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Traditionally volatility is viewed as a measure of variability, or risk, of an underlying asset.

However recently investors began to look at volatility from a different angle. It happened

due to emergence of a market for new derivative instruments - variance swaps. In this paper

first we introduse the general idea of the volatility trading using variance swaps. Then we

describe valuation and hedging methodology for vanilla variance swaps as well as for the

3-rd generation volatility derivatives: gamma swaps, corridor variance swaps, conditional

variance swaps. Finally we show the results of the performance investigation of one of the

most popular volatility strategies - dispersion trading. The strategy was implemented using

variance swaps on DAX and its constituents during the 5-years period from 2004 to 2008.
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1 Introduction

Traditionally volatility is viewed as a measure of variability, or risk, of an underlying asset.

However recently investors have begun to look at volatility from a different angle, variance

swaps have been created.

The first variance swap contracts were traded in late 1998, but it was only after the devel-

opment of the replication argument using a portfolio of vanilla options that variance swaps

became really popular. In a relatively short period of time these over-the-counter (OTC)

derivatives developed from simple contracts on future variance to more sophisticated prod-

ucts. Recently we have been able to observe the emergence of 3G volatility derivatives:

gamma swaps, corridor variance swaps, conditional variance swaps and options on realised

variance.

Constant development of volatility instruments and improvement in their liquidity allows for

volatility trading almost as easily as traditional stocks and bonds. Initially traded OTC, now

the number of securities having volatility as underlying are available on exchanges. Thus the

variance swaps idea is reflected in volatility indices, also called ”fear” indices. These indices

are often used as a benchmark of equity market risk and contain option market expectations

on future volatility. Among those are VIX – the Chicago Board Options Exchange (CBOE)

index on the volatility of S&P 500, VSTOXX on Dow Jones EURO STOXX 50 volatility,

VDAX – on the volatility of DAX. These volatility indices represent the theoretical prices

of one-month variance swaps on the corresponding index. They are calculated daily and on

an intraday basis by the exchange from the listed option prices. Also, recently exchanges

started offering derivative products, based on these volatility indices – options and futures.

2 Volatility trading with variance swaps

Variance swap is a forward contract that at maturity pays the difference between realised

variance σ2
R (floating leg) and predefined strike K2

var (fixed leg) multiplied by notional Nvar.
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(σ2
R −K2

var) ·Nvar (1)

When the contract expires the realised variance σ2
R can be measured in different ways, since

there is no formally defined market convention. Usually variance swap contracts define a

formula of a final realised volatility σR. It is a square root of annualized variance of daily

log-returns of an underlying over a swap’s maturity calculated in percentage terms:

σR =

√√√√252

T

T∑
t=1

(
log

St

St−1

)2

· 100 (2)

There are two ways to express the variance swap notional: variance notional and vega

notional. Variance notional Nvar shows the dollar amount of profit (loss) from difference in

one point between the realised variance σ2
R and the strike K2

var. But since market participants

usually think in terms of volatility, vega notional Nvega turns out to be a more intuitive

measure. It shows the profit or loss from 1% change in volatility. The two measures are

interdependent and can substitute each other:

Nvega = Nvar · 2Kvar (3)

Let us consider an example: an investor takes a long position in variance swap with variance

notional Nvar = 2500. If Kvar is 20% (K2
var = 400) and the subsequent variance realised

over the course of the year is (15%)2 (quoted as σ2
R = 225), the investor will make a loss:

Loss = Nvar · (σ2
R −K2

var) = 2500 · (400− 225) = 437500

Marking-to-market of a variance swap is straightforward. If an investor wishes to close a

variance swap position at some point t before maturity, he needs to define a value of the

swap between inception 0 and maturity T . Here the additivity property of variance is used.

