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This paper studies the geographical breadth of knowledge spillovers. Previous research suggests that 
knowledge spillovers benefit from geographical proximity in technologically active and rich regions more 
than elsewhere. An alternative view explains the geographical breadth of knowledge spillovers as a function 
of the characteristics and personal networks of the individuals. We test these two competing theories by 
using information provided directly by the inventors of 6,750 European patents (PatVal-EU survey). Our 
results confirm the importance of inventors’ personal background. However, compared to previous research, 
we find that the level of education of the inventors is key in shaping the geographical breadth of knowledge 
spillovers. Highly educated inventors rely more on geographically wide research networks than their less 
educated peers. This holds after controlling for the mobility of the inventors and for the scientific nature of 
the research performed. Differently, location matters only in the very rare regions in Europe that perform the 
bulk of the research in the specific discipline of the inventors.  
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1. Introduction and research setting 

The importance of knowledge spillovers has encouraged scholars in economics and management to 

document their existence and to study their boundaries (Jaffe 1989, Acs et al. 1994, Jaffe et al. 2000, Funke 

and Niebuhr 2005). The fact that knowledge spreads out from its source lowers the incentives to produce it. 

However, by producing increasing returns, spillovers foster economic growth (e.g., Romer 1990, Grossman 

and Helpman 1991). Moreover, the geographical boundaries of the spillovers affect the spatial distribution of 

innovative and economic activities (Saxenian 1994, Verspagen 1997).  

This paper focuses on the knowledge spillovers that the inventors use to develop patented inventions 

in Europe. It provides new evidence on the extent to which knowledge flows are geographically localized, 

and the factors that affect their geographical breadth. It offers the unique opportunity to explore these issues 

by means of an indicator of knowledge spillovers provided directly by the inventors of 6,750 European 

patents (the PatVal-EU survey). The indicator is based on the assessment given by the inventors about the 

use of interactions such as meetings, discussions, and circulation of ideas during the research leading to the 

patented invention.  

Our paper builds on the existing literature on the role of geography on knowledge flows. In a seminal 

paper, Jaffe et al. (1993) use US patent citations to measure knowledge spillovers. By employing a matching 

method that controls for the pre-existing distribution of production activities they show that knowledge 

spillovers are geographically concentrated between and within countries (for Europe see Verspagen 1997, 

Verspagen and De Loo 1999). 

More recent contributions, however, show that patent citations are a noisy measure of the extent and 

direction of knowledge flows. Alcacer and Gittelman (2006) indicate that an important fraction of patent 

citations – 41% for the US patents and 93% for the EPO patents – are inserted by the patent examiners rather 

than the inventors (Jaffe et al. 1998, Harhoff et al. 2006). Other authors cast doubts about the fact that 

spillovers are geographically bounded. Thompson and Fox Kean (2005) revisit the Jaffe et al. work. They 

employ finer criteria to select the control sample of patents and find that this eliminates the intra-national 

location of knowledge spillovers. Thompson (2006) uses a different identification methodology, which 
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compares the geographic matching of the US cited and citing patents when citations are added by the 

inventors or the patent examiners. He finds modest evidence of location effects.  

Finally, not only are the measurement and geographical breadth of knowledge spillovers under 

debate, but also the traditional notion of spillovers being “in the air” is now discussed against other 

mechanisms whereby individuals and their personal networks shape geography of knowledge flows. For 

example, Zucker et al. (1998) show that what appears to be localized knowledge spillovers in the US 

biotechnology industry is in fact a market mechanism through which star scientists are either employees or 

collaborators of biotechnology companies in the regions. Almeida and Kogut (1999) use US patents in 

semiconductors and find that an important mechanism by which knowledge is transferred is the inter-firm 

mobility of human capital. By using the inventor as the unit of analysis, other authors show that knowledge 

flows and regional co-location are driven by the underlying social networks among researchers (e.g., 

Agrawal et al. 2007, Breschi and Lissoni 2006, Singh 2005, Fleming et al. 2007).  

Our study makes three major contributions to this literature. First, it employs an indicator of 

knowledge spillovers provided directly by the inventors. This indicator mimics the idea of “marshallian” 

knowledge spillovers, therefore avoiding the problem of using indirect measures like patent citations. 

Second, it investigates the geographical breadth of knowledge spillovers at the micro level of the users of 

these spillovers, i.e., the individual inventors, rather than the regions or groups of patents. This leads to our 

third contribution; that is, our data provide the opportunity to estimate the relative effect of both location and 

inventor individual factors on the geographical extent of knowledge spillovers. This is important, as most of 

the existing contributions on this matter either lacks data at the individual level, or acknowledges the need to 

control for the characteristics of the regions (e.g., Audretsch and Stephan 1996). Moreover, this enables us to 

test two competing theories about the geographical breadth of knowledge spillovers. As a matter of fact, one 

strand of the literature emphasizes the local dimension of knowledge spillovers; that is, inventors in 

technologically more “vibrant regions” (Almeida and Kogut 1999) interact locally to a greater extent than 

elsewhere. However, especially in recent years, a new strand of the literature has emphasized that knowledge 

spillovers depend on the characteristics of the individual inventors and their personal networks. In this case, 

spillovers follow the networks of these individuals, which are not necessarily local (e.g., links with former 

colleagues in PhD programs). Our results show that the key factor shaping the geographical breadth of 
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knowledge spillovers is the inventor, and particularly his level of education: highly educated inventors are 

more often involved in geographically wide research networks. This holds after controlling for the typical 

factors explored in the literature, i.e., inventor mobility and the scientific nature of the research performed. 

Inter-regional variation in the extent to which knowledge spillovers develop locally exists as well, but only in 

the very top regions in Europe that host the bulk of research in the specific technology of the invention.  

This paper is organized as follows. Section 2 develops the hypotheses about the role of regions and 

individuals in affecting the breadth of knowledge spillovers. Section 3 discusses our measure of knowledge 

spillovers and provides descriptive statistics about their geographical extension. Section 4 illustrates the 

variables used in the regression analysis and the identification method. Section 5 discusses the results and 

Section 6 concludes.  

 

2. Our hypotheses: knowledge spillovers and heterogeneity across regions and inventors 

The traditional argument about knowledge spillovers being geographically localized stems from the 

idea that physical proximity makes it easier to access information produced by others (for a survey, see 

Doring and Schnellenbach 2006, Feldman 1999). The evidence suggests that inventive activities benefit 

more than manufacturing from co-location, particularly in skilled and R&D-intensive industries and in 

sectors that rely to a greater extent on tacit knowledge and learning-by-doing (Pavitt 1987, Audretsch and 

Feldman 1996, Maskell 2001).  

Some authors also argue that there is variation across regions in the extent to which spillovers 

develop locally; that is, knowledge flows are stimulated in some regions more than in others according to 

their local technological endowment. Almeida and Kogut (1999) show that the localization of knowledge 

varies across US regions, with Silicon Valley, New York, and Southern California at the top of the list for 

semiconductors. Thompson (2006) indicates that knowledge spillovers are stronger in California, Texas, and 

Massachusetts than elsewhere (see also Jaffe et al. 1993).  

Our first hypothesis develops from this literature, and it focuses on the impact of the technological 

milieu external to the inventor’s organization on the probability that he or she benefits from local knowledge 

spillovers during the inventive process. The expectation is that inventors located in technologically well-
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endowed regions have a higher probability of benefiting from local knowledge spillovers and a lower 

likelihood to resort to spillovers produced in other regions compared to inventors located in technologically 

poor regions.  

Let us label N the pool of people located in all regions with whom an inventor can potentially 

interact with and receive knowledge spillovers from. N is unevenly distributed across the regions. Let us call 

Pii the probability that an inventor located in region i benefits from knowledge spillovers produced by people 

located in his/her region; and Pij the probability to benefit from knowledge spillovers produced by people in 

other regions, with j ≠ i. Two factors affect Pii: the pool of people ni in the home region, and the probability 

pii to develop interactions with them. Similarly, the probability Pij depends on the pool of people in these 

regions (nj) and the probability pij to interact with them. Given N, our hypothesis is that inventors located in 

technologically better-endowed regions have a higher Pii and a lower Pij compared to inventors located in 

technologically poorer regions. This is because inventors in “better” regions can rely on higher ni and lower 

nj than inventors in “worse” regions. Moreover, there is no reason suggesting that pij can be greater than pii. 

