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Abstract

The Muller-Satterthwaite Theorem (Muller and Satterthwaite, 1977) establishes the equiva-

lence between Maskin monotonicity and strategy-proofness, two cornerstone conditions for the

decentralization of social choice rules. We consider a general model that covers public goods

economies as in Muller and Satterthwaite (1977) as well as private goods economies. For private

goods economies we use a weaker condition than Maskin monotonicity that we call unilateral

monotonicity. We introduce two easy-to-check domain conditions which separately guaran-

tee that (i) unilateral/Maskin monotonicity implies strategy-proofness (Theorem 1) and (ii)

strategy-proofness implies unilateral/Maskin monotonicity (Theorem 2). We introduce and dis-

cuss various classical single-peaked domains and show which of the domain conditions they

satisfy (see Propositions 1 and 2 and an overview in Table 1). As a by-product of our analysis,

we obtain some extensions of the Muller-Satterthwaite Theorem as summarized in Theorem 3.

We also discuss some new “Muller-Satterthwaite domains” (e.g., Proposition 3).
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1 Introduction

The Muller-Satterthwaite Theorem (Muller and Satterthwaite, 1977) states the equivalence between

strategy-proofness and Maskin monotonicity, two cornerstone conditions for the decentralization of

(social choice) rules.1 As a consequence of the Muller-Satterthwaite Theorem, the class of Maskin

monotonic rules is fairly small: only dictatorial rules are strategy-proof.2 However, it is by now well-

understood that the aforementioned theorem strongly relies on the assumption of an unrestricted

domain of strict preferences –what we refer to as the Arrovian domain. In many situations though, it

is natural to work with more structured preference domains. For instance, consider a group of agents

who have to choose the location of a public facility on their street. A natural domain restriction

is to assume that agents have single-peaked preferences over the possible locations (Black, 1948).

We know that the class of strategy-proof rules for this type of economies is large (Moulin, 1980);

and a natural question is whether the same conclusion holds for the class of Maskin monotonic

rules. So, despite the equivalence provided by the Muller-Satterthwaite Theorem, it seems that

for many domains and models of interest, the logical relation between Maskin monotonicity and

strategy-proofness is not fully understood. In addition, notice that in public goods models, a rule

selects an alternative at each preference profile, whereas in private goods models, an allocation will

be selected –i.e., a bundle for each agent. An allocation is an object whose nature is different from

an alternative in several aspects. For instance, the bundle that an agent (or a group of agents)

receives at some preference profile may be conditional on the shape of preferences of some other

agents. Rules that have this feature violate the well-known non-bossiness condition (Satterthwaite

and Sonnenschein, 1981). Because of this difference between the two models, it is not clear whether

there is a “direct” logical relation between Maskin monotonicity and strategy-proofness in private

goods models.

Our contribution: Our goal is to provide a better understanding of the logical relation between

monotonicity conditions and strategy-proofness. We consider a model that covers public goods

as well as private goods economies.3 In addition to Maskin monotonicity, we introduce a weaker

condition called unilateral monotonicity which pertains to unilateral changes in preferences.4 The

use of this condition is pertinent when we refer to private goods models.

We introduce two easy-to-check domain conditions. Condition R1 is a domain richness condi-

tion, whereas Condition R2 is a domain restriction condition. A rule defined on a domain satisfying

1Both conditions are central in the mechanism design literature. Strategy-proofness is a necessary condition for
implementation in dominant strategies, whereas Maskin monotonicity is a necessary condition for implementation in
Nash equilibrium.

2The Muller-Satterthwaite Theorem has as well-known corollary the Gibbard–Satterthwaite Theorem (Gibbard,
1973; Satterthwaite, 1975): any efficient and strategy-proof rule defined on a domain of unrestricted linear orderings
must be dictatorial.

3For private goods economies, our model covers both the infinitely divisible goods case as well as the indivisible
goods case.

4As far as we know, unilateral monotonicity was first introduced by Takamiya (2001).
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Condition R1 is unilaterally monotonic/Maskin monotonic if it is strategy-proof (Theorem 1 and

Corollary 1). Examples of rich domains include the Arrovian domain as well as various single-peaked

(single-plateaued) domains, but exclude domains in which preferences are both single-peaked and

symmetric. More generally, the domain of convex star-shaped preferences satisfies Condition R1

(Proposition 1). Next, for public goods models, Condition R2 entails that strategy-proofness implies

Maskin monotonicity; and for private goods models, strategy-proofness implies unilateral mono-

tonicity (Theorem 2). Indeed, in private goods models, there exist rules that are strategy-proof but

not Maskin monotonic. As argued above, an important difference between public goods and private

goods models turns out to be the existence of rules that violate non-bossiness in the latter.5 As a

consequence, for several domains, the “set-inclusion connection” between the class of Maskin mono-

tonic rules and the class of strategy proof rules may be lost for private goods models.6 However,

when Condition R2 is satisfied, a logical relation between strategy-proofness and Maskin mono-

tonicity can be recovered thanks to non-bossiness: strategy-proofness and non-bossiness together

imply Maskin monotonicity (Corollary 2). Examples of domains satisfying Condition R2 include

the Arrovian domain as well as some (symmetric) single-peaked (single-plateaued) preference do-

mains but exclude larger domains like the single-peaked preference domain.7 More generally, any

convex norm induced preference domain satisfies Condition R2 (Proposition 2).

Next we come to the Muller-Satterthwaite Theorem and its extensions. As a by-product of our

results, we obtain an extended version of the Muller-Satterthwaite Theorem that applies to the

model at hand (Theorem 3). A straightforward corollary is the standard version of the theorem

(Muller and Satterthwaite, 1977) for the public goods case, along with a new and direct proof.

We then discuss some new “Muller-Satterthwaite domains” of interest (Proposition 3). This shows

that the conclusion of the Muller-Satterthwaite Theorem can also spread to restricted domains.

Relation to the literature: The investigation of the relation between monotonicity conditions

and strategy-proofness is not new. A seminal paper dealing with the relation between Maskin

monotonicity and strategy-proofness is Dasgupta et al. (1979). They introduce a domain richness

condition and prove that any Maskin monotonic rule defined on a rich domain is strategy-proof.

More recently, Takamiya (2001, 2003) studies the relation between coalition strategy-proofness

and Maskin monotonicity for a broad class of economies with indivisible goods. Takamiya (2007)

generalizes the results obtained in his former two papers. Finally, in a paper independent of ours,

Berga and Moreno (2009) study the relation between strategy-proofness, Maskin monotonicity, and

non-bossiness for the single-peaked and single-plateaued domain for the provision of a pure public

good.

5For preference domains satisfying Condition R2, unilateral monotonicity and non-bossiness imply Maskin mono-
tonicity (Lemma 1).

6For example, in private goods models, the symmetric single-peaked domain admits rules that are strategy-proof
but not Maskin monotonic, as well as rules that are Maskin monotonic but not strategy-proof.

7However, the domain of strict single-peaked preferences satisfies Condition R2. In fact, any domain composed
only of strict preference relations satisfies Condition R2.
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In addition to Dasgupta et al. (1979), domain richness conditions are used in papers close

to ours, Fleurbaey and Maniquet (1997) and Le Breton and Zaporozhets (2009). Note that the

richness condition (Condition R1) that we introduce differs from the conditions uncovered in the

aforementioned papers, and it does not imply any “cross-profile” requirements. We discuss in the

Appendix the logical relations between the latter conditions and our Condition R1.

