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Introduction

In recent decades Monte Carlo methods, such
as Metropolis-Hastings [MH] (Metropolis et
al. 1953, and Hastings 1970), Gibbs sampling
(Geman and Geman 1984) and importance
sampling, have been applied extensively and
successfully within Bayesian analyses of sta-
tistical and econometric models. However,
although Monte Carlo methods revolutionized
the applicability of Bayesian inference, the
literature indicates a substantial variation in
their convergence behavior. For instance, the
performance of the Gibbs sampler may be
hampered by strong correlation in the target (or
posterior) distribution. A multimodal target
density may pose problems to all methods. A
common difficulty encountered in all samplers
is the choice of an importance or candidate
density when little is known about the shape of
the target density.

In order to sample effectively from ill behaved
target densities, we have proposed the class
of adaptive radial-based direction sampling
(ARDS) methods, see Bauwens et al. (2003).
The advantages of the ARDS algorithms are
threefold. Firstly, the algorithms are parsimo-

nious in their use of information on the shape
of the target density. Only location and scale
need to be specified as initial values. Secondly,
the algorithms are flexible and robust, that is,
they can deal with a large variety of features of
target distributions, in particular multimodal-
ity, strong correlation, extreme skewness and
heavy tails. Thirdly, the algorithms can deal
with multiple linear inequality conditions on
the parameter space without any additional
complications for the implementation.

The ARDS algorithms can be characterized
as ‘black-box’ samplers (Chen et al. 2000).

They extend earlier methods like the method of
Box and Muller (1958), the adaptive direction
sampling algorithms proposed by Gilks et al.
(1994), the mixed integration method by Van
Dijk et al. (1985), and the spherical integration
method by Monahan and Genz (1997).

In this paper we briefly outline the com-
putational steps of ARDS. For an in-depth
discussion, the reader is referred to Bauwens et
al. (2003).

Overview of ARDS

Most simulation algorithms for posterior dis-
tributions generate random drawings in the
original parameter space. However, several re-
searchers advocate to simulate in a transformed
space, where the simulation is more efficient in
some sense. For example, if there exists strong
correlation between two random variables, an
orthogonalizing transformation reduces serial
dependence in a Gibbs sampling scheme. The
ARDS algorithms rely on this general idea.
They are based on a composite transformation
to radial coordinates. For expository purpose,
we treat this transformation explicitly in two
steps. The first step is an m-dimensional
location-scale transformation from x to y,
which aims at standardizing the candidate
density with respect to the location, scale and
correlations of the target density. The second
step is a radial transformation, which maps an
m-dimensional point y to an (m−1)-dimensional
direction η and a one-dimensional distance ρ.
After applying this composite transformation
to a candidate drawing x from the normal
distribution (or any other elliptically-contoured
distribution), the direction η is evaluated by
either an MH step or an importance sampling
step. Next, a new distance ρ is generated,
conditional on the direction η, from the exact
target density by means of the numerical inverse
transformation method. Finally, the resulting
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direction and distance are transformed to the
original space by inverting the composite radial
transformation. This procedure is repeated in
many iterations.

The ARDS algorithms have a natural inter-
pretation. Basically, in one iteration, first a
direction η, which uniquely determines a line
in the m-dimensional original parameter space,
is generated from an elliptically-contoured
candidate density. This line is either accepted
or rejected in an MH step, or it is assigned an
importance weight. Next, a distance ρ, which
uniquely determines the position of one point
on the line, is directly generated from the target

distribution. As sampling on any given line
mimics exactly the target density, ARDS should
result in robust Monte Carlo estimates. We
refer to the MH variant of ARDS as adaptive
radial-based Metropolis-Hastings sampling
(ARMHS), while we refer to the importance
sampling variant as adaptive radial-based
importance sampling (ARIS).

In ARDS, an adaptive procedure is con-
sidered to generate more efficient directions,
with higher acceptance rates or a more uniform
weight distribution. In this adaptive procedure,
the location and covariance matrix of the
candidate density are updated by replacing
them by their Monte Carlo estimates. These
Monte Carlo estimates are obtained from a
previous run of the algorithm. So, ARDS is
adaptive in the sense that it aims to improve
the approximation of the candidate distribution
to the target distribution by considering several
sampling rounds.

The radial transformation

The radial transformation is at the heart of
the ARDS algorithms. In a general form, the
radial transformation from y to (ρ, η) may be
characterized by its inverse transformation

y1 = ρ h1(η1, . . . , ηm−1),

... (1)

ym = ρ hm(η1, . . . , ηm−1),

where h(η) = (h1(η), . . . , hm(η)) are differ-
entiable functions, see for example Muirhead
(1982, Section 1.5). The radial transformation
maps the Cartesian coordinates y to a position
h(η) on the unit circle and a stretching factor ρ
which further determines the position of y given
h(η). It turns out that ARDS can be applied to
any transformation satisfying (1).