If anything, the literature suggests the opposite, viz., geographical proximity facilitates knowledge spillovers. 

Thus, pii cannot be smaller than pij. Our first hypothesis then is: 

Hypothesis 1. Inventors located in technologically more active regions have a higher probability to 

benefit from local knowledge spillovers. Moreover, they have a lower probability to rely on spillovers 

generated in other regions compared to inventors in technologically poorer regions.  

Note that Hypothesis 1 regards Pii and Pij only. It does not look at the separate effects of nii (nij) and 

pii (pij) on Pii (Pij). That is, this hypothesis does not say anything about whether geographical proximity has 

an effect on Pii on top of nii.  

An alternative view is that, rather than the location in a technological cluster, the individual 

characteristics of the researcher and his/her “social” network shape the geographical breadth of knowledge 

spillovers (see, among others, Audretsch and Stephan 1996, Breschi and Lissoni 2001, Sorenson and Singh 

2007). By studying patenting co-authorship in the US, Fleming et al. (2007) argue that previous working 

relationships among inventors produce robust ties that are then used for future interactions, also after the 

inventor moves geographically (see also Agrawal et al. 2006). They also find that close ties between 
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university professors and their students are maintained by attending conferences and through personal visits. 

Earlier work by Allen (1977) indicates that inventors use their social “networks” composed of friends and 

colleagues who are knowledgeable about specific research issues, as sources of new knowledge. By means of 

patent citations, Singh (2005) finds that once inventors’ interpersonal ties are controlled for, geographical 

proximity and firm co-affiliation produce a small additional effect on the probability of knowledge flows. 

Oostergaard (2007) uses survey data from a sample of engineers in the wireless communications cluster in 

North Denmark and shows that informal knowledge flows are more likely with former classmates and 

friends, and with people with similar educational background or earlier joint work experience. A related 

literature shows that social institutions provide individuals with a specific set of norms and values that model 

their later behavior. This also applies to people attending the same Universities, making it easier to diffuse 

ideas and practices among them (for a review see Bercovitz and Feldman 2008).  

Our survey offers unique data on inventors’ personal characteristics. This makes it possible to 

estimate the relative contribution of individual and location factors on the geographical breadth of 

knowledge spillovers. Thus, after controlling for the age and mobility of the inventors, we estimate the 

marginal effect that the level of education of the inventors produces on the geographical reach of knowledge 

spillovers. Our expectation is that the higher the level of education, the higher the likelihood that the 

inventors benefit from spillovers with people located distant from them. There are three reasons for this. 

First, inventors with a high level of education spent quite a few years in other institutions and in 

specific research communities with university and PhD classmates before working at their current positions. 

This creates opportunities to build research connections with individuals sharing common scientific interests 

and research languages. These relationships are likely to be “enduring” as they are established early in the 

inventors’ lives, during the formative stages, with members of a scientific community that share rules of trust 

and reputation. We expect inventors with a higher level of education to have a higher probability to be part 

of these networks. And since the geographical coverage of these networks is typically different and larger 

than the current inventors’ location, we expect the exchange of knowledge to take place across distances. In 

other words, the fact that the inventors rely on these networks limits the importance of co-location for 

knowledge interactions. Second, inventors with a high level of education are more likely to meet their peers 

by attending conferences, seminars, and meetings that cut across regions and countries. These events are a 
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locus where interactions take place, therefore enlarging the inventor networks. Third, the level of education 

of the inventors contributes to their absorptive capacity. In turn, absorptive capacity is important to appraise 

the potential value of knowledge and to absorb it, in particular when this comes from outside the inventors’ 

organization and when the source is distant from the inventor.  

These considerations lead to our second hypothesis: 

Hypothesis 2. All else being equal, the higher the education of the inventor, the higher the 

probability that he or she benefits from knowledge spillovers with distant people. The lower the level of 

education, the higher the probability to rely on local interactions. 

 

3. Our measure of knowledge spillovers 

An important contribution of this paper is that it documents the use of knowledge spillovers in 

producing invention without resorting to indirect indicators like patent citations. Since knowledge flows are 

invisible and they leave “[…] no paper trial” (Krugman 1991), we collected direct information from the 

inventors. The PatVal-EU survey interviewed the inventors of 9,550 patents granted by the European Patent 

Office (EPO) between 1993 and 1998 in Denmark, France, Germany, Hungary, Italy, the Netherlands, Spain 

and the United Kingdom. The survey was directed to the first inventor listed in the patent and provides 

information on the individual inventors, the invention process, and the resulting patents. Giuri et al. (2007) 

report the details of the survey and the key descriptive statistics. This paper uses information on a sub-

sample of 6,750 patents that we obtained by dropping patents with missing data.1  

To the specific purpose of studying the geographical breadth of knowledge spillovers we asked the 

inventors the following question:  

“Were interactions such as discussions, meetings and sources of ideas with the following types 

of people (apart from co-inventors) important during the research that led to the patented 

invention? (0 = not used, 1 = not important, 5 = very important): 

                                                 
1 We also excluded the French patents from the analysis. This is because in all countries, but France, the inventors 
responded to the questions posed by the questionnaire. In France, depending on the issue, the questionnaire was filled 
out by either the inventors or the managers of the applicant organizations. Since this creates a potential source of bias in 
the data, we excluded French patents from the dataset. 
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• People belonging to other unaffiliated organizations, and that it typically takes less than an 

hour of travel time to reach their office or location (hereafter, Close people); 

• People belonging to other unaffiliated organizations, and that typically takes more than an 

hour of travel time to reach their office or location (hereafter, Distant people)”.2 

 

We deliberately defined geographical proximity in terms of the time that the inventor needs to reach 

the location of the interacting party. This limits problems associated with other measures of geographical 

distance. For example, two locations might be similar in terms of mile distance for an inventor, but 

extremely different in terms of effort/time that he needs to reach them. Mile-based measures would consider 

them as equivalent for the researcher. Our measure does not. Moreover, compared to measures of 

geographical distance based on administrative boundaries, our definition solves cases in which locations are 

considered distant because they belong to different administrative regions, though they are geographically 

close; or cases in which, though distant in space, locations are considered close because they belong to the 

same administrative region.  

Further, a recent work by Gittelman (2007) looks at the importance of geography for research 

collaborations in the US biotechnology industry. For more than 5,000 collaborative research papers 

published by small US biotechnology firms she calculated the mile distance between co-authoring 

organizations in each paper, and found that distance is largely bimodal: there is one mode in which team 

members are co-located within 50 miles (about 18% of the cases) and a second larger group of papers (60% 

of the sample) with an average distance between team members higher than 800 miles. Our Close and 

Distant measures are consistent with this bimodal distribution. 

We transformed the 0-5 scores into two dichotomous variables: Close is equal to 0 if the inventors did 

not establish any Close interaction for developing the patent (score = 0); it is equal to 1 if they used them, 

regardless of their importance (score = 1 to 5). The same applies to Distant interactions (0/1). This 

                                                 
2 We explicitly asked the inventors to exclude interactions with co-inventors. We did not ask to exclude informal 
interactions set up within other forms of collaborative agreements. However, our data indicate that more than 40% of 
“non-collaborative” patents involve informal interactions. Yet, the importance of the latter is higher for “collaborative” 
than for “non-collaborative” patents. This is consistent with the idea that when knowledge spillovers are important 
inputs for the invention process, firms also engage in cooperative R&D agreements (Cassiman and Veugelers 2002). 
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transformation is based on the consideration that the 1-5 score might be highly subjective and therefore 

difficult to compare across inventors. This problem is unlikely to apply to the distinction between 0 (i.e., no 

interactions at all) and 1 (i.e., interactions are used, regardless of their importance). 

Our empirical analysis develops in three steps. It first shows the unconditional probabilities of the use 

of Close and Distant interactions during the inventive process. It then moves to the Bivariate Probit 

regressions to study the factors that affect the use of Close and Distant interactions. This is the premise for 

our third step in which we compute the marginal effects of the covariates for the predicted probabilities of 

different combinations of outcomes.  