The variance at maturity σ2
R,(0,T ) is just a time-weighted sum of variance realised before the

valuation point σ2
R,(0,t) and variance still to be realised up to maturity σ2

R,(t,T ). Since the

later is unknown yet, we use its estimate K2
var,(t,T ). The value of the variance swap (per unit

of variance notional) at time t is therefore:

3



T−1
{
tσ2

R,(0,t) − (T − t)K2
var,(t,T )

}
−K2

var,(0,T ) (4)

3 Replication and hedging of variance swaps

The strike K2
var of a variance swap is determined at inception. The realised variance σ2

R,

on the contrary, is calculated at expiry (2). Similar to any forward contract, the future

payoff of a variance swap (1) has zero initial value, or K2
var = E[σ2

R]. Thus the variance

swap pricing problem consists in finding the fair value of K2
var which is the expected future

realised variance.

To achieve this, one needs to construct a trading strategy that captures the realised variance

over the swap’s maturity. The cost of implementing this strategy will be the fair value of

the future realised variance.

One of the ways of taking a position in future volatility is trading a delta-hedged option.

The P&L from delta-hedging (also called hedging error) generated from buying and holding

a vanilla option up to maturity and continuously delta-hedging it, captures the realised

volatility over the holding period.

Some assumptions are needed:

• the existence of futures market with delivery dates T ′ ≥ T

• the existence of European futures options market, for these options all strikes are

available (market is complete)

• continuous trading is possible

• zero risk-free interest rate (r = 0)

• the price of the underlying futures contract Ft following a diffusion process with no

jumps:
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dFt

Ft

= µtdt+ σtdWt (5)

We assume that the investor does not know the volatility process σt, but believes that the

future volatility equals σimp, the implied volatility prevailing at that time on the market. He

purchases a claim (for example a call option) with σimp. The terminal value (or payoff) of the

claim is a function of FT . For a call option the payoff is denoted: f(FT ) = (FT −K)+. The

investor can define the value of a claim V (Ft, t) at any time t, given that σimp is predicted

correctly. To delta-hedge the long position in V over [0, T ] the investor holds a dynamic

short position equal to the option’s delta: ∆ = ∂V/∂Ft. If his volatility expectations are

correct, then at time t for a delta-neutral portfolio the following relationship holds:

Θ = −1

2
σ2

impF
2
t Γ (6)

subject to terminal condition:

V (FT , T ) = f(FT ) (7)

Θ = ∂V/∂t is called the option’s theta or time decay and Γ = ∂2V/∂F 2
t is the option’s

gamma. Equation (6) shows how the option’s value decays in time (Θ) depending on con-

vexity (Γ).

Delta-hedging of V generates the terminal wealth:

P&L∆ = −V (F0, 0, σimp)−
∫ T

0

∆dFt + V (FT , T ) (8)

which consists of the purchase price of the option V (F0, 0, σimp), P&L from delta-hedging at

constant implied volatility σimp and final pay-off of the option V (FT , T ).

Applying Itô’s lemma to some function f(Ft) of the underlying process specified in (5) gives:
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f(FT ) = f(F0) +

∫ T

0

∂f(Ft)

∂Ft

dFt +
1

2

∫ T

0

F 2
t σ

2
t

∂2f(Ft)

∂F 2
t

dt+

∫ T

0

∂f(Ft)

∂t
dt (9)

For f(Ft) = V (Ft, t, σt) we therefore obtain:

V (FT , T ) = V (F0, 0, σimp) +

∫ T

0

∆dFt +
1

2

∫ T

0

F 2
t Γσ2

t dt+

∫ T

0

Θdt (10)

Using relation (6) for (10) gives:

V (FT , T )− V (F0, 0, σimp) =

∫ T

0

∆dFt +
1

2

∫ T

0

F 2
t Γ(σ2

t − σ2
imp)dt (11)

Finally substituting (11) into (8) gives P&L∆ of the delta-hedged option position:

P&L∆ =
1

2

∫ T

0

F 2
t Γ(σ2

t − σ2
imp)dt (12)

Thus buying the option and delta-hedging it generates P&L (or hedging error) equal to

differences between instantaneous realised and implied variance, accrued over time [0, T ]

and weighed by F 2
t Γ/2 (dollar gamma).