The plan of the paper is the following. In Section 2, we introduce a general model that en-

compasses public goods as well as private goods economies, and we present the definitions and

preference domains necessary for the paper. In Section 3, we define our two domain conditions and

we prove our main results. In Section 4 we check both these conditions for well-known preference

domains. We also provide an extended version of the Muller-Satterthwaite Theorem that applies to

the model at hand. Finally, in the Appendix, we compare our domain richness condition (Condition

R1) to the ones introduced in related papers.

2 The Model, Key Properties, and Preference Domains

2.1 The Model

Let N = {1, . . . , n} be a set of agents. Let A = A1 × . . .×An be a set of alternatives. We assume

that for all i, j ∈ N , Ai = Aj. Furthermore, we assume that if Ai ⊆ Rm and |Ai| = ∞, then Ai is

convex. Let x = (x1, . . . , xn) ∈ A be an alternative and 1 ≡ (1, . . . , 1) ∈ Rn. If alternative x is such

that for all i, j ∈ N , xi = xj = α, then we denote x = α1. Next, let F ⊆ A be the set of feasible

alternatives. If for all x ∈ F there exists α such that x = α1, then the set of feasible alternatives

models a public goods economy. Otherwise, we model an economy with at least one private goods

component. Hence, our model encompasses public and private goods economies.

To fix ideas, let us give two examples. It will be clear from these examples that given the set

A of alternatives, the set F of feasible alternatives fully determines whether we are working with

a public or a private goods model. Note that the Cartesian product notation we use for the set of

alternatives is for notational convenience only; none of our results require it.

Example 1. Let A = {a1, . . . , an} × . . . × {a1, . . . , an}. Suppose that the agents have to choose

one candidate out of the set {a1, . . . , an} of possible candidates. Then, F = {x ∈ A : for all i, j ∈

N, xi = xj}. On the other hand, if agents have to allocate the set of indivisible objects or tasks

{a1, . . . , an} among themselves, then F = {x ∈ A : for all i, j ∈ N, xi 6= xj}. ⋄

Example 2. Let A = [0, 1]× . . .× [0, 1]. Suppose that the agents have to choose a single point in

the interval [0,1] that everyone will consume without rivalry, e.g., a public facility on a street (see

Moulin, 1980). Then, F = {x ∈ A : for all i, j ∈ N, xi = xj}. On the other hand, if agents have to

choose a division of one unit of an infinitely divisible good among themselves (see Sprumont, 1991),
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then feasibility is determined by the size of the resource and F = {x ∈ A : for all i ∈ N, xi ≥

0 and
∑

i∈N xi = 1}. ⋄

For all i ∈ N , preferences are represented by a complete, reflexive, and transitive binary relation

Ri over Ai. As usual, for all x, y ∈ A, xi Ri yi is interpreted as “i weakly prefers x to y”, xi Pi yi as

“i strictly prefers x to y”, and xi Ii yi as “i is indifferent between x and y”. Whenever our model

captures a private goods component, we assume that agents only care about their own consumption.

Therefore, for several of our results, we use both notations x Ri y and xi Ri yi. This is done for

convenience only and it should cause no confusion.

For all i ∈ N , let Ri = R be a set of preferences on Ai. Thus, we assume that all agents have

the same preference domain R. Let RN denote the set of preference profiles R = (Ri)i∈N such that

for all i ∈ N , Ri ∈ R.

For all i ∈ N , all preference relations Ri ∈ R, and all alternatives x ∈ A, the lower contour set

of Ri at x is L(Ri, x) ≡ {y ∈ A : xRi y}; the strict lower contour set of Ri at x is SL(Ri, x) ≡ {y ∈

A : x Pi y}; the upper contour set of Ri at x is U(Ri, x) ≡ {y ∈ A : y Ri x}; and the strict upper

contour set of Ri at x is SU(Ri, x) ≡ {y ∈ A : y Pi x}.

Let A, F , and R be given. Then, a rule ϕ is a function that assigns to every preference profile

R ∈ RN a feasible alternative ϕ(R) ∈ F .

2.2 Properties of Rules

We discuss in turn two central properties of the mechanism design literature. First, strategy-

proofness is an incentive property which requires that no agent ever benefits from misrepresenting

his preference relation. In game theoretical terms, a rule is strategy-proof if in its associated

direct revelation game form, it is a weakly dominant strategy for each agent to announce his true

preference relation. By the revelation principle, strategy-proofness is a necessary condition for

dominant strategy implementability.

For agent i ∈ N , preference profile R ∈ RN , and preference relation R′
i ∈ R, we obtain

preference profile (R′
i, R−i) by replacing Ri at R by R′

i.

Strategy-Proofness: A rule ϕ is strategy-proof if for all R ∈ RN , all i ∈ N , and all R′
i ∈ R,

ϕ(R) Ri ϕ(R
′
i, R−i).

Next, Maskin monotonicity is a property which requires the robustness (or invariance) of a rule

with respect to specific preference changes. A rule ϕ is Maskin monotonic if an alternative x that

is chosen at preference profile R remains chosen at a preference profile R′ at which x is considered

(weakly) better by all agents. An important result of the mechanism design literature is that Maskin

monotonicity is a necessary condition for Nash implementability of a rule (see Maskin, 1977, 1999).

Apart from its importance for Nash implementability, we consider Maskin monotonicity to be an

appealing property in itself.
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In order to introduce Maskin monotonicity, we first define monotonic transformations. Loosely

speaking, for any alternative x and any preference profile R, if at a preference profile R′ all agents

i ∈ N consider alternative x to be (weakly) better, then R′ is a monotonic transformation of R

at x. For preferences Ri, R
′
i ∈ R and alternative x ∈ A, R′

i is a monotonic transformation of Ri

at x if L(Ri, x) ⊆ L(R′
i, x). By MT (Ri, x) we denote the set of all monotonic transformations

of Ri at x and by MT (R,x) we denote the set of all monotonic transformations of R at x, i.e.,

R′ ∈ MT (R,x) if for all i ∈ N , R′
i ∈ MT (Ri, x).

Maskin Monotonicity: A rule ϕ is Maskin monotonic if for all R,R′ ∈ RN , ϕ(R) = x and

R′ ∈ MT (R,x) imply ϕ(R′) = x.

For one of our “private goods results” we use the following weaker monotonicity property: a

rule ϕ is unilaterally Maskin monotonic if given that alternative x is chosen at preference profile

R, agent i’s component xi remains chosen at a unilateral deviation profile R′ = (R′
i, R−i) at which

agent i considers xi to be (weakly) better.

Unilateral Monotonicity: A rule ϕ is unilaterally monotonic if for all R ∈ RN , all i ∈ N , and

all R′
i ∈ R, ϕ(R) = x and R′

i ∈ MT (Ri, x) imply ϕi(R
′
i, R−i) = xi.

Note that Maskin monotonicity implies unilateral monotonicity. To be more precise, for public

goods economies, Maskin monotonicity and unilateral monotonicity are equivalent and for private

goods economies Maskin monotonicity implies unilateral monotonicity.