The unconditional probabilities of Close and Distant interactions are in Table 1. The table reports the 

share of patents invented with either Close or Distant interactions, with both Close and Distant interactions, 

and with none of them. 

 

[TABLE 1] 

 

Over half of the patents (54.6%) are developed with no interactions with people external to the 

inventor’s organization. This suggests that external interactions, those with geographically close or distant 

people, are not a major input in the inventive process or, at least, they are not as diffused as one might think 

according to the numerous contributions on the importance of knowledge spillovers.3 Further, the inventors 

of 25.7% of the patents establish external interactions regardless of the distance with the interacting parties 

(both Close and Distant). Geographical proximity matters only in 4.8% of the cases: this is the share of 

patents developed by using interaction with Close individuals only. This share is lower that the share of 

patents (14.9%) developed with interactions with Distant people.  

Though unexpected, given the many contributions on the role of geographical proximity for 

knowledge spillovers, this evidence is consistent with the following two considerations. The first one is that 

the share of potentially matching people outside a one hour reach of the inventor (nj) is much larger than the 
                                                 
3 We also have information on the importance of interactions with people Internal to the inventor’s organization. Only 
19.5% of the patents are invented with no internal interactions (excluding co-inventors), suggesting that knowledge 
spillovers in the form of discussions, meetings, etc., are mostly internalized within the organization of the inventor.  
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share of people within a one hour reach (ni). This makes the unconditional probability to interact with 

Distant people higher than the probability to link with Close individuals. Second, other authors find similar 

results. Audretsch and Stephan (1996) find that most of the links between scientists and private 

biotechnology companies in the USA are not local. Gittelman (2007) shows that, apart from a core of 

regional ties, a much larger number of research collaborations by US biotechnology firms are across 

distance. For a sample of SMEs in New Zealand, Davenport (2005) finds that non-local interactions matter 

for innovation more than local links (see also Hendry et al., 2000; Staber, 1996). Our share of local 

interactions is also consistent with the paper by Jaffe et al. (1993), who find that the share of local citations 

(excluding self-citations) within a Metropolitan Statistical Area is between 4.3% and 8.8%, depending on the 

type of applicant organization.  

 

4. Empirical analysis: method and measures  

We estimate two equations to explain the geographical breadth of knowledge spillovers. Our 

dependent variables are the dichotomous Close and Distant variables. Close (Distant) takes the value 1 if the 

inventors use Close (Distant) interactions during the inventive process; it takes the value 0 if no Close 

(Distant) interactions are established.  

By means of a Bivariate Probit regression we estimate the two equations simultaneously. This does 

not produce gains in efficiency compared to the univariate estimations (i.e., same coefficients and same 

standard errors).4  It helps, however, to estimate the net effect of the covariates on the geographical breadth 

of the spillovers (Close vs. Distant), regardless of the impact they have on the institutional setting of the 

spillovers (Internal vs. External). To do this we estimate the marginal effects of the regressors on the 

predicted probabilities of the four combinations of outcomes (i.e., Close=1&Distant=1, Close=0&Distant=0, 

Close=1&Distant=0, Close=0&Distant=1) computed after the Bivariate Probit model. 

To test our hypotheses, we include variables for the technological endowment of the regions and for 

the level of education of the inventors, as well as a large number of controls for the regions, the inventors, 
                                                 
4 We thank Brownyn Hall for helpful suggestions on this point. As a robustness check we also employed the 0-5 
importance score of Close and Distant interactions as dependent variables, and estimated them by means of two 
Ordered Probit regressions. These produced no relevant changes in the signs and statistical significance of the estimated 
coefficients compared to those of the Bivariate Probit model. The results are available from the authors.  
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the patented inventions, and the applicant organizations. Table 2 provides the descriptive statistics of the 

variables. Table 3 shows the correlation matrix. 

 

[TABLES 2 and 3] 

 

The regions. We complemented the PatVal-EU database with information on the technological 

endowment of the regions where the inventors were located at the time of the invention, and incorporated 

this information in different specifications of the econometric model.  

General technological endowment. The “general” technological endowment of the regions is 

measured by REGPATS: the total number of patents applied in all sectors (average in 1994-1996) and 

invented in the NUTS3 region of the inventor (source: Regio Eurostat). We use this variable as a proxy for 

the size of the local pool of potential ties.5 Then, in order to distinguish between private and public sources 

of knowledge (e.g., Jaffe 1989, Zucker et al. 1998, Furman et al. 2007, Alcacer and Chung 2007) we 

downloaded from the European R&D database a stock of about 20,000 R&D laboratories located in Europe 

in 1995 and included them in the PatVal-EU database: the 1995 stock of private research laboratories 

(LABS_PRIVATE), public research laboratories (LABS_PUBLIC) and higher education laboratories 

(LABS_UNI) located in the NUTS3 region of the inventors. 

“Specific” technological endowment. We control for the strength of the region in the specific 

technology of the patent (see, for example, Jaffe 1989, Furman et al. 2007). We classified the patents in our 

sample according to the ISI-INPI-OST classification (see Appendix 1 for the list of the technological 

classes). The breadth of the technological classes is such that they include inter-connected micro fields, 

without being too narrow to capture only research in the very micro-specialty. From the Regio-Eurostat 

database we collected the 1994-1996 number of regional patents applied at the EPO in each ISI-INPI-OST 

class. We used them to compute the ratio Techit/Techt, that is, the ratio between the patents invented in the 

                                                 
5 By using the number of patents rather than the individuals that developed them, we account for differences in 
inventors’ productivity. In most of the cases, the size of the NUTS3 regions is consistent with our “within one hour 
travel distance.” The list of regions is available from the authors and from the website 
http://ec.europa.eu/comm/eurostat/ramon/nuts/codelist_en.cfm?list=nuts.  
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region i in the specific technology t and the total number of patents invented in that technology in all regions. 

Based on this ratio we constructed three dummy variables that indicate the strength of the region in the 

discipline of the invention: TOP5_TECH that is equal to 1 if the region is top 5% in the specific technology, 

and 0 otherwise (ratio between 1.4% and 15%); TOP1_TECH that is 1 if the region is top 1% (ratio between 

4% and 15%); TRESH5_TECH for regions with more than 5% of the patents in the technology. By 

employing these variables we limit the problem of variation in patenting activity across technologies (e.g., 

100 patents in a discipline might cover 80% of all patents in that discipline; it might cover only 10% of total 

patenting in a different field). Also, we can capture possible threshold effects in the rise of knowledge 

spillovers.6  

Regional controls. In order to estimate the net effect of the technological characteristics of the 

regions after controlling for their scale, density, and development we include exogenous regional controls for 

size (AREA, i.e., area of the region in square kilometers), population (POP, thousands of people living in the 

region, average 1994-1996), and general economic conditions (GDPPC, i.e., regional per capita Gross 

Domestic Product in 000 of purchasing power parity corrected for inflation, average 1994-1996) at the 

NUTS3 level.  

The inventor. The PatVal-EU survey provides information on the individual characteristics of the 

inventor who established the interactions. Our key explanatory variable for Hypothesis 2 is the level of 

education of the inventors. 

Education. We know the degree of education of the inventors at the time of the invention. We 

employ three dummy variables, i.e., Secondary and High School (HIGH_DEGREE), University BSc or 

Master (UNI_DEGREE), PhD (PhD_DEGREE), to test our second hypothesis that the higher the level of 

education of the inventor, the higher (lower) the probability that he or she benefits from knowledge 

spillovers with geographically distant (close) people.  

Age. The age of the inventors (AGE) is calculated as the years between the date of birth and the date 

of the patent application. Our suspicion is that older and more experienced inventors are more likely to be a 

                                                 
6 These dummy variables are calculated at the NUTS2 regional level because NUTS3 level data by micro technological 
classes are not available from Regio-Eurostat. However, as a robustness check, we used the IPC1-digit technological 
classification to compute the three dummies at the NUTS3 regional level, with no significant changes in the estimated 
results.  
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source rather than a recipient of knowledge spillovers: they are more likely to produce knowledge that is 

beneficial to others than to benefit from spillovers generated by others. We therefore expect older inventors 

to rely less frequently on knowledge interactions external to their organization compared to their younger 

peers. As far as the geographical breadth of the interactions is concerned, older inventors might have wide 

personal networks developed over their life cycle, leading to more Distant interactions.  

