

interpreted as the survival function of the time to failure of the second of two components

when the second component with life distribution G is placed in service on the failure of

the first component with life distribution F , assuming that the replacement component has

the same age as the failed component (Lau and Prakasa Rao [9]). From (3.2), we have the

representation

F ∗,i(t) = F ∗,i−1(t)−
∫ t

−∞

Gi(t)

Gi(z)
dF ∗,i−1(z), for all t. (3.4)

Hence, we can write the survival function of the i-th SOS as relevation transform

F ∗,i = F ∗,i−1#Gi.

Let us define,

Ai(t) =

∫ t

−∞

1

Gi(z)
dF∗,i−1(z), (3.5)
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then, from (3.2) and (3.4) we have,

F ∗,i(t) = F ∗,i−1(t) +Gi(t)Ai(t), (3.6)

and

F∗,i(t) = F∗,i−1(t)−Gi(t)Ai(t), (3.7)

for i = 2, . . . , n.

Now, in order to prove our main results we first need to derive some preliminary results

which are also of independent interest. In the following two lemmas, we show some stochastic

orderings between SOS and their underlying distribution functions.

Lemma 4. Let X∗1,n,. . . ,X∗n,n be SOS based on absolutely continuous distribution functions

{G1, . . . , Gn}, then

i) Gi ≤hr F∗,i ;

ii) Gi ≤rh F∗,i ;

iii) Gi ≤lr F∗,i .

Proof.

i) By definition, Gi ≤hr F∗,i if and only if hi(t) ≥ h∗,i(t) for all t. From (3.3) we have

h∗,i(t) = hi(t)

(
F ∗,i(t)− F ∗,i−1(t)

F ∗,i(t)

)
.

Then, h∗,i(t) ≤ hi(t)⇔ F ∗,i(t)− F ∗,i−1(t) ≤ F ∗,i(t).

ii) Again, by definition, Gi ≤rh F∗,i if and only if ri(t) ≤ r∗,i(t) for all t. First, we write

the reversed hazard rate of the i-th SOS

r∗,i(t) = hi(t)

(
F ∗,i(t)− F ∗,i−1(t)

F∗,i(t)

)
= ri(t)

Gi(t)

Gi(t)

(
F∗,i−1(t)− F∗,i(t)

F∗,i(t)

)
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and then, we have that r∗,i(t) ≥ ri(t) if and only if

1 ≤
(

1−Gi(t)
Gi(t)

)(
F∗,i−1(t)− F∗,i(t)

F∗,i(t)

)
⇔ 0 ≤ F∗,i−1(t)− F∗,i(t)−Gi(t)F∗,i−1(t)

Gi(t)F∗,i(t)

⇔ F∗,i(t) = F∗,i−1(t)−Gi(t)Ai(t) ≤ Gi(t)F∗,i−1(t)

⇔ F∗,i−1(t) (1−Gi(t)) ≤ Gi(t)Ai(t)

⇔ F∗,i−1(t) ≤ Ai(t).

The last condition holds since Gi(t) ≤ 1 and from (3.5).

iii) By definition, Gi ≤lr F∗,i if and only if f∗,i(t)/ gi(t) is increasing for all t. From (3.3)

and (3.5) we have

f∗,i(t) = gi(t)Ai(t)⇔
f∗,i(t)

gi(t)
= Ai(t).

Clearly Ai(t) is increasing, then Gi ≤lr F∗,i holds.

Now, we present a connection in the star ordering between the SOS and their underlying

distribution functions. First, let us define

ui(t) = t · hi(t) and vi(t) = t · ri(t).

Lemma 5. Under the same assumptions as Lemma 4, if the support of Gi is non-negative

for all i and

i) ui(t) is decreasing, then Gi ≤∗ F∗,i;

ii) vi(t) is increasing, then Gi ≥∗ F∗,i.

Proof.

i) From Lemma 4(i) and Lemma 1 we have that ln Gi ≤hr ln F∗,i. Now, the hazard

rate of ln Gi is decreasing in t if and only if ui(t) is decreasing (see Theorem 2.3. in

[7]). From Lemma 3(i), if ln Gi is DHR and ln Gi ≤hr ln F∗,i, then ln Gi ≤disp ln F∗,i.

Finally, from Lemma 2 we have ln Gi ≤disp ln F∗,i ⇔ Gi ≤∗ F∗,i.
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ii) From Lemma 4(ii) and Lemma 1 we have that ln Gi ≤rh ln F∗,i. Now, it is easy to

check that vi(t) is increasing if and only if the reversed hazard rate of ln Gi is increasing

in t. From Lemma 3(ii), if ln Gi is IRHR and ln Gi ≤rh ln F∗,i, then ln Gi ≥disp ln F∗,i.