We close this section by introducing non-bossiness (in allocations) (see Satterthwaite and Son-

nenschein, 1981), an auxiliary property that we use for some of our “private goods results”. The

property states that by changing his preference relation, an agent cannot change components of

the allocation for the other agents without affecting his own. Obviously, this property is vacuous

in a public goods model.

Non-Bossiness: A rule ϕ is non-bossy if for all R ∈ RN , all i ∈ N , and all R′
i ∈ R, ϕi(R) =

ϕi(R
′
i, R−i) implies that ϕ(R) = ϕ(R′

i, R−i).

For private goods models, Maskin monotonicity implies non-bossiness under our richness domain

condition (Condition R1), while the converse is not true. On the other hand, the conjunction

of strategy-proofness and non-bossiness is equivalent to Maskin monotonicity under our domain

restriction condition (Condition R2). These relations will be made clear in Section 3.

2.3 Well-Known Preference Domains

2.3.1 The Arrovian Domain

We refer to the unrestricted domain of strict preferences RA as the Arrovian domain, i.e., RA is

such that for all i ∈ N , all Ri ∈ R, and all xi, yi ∈ Ai, xi Ri yi implies xi Pi yi or xi = yi.
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Figure 1: Set-relationships between one-dimensional single-peaked domains

2.3.2 One-Dimensional Single-Peaked and Single-Plateaued Preferences

Here we introduce the general single-peaked preference domain and several of its well-known sub-

domains. We start by defining the smallest domain we consider, the symmetric single-peaked pref-

erence domain introduced in Border and Jordan (1983). The domain of symmetric single-peaked

preferences is induced by the Euclidean norm ‖·‖E .

Symmetric Single-Peaked (Euclidean) Preferences on R: Preferences Ri on Ai ⊆ R are

symmetrically single-peaked (or Euclidean) if there exists a point p(Ri) ∈ Ai such that for all

xi, yi ∈ Ai, xi Ri yi if and only if ‖p(Ri)− xi‖E ≤ ‖p(Ri)− yi‖E .

By relaxing the symmetry assumption, one obtains the domain of single-peaked preferences

introduced in Black (1948) and Moulin (1980).

Single-Peaked Preferences on R: Preferences Ri on Ai ⊆ R are single-peaked if there exists a

point p(Ri) ∈ Ai such that for all xi, yi ∈ Ai satisfying either yi < xi ≤ p(Ri) or p(Ri) ≤ xi < yi,

xi Pi yi.

We now introduce two superdomains of the single-peaked preference domain. First, consider

again the location of a public facility on a street. As in Example 2, we assume that agents’

preferences are single-peaked, but that in addition they have an outside option so that if the public

facility is too far away, they will not use it. This class of preferences is introduced and analyzed by

Cantala (2004). Here we give an ordinal representation of Cantala’s (2004) class of preferences.

Single-Peaked Preferences on R with an Outside Option: Preferences Ri on Ai ⊆ R are

single-peaked with an outside option if there exists an interval [a, b] ⊆ Ai and a point p(Ri) ∈ (a, b)

such that (i) Ri is single-peaked on [a, b]; (ii) for all xi ∈ (a, b) and yi ∈ Ai \ [a, b], xi Pi yi; and (iii)

for all xi, yi ∈ Ai \ (a, b), xi Ii yi.

The second superdomain of the single-peaked domain frequently encountered in the literature

(see Moulin, 1984) is the so-called single-plateaued domain. For such a domain, we allow agents to

have an interval of best points, so that instead of the peak we have a plateau.
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Single-Plateaued Preferences on R: Preferences Ri on Ai ⊆ R are single-plateaued if there

exists an interval [p(Ri), p(Ri)] ⊆ Ai such that (i) for all xi, yi ∈ [p(Ri), p(Ri)], xi Ii yi; (ii) for all

xi ∈ [p(Ri), p(Ri)] and all yi ∈ Ai \ [p(Ri), p(Ri)], xi Pi yi; and (iii) for all xi, yi ∈ Ai \ [p(Ri), p(Ri)]

satisfying either yi < xi ≤ p(Ri) or p(Ri) ≤ xi < yi, xi Pi yi.

Note that the definition above only allows for a unique plateau of best alternatives. Dasgupta,

Hammond, and Maskin (1979), DHM for short, consider a more general single-plateaued domain

(which they call the single-peaked domain) by allowing for additional plateaus left and right from

the “top-plateau”.

DHM Single-Plateaued Preferences on R: Preferences Ri on Ai ⊆ R are DHM single-plateaued

if there exists an interval [p(Ri), p(Ri)] ⊆ Ai such that (i) for all xi, yi ∈ [p(Ri), p(Ri)], xiIiyi; (ii) for

all xi ∈ [p(Ri), p(Ri)] and all yi ∈ Ai\[p(Ri), p(Ri)], xiPiyi; and (iii) for all xi, yi ∈ Ai\[p(Ri), p(Ri)]

satisfying either yi < xi ≤ p(Ri) or p(Ri) ≤ xi < yi, then xi Ri yi.

2.3.3 Higher-Dimensional Single-Peaked Preferences

There are various extensions of the one-dimensional single-peaked domains to higher dimensions.

We start again by defining the smallest domains first. The first two domains are extensions of the

one-dimensional symmetric single-peaked preferences introduced before (see Border and Jordan,

1983).

Symmetric Single-Peaked (Euclidean) Preferences on Rm: Preferences Ri on Ai ⊆ Rm

are symmetrically single-peaked (or Euclidean) if there exists a point p(Ri) ∈ Ai such that for all

xi, yi ∈ Ai, xi Ri yi if and only if ‖p(Ri)− xi‖E ≤ ‖p(Ri)− yi‖E .

Note that for symmetric single-peaked preferences, upper contour sets are spheres. The following

domain loosely speaking extends the symmetric preference domain to also allow for ellipsoids as

upper contour sets (with axes that are parallel to the coordinate axes).

Separable Quadratic Preferences on Rm: Preferences Ri on Ai ⊆ Rm are separable quadratic

if there exists a point p(Ri) ∈ Ai, α1, . . . , αn > 0, and a utility representation ui of Ri such that

for all xi ∈ Ai, ui(xi) = −
∑m

k=1 (αk(xi,k − pk(Ri))
2. Note that if for all i, j ∈ N , αi = αj , then

preferences are symmetric.

In order to introduce the next domain, we need some definitions and notation. We define the con-

vex hull of two points xi, yi ∈ Rm by conv(xi, yi) = {zi ∈ Rm : there exists t ∈ [0, 1] such that zi =

txi + (1− t)yi}. Let ‖ · ‖ be a strictly convex norm, i.e.,
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(i) for all xi ∈ Rm, ‖xi‖ ≥ 0, (positivity)

(ii) for all xi ∈ Rm, ‖xi‖ = 0 if and only if xi = 0, (positive definiteness)

(iii) for all xi ∈ Rm and α ∈ R, ‖αxi‖ = |α| ‖xi‖, (positive homogeneity)

(iv) for all xi, yi ∈ Rm, ‖xi‖+ ‖yi‖ ≥ ‖xi + yi‖, (triangular inequality)

(v) for all xi, yi, zi ∈ Rm, (strict convexity)

‖xi − yi‖+ ‖yi − zi‖ = ‖xi − zi‖ if and only if yi ∈ conv(xi, zi).