Gender. The gender of the inventor (MALE, which is 1 if male; 0 if female) controls for the effort 

and time that, on average, male inventors can spend in doing research compared to women.  

Mobility. Finally, a specification of our econometric model includes a variable on inventors’ mobility 

across employer organizations before the patent was invented. MOBILITY, that is equal to 1 if the inventor 

changed employer at least once in the ten years before the patent (0 otherwise) is provided by the survey. 

Mobility of people across organizations and places is described in the literature as an important mechanism 

through which knowledge spillovers take place. The source of these spillovers is twofold. First, the inventor 

himself, by moving, transfers knowledge (see Song et al. 2004). Second, he/she can develop personal 

networks in the different locations and organizations that he/she visits (see, for example, Almeida and Kogut 

1999, Fleming et al. 2007, Agrawal et al. 2006). Our goal is to estimate the additional effect of the level of 

education of the inventors on the breadth of knowledge spillovers after controlling for other inventors’ 

characteristics, including mobility.  

The patented invention. We control for the following characteristics of the inventions. 

Science as a source of knowledge. The variable SCIENCE indicates the importance of the scientific 

literature as a source of knowledge for the research leading to the patent. It is provided by the PatVal-EU 

survey. It ranges between 0 (not used) and 5 (very important). Because of the more open nature of scientific 

research compared to applied work (Merton 1942, Dasgupta and David 1994) we expect the probability to 

interact with people external to the inventor’s organization and geographically Distant to be higher for 

science-based patents than for patents that rely less on scientific knowledge. This would be consistent with 

recent work by Sorenson and Singh (2007) and Gittelman (2007) who show that, because of the more open 

and spatially dispersed communities of individuals involved in science, the benefits of geographical 

proximity are less important in science than in technology.  
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Co-inventorship. We deliberately asked the inventors to exclude interactions with co-inventors from 

the answer to the question on Close and Distant interactions. Yet, we use the number of inventors listed in 

the patent (N_INVENTORS) to control for the role of other types of interactions in the invention process. 

This variable is also an indicator of the research effort and the scale of the project leading to the patent (see, 

for example, Gittelman and Kogut 2003).  

Reasons to patent. Inventors might be more inward-looking when inventions are patented in order to 

be exploited commercially or to prevent others from imitation. Differently, they might interact more with 

external parties when patents are to be licensed out. By using our survey information we include three 

variables on whether the patent was applied for commercial exploitation (COMM_EXPLOIT), to be licensed 

out (LICENSING), or to prevent others from imitation (IMITATION). All three variables range between 0 

(not important) to 5 (very important). 

The applicant organization. The attributes of the applicant organization may affect the use, costs 

and benefits of Close and Distant interactions, as well as the decision to develop external links.  

Type of applicant. About 92% of the patents in our database are granted to business companies. In 

the remaining 8% of the cases they are granted to individual inventors and public research organizations 

including universities. We use three dummy variables for the type of applicant organization: PRI_APPLIC 

takes the value 1 if the applicant organization is a university or a public research institution, 

INDIVIDUAL_APPLIC takes the value 1 if the applicant is an individual inventor, and the baseline 

FIRM_APPLIC.  

Size and R&D intensity. For patents granted to private companies we complemented the PatVal-EU 

database with information on the size and R&D intensity of the firms (average 1990-1996). We collected 

these data from Compustat (1998) and Amadeus (2005). Both variables are at the level of the parent 

company. The number of employees (EMPLOYEES) is a proxy for the size of the firms, while the ratio 

between R&D expenditure and sales (R&DINT) measures their R&D intensity. For missing observations we 

include two dummy variables: D_MISS_EMPLOYEES and D_MISS_R&D.7 By controlling for both firm 

size and R&D intensity, we separate the effect of the scale of the organization from its capacity and effort 

                                                 
7 Data on EMPLOYEES are available for 77.78% of the patents; data on R&DINT for 41.92% of the patents.  
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devoted to innovation. The development of inventions requires technical equipment, research laboratories, 

instruments, research personnel, and complementary expertise. Firm size and R&D intensity might signal the 

availability of these resources internally, and therefore the extent to which inventors might need to resort to 

interactions external to firm. The sign of the correlations depends on whether, in the case of patents, internal 

and external resources are complements or substitutes.8 These variables also control for the different costs 

that firms can bear to set up the interactions. More specifically, if Distant interactions requires higher 

organizational capabilities and financial resources than Close interactions, then inventors in smaller firms 

might suffer more from this constrain and interact Close more frequently than Distant.  

Other controls.  All regressions include dummies for the application year (YEAR, 1993 to 1998), 

country of the inventors (DE, DK, ES, IT, HU, NL, UK) and the 30 ISI-INPI-OST technological classes of 

the patent (TECH_FIELD).  

 

5. Results 

5.1 Univariate probabilities 

The dependent variables of the two equations in the Bivariate Probit model are the dichotomous variables 

Close and Distant. The two equations are correlated with rho 0.81 (chi-sq1 = 1077.37, p = 0.00).9 While 

interpreting the results shown in Tables 4 and 5, however, it is worth bearing in mind that the purpose of the 

Bivariate Probit regressions is to set the stage for the next step of the empirical analysis in Section 5.2.  

 

[TABLES 4 and 5] 

 

The six specifications in Tables 4 and 5 differ for the inclusion of the regional variables and for 

MOBILITY that is in Model 6 only. The Tables report the marginal effects that a one unit change in the 

                                                 
8 See, for example, Acs et al. (1994), Feldman (1999), Cassiman and Veugelers (2002). 
9 All regressions include Cluster robust estimators on firms and sampling weights for the hypothetical unbiased sample 
of patents that we initially selected. This differs from the final dataset due to the non-responses and to the over-
sampling of “important” patents (for details, see Giuri et al. 2007). 
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independent variables produce on the probability of having Close (Distant) interactions. For continuous 

variables, the marginal effect is calculated at the mean of the independent variables. For dummy variables, it 

measures the difference in the dependent variable between having and not having the specific characteristic. 

For the covariates with a large range of variation (EMPLOYEES, GDPPC, POP, AREA, REGPATS, LABS) 

we used logs as indicated in the Tables. All specifications include dummies for missing values in 

EMPLOYEES and R&DINT, as well as dummies for the country of the inventor, year of application, and 

technological field of the patent (not shown in the Tables).  

Hypothesis 1 is about the role of inventors’ location on the probability to set up Close and Distant 

interactions. Model 1 estimates the effect of REGPATS, the general technological environment. The results 

show that, after controlling for other regional characteristics, the correlation has the expected signs on Close 

and Distant, but it is not statistically significant. Model 2 differentiates between different sources of 

spillovers in the region: public, private, and University research laboratories. Again, none of these variables 

produces a statistically significant effect on Close and Distant.10  

It might be, however, that knowledge spillovers are more likely to come from people who share 

close research interests. We therefore introduce in Models 3, 4 and 5 the variables TOP5_TECH, 

TOP1_TECH and THRESH5_TECH that measure the strength of the regions in the specific technology of 

the patent. These variables are positively correlated with Close and negatively correlated with Distant 

interactions. The effect, however, is statistically significant (10% level) only for TOP1_TECH and 

THRESH5_TECH. This suggests that location matters for knowledge spillovers only in the top regions in 

Europe in the specific technology of the invention. When the inventors are located in these rare regions the 

probability to interact with local people increases, while the probability to link to people in other regions 

decreases.11  

                                                 
10 We are aware of the fact that a firm location decision might depend on the characteristics of the region (e.g., Alcacer 
and Chung, 2006) and that the firm itself might contribute to shape the regional technological characteristics. However, 
since our unit of analysis is the individual inventor, these issues are not a major concern in our paper. It is unlikely that 
the strategic behavior of a firm applies also to the individual employees. It is also unlikely that the specific inventor 
determines the technological characteristics of the region. Moreover, we use pre-determined regional variables that, as 
such, are not the results of later knowledge interactions.  