However, even though we obtained the volatility exposure, it is path-dependent. To avoid

this one needs to construct a portfolio of options with path-independent P&L or in other

words with dollar gamma insensitive to Ft changes. Figure 1 represents the dollar gammas

of three option portfolios with an equal number of vanilla options (puts or calls) and similar

strikes lying in a range from 20 to 200. Dollar gammas of individual options are shown with

thin lines, the portfolio’s dollar gamma is a bold line.

First, one can observe, that for every individual option dollar gamma reaches its maximum

when the option is ATM and declines with price going deeper out of the money. One can

make a similar observation by looking at the portfolio’s dollar gamma when the constituents

are weighted equally (first picture). However, when we use the alternative weighting scheme

(1/K), the portfolio’s dollar gamma becomes flatter (second picture). Finally by weighting
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Figure 1: Dollar gamma of option portfolio as a function of stock price. Weights are defined:

equally, proportional to 1/K and proportional to 1/K2

options with 1/K2 the portfolio’s dollar gamma becomes parallel to the vertical axis (at least

in 20 – 140 region), which suggests that the dollar gamma is no longer dependent on the Ft

movements.

We have already considered a position in a single option as a bet on volatility. The same can

be done with the portfolio of options. However the obtained exposure is path-dependent.

We need, however the static, path-independent trading position in future volatility. Figures

1, 2 illustrate that by weighting the options’ portfolio proportional to 1/K2 this position can

be achieved. Keeping in mind this intuition we proceed to formal derivations.

Let us consider a payoff function f(Ft):
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Figure 2: Dollar gamma of option portfolio as a function of stock price and maturity. Weights

are defined proportional to 1/K2.

f(Ft) =
2

T

(
log

F0

Ft

+
Ft

F0

− 1

)
(13)

This function is twice differentiable with derivatives:

f ′(Ft) =
2

T

(
1

F0

− 1

Ft

)
(14)

f ′′(Ft) =
2

TF 2
t

(15)

and

f(F0) = 0 (16)

One can give a motivation for the choice of the particular payoff function (13). The first
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term, 2 logF0/TFt, is responsible for the second derivative of the payoff f(Ft) w.r.t. Ft,

or gamma (15). It will cancel out the weighting term in (12) and therefore will eliminate

path-dependence. The second term 2/T (Ft/F0 − 1) guarantees the payoff f(Ft) and will be

non-negative for any positive Ft.

Applying Itô’s lemma to (13) (substituting (13) into (9)) gives the expression for the realised

variance:

1

T

∫ T

0

σ2
t dt =

2

T

(
log

F0

FT

+
FT

F0

− 1

)
− 2

T

∫ T

0

(
1

F0

− 1

Ft

)
dFt (17)

Equation (17) shows that the value of a realised variance for t ∈ [0, T ] is equal to

• a continuously rebalanced futures position that costs nothing to initiate and is easy to

replicate:

2

T

∫ T

0

(
1

F0

− 1

Ft

)
dFt (18)

• a log contract, static position of a contract that pays f(FT ) at expiry and has to be

replicated:

2

T

(
log

F0

FT

+
FT

F0

− 1

)
(19)

Carr and Madan (2002) argue that the market structure assumed above allows for the rep-

resentation of any twice differentiable payoff function f(FT ) in the following way:

f(FT ) = f(k) + f ′(k)
[{

(FT − k)+ − (k − FT )+
}]

+ (20)

+

∫ k

0

f ′′(K)(K − FT )+dK +

∫ ∞
k

f ′′(K)(FT −K)+dK

Applying (20) to payoff (19) with k = F0 gives:

9



log

(
F0

FT

)
+
FT

F0

− 1 =

∫ F0

0

1

K2
(K − FT )+dK +

∫ ∞
F0

1

K2
(FT −K)+dK (21)