Finally, from Lemma 2 we have ln Gi ≥disp ln F∗,i ⇔ Gi ≥∗ F∗,i.

It is worth noting that the condition that ui(t) is decreasing in Lemma 5(i) can be

rewritten in the form u′i(t) = t · h′i(t) + hi(t) ≤ 0. Therefore, it is clear that the condition

that hi(t) be decreasing is a necessary but not sufficient condition for ui(t) to be decreasing.

Similarly, the condition that vi(t) is increasing in Lemma 5(ii) can be rewritten as v′i(t) =

t · r′i(t) + ri(t) ≥ 0 and thus, it is clear that if ri(t) is increasing (i.e., X is IRHR) then vi(t)

is also increasing (i.e., ln(X) is IRHR). However, the converse is not true as is illustrated by

the following counterexample.

Counterexample 1. The reversed hazard rate of the uniform distribution on [−1, 1] is given

by

r(t) =
1

1 + t
, t ∈ [−1, 1].

Clearly, r is decreasing but the corresponding reversed hazard rate of the logarithm is

rlnX(t) = et · r
(
et
)

=
et

1 + et
, for all t,

and it is easy to verify that rlnX is increasing.

4 Stochastic properties.

In this section, we investigate conditions on the underlying distribution functions on which

the SOS are based, in order to obtain stochastic comparisons of SOS with various other

univariate orders. Zhuang and Hu [16] presented some results on multivariate stochastic

comparisons of SOS. They showed in their Theorem 3.7. that if the underlying distribution

functions are ordered in the univariate hazard rate order, i.e., G1 ≤hr G2 ≤hr · · · ≤hr Gn,

then (
X∗1,n, . . . , X

∗
n−1,n

)
≤st

(
X∗2,n, . . . , X

∗
n,n

)
. (4.8)
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Since the usual multivariate stochastic order is closed under marginalization, we can get

univariate comparisons of SOS from (4.8). However, in the univariate case, these results can

be given without conditions, as we show below.

Theorem 1. Let X∗1,n,. . . ,X∗n,n be SOS based on absolutely continuous distribution functions

{G1, . . . , Gn}, then

X∗i−1,n ≤st X∗i,n for i = 2, . . . , n.

Proof. From (3.2) we obtain the survival function of the i’th SOS

F ∗,i(t) = F ∗,i−1(t) +

∫ t

−∞

Gi(t)

Gi(z)
dF∗,i−1(z), (4.9)

for i = 2,. . . ,n. Then,

F ∗,i(t)− F ∗,i−1(t) = Gi(t)Ai(t), (4.10)

is positive, where Ai(t) is defined in (3.5).

Therefore, the successive SOS are increasing in the usual stochastic ordering. We now

proceed to stochastic comparisons of the first SOS and the others in the univariate hazard

rate and likelihood ratio ordering.

Theorem 2. Under the same assumptions than in theorem 1, if G1 ≤hr(lr) Gi for i ≥ 2,

then

i) X∗1,n ≤hr X∗i,n and

ii) X∗1,n ≤lr X∗i,n,

for i = 2, . . . , n.

Proof.

i) By definition we know that X∗1,n ≤hr X∗i,n ⇔ F ∗,i(t)/F ∗,1(t) is increasing in t. To do

this we will use induction. It is immediately that F∗,1 ≤hr F∗,2 since from Lemma 4

we know that G2 ≤hr F∗,2 and by the assumptions F∗,1 = G1 ≤hr G2. We assume that

F∗,1 ≤hr F∗,i−1, so we need to show that it is true for i. We get from (3.6) that

F ∗,i(t)

F ∗,1(t)
=
F ∗,i−1(t)

F ∗,1(t)
+
Gi(t)Ai(t)

F ∗,1(t)
,
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which is increasing in t since Ai(t) and Gi(t)/F ∗,1(t) are increasing.

ii) In this case, X∗1,n ≤lr X∗i,n ⇔ f∗,i(t)/ f∗,1(t) is increasing in t. We have, from (3.3), that

f∗,i(t)

f∗,1(t)
=
g∗,i(t)

f∗,1(t)
Ai(t),

which is increasing in t since Ai(t) and gi(t)/ f∗,1(t) are increasing.

Next, we discuss the likelihood ratio order. First, let us recall the definition of a TP2 func-

tion. A nonnegative function h of two variables, x and y, say, is called TP2 if h(x′, y)/h(x, y)

is increasing in y whenever x ≤ x′.

Lemma 6. Under the same assumptions than in theorem 1, if gi−1(t)/gi(t) and hi(t) are

TP2 in (i, t), and Gi−1 ≤hr Gi for all i, then Ai(t) is TP2 in (i, t) for i = 3, . . . , n.