Note that the requirement of strict convexity means that any sphere of positive radius does not

contain any line segment that is not reduced to a point. Our definition of strict convexity for norms

is based on Papadopoulos (2005, Proposition 7.2.1), which also lists various equivalent conditions

for the strict convexity of a norm. For instance, the so-called ℓp norm ‖ ·‖p on Rm is strictly convex

for any p > 1 (see Papadopoulos, 2005, Proposition 7.3.2).8

The following domain includes the two previously introduced domains.

Preferences on Rm that are Induced by a Strictly Convex Norm ‖ · ‖: Preferences Ri on

Ai ⊆ Rm are induced by a strictly convex norm ‖ · ‖ if there exists a point p(Ri) ∈ Ai such that for

all xi, yi ∈ Ai, xi Ri yi if and only if ‖p(Ri)− xi‖ ≤ ‖p(Ri)− yi‖.

Finally, we introduce the most general higher-dimensional single-peaked domain that we are

aware of (see Border and Jordan, 1983).

Star-Shaped Preferences on Rm: Preferences Ri on Ai ⊆ Rm are star-shaped if there exists a

point p(Ri) ∈ Ai such that for all xi ∈ Ai\{p(Ri)} and all λ ∈ (0, 1), p(Ri)Pi [λxi+(1−λ)p(Ri)]Pixi.

If in addition to star-shapedness we require convexity of preferences, we obtain the following

class of preferences.9

Convex Star-Shaped Preferences on Rm: Preferences Ri on Ai ⊆ Rm are convex star-shaped

if they are star-shaped and for all x ∈ A, U(Ri, x) is a convex set.

3 Monotonicity and Strategy-Proofness

3.1 Rich Domains: Monotonicity implies Strategy-Proofness

For i ∈ N and Ri ∈ R, by b(Ri) we denote agent i’s best alternatives in A, i.e., b(Ri) ≡ {x ∈ A :

for all y ∈ A, x Ri y}. To establish our first result, we introduce the following domain “richness”

condition.

8For p > 1 and x ∈ Rm, ‖x‖p =
(

∑m

j=1
|xj |

) 1

p

.
9Preferences Ri on Ai are convex if for all xi, yi ∈ Ai and λ ∈ [0, 1], xi Ri yi implies λxi + (1− λ)yi Ri yi.

9



Condition R1: Let i ∈ N , Ri ∈ R, and x, y ∈ A be such that y Pi x. Then, there exists R′
i ∈ R

such that y ∈ b(R′
i) and L(Ri, x) ⊆ L(R′

i, x).
10

Remark 1. Note that Condition R1 is different from Dasgupta et al.’s (1979) or Fleurbaey and

Maniquet’s (1997) richness conditions. Our condition involves one preference relation Ri while the

other two richness conditions are based on conditions involving two preference relations Ri and R′
i.

The domain richness condition closest to ours seems to be the one introduced by Le Breton and

Zaporozhets (2009). We briefly state and discuss the relation between these richness conditions in

more detail in Appendix A. △

Examples of rich domains satisfying Condition R1 are the Arrovian domain, the single-peaked

preference domain on R, and more generally the convex star-shaped preference domain on Rm (see

Proposition 1). We will check if the domains introduced above satisfy Condition R1 in Section 4

and give a short survey in Table 1.

Theorem 1. Let A and F be given. Let R satisfy Condition R1 and let rule ϕ be defined on RN .

If ϕ is unilaterally monotonic, then it is strategy-proof.

Proof. Suppose ϕ is unilaterally monotonic, but not strategy-proof. Then, there exist R ∈ RN ,

i ∈ N , and R̄i ∈ R such that ϕ(R̄i, R−i) Pi ϕ(R). Denote ϕ(R) = x and ϕ(R̄i, R−i) = y. Hence,

yi Pi xi and by Condition R1 there exists R′
i ∈ R such that y ∈ b(R′

i) and L(Ri, x) ⊆ L(R′
i, x).

Thus, R′
i ∈ MT (R̄i, y) and R′

i ∈ MT (Ri, x). By unilateral monotonicity, ϕi(R
′
i, R−i) = yi and

ϕi(R
′
i, R−i) = xi. Hence, xi = yi; contradicting our assumption that yi Pi xi.

Corollary 1. Let A and F be given. Let R satisfy Condition R1 and let rule ϕ be defined on RN .

If ϕ is Maskin monotonic, then it is strategy-proof.

We demonstrate for the public as well as for the private goods case that strategy-proofness does

not necessarily imply unilateral/Maskin monotonicity. For both examples, we use the domain of

single-peaked preferences, which satisfies Condition R1 (this follows from Proposition 1).

Example 3. We consider Moulin’s (1980) model as introduced in Example 2. Thus, for all i ∈

N,Ai = [0, 1] and agents’ preferences are single-peaked on R. Let c1, c2 ∈ [0, 1], c1 < c2, and k ∈ N .

Then, for all R ∈ RN ,

ϕ(R) ≡

{

c11 if c1 Pk c2 or if c1 Ik c2 and p(Rk) ∈ Q;

c21 if c2 Pk c1 or if c1 Ik c2 and p(Rk) 6∈ Q.

It is easy to see that ϕ is strategy-proof, but not unilateral/Maskin monotonic. ⋄

10Note that in the proof of Theorem 1 and in all results concerning single-peaked domains, we could strengthen
Condition R1 by requiring L(Ri, x) = L(R′

i, x) instead of L(Ri, x) ⊆ L(R′
i, x).

10



Example 4. We consider Sprumont’s (1991) model as introduced in Example 2. Thus, for all i ∈ N ,

Ai = [0, 1] and F = {x ∈ A : for all i ∈ N, xi ≥ 0 and
∑

i∈N xi = 1}. Note that in this model,

a two agents division problem corresponds to a two agents location problem in Moulin’s (1980)

model. Hence, by adapting the rule of Example 3, we can construct a strategy-proof rule ϕ′ that

is not unilaterally/Maskin monotonic for Sprumont’s (1991) model as follows. Let c1, c2 ∈ [0, 1],

c1 < c2, k ∈ N , and ϕ be the rule defined in Example 3. Let j ∈ N \ {k}. Then for all R ∈ RN ,

ϕ′
k(R) = ϕk(R), ϕ′

j(R) = 1− ϕk(R), and for all i ∈ N \ {j, k}, ϕ′
i(R) = 0. ⋄

3.2 Restricted Domains: Strategy-Proofness implies Monotonicity

To establish our second result, we introduce the following domain “restriction” condition.

Condition R2: Let i ∈ N , Ri, R
′
i ∈ R, and x ∈ A be such that R′

i ∈ MT (Ri, x) and R′
i 6= Ri.

Then, for all y ∈ L(Ri, x) ∩ U(R′
i, x), yi = xi.

Examples of restricted domains satisfying Condition R2 are the Arrovian domain (and any

domain containing only strict preference relations), the symmetric single-peaked preference domain

on R, the separable quadratic preference domain on Rm, and more generally any strictly convex

norm induced preference domain (see Proposition 2). We will check if the domains introduced

above satisfy Condition R2 in Section 4 and give a short survey in Table 1.

Theorem 2. Let A and F be given. Let R satisfy Condition R2 and let rule ϕ be defined on RN .