A well-known special case of the general
transformation described above is the two-
dimensional polar transformation from y ∈ R2
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Figure 1: The relationship between Cartesian
coordinates and polar coordinates in the two-
dimensional case.

to (ρ, η) ∈ R+ × (0, 2π). Figure 1 illustrates
the relationship between Cartesian coordinates
and polar coordinates. A feature of the polar
transformation is that ρ ∈ R+, implying that
the direction η only defines one half of a line,
and not an entire line. However, in ARDS
the distances ρ are sampled from the target
density on entire lines, so that information from
the whole target density is considered given a
direction η. Two other drawbacks of using the
polar transformation in ARDS are the following.
Firstly, it is possible but not straightforward to
generalize it to m > 2 dimensions. Secondly,
the transformation is computationally not very
efficient. We therefore propose a transformation
which satisfies (1), is easy to generalize to more
than two dimensions, is more efficient than
the polar transformation, and which is such
that the direction η does define an entire line.
The proposed transformation maps y to m − 1
Cartesian coordinates on the unit circle and a
stretching factor ρ. This is illustrated in Figure
2 for the two-dimensional case. More details are
given in Bauwens et al. (2003, Subsection 2.1).

One iteration of ARDS

An iteration of ARDS consists of 5 steps.
Step 1 of the i-th iteration: A candidate

drawing x∗

i
is generated from a normal candi-

date distribution with mean µ and covariance
matrix Σ.

Step 2: This drawing x∗

i
is transformed

to a candidate direction η∗

i
and a candidate

distance ρ∗

i
by applying the composite radial

transformation.
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Figure 2: The relationship between Cartesian
coordinates and radial coordinates in the two-
dimensional case.

Step 3: An MH step or an importance sam-
pling is applied to η∗

i
, resulting in the direction

ηi. In ARMHS, this direction is given by

ηi =

{

η∗

i
with probability α(ηi−1, η

∗

i
)

ηi−1 with probability 1 − α(ηi−1, η
∗

i
)
(2)

for some acceptance probability α(ηi−1, η
∗

i
),

which is defined below. In ARIS, this direction
ηi = η∗

i
is assigned importance weight w(ηi),

which is also defined below.
Step 4: A distance ρi is sampled from p(ρ|ηi),

which is the target density of ρ conditional on
the generated direction ηi.

Step 5: The resulting direction ηi and distance
ρi are transformed to the original parameter
space by inverting the composite radial trans-
formation. This yields one effective realization
xi from the target density.

It can be shown that the acceptance probabil-
ity in the MH step of ARMHS is given by

α(ηi−1, η
∗

i
) = min

{

w(η∗

i
)

w(ηi−1)
, 1

}

, (3)

where the importance function w(η), which is
also considered in ARIS, is defined by

w(η) =

∫

∞

−∞

κ(ρ|η) dρ, (4)

and where κ(ρ|η) is a kernel of the conditional
target density p(ρ|η), which is defined by

p(ρ|η) ∝ κ(ρ|η) = p(x(ρ, η|µ,Σ)) |ρm−1|. (5)

Here x(ρ, η|µ,Σ) results from inverting the
composite radial transformation for the argu-
ments ρ and η.

In order to obtain the direction ηi, both in
ARMHS and ARIS, the importance function
w(η) has to be evaluated. Its value can be
computed using a deterministic integration rule,
such as the adaptive Simpson’s rule. As the
density of ρ conditional on η is proportional
to the integrand of w(η), evaluations of this
integrand, gathered during the deterministic
integration phase, can be used to construct a
grid for p(ρ|η). So, using the numerical inverse
transformation method, sampling the distance
ρ conditional on the direction η is straightfor-
ward. We note that one can capitalize on the
constructed grid for p(ρ|η) by generating several
drawings of ρ for each drawing of η.

The integral w(η) has infinite integration
bounds. However, in practice finite integration
bounds have to be considered for its numerical
evaluation. In order to obtain these finite
bounds, we propose that minimum and maxi-
mum values are imposed for each parameter in
the original parameter space. It is often possible
to find sensible bounds, such that practically
all density mass of ρ given η is included, by
either theory and/or common sense. We note
that our method is in particular suited to deal
with multiple linear inequality restrictions,
which sometimes have to be imposed on the
parameters. These linear restrictions reduce the
feasible region and hence the integration interval
of w(η), while they do not imply any additional
complications for the implementation of ARDS.
So, linear restrictions on the parameter space
do not put a burden on the algorithm, but they
might result in an efficiency gain.