11 We also performed Models 3 to 5 by using the number (or the share) of patents in the technology rather than the 
dummy variables. Number and share were not statistically significant, suggesting that a threshold effect exists. We also 
employed the number of patents in all technologies rather those in the specific technology of the invention to construct 
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We now turn to Hypothesis 2. The signs of UNI_DEGREE and PhD_DEGREE are positive and 

statistically significant (1% level) on Distant. They are not correlated with the probability of setting up Close 

interactions. This result holds across all specifications and after controlling for the other inventors’ 

characteristics. In particular, the age of the inventors is negative and statistically significant on both Close 

and Distant interactions and the magnitude of the marginal effects is similar in the two equations. This 

suggests that AGE is negatively correlated with the probability of developing external linkages, rather than 

with their geographical breadth: senior researchers are less likely to receive spillovers from people external 

to their organization. A 10-year increase in age corresponds to a lower probability of Close and Distant 

interactions of the about 3.5% and 2.7% respectively.12 In Model 6 we add MOBILITY. The estimated 

marginal effect is positive and statistically significant (5% level) on both Close and Distant, with similar 

magnitude. This suggests that MOBILITY increases the probability to set up interactions external to the 

organization, but it does not affect their geographical extent.13 

At the level of the invention, the marginal effect of SCIENCE is positive on both Close and Distant 

and it is statistically significant at 1% level. A one unit change in the importance of SCIENCE from its mean 

produces an increase of 3.1% in the predicted probability of Close interactions and of 4% of Distant 

interactions. This suggests that science-based research relies more on long-distance spillovers.14 Also, 

LICENSING has a positive and statistically significant effect on both Close and Distant, with similar 

marginal effects: inventors are more likely to engage in both Close and Distant interactions if the invention is 

intended to be licensed out.  

                                                                                                                                                                  
the three dummy variables. Again, these variables were never statistically significant, both at the NUTS3 and NUTS2 
regional level. 
12 A specification of our model used AGE2 together with AGE to test for possible non linear effects of AGE (e.g., Cole 
1979). AGE2 was never statistically significant.  
13 We include MOBILITY only in Model 6 because of its potential endogeneity with respect to other inventor’s 
characteristics like the level of education. However, the correlation between MOBILITY and education is 0.03 for 
PhD_DEGREE (statistically significant at 10% level) and -0.02 for UNI_DEGREE (not statistically significant). 
Moreover, the marginal effect of MOBILITY does not change if it is included in place of the educational of the 
inventors. 
14 The correlation between SCIENCE and PhD_DEGREE is 0.29. When we drop SCIENCE from the estimations, the 
marginal effect of PHD becomes positive and statistically significant on both Close and Distant, but the effect on Close 
is much smaller than that on Distant. This suggests that if we do not control for SCIENCE, the PHD variable captures 
part of the effect due to the scientific nature of the patent. 
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Finally, at the level of the applicant organization, the higher the R&D intensity of a firm, the lower 

the probability to establish both Close and Distant interactions (statistically significant at 5% and 10% level 

respectively). Again, the magnitude of the marginal effects is similar in the two equations, suggesting that 

R&DINT is negatively correlated with the probability of establishing interactions external to the firm.  

Thus, so far, our results indicate that, first, the location of the inventors in a technological cluster 

increases the probability of local interactions only in the restricted club of top regions in Europe in the 

specific technology of the invention. Second, the educational background of the inventors and the scientific 

nature of the research conducted matter as well. Specifically, inventors with a PhD degree and those who 

rely more on science as a source of knowledge have a higher probability to benefit from spillovers with 

distant people. Yet, an issue arises here concerning the effect of our covariates on the “geographical” breadth 

of the interactions net of the effect on the “institutional” choice. The next Section will take care of this issue.  

 

5.2 Institutional and geographical breadth of knowledge spillovers: bivariate probabilities 

 Both dependent variables of the Bivariate Probit regressions are the result of two choices: the choice of 

the institutional setting of the interactions (Internal vs. External) and the choice of their geographical breadth 

(Close vs. Distant). The marginal effects in Tables 4 and 5 do not indicate the effect of the regressors on 

each dimension separately. In other words, they do not reveal the net effect of the covariates on the 

geographical breadth of the spillovers.15  

One way to address the problem is to estimate the marginal effects of the covariates on the predicted 

probabilities of the four combinations of outcomes computed after the Bivariate Probit model; that is, 

Close=1&Distant=1, Close=0&Distant=0, Close=1&Distant=0, Close=0&Distant=1. Table 6 reports the 

results for the variables in Model 4. Table 7 shows the marginal effects for selected regressors introduced in 

Models 2, 3, 5 and 6. 

 

[TABLES 6 and 7] 
                                                 
15 Thus, the Close equation indicates the factors that influence the probability to set up interactions External to the 
inventor’s organization and geographically Close. Similarly, the Distant equation show the factors that affect the 
probability to develop interactions External to the inventor’s organization and geographically Distant.  
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The first column in Tables 6 and 7 shows the factors correlated with the probability to interact with 

people external to the inventor’s organization, irrespective of their geographical distance 

pr(Close=1&Distant=1). The second column reports the effects of the covariates on the probability of not 

having any external interaction pr(Close=0&Distant=0). We can therefore use these two columns to isolate 

the effects of the covariates on the choice of the institutional setting of the interactions. Differently, the last 

two columns in the Tables indicate the net effect of the regressors on the geographical breadth of the 

spillovers. Indeed, given that the inventors benefit from interactions with people external to their 

organization, the only difference between pr(Close=1&Distant=0) and pr(Close=0&Distant=1) is the 

geographical breadth of the spillovers. 

The results show that a group of factors influences the institutional setting in which the spillovers 

take place, irrespective of the geography of the links. The AGE of the inventors has a positive and 

statistically significant effect on pr(Close=0&Distant=0) while it is negative and statistically significant on 

pr(Close=1&Distant=1). Differently, the marginal effects of PhD_DEGREE and MOBILITY are positive 

and statistically significant on pr(Close=1&Distant=1); they are negative and statistically significant on 

pr(Close=0&Distant=0). The same correlations hold for SCIENCE and LICENSING. Thus, younger, highly 

educated, and mobile inventors are more likely to take advantage of spillovers generated outside the 

employer organization. This is particularly true for science-based inventions and inventions that are intended 

to be licensed out. As expected, however, the higher the R&D intensity of the firm, the lower the likelihood 

to interact with external people: the marginal effect of R&DINT is positive and statistically significant on 

pr(Close=0&Distant=0) and it is negative and statistically significant on pr(Close=1&Distant=1).  

  Let us now answer the question of our paper: What shapes the geographical breadth of knowledge 

spillovers? The level of education of the inventors plays a key role: not only do highly educated inventors 

establish interactions with people external to the organization, but these interactions also tend to be with 

Distant people. In particular, inventors with PhD level training enter into geographically wide research 

networks more than their less educated peers. This supports Hypothesis 2 and it is robust to different 

specifications. A 0 to 1 change in PHD_DEGREE corresponds to a 4.9% increase of 

pr(Close=0&Distant=1) and a 1.4% decrease of pr(Close=1&Distant=0). It is worth keeping in mind that 
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this effect comes after controlling for inventors’ mobility, age and gender. It also holds after controlling for 

the more open nature of science-based research (SCIENCE) that, as expected, is positively correlated with 

the probability of setting up geographically Distant interactions (the marginal effect of SCIENCE is positive 

and statistically significant on pr(Close=0&Distant=1)). Also, inventors in large firms and in public research 

institutions are more likely to interact with Distant people, as shown by the marginal effects of 

EMPLOYEES and PRI_APPLIC.  

Finally, Hypothesis 1 is also confirmed, but only for the very rare regions in Europe where the bulk 

of the research in the specific technology is performed. TOP1_TECH and THRESH5_TECH are positive and 

statistically significant on pr(Close=1&Distant=0); negative and statistically significant on 

pr(Close=0&Distant=1).  

 

5.3 Robustness checks 

We performed a number of robustness checks in addition to those described in various parts of the 

paper. We first controlled for the possible multicollinearity between the regional variables. We alternately 

omitted GDPPC, POP and AREA, and all of them together. We also performed Models 3 to 6 without 

controlling for REGPATS and LABS, and used the density of REGPATS/POP and REGPATS/GDPPC. In 

all these specifications the sign and statistical significance of the remaining variables did not change 

significantly compared to those in Tables 4 and 5.  