(a) If ϕ is strategy-proof, then it is unilaterally monotonic.

(b) Let F determine a public goods economy. If ϕ is strategy-proof, then it is Maskin monotonic.

Proof. (a) Suppose ϕ is strategy-proof, but not unilaterally monotonic. Then, there exist R ∈ RN ,

i ∈ N , and R′
i ∈ R such that ϕ(R) = x, R′

i ∈ MT (Ri, x), and ϕi(R
′
i, R−i) = yi 6= xi. By strategy-

proofness, x Ri y and y R′
i x. Thus, y ∈ L(Ri, x) and y ∈ U(R′

i, x). Hence, y ∈ L(Ri, x) ∩ U(R′
i, x)

and yi 6= xi; a contradiction with Condition R2.

(b) Next, assume that F determines a public goods economy and suppose ϕ is strategy-proof,

but not Maskin monotonic. Then, there exist R,R′ ∈ RN such that R′ ∈ MT (R,x), ϕ(R) = x

and ϕ(R′) = y 6= x. Assume that R′ = (R′
i, R−i) for some i ∈ N . By strategy-proofness, x Ri y

and y R′
i x. Thus, y ∈ L(Ri, x) and y ∈ U(R′

i, x). By the public goods assumption, xi 6= yi. Hence,

y ∈ L(Ri, x)∩U(R′
i, x) and yi 6= xi; a contradiction with Condition R2. Hence, ϕ(R) = ϕ(R′). The

proof that for all R,R′ ∈ RN such that R′ ∈ MT (R,x), ϕ(R) = ϕ(R′) follows from an iteration of

the previous arguments (by switching agents one by one from Ri to R′
i).

We demonstrate for the public as well as for the private goods case that unilateral/Maskin

monotonicity does not necessarily imply strategy-proofness. For both examples, we use the domain

of symmetric single-peaked preferences, which satisfies Condition R2 (this follows from Proposi-

tion 2).
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Example 5. We consider Moulin’s (1980) model as described in Examples 2 and 3, but with

symmetric single-peaked preferences. Let c1, c2 ∈ [0, 1], c1 < c2, and k ∈ N . Then, for all R ∈ RN ,

ϕ(R) ≡

{

p(Rk)1 if p(Rk) ≤ c1;

c21 otherwise.

It is easy to see that ϕ is unilaterally/Maskin monotonic, but not strategy-proof. ⋄

Example 6. We consider Sprumont’s (1991) model discussed in Examples 2 and 4, but with

symmetric single-peaked preferences. Similarly as in Example 4, we can adapt the rule of Example 5

to construct a unilaterally/Maskin monotonic rule ϕ′ that is not strategy-proof. Let c1, c2 ∈ [0, 1],

c1 < c2, k ∈ N , and ϕ be the rule defined in Example 5. Let j ∈ N \ {k}. Then for all R ∈ RN ,

ϕ′
k(R) = ϕk(R), ϕ′

j(R) = 1− ϕk(R), and for all i ∈ N \ {j, k}, ϕ′
i(R) = 0. ⋄

The following example demonstrates that for private goods economies Condition R2 and

strategy-proofness do not necessarily imply Maskin monotonicity (hence, Theorem 2 (b) cannot

be extended to private goods economies). We use the domain of separable quadratic single-peaked

preferences, which satisfies Condition R2 (this follows from Proposition 2).

Example 7. We consider a two-dimensional extension of Sprumont’s (1991) model with separable

quadratic preferences. Then, for all i ∈ N , Ai = [0, 1]2 and F = {x ∈ A : for all i ∈ N, xi ≥

01 and
∑

i∈N xi = 11}. Without loss of generality let N = {1, 2, 3}. Let c ∈ [0, 1)2. We define ϕ

as follows. First, for all R ∈ RN , ϕ1(R) = c. Second, if R1 is symmetric, then ϕ2(R) = 11− c and

ϕ3(R) = 0, and otherwise, ϕ2(R) = 0 and ϕ3(R) = 11− c. It is easy to see that ϕ is strategy-proof,

unilaterally monotonic, but not Maskin monotonic. ⋄

Theorem 2 as well as Examples 6 and 7 show an important difference between public goods

and private goods models. For the former, and for almost all the domains we cover11, the class of

Maskin monotonic rules is either a subset, a superset, or coincides with the class of strategy-proof

rules (see Table 1). In the private goods case, this “set-inclusion connection” between the class

of Maskin monotonic rules and the class of strategy-proof rules is lost for some domains, e.g., the

symmetric single-peaked domain for which there exist rules that are Maskin monotonic but not

strategy-proof, as well as rules that are strategy-proof but not Maskin monotonic.

A key feature of Example 7 is that ϕ violates non-bossiness. With the next lemma we can show

easily that Theorem 2 (b) can be extended to private goods economies if non-bossiness is added.

Lemma 1. Let A and F be given. Let rule ϕ be defined on RN . If ϕ is unilaterally monotonic

and non-bossy, then it is Maskin monotonic.

11Exception made of the star-shaped domain.
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Proof. Suppose that ϕ is unilaterally monotonic and non-bossy. Let R ∈ RN , i ∈ N , and R′
i ∈ R

be such that ϕ(R) = x and R′
i ∈ MT (Ri, x). Then, by unilateral monotonicity, ϕi(R

′
i, R−i) = xi.

Hence, by non-bossiness, ϕ(R′
i, R−i) = x. The proof that for all R,R′ ∈ RN such that R′ ∈

MT (R,x), ϕ(R) = ϕ(R′) = x follows from an iteration of the previous arguments (by switching

agents one by one from Ri to R′
i). Hence, ϕ is Maskin monotonic.

Corollary 2. Let A and F be given. Let R satisfy Condition R2 and let rule ϕ be defined on RN .

If ϕ is strategy-proof and non-bossy, then it is Maskin monotonic.

4 Rich Domains, Restricted Domains, and the Muller-

Satterthwaite Theorem

We now analyze which of our domains are rich and which are restricted.

4.1 Condition R1: Rich Domains

It is clear from Examples 5 and 6 that symmetric single-peaked preferences violate Condition R1.

We show below that the convex star-shaped domain is rich. Since the single-peaked preference

domain is the one-dimensional equivalent of (convex) star-shaped preferences, our result implies

that any domain larger than the single-peaked preference domain is also rich – provided that all

preferences in the domain are convex (see Example 8).

Proposition 1. The domain of convex star-shaped preferences satisfies Condition R1.

The following notation for star-shaped preferences is useful in the proof of Proposition 1. Let Ri

be a star-shaped preference relation and assume that xi ∈ Ai \ {p(Ri)}. Then, for all zi ∈ Ai such

that zi Ri xi there exists x
′
i ∈ Ai, x

′
i Ii xi and λ(Ri;xi, zi) ∈ [0, 1] such that zi = λ(Ri;xi, zi)p(Ri)+

(1 − λ(Ri;xi, zi))x
′
i. Note that if λ(Ri;xi, zi) = 0, then zi Ii xi and if λ(Ri;xi, zi) = 1, then

zi = p(Ri) Pi xi.