Equation (21) represents the payoff of a log contract at maturity f(FT ) as a sum of

• the portfolio of OTM puts (strikes are lower than forward underlying price F0), in-

versely weighted by squared strikes:∫ F0

0

1

K2
(K − FT )+dK (22)

• the portfolio of OTM calls (strikes are higher than forward underlying price F0), in-

versely weighted by squared strikes:∫ ∞
F0

1

K2
(FT −K)+dK (23)

Now coming back to equation (17) we see that in order to obtain a constant exposure to

future realised variance over the period 0 to T the trader should, at inception, buy and hold

the portfolio of puts (22) and calls (23). In addition he has to initiate and roll the futures

position (18).

We are interested in the costs of implementing the strategy. Since the initiation of futures

contract (18) costs nothing, the cost of achieving the strategy will be defined solely by the

portfolio of options. In order to obtain an expectation of a variance, or strike K2
var of a

variance swap at inception, we take a risk-neutral expectation of a future strategy payoff:

K2
var =

2

T
erT

∫ F0

0

1

K2
P0(K)dK +

2

T
erT

∫ ∞
F0

1

K2
C0(K)dK (24)

4 Constructing a replication portfolio in practice

Although we have obtained the theoretical expression for the future realised variance, it is

still not clear how to make a replication in practice. Firstly, in reality the price process is
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Figure 3: Discrete approximation of a log payoff

discrete. Secondly, the range of traded strikes is limited. Because of this the value of the

replicating portfolio usually underestimates the true value of a log contract.

One of the solutions is to make a discrete approximation of the payoff (19). This approach

was introduced by Derman et al. (1998).

Taking the logarithmic payoff function, whose initial value should be equal to the weighted

portfolio of puts and calls (21), we make a piecewise linear approximation. This approach

helps to define how many options of each strike investor should purchase for the replication

portfolio.

Figure 3 shows the logarithmic payoff (dashed line) and the payoff of the replicating portfolio

(solid line). Each linear segment on the graph represents the payoff of an option with strikes

available for calculation. The slope of this linear segment will define the amount of options

of this strike to be put in the portfolio.

For example, for the call option with strike K0 the slope of the segment would be:
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w(K0) =
f(K1,c)− f(K0)

K1,c −K0

(25)

where K1,c is the second closest call strike.

The slope of the next linear segment, between K1,c and K2,c, defines the amount of options

with strike K1,c. It is given by

w(K1,c) =
f(K2,c)− f(K1,c)

K2,c −K1,c

− w(K0) (26)

Finally for the portfolio of n calls the number of calls with strike Kn,c:

w(Kn,c) =
f(Kn+1,c)− f(Kn,c)

Kn+1,c −Kn,c

−
n−1∑
i=0

w(Ki,c) (27)

The left part of the log payoff is replicated by the combination of puts. For the portfolio of

m puts the weight of a put with strike Km,p is defined by

w(Km,p) =
f(Km+1,p)− f(Km,p)

Km,p −Km+1,p

−
m−1∑
j=0

w(Kj,p) (28)

Thus constructing the portfolio of European options with the weights defined by (27) and

(28) we replicate the log payoff and obtain value of the future realised variance.

Assuming that the portfolio of options with narrowly spaced strikes can produce a good

piecewise linear approximation of a log payoff, there is still the problem of capturing the

”tails” of the payoff. Figure 3 illustrates the effect of a limited strike range on replication

results. Implied volatility is assumed to be constant for all strikes (σimp = 25%). Strikes

are evenly distributed one point apart. The strike range changes from 20 to 1000. With

increasing numbers of options the replicating results approach the ”true value” which equals

to σimp in this example. For higher maturities one needs a broader strike range than for

lower maturities to obtain the value close to actual implied volatility.