At the inventor level, we controlled for the possible unobserved heterogeneity across individuals. For 

each inventor we collected the number of patents applied at the EPO before the patent in our sample.16 This 

marginal effect of this variable was not statistically significant, while the coefficient and the statistical 

significance of the other variables did not change. 

Finally, we checked for the correlation between the firm level variables. We perform the regressions 

by omitting R&DINT. The statistical significance of EMPLOYEES did not change with respect to Tables 4 

                                                 
16 Though individual productivity might be a good variable to control for unobserved heterogeneity, it is also correlated 
with other inventors’ characteristics such as age, education, gender, mobility, and, as such endogenous with respect to 
them (see, for example, Levin and Stephan 1991, Turner and Mairesse 2007, Mariani and Romanelli 2007). This is why 
we do not show the results in the Tables. 



 21

to 7. Also, the marginal effect of PHD_DEGREE does not change significantly when R&DINT is dropped 

from the regressions, which reduces the potential problem of correlation between the two variables. All these 

results are available from the authors. 

 

6. Conclusions 

This paper provides new evidence about the geographical breadth of knowledge spillovers. It 

employs information provided directly by the inventors of EPO patents that we interviewed through a large 

scale survey (the PatVal-EU survey).  

We found that, during the inventive process, knowledge spillovers from geographically distant 

people are more frequent than those from nearby individuals. We then investigated the factors that explain 

the geographical breadth of these spillovers. Our results show that the educational background of the 

inventors plays a key role. Specifically, a higher level of education, particularly a PhD, increases the 

likelihood of knowledge spillovers from geographically distant individuals. It also decreases the probability 

of interaction with people located close to the inventors. This result holds after controlling for other 

explanations provided by the existing literature on this matter, such as the age, gender, and mobility of the 

inventors. Our interpretation is that inventors with a higher level of education have better absorptive capacity 

and geographically wide personal networks. By helping inventors scout and obtain useful knowledge, 

irrespective of where it is generated, education and the resulting openness of the inventors reduce the 

importance of geographical proximity to exchange knowledge.  

We also find inter-regional differences in the extent to which inventors benefit from close vs. distant 

knowledge spillovers. These differences, however, apply only to the rare regions in Europe (top 1%) that 

host the bulk of the research in the specific technology of the patent. Inventors located in these regions have 

a higher probability to benefit from local spillovers and a lower probability to resort to distant ties. Finally, 

our results confirm previous findings in the literature about the open nature of scientific research: science-

based patents are more likely to benefit from spillovers with people external to the inventor’s organization 

and geographically distant. 
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Implications for firms and for the design of regional policies that, among other things, aim at 

fostering local knowledge spillovers, arise. Our paper shows that, at least in Europe, a strong threshold effect 

exists, as knowledge spillovers develop locally in the top 1% of regions in the specific technological field of 

the invention. This suggests that, in order to be effective, regional policies would need large investments in 

the creation of a critical mass of firms, institutions, and people working out related activities. This adds to the 

fact that, in general, there is not consensus in the literature on the specific role of geographical proximity in 

fostering knowledge spillovers beyond the effect of the concentration of the pool of potential interacting 

people.  

Our paper, however, suggests that policy interventions directed to the individuals to stimulate their 

“openness” – by means of education, traveling, exchange of students, etc. – can be effective in fostering the 

transmission of knowledge spillovers. They can be implemented in place of, or in addition to, regional 

policies, and allow people to benefit from spillovers also when knowledge is produced by geographically 

distant people. This reduces the importance of geographical proximity. In this sense, the reliance on local 

spillovers seems to be an option that inventors play when they do not have the capacity to take part in 

geographilcally wider networks.  

Similarly, our results also imply that, in order to benefit from knowledge spillovers, firms can either 

locate their research activities in the top regions in the specific research discipline or/and they can attract 

workers – inventors, in our case – with good networking capabilities, and keep investing in them. The level 

of education is a signal in this direction.  
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Appendix 1. List of ISI-INPI-OST technological classes used in the paper and descriptive statistics. 

 Mean Std. Dev. 

Electrical devices, engineering, energy  0.074 0.262 
Audio-visual technology  0.020 0.139 
Telecommunications 0.032 0.176 
Information technology 0.022 0.146 
Semiconductors 0.010 0.101 
Optics 0.019 0.138 
Analysis, measurement, control technology 0.060 0.237 
Medical technology 0.024 0.153 
Organic fine chemistry 0.066 0.249 
Macromolecular chemistry, polymers  0.056 0.230 
Pharmaceuticals, cosmetics 0.017 0.131 
Biotechnology 0.009 0.093 
Materials, metallurgy 0.032 0.176 
Agriculture, food chemistry  0.015 0.121 
Chemical&petrol, basic materials chem. 0.037 0.188 
Chemical engineering 0.031 0.174 
Surface technology, coating  0.015 0.121 
Materials processing, textiles, paper  0.054 0.225 
Thermal processes and apparatus 0.022 0.148 
Environmental technology 0.018 0.135 
Machine tools  0.035 0.183 
Engines, pumps, turbines 0.032 0.176 
Mechanical Elements 0.043 0.203 
Handling, printing  0.076 0.264 
Agricultural&food proc-machin-apparatus 0.021 0.144 
Transport 0.066 0.248 
Nuclear engineering 0.003 0.057 
Space technology weapons  0.004 0.062 
Consumer goods and equipment 0.047 0.212 
Civil engineering, building, mining 0.039 0.195 
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Tables 
Table 1. Unconditional probabilities: share of patents invented with Close and/or Distant interactions (0 = 
external interactions not used; 1: external interactions used, regardless of their importance). 

 

 Distant = 0 Distant = 1 Total 

Close = 0 54.6% 14.9% 69.5% 

Close = 1 4.8% 25.7% 30.5% 

Total 59.4% 40.6% 100% 

Source: PatVal-EU dataset.  
N = 6750 
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 Table 2. Descriptive statistics  

 Mean St. Dev. Min Max
Dependent variables 
CLOSE 0.30 0.46 0 1
DISTANT 0.41 0.49 0 1

Applicant characteristics 
EMPLOYEESa 84523.46 114833.20 0 723328.60
D_MISS_EMPLOYEES 0.21 0.40 0 1
R&DINTb 0.05 0.03 0 0.41
D_MISS_R&D 0.57 0.49 0 1
PRI_APPLIC  0.03 0.16 0 1
INDIVIDUAL_APPLIC 0.05 0.21 0 1

Inventor characteristics 
AGE 44.89 9.71 20 81
MALE 0.97 0.16 0 1
HIGH_DEGREE 0.19 0.39 0 1
UNI_DEGREE 0.55 0.50 0 1
PhD_DEGREE 0.26 0.44 0 1
MOBILITY 0.34 0.47 0 1

Patent characteristics 
N_INVENTORS 2.28 1.54 1 22
SCIENCE 2.60 1.87 0 5
COMM_EXPLOIT 3.81 1.55 0 5
LICENSING 2.05 1.53 0 5
IMITATION 3.80 1.57 0 5

Regional characteristics 
GDPPC 23033.85 8972.21 5479.20 76910.80
POP 727.53 877.89 19.90 4634.40
AREA 1574.97 1990.27 35.60 18275.30
REGPATS 121.30 133.13 0.83 543.21
LABS_UNI 12.37 35.98 0 461
LABS_PUBLIC 7.17 14.16 0 118
LABS_PRIVATE 45.80 84.44 0 429
TOP5_TECH 0.44 0.50 0 1
TOP1_TECH 0.14 0.35 0 1
THRESH5_TECH 0.15 0.36 0 1

Other Controls 
DE 0.42 0.49 0 1
DK 0.06 0.24 0 1
ES 0.03 0.16 0 1
HU 0.00 0.06 0 1
IT 0.16 0.36 0 1
NL 0.15 0.36 0 1
UK 0.18 0.38 0 1
AppYear1993 0.03 0.16 0 1
AppYear1994 0.28 0.45 0 1
AppYear1995 0.26 0.44 0 1
AppYear1996 0.23 0.42 0 1
AppYear1997 0.16 0.36 0 1
AppYear1998 0.05 0.22 0 1

Note: N = 6750. a N=5356. bN= 2882. 
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Table 3. Correlation matrix.  

 Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
1 EMPLOYEES 1.00                        
2 R&DINT 0.56 1.00                       
3 PRI_APPLIC  -0.26 -0.11 1.00                      
4 INDIVIDUAL_APPLIC -0.36 -0.15 -0.04 1.00                     
5 AGE -0.08 -0.07 -0.03 0.08 1.00                    
6 MALE 0.00 -0.03 -0.04 0.02 0.12 1.00                   
7 UNI_DEGREE -0.01 -0.05 -0.03 -0.03 -0.08 -0.03 1.00                  
8 PhD_DEGREE 0.17 0.20 0.10 -0.05 -0.02 0.00 -0.65 1.00                 
9 MOBILITY -0.09 -0.06 0.03 -0.03 -0.07 0.02 -0.02 0.03 1.00                

10 N_INVENTORS 0.20 0.16 0.04 -0.13 -0.06 -0.07 -0.10 0.24 -0.04 1.00               
11 SCIENCE 0.12 0.13 0.09 -0.05 -0.08 -0.07 -0.06 0.29 0.00 0.21 1.00              
12 COMM_EXPLOIT -0.07 -0.03 -0.09 0.03 0.02 0.00 0.01 -0.01 0.04 0.01 0.04 1.00             
13 LICENSING -0.06 0.00 0.14 0.16 -0.06 0.01 -0.02 0.09 0.01 0.03 0.16 0.10 1.00            
14 IMITATION 0.01 0.01 -0.09 -0.06 -0.07 0.00 0.02 -0.04 -0.01 0.01 0.01 0.14 0.01 1.00           
15 GDPPC 0.23 0.19 -0.07 -0.06 0.00 0.03 -0.07 0.15 -0.12 0.12 0.10 -0.11 -0.01 0.03 1.00          
16 POP -0.04 -0.06 0.03 -0.01 -0.06 -0.08 0.05 -0.10 0.08 -0.02 0.00 0.00 -0.01 -0.09 0.01 1.00         
17 AREA -0.22 -0.21 0.01 0.05 -0.04 -0.05 0.07 -0.23 0.11 -0.13 -0.10 0.04 -0.06 -0.05 -0.51 0.51 1.00        
18 REGPATS 0.18 0.17 -0.06 -0.07 -0.04 -0.02 0.00 0.08 -0.05 0.06 0.06 -0.07 0.01 -0.06 0.40 0.60 0.07 1.00       
19 LABS_UNI 0.01 0.04 0.05 -0.01 -0.05 -0.06 0.03 0.02 0.10 -0.05 0.05 0.04 0.05 -0.09 0.09 0.57 0.11 0.37 1.00      
20 LABS_PUBLIC -0.01 0.00 0.07 -0.01 -0.06 -0.07 0.04 -0.03 0.06 -0.02 0.05 -0.01 0.04 -0.08 0.24 0.68 0.15 0.49 0.75 1.00     
21 LABS_PRIVATE 0.07 0.05 0.01 -0.05 -0.05 -0.06 -0.01 0.04 0.08 0.00 0.06 0.03 0.04 -0.06 0.22 0.72 0.11 0.59 0.69 0.75 1.00    
22 TOP1_TECH 0.17 0.15 -0.05 -0.05 0.03 0.02 -0.08 0.15 -0.10 0.11 0.04 -0.08 0.02 0.05 0.33 -0.08 -0.25 0.25 -0.10 -0.06 -0.03 1.00   
23 TOP5_TECH 0.18 0.15 -0.08 -0.06 0.01 0.02 -0.04 0.11 -0.13 0.07 0.06 -0.09 -0.01 0.03 0.45 -0.02 -0.27 0.43 -0.07 0.03 0.10 0.46 1.00  
24 THRESH5_TECH 0.23 0.22 -0.05 -0.06 0.03 0.02 -0.11 0.23 -0.11 0.17 0.08 -0.07 0.03 0.04 0.36 -0.09 -0.30 0.27 -0.11 -0.07 -0.02 0.78 0.47 1.00 

 



 29

Table 4. Bivariate probit estimation. Marginal effects on the univariate probability of Close and Distant. 
Models 1-3   

 Model 1:  
REGPATS  Model 2:  

LABS  Model 3:  
TOP5_TECH 

 Close Distant  Close Distant  Close Distant 
Applicant characteristics 
log(EMPLOYEES) -0.002 0.005 -0.002 0.005  -0.002 0.005
 (0.004) (0.004) (0.004) (0.004)  (0.004) (0.004)
R&DINT -0.826** -0.754* -0.817** -0.765*  -0.828** -0.752*
 (0.371) 0.406 0.370 0.404  0.374 0.405
PRI_APPLIC  -0.014 0.049 -0.015 0.052  -0.014 0.049
 (0.038) 0.040 (0.038) 0.040  0.039 0.040
INDIVIDUAL_APPLIC -0.030 -0.029 -0.030 -0.029  -0.030 -0.029
 (0.019) (0.023) (0.019) (0.023)  (0.019) (0.023)
Inventor characteristics 
AGE -0.004*** -0.003*** -0.004*** -0.003***  -0.004*** -0.003***
 (0.001) (0.001) (0.001) (0.001)  (0.001) (0.001)
MALE 0.020 -0.038 0.020 -0.037  0.019 -0.037
 (0.040) (0.039) (0.040) (0.039)  (0.040) (0.039)
UNI_DEGREE 0.003 0.056*** 0.003 0.056***  0.003 0.056***
 (0.020) (0.022) (0.020) (0.022)  (0.019) (0.022)
PhD_DEGREE 0.028 0.089*** 0.029 0.088***  0.027 0.090***
 (0.024) (0.026) (0.023) (0.026)  (0.023) (0.026)
Patent characteristics 
N_INVENTORS 0.000 0.001 0.000 0.001  0.000 0.001
 (0.005) (0.005) (0.005) (0.005)  (0.005) (0.005)
SCIENCE 0.031*** 0.040*** 0.031*** 0.040***  0.031*** 0.040***
 (0.004) (0.004) (0.004) (0.004)  (0.004) (0.004)
COMM_EXPLOIT 0.001 0.007 0.001 0.007  0.001 0.007
 (0.004) (0.005) (0.004) (0.005)  (0.004) (0.005)
LICENSING 0.023*** 0.026*** 0.023*** 0.026***  0.023*** 0.026**
 (0.004) (0.005) (0.004) (0.005)  (0.004) (0.005)
IMITATION 0.007 0.008 0.007 0.008  0.007 0.008
 (0.004) (0.005) (0.004) (0.005)  (0.004) (0.005)
Region characteristics 
log(GDPPC) -0.032 -0.060* -0.032 -0.067*  -0.033 -0.059*
 (0.028) (0.036) (0.026) (0.034)  (0.028) (0.036)
log(POP) 0.010 -0.002 0.013 -0.015  0.011 -0.002
 (0.014) (0.015) (0.015) (0.016)  (0.014) (0.016)
log(AREA) -0.017** -0.005 -0.017** -0.003  -0.016** -0.005
 (0.008) (0.009) (0.008) (0.009)  (0.008) (0.009)
log(REGPATS) 0.005 -0.004  0.001 -0.002
 (0.010) (0.011)  (0.011) (0.012)
log(LABS_UNI)  -0.007 0.004   
  (0.007) (0.008)   
log(LABS_PUBLIC)  0.007 -0.003   
  (0.011) (0.011)   
log(LABS_PRIVATE)  0.001 0.007   
  (0.009) (0.009)   
TOP5_TECH   0.016 -0.009
   (0.016) (0.018)
    
N 6750 6750  6750 
ll -31770.8 -31764.6  -31764.3 
Chi squared  956.86 982.06  972.33 
Note: Robust standard errors are in parentheses adjusted for clusters by firms’ identifier.  
Coefficient significant at * p<0.10, **p<0.05, ***p<0.01. 
All regressions include dummies for Missing value for EMPLOYEES, Missing values for R&DINT, Inventor 
country, Year of application and Technological field (30 ISI-INPI-OST classes).  
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Table 5. Bivariate probit estimation. Marginal effects on the univariate probability of Close and Distant. 
Models 4-6 