Proof. Let Ri be a convex star-shaped preference relation and assume that x, y ∈ A such that

y Pi x. In order to verify Condition R1 we construct convex star-shaped preferences R′
i such that

y ∈ b(R′
i) and L(Ri, x) ⊆ L(R′

i, x). If yi = p(Ri) then we are done by choosing R′
i = Ri. Thus, we

assume that yi 6= p(Ri).

Loosely speaking, we construct R′
i by “lifting yi up” to become the peak of a new preference

relation R′
i such that preferences over L(Ri, x) do not change. To be more precise, we construct

preferences R′
i as follows:

(i) yi = p(R′
i), i.e., yi is the peak of R′

i;

(ii) for all z, z′ ∈ L(Ri, x), z Ri z
′ if and only if z R′

i z
′, i.e., preferences on L(Ri, x) do not change;
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(iii) for all z ∈ U(Ri, x) and z′ ∈ SL(Ri, x), zP
′
i z

′, i.e., preferences between U(Ri, x) and SL(Ri, x)

do not change;

(iv) for all z, z′ ∈ U(Ri, x), z R
′
i z

′ if and only if λ(R′
i;xi, zi) ≥ λ(R′

i;xi, z
′
i), i.e., we parameterize

all z, z′ ∈ U(Ri, x) using line segments from the indifference set Ii(Ri, xi) = {x′i ∈ Ai : x
′
i Iixi}

to the peak p(R′
i) = yi and λ(R′

i;xi, ·).

Note that by (i) and (iv), b(R′
i) = {y} and by (ii), L(Ri, x) = L(R′

i, x) (in particular, Ii(Ri, xi) =

Ii(R
′
i, xi)). Next, we prove that convex star-shapedness is preserved by our construction of R′

i

from Ri.

First, we show that star-shapedness is preserved when going from Ri to R′
i. Let w, z ∈ A and

λ ∈ (0, 1) be such that wi, zi ∈ Ai \ {p(R
′
i)} and zi = λyi + (1− λ)wi. We prove that zi P

′
i wi. We

have two cases to consider:

Case 1. w ∈ SL(Ri, x)

Hence, (a) w, z ∈ SL(Ri, x) or (b) [w ∈ SL(Ri, x) and z ∈ U(Ri, x)]. For (a), since yi Pi wi, by

convexity, zi Ri wi. Suppose, by contradiction, that zi Ii wi. Since, yi Pi wi there exists w′ ∈ A

with w′
i Ii wi and such that yi = λ̄p(Ri) + (1 − λ̄)w′

i for some λ̄ ∈ (0, 1). If w′
i = wi or w′

i = zi,

then we are done.12 So suppose that w′
i is distinct from wi and zi. Since zi = λwi + (1− λ)yi and

yi = λ̄p(Ri) + (1− λ̄)w′
i, we obtain

zi = λwi + (1− λ)[λ̄p(Ri) + (1− λ̄)w′
i] = λwi + (1− λ)(1 − λ̄)w′

i + (1− λ)λ̄p(Ri).

Let v ∈ A be such that vi is the following convex combination of wi, w
′
i, and zi:

vi = λwi + (1− λ)(1 − λ̄)w′
i + (1− λ)λ̄zi.

By convexity, vi Ri zi Ii wi Ii w
′
i. Notice that zi − (1− λ)λ̄p(Ri) = vi − (1− λ)λ̄zi. Therefore,

zi =
1

(1 + (1− λ)λ̄)
vi +

(1− λ)λ̄

(1 + (1− λ)λ̄)
p(Ri) = λ̃vi + (1− λ̃)p(Ri)

with λ̃ = 1
(1+(1−λ)λ̄)

∈ (0, 1). Hence, by star-shapedness of Ri, zi Pi vi, contradicting vi Ri zi.

Therefore, zi Pi wi and by the construction of R′
i (see (ii)), it follows that zi P

′
i wi.

For (b), w ∈ SL(Ri, x), z ∈ U(Ri, x), and the construction of R′
i (see (iii)) imply zi P

′
i wi.

Case 2. w ∈ U(Ri, xi)

Hence, by the convex star-shapedness of Ri, zi Pi wi and z ∈ SU(Ri, xi). Thus, λ(R′
i;xi, zi) >

λ(R′
i;xi, wi). Hence, by construction of R′

i (see (iv)), this implies zi P
′
i wi.

Second, we show that convexity is preserved when going from Ri to R′
i. Instead of the standard

definition of convex preferences given in Footnote 9, it is well-known that convexity of preferences

can be defined via the convexity of upper contour sets. Recall that we do not change preferences

on L(Ri, x). An immediate implication is that for each y′ ∈ L(R′
i, x), U(R′

i, y
′) is a convex set.

12If w′
i = wi or w

′
i = zi, then for some λ∗ ∈ (0, 1), zi = λ∗wi + (1− λ∗)p(Ri) and by star-shapedness, zi Pi wi.
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Therefore, to show our claim, we only need to consider upper contour sets for points that are in

SU(Ri, x). Hence, let v,w ∈ SU(R′
i, x), v 6= w, v I ′iw, and α ∈ (0, 1) such that zi = αvi+(1−α)wi.

We have to show that z R′
i v I ′i w. By construction of R′

i (see (iv)), this implies that we have to

prove
λ(R′

i;xi, zi) ≥ λ(R′
i;xi, vi) = λ(R′

i;xi, wi). (1)

Note that v,w ∈ SU(R′
i, x) and v 6= w imply that 1 > λ(R′

i;xi, vi) = λ(R′
i;xi, wi) > 0.

Let ẑi = αv′i+(1−α)w′
i. There exist v

′, w′, z′ ∈ A such that v′iIiw
′
iIiz

′
iIixi (recall that Ii(Ri, xi) =

Ii(R
′
i, xi)), vi = λ(R′

i;xi, vi)yi+(1−λ(R′
i;xi, vi))v

′
i, wi = λ(R′

i;xi, wi)yi+(1−λ(R′
i;xi, wi))w

′
i, and

ẑi = λ(R′
i;xi, ẑi)yi + (1 − λ(R′

i;xi, ẑi))z
′
i. By convexity, ẑ R′

i v
′ I ′i w

′. By construction of R′
i (see

(iv)), λ(R′
i;xi, ẑi) ≥ λ(R′

i;xi, v
′
i) = λ(R′

i;xi, w
′
i) = 0.

Next, we can derive zi = [λ(R′
i;xi, vi) + λ(R′

i;xi, ẑi) − λ(R′
i;xi, vi)λ(R

′
i;xi, ẑi)]yi + [(1 −

λ(R′
i;xi, vi))(1 − λ(R′

i;xi, ẑi))]z
′
i.
13 Since, zi = λ(R′

i;xi, zi)yi + (1 − λ(R′
i;xi, zi))z

′
i, it follows that

λ(R′
i;xi, zi) = λ(R′

i;xi, vi)+λ(R′
i;xi, ẑi)−λ(R′

i;xi, vi)λ(R
′
i;xi, ẑi). Hence, 1 > λ(R′

i;xi, vi) > 0 and

λ(R′
i;xi, ẑi) ≥ 0 imply

⇔ λ(R′
i;xi, ẑi) ≥ λ(R′

i;xi, vi)λ(R
′
i;xi, ẑi)

⇔ λ(R′
i;xi, ẑi)− λ(R′

i;xi, vi)λ(R
′
i;xi, ẑi) ≥ 0

⇔ λ(R′
i;xi, vi) + λ(R′

i;xi, ẑi)− λ(R′
i;xi, vi)λ(R

′
i;xi, ẑi) ≥ λ(R′

i;xi, vi)

⇔ λ(R′
i;xi, zi) ≥ λ(R′

i;xi, vi).