Table 1 shows the example of the variance swap replication. The spot price of S∗ = 300,

riskless interest rate r = 0, maturity of the swap is one year T = 1, strike range is from
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Strike IV BS Price Type of option Weight Share value

200 0.13 0.01 Put 0.0003 0.0000

210 0.14 0.06 Put 0.0002 0.0000

220 0.15 0.23 Put 0.0002 0.0000

230 0.15 0.68 Put 0.0002 0.0001

240 0.16 1.59 Put 0.0002 0.0003

250 0.17 3.16 Put 0.0002 0.0005

260 0.17 5.55 Put 0.0001 0.0008

270 0.18 8.83 Put 0.0001 0.0012

280 0.19 13.02 Put 0.0001 0.0017

290 0.19 18.06 Put 0.0001 0.0021

300 0.20 23.90 Call 0.0000 0.0001

310 0.21 23.52 Call 0.0001 0.0014

320 0.21 20.10 Call 0.0001 0.0021

330 0.22 17.26 Call 0.0001 0.0017

340 0.23 14.91 Call 0.0001 0.0014

350 0.23 12.96 Call 0.0001 0.0011

360 0.24 11.34 Call 0.0001 0.0009

370 0.25 9.99 Call 0.0001 0.0008

380 0.25 8.87 Call 0.0001 0.0006

390 0.26 7.93 Call 0.0001 0.0005

400 0.27 7.14 Call 0.0001 0.0005

Kvar 0.1894

Table 1: Replication of a variance swaps strike by portfolio of puts and calls.

200 to 400. The implied volatility is 20% ATM and changes linearly with the strike (for

simplicity no smile is assumed).The weight of each option is defined by (27) and (28).
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Figure 4: Dependence of replicated realised variance level on the strike range and maturity

of the swap

5 3G volatility products

If we need to capture some particular properties of realised variance, standard variance swaps

may not be sufficient. For instance by taking asymmetric bets on variance. Therefore, there

are other types of swaps introduced on the market, which constitute the third-generation of

volatility products. Among them are: gamma swaps, corridor variance swaps and conditional

variance swaps.

By modifying the floating leg of a standard variance swap (2) with a weight process wt we

obtain a generalized variance swap.

σ2
R =

252

T

T∑
t=1

wt

(
log

Ft

Ft−1

)2

(29)

Now, depending on the chosen wt we obtain different types of variance swaps:
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Thus wt = 1 defines a standard variance swap.

5.1 Corridor and conditional variance swaps

The weight wt = w(Ft) = IFt∈C defines a corridor variance swap with corridor C. I is the

indicator function, which is equal to one if the price of the underlying asset Ft is in corridor

C and zero otherwise.

If Ft moves sideways, but stays inside C, then the corridor swap’s strike is large, because

some part of volatility is accrued each day up to maturity. However if the underlying moves

outside C, less volatility is accrued resulting the strike to be low. Thus corridor variance

swaps on highly volatile assets with narrow corridors have strikes K2
C lower than usual

variance swap strike K2
var.

Corridor variance swaps admit model-free replication in which the trader holds statically the

portfolio of puts and calls with strikes within the corridor C. In this case we consider the

payoff function with the underlying Ft in corridor C = [A,B]

f(Ft) =
2

T

(
log

F0

Ft

+
Ft

F0

− 1

)
IFt∈[A,B] (30)

The strike of a corridor variance swap is thus replicated by

K2
[A,B] =

2

T
erT

∫ F0

A

1

K2
P0(K)dK +

2

T
erT

∫ B

F0

1

K2
C0(K)dK (31)

C = [0, B] gives a downward variance swap, C = [A,∞] - an upward variance swap.

Since in practice not all the strikes K ∈ (0,∞) are available on the market, corridor variance

swaps can arise from the imperfect variance replication, when just strikes K ∈ [A,B] are

taken to the portfolio.

Similarly to the corridor, realised variance of conditional variance swap is accrued only if the

price of the underlying asset in the corridor C. However the accrued variance is averaged

15



over the number of days, at which Ft was in the corridor (T ) rather than total number of

days to expiry T . Thus ceteris paribus the strike of a conditional variance swap K2
C,cond is

smaller or equal to the strike of a corridor variance swap K2
C .