Proof. We will see, by induction on i ≥ 3, that

Ai(t) =

∫ t

−∞

1

Gi(z)
dF∗,i−1(z) =

∫ t

−∞

gi−1(z)

gi(z)
hi(z)Ai−1(z)dz =

∫ t

−∞
qi(z)hi(z)Ai−1(z)dz,

is TP2 in (i, t), where qi(z) = gi−1(z)
gi(z)

. By the assumptions, we have

q3(t)

q2(t)

h3(t)

h2(t)
A2(t),

is increasing in t, which implies that A3(t)/A2(t) is increasing in t. Let now i ≥ 4. Again

qi(t)hi(t)Ai−1(t)

qi−1(t)hi−1(t)Ai−2(t)
,

is increasing in t, by the assumptions and by the induction hypothesis, which implies that

Ai(t)/Ai−1(t) is increasing in t. Hence, Ai(t) is TP2 in (i, t).

The following result gives conditions under which the SOSs are comparable in the uni-

variate likelihood ratio order.

Theorem 3. Under the same assumptions than in Lemma 6, then

X∗i−1,n ≤lr X∗i,n,

for i = 3, . . . , n.
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Proof. By definition and from (3.3) we know that X∗i−1,n ≤lr X∗i,n iff

f∗,i(t)

f∗,i−1(t)
=

gi(t)Ai(t)

gi−1(t)Ai−1(t)
, (4.11)

is increasing in t. From the previous Lemma we know that Ai(t) is TP2 in (i, t), and from

Theorem 1.C.4(a) in [14] we get that Gi−1 ≤lr Gi, then, it follows that f∗,i(t)/f∗,i−1(t) is

increasing in t for i = 3, . . . , n.

Note that gi−1(t)/gi(t) is TP2 in (i, t) can be written as

(gi−1(t))
2

gi(t)gi−2(t)
, (4.12)

is increasing in t. Zhuang and Hu [16] proved that if Gi−1 ≤lr Gi and(
Gi−1(t)

)2
Gi(t)Gi−2(t)

, (4.13)

is increasing in t ∈ <+ and i = 1, . . . , n − 2, then X∗i−1,n ≤lr X∗i,n for i = 1, . . . , n − 1. Our

previous result is equivalent to this of Zhuang and Hu [16] in the sense that both have the same

result and almost the same assumptions, except condition (4.12) and (4.13), respectively.

Note that the condition (4.12) is useful when we have not an analytical expression of the

survival functions.

When Gi(t) = 1 − (1− F (t))γi for some distribution function F and γi are positive

numbers for i = 1, . . . , n, then Gi−1 ≤hr Gi if and only if γi−1 ≥ γi, and the condition (4.12)

holds if and only if 2γi−1 ≤ γi + γi−2.

It is worth noting that the i − 1’th SOS is not greater than the i’th SOS in the hazard

rate and reversed hazard rate ordering as we will show in the following theorem. From (3.6)

and (3.7), we get that
F∗,i(t)

F∗,i−1(t)
= 1− Gi(t)Ai(t)

F∗,i−1(t)
, (4.14)

and
F ∗,i(t)

F ∗,i−1(t)
= 1 +

Gi(t)Ai(t)

F ∗,i−1(t)
, (4.15)

for i = 2, . . . , n.

Theorem 4. Let X∗1,n,. . . ,X∗n,n be SOS based on absolutely continuous distribution functions

{G1, . . . , Gn}, then
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i) X∗i−1,n �hr X
∗
i,n and

ii) X∗i−1,n �rh X
∗
i,n,

for i = 2, . . . , n.

Proof.

i) We suppose, by reduction to the absurd that X∗i−1,n ≥hr X∗i,n. By definition we know

X∗i−1,n ≥hr X∗i,n ⇔
F ∗,i(t)

F ∗,i−1(t)
is decreasing in t,

and from (4.15), we have

X∗i−1,n ≥hr X∗i,n ⇔
Gi(t)Ai(t)

F ∗,i−1(t)
is decreasing in t.