Hence, the desired inequality (1) holds and we have proven convexity of the preference relation

R′
i.

Corollary 3. Let A such that for all i ∈ N , Ai ⊆ Rm and F be given. Let R be the domain of all

convex star-shaped preferences and let rule ϕ be defined on RN . If ϕ is Maskin monotonic, then it

is strategy-proof.

The following example demonstrates that convexity of preferences is a necessary assumption for

star-shaped preferences to satisfy Condition R1.

Example 8. Let A = [0, 1]2 × ... × [0, 1]2 and let R be the domain of star-shaped preferences. In

Figure 2, we depict a preference relation Ri on Ai = R2
+ with peak p(Ri) and with a non-convex

upper contour set at xi ∈ Ai (marked by the indifference curve through xi). It is easy to see that

there does not exist R′
i ∈ R with yi = p(R′

i) and L(Ri, x) ⊆ L(R′
i, x). Indeed, for any such R′

i,

star-shapedness implies that for all z′ ∈ A with z′i = zi, z ∈ SU(R′
i, x) while Condition R1 implies

that z ∈ L(R′
i, x); a contradiction. Thus Condition R1 is violated. ⋄

13For completeness, zi = αvi + (1 − α)wi = α[λ(R′
i;xi, vi)yi + (1 − λ(R′

i;xi, vi))v
′
i] + (1 − α)[λ(R′

i;xi, vi)yi +
(1 − λ(R′

i; xi, vi))w
′
i] = λ(R′

i;xi, vi)yi + (1 − λ(R′
i;xi, vi))[αv

′
i + (1 − α)w′

i] = λ(R′
i; xi, vi)yi + (1 −

λ(R′
i;xi, vi))ẑi = λ(R′

i;xi, vi)yi+(1−λ(R′
i;xi, vi))[λ(R

′
i;xi, ẑi)yi+(1−λ(R′

i;xi, ẑi))z
′
i] = [λ(R′

i;xi, vi)+λ(R′
i; xi, ẑi)−

λ(R′
i;xi, vi)λ(R

′
i;xi, ẑi)]yi + [(1− λ(R′

i;xi, vi))(1− λ(R′
i;xi, ẑi))]z

′
i.
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Figure 2: Star-shaped non-convex preferences that do not satisfy Condition R1

4.2 Condition R2: Restricted Domains

It is clear from Examples 3 and 4 that general single-peaked preferences violate Condition R2. We

show below that all preferences that are induced by a strictly convex norm satisfy R2.

Proposition 2. The domain of preferences that are induced by a strictly convex norm satisfies

Condition R2.14

Proof. Let ‖ · ‖ be a strictly convex norm and Ri, R
′
i be preferences on Ai ⊆ Rm induced by ‖ · ‖.

Furthermore, let x ∈ A be such that R′
i ∈ MT (Ri, x) and R′

i 6= Ri. Note that then p(Ri) 6= p(R′
i).

Let y ∈ L(Ri, x) ∩ U(R′
i, x). Since R′

i ∈ MT (Ri, x), y ∈ L(R′
i, x) ∩ U(R′

i, x). Hence, yi I
′
i xi and

‖p(R′
i)− yi‖ = ‖p(R′

i)− xi‖. (2)

Furthermore, y ∈ L(Ri, x) implies

‖p(Ri)− yi‖ ≥ ‖p(Ri)− xi‖. (3)

Consider line(p(Ri), p(R
′
i)) = {zi ∈ Rm : there exists t ∈ R such that zi = txi + (1 − t)yi}. Then,

there exist two distinct points ẑi, z̃i ∈ line(p(Ri), p(R
′
i)) such that ẑi Ii xi and z̃i Ii xi (possibly

ẑi = xi or z̃i = xi). Note that we can give an orientation to the line such that one of these points is

to the left of p(Ri) and the other is to the right of p(Ri). Without loss of generality, assume that

p(R′
i) and z̃i are to the right of p(Ri). Since R′

i ∈ MT (Ri, x), z̃i Ii xi implies z̃i ∈ L(R′
i, x) and

‖p(R′
i)− z̃i‖ ≥ ‖p(R′

i)− xi‖. (4)

Case 1. p(R′
i) 6∈ conv(p(Ri), z̃i)

Then, ‖p(Ri) − p(R′
i)‖ > ‖p(Ri) − z̃i‖ = ‖p(Ri) − xi‖. Hence, p(R′

i) ∈ L(Ri, x) and by R′
i ∈

MT (Ri, x), p(R
′
i) ∈ L(R′

i, x). Hence, xi = p(R′
i) and by (2), xi = yi.

14Note that then any subdomain satisfies Condition R2 as well.
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Case 2. p(R′
i) ∈ conv(p(Ri), z̃i)

Then, by strict convexity, ‖p(Ri) − z̃i‖ = ‖p(Ri) − p(R′
i)‖ + ‖p(R′

i) − z̃i‖
(4)

≥ ‖p(Ri) − p(R′
i)‖ +

‖p(R′
i) − xi‖

(∗)

≥ ‖p(Ri) − xi‖, where (∗) follows from the triangular inequality. However, since

‖p(Ri) − z̃i‖ = ‖p(Ri) − xi‖, (∗) is an equality and by strict convexity, p(R′
i) ∈ conv(p(Ri), xi).

Hence, xi = z̃i.

If p(R′
i) 6∈ conv(p(Ri), yi), then, by strict convexity, ‖p(Ri)− yi‖ < ‖p(Ri)− p(R′

i)‖+ ‖p(R′
i)−

yi‖
(2)
= ‖p(Ri)−p(R′

i)‖+‖p(R′
i)−xi‖ = ‖p(Ri)−xi‖. Thus, ‖p(Ri)−yi‖ < ‖p(Ri)−xi‖; contradicting

(3). Hence, p(R′
i) ∈ conv(p(Ri), yi). But then, (2) and (3) together imply, xi = yi.

To summarize, we have proven that for any y ∈ L(Ri, x)∩U(R′
i, x), it follows that yi = xi. Hence,

preferences that are induced by a strictly convex norm satisfy Condition R2.

Examples of preferences induced by a strictly convex norm for Ai = Rm are symmetric (Eu-

clidean) and separable quadratic preferences.

Corollary 4. Let A such that for all i ∈ N , Ai ⊆ Rm and F be given. Let R be a domain of

preferences that are induced by a strictly convex norm and let rule ϕ be defined on RN .

(a) If ϕ is strategy-proof, then it is unilaterally monotonic.

(b) Let F determine a public goods economy. If ϕ is strategy-proof, then it is Maskin monotonic.

We provide in Table 1 a summary of the results obtained so far. We now turn our attention to

the Muller-Satterthwaite Theorem and its extensions.