5.2 Gamma swaps

As it is shown in Table 2, a standard variance swap has constant dollar gamma and vega. It

means that the value of a standard swap is insensitive to Ft changes. However it might be

necessary, for instance, to reduce the volatility exposure when the underlying price drops.

Or in other words, it might be convenient to have a derivative with variance vega and dollar

gamma, that adjust with the price of the underlying.

The weight wt = w(Ft) = Ft/F0 defines a price-weighted variance swap or gamma swap.

At maturity the buyer receives the realised variance weighted to each t, proportional to the

underlying price Ft. Thus the investor obtains path-dependent exposure to the variance of

Ft. One of the common gamma swap applications is equity dispersion trading, where the

volatility of a basket is traded against the volatility of basket constituents.

The realised variance paid at expiry of a gamma swap is defined by

σgamma =

√√√√252

T

T∑
t=1

Ft

F0

(
log

St

St−1

)2

· 100 (32)

One can replicate a gamma swap similarly to a standard variance swap, by using the following

payoff function:

f(Ft) =
2

T

(
Ft

F0

log
Ft

F0

− Ft

F0

+ 1

)
(33)

f ′(Ft) =
2

TF0

log
Ft

F0

(34)
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f ′′(Ft) =
2

TF0Ft

(35)

f(F0) = 0 (36)

Applying Itô’s formula (9) to (33) gives

1

T

∫ T

0

Ft

F0

σ2
t dt =

2

T

(
FT

F0

log
FT

F0

− FT

F0

+ 1

)
− 2

TF0

∫ T

0

log
Ft

F0

dFt (37)

Equation (37) shows that accrued realised variance weighted each t by the value of the

underlying is decomposed into payoff (33), evaluated at T , and a continuously rebalanced

futures position
2

TF0

∫ T

0

log
Ft

F0

dFt with zero value at t = 0. Then applying the Carr and

Madan argument (20) to the payoff (33) at T we obtain the t = 0 strike of a gamma swap:

K2
gamma =

2

TF0

e2rT

∫ F0

0

1

K
P0(K)dK +

2

TF0

e2rT

∫ ∞
F0

1

K
C0(K)dK (38)

Thus gamma swap can be replicated by the portfolio of puts and calls weighted by the inverse

of strike 1/K and rolling the futures position.

6 Equity correlation (dispersion) trading with variance

swaps

6.1 Idea of dispersion trading

The risk of the portfolio (or basket of assets) can be measured by the variance (or alter-

natively standard deviation) of its return. Portfolio variance can be calculated using the

following formula:
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√
τ
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∂V
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√
τ φ(d1)Ft

√
τ

2στ

T

2στ

T

Ft
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∂V

∂σ2
t

Ftφ(d1)

2σ
√
τ

Ftφ(d1)

2σ
√
τ

τ

T

τ

T

Ft
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Table 2: Variance swap greeks.

σ2
Basket =

n∑
i=1

w2
i σ

2
i + 2

n∑
i=1

n∑
j=i+1

wiwjσiσjρij (39)

where σi - standard deviation of the return of an i-th constituent (also called volatility), wi -

weight of an i-th constituent in the basket, ρij - correlation coefficient between the i-th and

the j-th constituent.

Let’s take an arbitrary market index. We know the index value historical development

as well as price development of each of index constituent. Using this information we can

calculate the historical index and constituents’ volatility using, for instance, formula ( 2).

The constituent weights (market values or current stock prices, depending on the index) are
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also known to us. The only parameter to be defined are correlation coefficients of every

pair of constituents ρij. For simplicity assume ρij = const for any pair of i, j and call this

parameter ρ - average index correlation, or dispersion. Then having index volatility σindex

and volatility of each constituent σi, we can express the average index correlation:

ρ =
σ2

index −
∑n

i=1w
2
i σ

2
i

2
∑n

i=1

∑n
j=i+1 wiwjσiσj

(40)

Hence it appears the idea of dispersion trading, consisting of buying the volatility of index

constituents according to their weight in the index and selling the volatility of the index.