Note that
Gi(t)Ai(t)

F∗,i−1(t)
=
Gi(t)Ai(t)

F ∗,i−1(t)

F ∗,i−1(t)

F∗,i−1(t)
,

which is decreasing in t when Gi(t)Ai(t)

F ∗,i−1(t)
is decreasing in t, since

F ∗,i−1(t)
F∗,i−1(t)

is decreasing in

t. Now, from (4.14)

Gi(t)Ai(t)

F∗,i−1(t)
is decreasing in t⇔ X∗i−1,n ≤rh X∗i,n ,

i.e., if X∗i−1,n ≥hr X∗i,n then X∗i−1,n ≤rh X∗i,n. Thus, X∗i−1,n =st X∗i,n, which is a

contradiction, since X∗i−1,n ≤st X∗i,n from Theorem 1 . Hence X∗i−1,n �hr X
∗
i,n.

ii) As before, we suppose, by reduction to the absurd that X∗i−1,n ≥rh X∗i,n. By definition

we know

X∗i−1,n ≥rh X∗i,n ⇔
F∗,i(t)

F∗,i−1(t)
is decreasing in t,

and from (4.14), we have

X∗i−1,n ≥rh X∗i,n ⇔
Gi(t)Ai(t)

F∗,i−1(t)
is increasing in t.

Note that
Gi(t)Ai(t)

F ∗,i−1(t)
=
Gi(t)Ai(t)

F∗,i−1(t)

F∗,i−1(t)

F ∗,i−1(t)
,
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which is increasing in t when Gi(t)Ai(t)
F∗,i−1(t)

is increasing in t, since
F∗,i−1(t)

F ∗,i−1(t)
is increasing in

t. Now, from (4.15)

Gi(t)Ai(t)

F ∗,i−1(t)
is increasing in t⇔ X∗i−1,n ≤hr X∗i,n ,

i.e., if X∗i−1,n ≥rh X∗i,n then X∗i−1,n ≤hr X∗i,n. Thus, X∗i−1,n =st X∗i,n, which is again a

contradiction. Hence X∗i−1,n �rh X
∗
i,n.

A consequence of Theorem 4 is that X∗i−1,n �lr X
∗
i,n for i = 2, . . . , n.

5 Applications in reliability.

In this section, some applications of the main results in Section 4 are presented. Specifically

we give an application for nonhomogeneous pure birth processes.

Nonhomogeneous pure birth processes are called relevation counting processes in [12],

where some applications of them in reliability theory are described. Another interpretation

of these processes in reliability theory, by means of load sharing, is described in [15]. A

counting process {N(t), t ≥ 0} is a nonhomogeneous pure birth process (NHPB) with inten-

sity functions {λi(t), i ≥ 0} if the following hold:

i) N(t), t ≥ 0 has the Markov property;

ii) P {N(t+ ∆t) = i+ 1|N(t) = i} = λi(t)∆t+ ◦(∆t) for i ≥ 1;

iii) P {N(t+ ∆t) > i+ 1|N(t) = i} = ◦(∆t) for i ≥ 1,

the λi’s are non-negative functions that satisfy∫ ∞
t

λi(x)dx =∞, for all t ≥ 0. (5.16)

Condition (5.16) ensures that, with probability 1, the process has a jump after any time point

t. When all the λi are identical, a nonhomogeneous pure birth process reduces to a nonho-

mogeneous Poisson process. We are especially interested in the coincidence (in distribution)
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of the epoch times of pure birth processes with certain models of ordered random variables

such as record values, order statistics, generalized order statistics, Pfeifer record values, and

SOS. In a distributional theoretical sense, there is one-to-one correspondence between SOS

and the first n epoch times of a NHPB process, which is stated in the following proposition.

Proposition 1 (Corollary 3.3.4. in Lenz [10]). Let G1, . . . , Gn be continuous distribution

functions with Gi(0) = 0 and G−1i (1) = ci ∈ (0,∞), ci ≤ ci+1 and X∗1,n, . . . , X
∗
n,n the

corresponding SOS. Let {N(t), t ≥ 0} be a NHPB process with mean value function Λi(t) and

denote the epoch times by Si, i = 1, . . . , n. Then Si and X∗i,n coincide in distribution if and

only if

Λi(t) = −ln Gi(t), for all t ∈ [0, ci).

Given this relationship and from Theorems 1-2, it is possible to derive the following result.

Corollary 1. Let Si, i ≥ 1 denote the epoch times of a NHPB process {N(t), t ≥ 0} with

intensity functions λi(t) and mean value function Λi(t). Then:

i) Si−1 ≤st Si, for i = 2, . . . , n,

ii) if λ1(t) ≥ λi(t) for all t and for i = 2, . . . , n, then S1 ≤hr Si, for i = 2, . . . , n,

iii if λ1(t) ≥ λi(t) and λi(t)
λ1(t)

is increasing in t for i = 2, . . . , n, then S1 ≤lr Si, for

i = 2, . . . , n.

Proof. Define

hi(t) = λi(t) for i = 1, . . . , n.

Since (5.16) holds, hi(t) can be regarded as the hazard rate function of some distribution Gi.

Let X∗1,n, . . . , X
∗
n,n be the SOS based on distributions {G1, . . . , Gn}. Then, the result follows

from Proposition 1 and Theorems 1–2.
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