An illustration

In order to illustrate the performance of ARDS,
we consider an 8-dimensional trimodal mixture
distribution featuring skewness, some high
correlations (varying between -0.95 and 0.90)
and multimodality. It is given by

p1 N(µ1,Σ1) + p2 N(µ2,Σ2) + p3 N(µ3,Σ3),

where

µ1 = 1.5 (1, 2, 3, 4, 5, 6, 7, 8)′,

µ2 = 1.5 (5, 6, 7, 8, 1, 2, 3, 4)′,

µ3 = 1.5 (8, 7, 6, 5, 4, 3, 2, 1)′,

Σ1 = Σ2 = Σ3 = I8,

p1 = p2 = p3 = 1/3.

The marginal densities1 for the eight compo-
nents are displayed in Figure 3. It is seen

1These marginal densities are constructed using
250000 directly sampled drawings.



that the target distribution is ill behaved. We
estimate the first and second moments for this
distribution using ARMHS, ARIS, MH and
importance sampling. This is done in several
sampling rounds. In our adaptive approach,
additional sampling rounds are considered as
long as the Mahalanobis distance is larger than
0.02. However, in the experiment we allow for
at most 8 rounds. In any round, ARMHS and
ARIS draw 5000 directions and 5 distances per
direction, resulting in a sample of size 25000. In
order to make the computing times comparable,
the MH and importance sampling algorithms
are allowed to collect a larger sample of size
250000. The mean for the initial candidate
density is set at 6 for all eight components.
Furthermore, the scale is taken sufficiently
large so that MH and importance sampling can
initially cover the whole target density.

The estimates of the location and scaling pa-
rameters are reported in Table 1. Furthermore,
the table also contains the “true” parameter
values, obtained from 250000 directly sampled
drawings. It is seen that ARMHS and ARIS do
a very good job, whereas MH and importance
sampling fail. ARIS only needs 5 rounds to
reach convergence (according to our definition),
whereas the other three algorithms need the
maximum number of rounds. However, after
eight rounds also ARMHS has converged,
whereas the other two algorithms clearly have
not, see the reported Mahalanobis distances
which concern the final sampling round. We
note that the average computing times per
sampling round for the four algorithms are
comparable.

The acceptance rates for ARMHS and MH
(reported for the final round) show a large
difference in values. Furthermore, it is seen
that the moment estimates, obtained from
importance sampling, are almost completely
determined (99.7%) by only 5% of the drawings.
In contrast, in ARIS the 5% most influential
drawings only have 29.2% of the total weight.

Finally, in order to see whether the favorable
results are merely a coincidence, we repeat the
experiment above 10 times for different seeds of
the random number generator. The results are
robust: ARMHS succeeds 9 times and ARIS
even succeeds for all 10 repetitions, whereas
MH and importance sampling only have success
rates of 30%, making the outcome of the latter
two methods very unreliable.
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Figure 3: Marginal densities for the trimodal mixture distribution.

Table 1: Sampling results for the trimodal mixture distribution.

bounds ARDS initialization ARMHS ARIS MH IS true

min. max. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

x1 -20.00 20.00 6.00 10.00 7.03 4.41 7.07 4.40 1.83 0.04 7.44 0.11 7.00 4.42

x2 -20.00 20.00 6.00 10.00 7.54 3.38 7.52 3.43 2.57 0.04 8.10 0.15 7.50 3.40

x3 -20.00 20.00 6.00 10.00 8.03 2.73 7.98 2.70 4.09 0.35 10.21 0.08 8.00 2.74

x4 -20.00 20.00 6.00 10.00 8.54 2.70 8.47 2.73 6.01 0.39 11.21 0.40 8.50 2.74

x5 -20.00 20.00 6.00 10.00 4.99 2.71 5.06 2.70 6.13 0.45 2.96 0.91 5.00 2.74

x6 -20.00 20.00 6.00 10.00 5.44 2.77 5.49 2.72 8.91 0.62 2.14 0.61 5.50 2.74

x7 -20.00 20.00 6.00 10.00 6.07 3.38 5.96 3.41 10.21 0.32 4.24 0.48 6.00 3.40

x8 -20.00 20.00 6.00 10.00 6.48 4.39 6.44 4.46 12.01 1.18 5.14 0.85 6.50 4.42

drawings per iteration (η × ρ) 5000×5 5000×5 250000 250000

number of iterations 8 5 8 8

average time per iteration (in s) 112.9 82.0 110.4 93.9

Mahalanobis distance 0.01 0.01 1.57 10.68

acceptance rate (in %) 27.8 0.1

5% most influential weights (in %) 29.2 99.7