Corresponding positions in variances can be taken by buying (selling) variance swaps.

By going short index variance and long variance of index constituents we go short dispersion,

or enter the direct dispersion strategy.

Why can this strategy be attractive for investors? This is due to the fact that index op-

tions appear to be more expensive than their theoretical Black-Scholes prices, in other words

investors will pay too much for realised variance on the variance swap contract expiry. How-

ever, in the case of single equity options one observes no volatility distortion. This is reflected

in the shape of implied volatility smile. There is growing empirical evidence that the index

option skew tends to be steeper then the skew of the individual stock option. For instance,

this fact has been studied in Bakshi et al. (2003) on example of the S &P500 and Branger

and Schlag (2004) for the German stock index DAX.

This empirical observation is used in dispersion trading. The most widespread dispersion

strategy, direct strategy, is a long position in constituents’ variances and short in variance

of the index. This strategy should have, on average, positive payoffs. Hoverer under some

market conditions it is profitable to enter the trade in the opposite direction. This will be

called - the inverse dispersion strategy.

The payoff of the direct dispersion strategy is a sum of variance swap payoffs of each of i-th

constituent

(σ2
R,i −K2

var,i) ·Ni (41)

and of the short position in index swap
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(K2
var,index − σ2

R,index) ·Nindex (42)

where

Ni = Nindex · wi (43)

The payoff of the overall strategy is:

Nindex ·

(
n∑

i=1

wiσ
2
R,i − σ2

R,Index

)
−ResidualStrike (44)

The residual strike

ResidualStrike = Nindex ·

(
n∑

i=1

wiK
2
var,i −K2

var,Index

)
(45)

is defined by using methodology introduced before, by means of replication portfolios of

vanilla OTM options on index and all index constituents.

However when implementing this kind of strategy in practice investors can face a number of

problems. Firstly, for indices with a large number of constituent stocks (such as S&P 500) it

would be problematic to initiate a large number of variance swap contracts. This is due to the

fact that the market for some variance swaps did not reach the required liquidity. Secondly,

there is still the problem of hedging vega-exposure created by these swaps. It means a bank

should not only virtually value (use for replication purposes), but also physically acquire

and hold the positions in portfolio of replicating options. These options in turn require

dynamic delta-hedging. Therefore, a large variance swap trade (as for example in case of

S&P 500) requires additional human capital from the bank and can be associated with large

transaction costs. The remedy would be to make a stock selection and to form the offsetting

variance portfolio only from a part of the index constituents.
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It has already been mentioned that, sometimes the payoff of the strategy could be negative,

in order words sometimes it is more profitable to buy index volatility and sell volatility of

constituents. So the procedure which could help in decisions about trade direction may also

improve overall profitability.

If we summarize, the success of the volatility dispersion strategy lies in correct determining:

• the direction of the strategy

• the constituents for the offsetting variance basket

The next sections will present the results of implementing the dispersion trading strategy

on DAX and DAX constituents’ variances. First we implement its classical variant meaning

short position in index variance against long positions in variances of all 30 constituents.

Then the changes to the basic strategy discussed above are implemented and the profitability

of these improvements measured.

7 Implementation of the dispersion strategy on DAX

Index

In this section we investigate the performance of a dispersion trading strategy over the 5

years period from January 2004 to December 2008. The dispersion trade was initiated at the

beginning of every moth over the examined period. Each time the 1-month variance swaps

on DAX and constituents were traded.

First we implement the basic dispersion strategy, which shows on average positive payoffs

over the examined period (Figure 5).Descriptive statistics shows that the average payoff of

the strategy is positive, but close to zero. Therefore in the next section several improvements

are introdused.