Preference Domain Condition R1 Condition R2

Arrovian preferences Yes Yes

strict single-peaked preferences on R Yes Yes

left-right single-peaked preferences on R Yes Yes

right-left single-peaked preferences on R Yes Yes

symmetric single-peaked (Euclidean) preferences on Rm No Yes

separable quadratic preferences on Rm No Yes

convex norms induced preferences on Rm No Yes

single-peaked preferences on R Yes No

single-peaked preferences on R with an outside option Yes No

single-plateaued preferences on R Yes No

DHM single-plateaued preferences on R Yes No

convex star-shaped preferences on Rm Yes No

star-shaped preferences on Rm No No

Table 1: Preference Domains and Conditions R1 and R2
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4.3 An Extended Muller-Satterthwaite Theorem

To conclude the section, we now state some immediate consequences of Theorems 1 and 2, and

Corollaries 1 and 2.

Theorem 3. An Extension of the Muller-Satterthwaite Theorem

Let A and F be given. Let R satisfy Conditions R1 and R2 and let rule ϕ be defined on RN .

(a) Then, ϕ is unilaterally monotonic if and only if it is strategy-proof.

(b) Let F determine a public goods economy. Then, ϕ is Maskin monotonic if and only if it is

strategy-proof.

(c) Then, ϕ is Maskin monotonic if and only if it is strategy-proof and non-bossy.

Theorem 3 states an extension of the Muller-Satterthwaite Theorem that covers both the public

goods and the private goods case. Items (a) and (c) establish that the only monotonicity condition

equivalent to strategy-proofness in a private goods model is the unilateral monotonicity condition.

As Corollary 2 made clear, for domains satisfying both R1 and R2, only a subset of the set of

strategy-proof rules coincide with the set of Maskin monotonic rules, namely the set of strategy-

proof rules that satisfy non-bossiness. Because non-bossiness is vacuous in public goods models,

item (c) directly implies item (b). The equivalence between Maskin monotonicity and strategy-

proofness as stated in the original version of the Muller-Satterthwaite Theorem can thus be obtained

only for public goods models.

Corollary 5. The Muller-Satterthwaite Theorem

Let A and F be given such that F determines a public goods economy. Let rule ϕ be defined on the

Arrovian domain RA. Then, ϕ is Maskin monotonic if and only if it is strategy-proof.

Next, we show that the conclusion of the Muller-Satterthwaite Theorem is not only limited to

the Arrovian domain; Theorem 3 has bite for various single-peaked preference domains. A first

example is the domain of strict single-peaked preferences on R or the domain of strict single-peaked

preferences defined on a finite set of alternatives. Indeed, preferences being single-peaked implies

Condition R1 and preferences being strict implies Condition R2.

Finally, we introduce a new “Muller-Satterthwaite domain”. Suppose that a public facility, e.g.,

a phone booth is to be located on a street that is very safe on one end of the street and becomes

more and more dangerous when moving towards the other end of the street. Then, it is natural to

assume that agents’ preferences are single-peaked (the phone booth in front of one’s house would

be best) and prefer any location in the safer part of the street to a location in the more dangerous

part of the street. The following preference domain describes the situation when the street is very

safe on its “left side” and becomes more dangerous towards its “right side”.15

15We thank Bernardo Moreno for suggesting this type of preference domain.

18



Left-right single-peaked preferences on R: Preferences Ri on Ai ⊆ R are left-right single-

peaked if Ri is single-peaked on R with peak p(Ri) ∈ Ai and such that for all xi, yi ∈ Ai satisfying

xi ≤ p(Ri) < yi, xi Pi yi.

Note that any left-right single-peaked preference relation is uniquely defined by its peak.

Proposition 3. Left-right single-peaked preferences satisfy Conditions R1 and R2.

Proof. Note that the domain of left-right single-peaked preferences only contains strict preferences

and therefore satisfies Condition R2. In order to verify Condition R1, let Ri be a left-right single-

peaked preference relation and assume that x, y ∈ A such that y Pi x. Consider the left-right

single-peaked preference relation R′
i with p(R′

i) = yi. By the definition of left-right single-peaked

preferences:

(i) if xi > p(Ri), then L(Ri, x) = A ∩ [x,∞) = L(R′
i, x);

(ii) if xi ≤ p(Ri), then xi < yi ≤ p(Ri) and

L(Ri, x) = A ∩ ((−∞, x] ∪ [p(Ri)1,∞)) ⊆ A ∩ ((−∞, x] ∪ [y,∞)) = L(R′
i, x).

Hence, y ∈ b(R′
i) and L(Ri, x) ⊆ L(R′

i, x). Thus, the domain of left-right single-peaked preferences

also satisfies Condition R1.

Similarly, we can define the domain of right-left single-peaked preferences on R by assuming

that the street is very safe on its “right side” and becomes more dangerous towards its “left side”.

A Appendix: Richness Conditions

First, we introduce Dasgupta et al.’s (1979) richness condition. A domain is (Dasgupta, Hammond,

and Maskin) rich if it satisfies the following condition.

Condition DHM: Let Ri, R
′
i ∈ R and a, b ∈ A such that (a) aRi b ⇒ aR′

i b and (b) aPi b ⇒ aP ′
i b.

Then, there exists R′′
i ∈ R such that (i) R′′

i ∈ MT (Ri, a) and (ii) R′′
i ∈ MT (R′

i, b).

Maskin (1985) called the Dasgupta et al. (1979) rich domain monotonically closed. Note that

Condition DHM does not imply Condition R1. For instance, strictly monotonic domains satisfying

Condition DHM do not satisfy Condition R1.16 On the other hand, all the domains satisfying

Condition R1 that we look at in the paper satisfy Condition DHM.

Fleurbaey and Maniquet (1997) also use a domain richness condition under the name of strict

monotonic closedness. Their rich domain satisfies the following condition.

Condition FM: Let Ri, R
′
i ∈ R and a, b ∈ A such that (a) a Pi b. Then, there exists R′′

i ∈ R such

that for all c ∈ A, c 6= a, b, (i) a R′
i c implies a P ′′

i c, (ii) b Ri c implies b P ′′
i c, and (iii) [not a I ′′i b].

16A domain R is strictly monotonic with respect to Ai, |Ai| = ∞, if for each Ri ∈ R, and each xi, yi ∈ Ai with
yi > xi, yi Pi xi
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Note that Conditions R1 and FM are logically independent. The domain of single-plateaued

preferences on R is rich according to Condition R1, but not according to Condition FM (on the

single-plateaued domain it might not be possible to satisfy Condition FM(iii)). On the other hand,

strictly monotonic domains satisfying Condition FM do not satisfy Condition R1.

Finally we consider Le Breton and Zaporozhets’s (2009) rich domain condition.

Condition LBZ: Let Ri ∈ R and x, y ∈ A such that y Pi x and y ∈ b(R̄i) for some R̄i ∈ R, there

exists R′
i ∈ R such that y ∈ b(R′

i) and for all z with zi 6= xi such that x Ri z, x P ′
i z.

While Condition LBZ implies Condition R1, the converse is not true. Observe that Condition

LBZ requires that L(Ri, x) \ {x} ⊆ SL(R′
i, x); a stronger requirement than L(Ri, x) ⊆ L(R′

i, x)

imposed by Condition R1. Condition LBZ requires sufficient degrees of freedom to undo at R′
i the

possible indifferences with respect to x present at Ri. On the other hand, all the domains satisfying

Condition R1 that we look at in the paper satisfy Condition LBZ.
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