 Model 4:  
TOP1_TECH  Model 5: 

THRESH5_TECH  Model 6: 
TOP1_TECH +MOBILITY

 Close Distant  Close Distant  Close Distant 
Applicant characteristics 
log(EMPLOYEES) -0.002 0.005 -0.002 0.005  -0.002 0.005
 (0.004) (0.004) (0.004) (0.004)  (0.004) (0.004)
R&DINT -0.826** -0.761* -0.838** -0.753*  -0.824** -0.757*
 0.370 0.407 0.370 0.408  0.369 0.408
PRI_APPLIC  -0.015 0.050 -0.015 0.049  -0.011 0.053
 (0.038) 0.040 (0.038) 0.040  0.039 0.040
INDIVIDUAL_APPLIC -0.030 -0.029 -0.031* -0.028  -0.025 -0.025
 (0.019) (0.023) (0.019) (0.023)  (0.019) (0.022)
Inventor characteristics 
AGE -0.004*** -0.003*** -0.004*** -0.003***  -0.004*** -0.003***
 (0.001) (0.001) (0.001) (0.001)  (0.001) (0.001)
MALE 0.020 -0.037 0.019 -0.036  0.016 -0.041
 (0.040) (0.039) (0.040) (0.038)  (0.041) (0.039)
UNI_DEGREE 0.004 0.055** 0.004 0.055**  0.003 0.054**
 (0.019) (0.022) (0.019) (0.022)  (0.019) (0.022)
PhD_DEGREE 0.027 0.090*** 0.026 0.091***  0.023 0.086***
 (0.023) (0.026) (0.023) (0.026)  (0.024) (0.026)
MOBILITY   0.035** 0.035**
   (0.016) (0.015)
Patent characteristics 
N_INVENTORS 0.000 0.002 0.000 0.002  0.000 0.002
 (0.005) (0.005) (0.005) (0.005)  (0.005) (0.005)
SCIENCE 0.031*** 0.040*** 0.032*** 0.040***  0.031*** 0.040***
 (0.004) (0.004) (0.004) (0.004)  (0.004) (0.004)
COMM_EXPLOIT 0.001 0.006 0.001 0.006  0.001 0.006
 (0.004) (0.005) (0.004) (0.005)  (0.004) (0.005)
LICENSING 0.023*** 0.026*** 0.023*** 0.026***  0.023*** 0.026***
 (0.004) (0.005) (0.004) (0.005)  (0.004) (0.005)
IMITATION 0.007 0.008 0.007 0.008  0.006 0.008
 (0.004) (0.005) (0.004) (0.005)  (0.004) (0.005)
Region characteristics 
log(GDPPC) -0.035 -0.056 -0.036 -0.056  -0.037 -0.058
 (0.028) (0.035) (0.028) (0.035)  (0.028) (0.035)
log(POP) 0.012 -0.004 0.011 -0.003  0.011 -0.004
 (0.014) (0.015) (0.014) (0.015)  (0.014) (0.015)
log(AREA) -0.016** -0.005 -0.017** -0.005  -0.017** -0.006
 (0.008) (0.009) (0.008) (0.009)  (0.008) (0.009)
log(REGPATS) 0.002 -0.001 0.002 -0.001  0.002 0.000
 (0.011) (0.011) (0.011) (0.011)  (0.011) (0.011)
TOP1_TECH 0.034* -0.036*  0.034* -0.036*
 (0.020) (0.019)  (0.020) (0.019)
THRESH5_TECH  0.038* -0.037*   
  (0.022) (0.022)   
    
N 6750 6750  6750 
ll -31736.6 -31736.3  -31716.1 
Chi squared  980.81 966.49  993.89 
Note: Robust standard errors are in parentheses adjusted for clusters by firms’ identifier.  
Coefficient significant at * p<0.10, **p<0.05, ***p<0.01. 
All regressions include dummies for Missing value for EMPLOYEES, Missing values for R&DINT, Inventor 
country, Year of application and Technological field (30 ISI-INPI-OST classes).  
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Table 6. Bivariate probit estimation. Marginal effects on the bivariate probabilities of Close and Distant. 
Model 4. 

 pr (Close=1, Distant=1) pr (Close=0, Distant=0) pr (Close=1, Distant=0) pr (Close=0, Distant=1)
Applicant characteristics 

log(EMPLOYEES) 0.000 -0.003 -0.002* 0.005**
 (0.003) (0.004) (0.001) (0.003)
R&DINT -0.732** 0.854** -0.093 -0.028
 (0.328) (0.410) (0.086) (0.190)
PRI_APPLIC  0.002 -0.033 -0.016* 0.048*
 (0.033) (0.039) (0.009) (0.028)
INDIVIDUAL_APPLIC -0.027* 0.032 -0.003 -0.002
 (0.016) (0.021) (0.006) (0.013)

Inventor characteristics 
AGE -0.003*** 0.003*** -0.001*** 0.000
 (0.001) (0.001) (0.000) (0.000)
MALE 0.005 0.022 0.015 -0.042
 (0.034) (0.038) (0.010) (0.029)
UNI_DEGREE 0.018 -0.042** -0.014** 0.037***
 (0.016) (0.021) (0.006) (0.013)
PhD_DEGREE 0.041** -0.076*** -0.014** 0.049***
 (0.020) (0.025) (0.006) (0.017)

Patent characteristics 
N_INVENTORS 0.000 -0.001 0.000 0.001
 (0.004) (0.005) (0.001) (0.003)
SCIENCE 0.031*** -0.040*** 0.001 0.009***
 (0.004) (0.004) (0.001) (0.003)
COMM_EXPLOIT 0.003 -0.005 -0.001 0.004
 (0.003) (0.004) (0.001) (0.003)
LICENSING 0.021*** -0.027*** 0.001 0.004
 (0.003) (0.004) (0.001) (0.003)
IMITATION 0.006* -0.008 0.000 0.001
 (0.004) (0.005) (0.001) (0.003)

Region characteristics 
log(GDPPC) -0.038 0.054 0.002 -0.018
 (0.025) (0.034) (0.008) (0.019)
log(POP) 0.006 -0.001 0.005 -0.010
 (0.012) (0.015) (0.004) (0.008)
log(AREA) -0.012* 0.010 -0.005** 0.007
 (0.007) (0.009) (0.002) (0.005)
log(REGPATS) 0.001 0.000 0.001 -0.002
 (0.009) (0.011) (0.003) (0.006)
TOP1_TECH 0.009 0.011 0.025*** -0.045***
 (0.016) (0.020) (0.007) (0.011)
Note: Robust standard errors are in parentheses adjusted for clusters by firms’ identifier.  
Coefficient significant at * p<0.10, **p<0.05, ***p<0.01. 
All regressions include dummies for Missing value for EMPLOYEES, Missing values for R&DINT, Inventor 
country, Year of application and Technological field (30 ISI-INPI-OST classes).  
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Table 7. Bivariate probit estimation. Marginal effects on the bivariate probabilities of Close and Distant. 
Selected variables in Models 2, 3, 5 and 6. 

 pr (Close=1, Distant=1) pr (Close=0, Distant=0) pr (Close=1, Distant=0) pr (Close=0, Distant=1)
Model 2  
log(LABS_UNI) -0.003 -0.000 -0.004* 0.007
 (0.006) (0.008) (0.002) (0.005)
log(LABS_PUBLIC) 0.004 -0.001 0.003 -0.006
 (0.009) (0.011) (0.003) (0.006)
log(LABS_PRIVATE) 0.003 -0.005 -0.001 0.004
 (0.008) (0.009) (0.003) (0.006)
Model 3  
TOP5_TECH 0.007 0.001 0.008 -0.017
 (0.014) (0.017) (0.005) (0.011)
Model 5  
THRESH5_TECH 0.011 0.010 0.027*** -0.048***
 (0.018) (0.022) (0.008) (0.012)
Model 6  
MOBILITY 0.032** -0.038** 0.003 0.003
 (0.013) (0.015) (0.005) (0.011)

 
 