It was discussed already that index options are usually overestimated (which is not the

case for single equity options), the future volatility implied by index options will be higher
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Figure 5: Average implied correlation (dotted), average realized correlation (gray), payoff of

the direct dispersion strategy (solid black)

than realized volatility meaning that the direct dispersion strategy is on average profitable.

However the reverse scenario may also take place. Therefore it is necessary to define whether

to enter a direct dispersion (short index variance, long constituents variance) or reverse

dispersion (long index variance and short constituents’ variances) strategy.

This can be done by making a forecast of the future volatility with GARCH (1,1) model

and multiplying the result by 1.1, which was implemented in the paper of Deng (2008)

for S&P500 dispersion strategy. If the variance predicted by GARCH is higher than the

variance implied by the option market, one should enter the reverse dispersion trade (long

index variance and short constituents variances).After using the GARCH volatility estimate

the average payoff increased by 41.7% (Table 3).
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Strategy Mean Median Std. Dev. Skewness Kurtosis J-B Probability

Basic 0.032 0.067 0.242 0.157 2.694 0.480 0.786

Improved 0.077 0.096 0.232 -0.188 3.012 0.354 0.838

Table 3: Comparison of basic and improved dispersion strategy payoffs for the period from

January 2004 to December 2008

The second improvement serves to decrease transaction cost and cope with market illiquidity.

In order to decrease the number of stocks in the offsetting portfolio the Principal Components

Analysis (PCA) can be implemented. Using PCA we select the most ”effective” constituent

stocks, which help to capture the most of index variance variation. This procedure allowed

us to decrease the number of offsetting index constituents from 30 to 10. According to our

results, the 1-st PC explains on average 50% of DAX variability. Thereafter each next PC

adds only 2-3% to the explained index variability, so it is difficult to distinguish the first

several that explain together 90%. If we take stocks, highly correlated only with the 1-st

PC, we can significantly increase the offsetting portfolio’s variance, because by excluding 20

stocks from the portfolio we make it less diversified, and therefore more risky.

However it was shown that one still can obtain reasonable results after using the PCA

procedure. Thus in the paper of Deng (2008) it was successfully applied to S&P500.

(1) (2) (5) (6) (7) (3) (4) (8) (? ) (9) (10) (? )

23



References

[1] Strasser E. Bossu, S. and R. Guichard. Just what you need to know about variance

swaps. Equity Derivatives Investor Marketing, Quantitative Research and Development,

JPMorgan - London, 2005.

[2] L. Canina and S. Figlewski. The informational content of implied volatility. The Review

of Financial Studies, 6(3):659–681, 1993.

[3] Geman H. Madan D. B. Carr, P. and M. Yor. Pricing options on realized variance. EFA

2005 Moscow Meetings Paper, 2005.

[4] Madan D. Carr, P. Towards a theory of volatility trading. Volatility, pages 417–427,

2002.

[5] P. Carr and R. Lee. Realized volatility and variance: Options via swaps. RISK, 20(5):76–

83, 2007.

[6] P. Carr and R. Lee. Robust replication of volatility derivatives. PRMIA award for Best

Paper in Derivatives, MFA 2008 Annual Meeting, 2008.

[7] P. Carr and L. Wu. A tale of two indices. The Journal of Derivatives, pages 13–29,

2006.

[8] N. Chriss and W. Moroko. Market risk for volatility and variance swaps. RISK, 1999.

[9] C. Neil and W. Morokoff. Realised volatility and variance: options via swaps. RISK,

2007.

[10] C. L. Sulima. Volatility and variance swaps. Capital Market News, 2001.

24



 
 
 
 

SFB 649 Discussion Paper Series 2010 

 
For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 

001 "Volatility Investing with Variance Swaps" by Wolfgang Karl Härdle and 
Elena Silyakova, January 2010. 

 
 


	Frontpage 001.pdf
	SFB649DP2010-001_ges.pdf
	DP_2010-001.pdf
	Endpage 001.pdf


