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Facoltà di Economia
Rome, Italy

email: herzel@unipg.it

Abstract

We consider the problem of measuring the performance of a dy-
namic strategy, re-balanced at a discrete set of dates, whose objective
is that of replicating a claim in an incomplete market driven by a gen-
eral multi-dimensional affine process. The main purpose of the paper
is to propose a method to efficiently compute the expected value and
variance of the hedging error of the strategy. Representing the pay-
off of the claim as an inverse Laplace transform, we are able to get
semi-explicit formulas for strategies satisfying a certain property. The
result is quite general and can be applied to a very rich class of mod-
els and strategies, including Delta hedging. We provide illustrations
for the cases of interest rate models and Heston’s stochastic volatility
model.



1 Introduction

One of the most discussed assumptions of financial models, especially criti-
cized in periods of financial turmoils, is that of market completeness, that is
the perfect replication of any contingent claim by a suitable dynamic trad-
ing strategy. Theoretically, this is often achieved by ruling out any market
imperfection, like illiquidity, credit risks, transactions costs, taxes, etc and
by assuming the possibility of continuous time trading. Of course, real mar-
kets usually fail to satisfy most, if not all of such assumptions. One of the
main challenges for financial economics is therefore to address such issue, by
proposing models with less stringent hypotheses or by studying what hap-
pens when they do not hold. In this paper we focus on the impossibility of
trading continuously in time. Even if all other assumptions of the model are
satisfied, the inherent discreteness of trading times is a source of market in-
completeness in the real world. The aim of the paper is to efficiently evaluate
the impact of trading in discrete time on the final goal of the strategy.

The object of our investigation is the ex-ante assessment of the perfor-
mances of dynamic trading strategies. Probably, the most notable instance
of such problem is measuring the hedging error of a strategy, based on a
liquid asset, that tries to replicate a future liability. Problems of such kind
arise when replicating either a claim using futures contracts, or a payoff of a
derivative security with a delta hedging strategy based on the underlying as-
set, and in any case when a dynamic strategy is adopted. Ex-ante, a possible
way to measure the performance of a strategy is by evaluating expected value
and variance of its hedging error. This is usually done by approximations
or by Monte Carlo simulations. The approach proposed in the paper, based
on Laplace transforms, allows to efficiently perform such computations for a
very general class of models.

Our methodology can be applied to many important models for financial
markets for equities, interest rates and credit products where the stochastic
dynamics of risk factors are driven by affine processes. Affine processes are
popular in modeling financial markets, because of their analytical tractabil-
ity and flexibility. Their defining property, which we will often exploit in
this work, is that their characteristic function is exponentially affine. Affine
processes in finance were introduced first for interest rate models by Vasicek
(1977), Cox et al. (1985) and by Duffie and Kan (1996) who gave a general
formulation in a multivariate setting. The pioneering work in the case of
equities is due to Heston (1993) who proposed a stochastic volatility model
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and opened the way to many other models of the kind. Duffie, Filipovic and
Schachermayer (2003) formulated a general theory for affine processes for eq-
uities and interest rates. Further application to credit risk modeling can be
found in Duffie and Singleton (2003). We present the general model frame-
work of our approach in Section 2, where we provide the necessary details of
affine processes as well as some examples.

The problem of measuring the hedging error in discrete time was first ad-
dressed by Toft (1996) who proposed an approximation for the variance of the
Delta hedging strategy in the Black-Scholes model. Hayashi and Mykland
(2005) use a weak convergence argument to derive the asymptotic distri-
bution of the hedging error as the number of trades goes to infinity. Their
approach was generalized by Tankov and Voltchkova (2009) to Levy processes
with jumps. A very important problem, related to this, is that of determining
a strategy that minimizes the variance of the hedging error. An extremely
rich branch of the financial literature flourished after the seminal papers of
Föllmer and Sondermann (1986). Schweizer (1999) contains a review of the
main results and contributions in a discrete time setting. In continuous time,
but in a context very close to that of the present paper, C̆erný and Kallsen
(2006) solve the problem of computing the optimal strategy and the optimal
variance for the Heston’s model, and Kallsen and Vierthauer (2009) extended
the results to general affine stochastic volatility models.

An important ingredient of our method is that of representing the payoff
of the claim as an inverse Laplace transform. This idea was introduced by
C̆erný (2007) and Hubalek et al. (2006) in the context of variance-optimal
hedging. From this, the key idea, proposed by Angelini and Herzel (2009)
in the case of Levy processes, is to express the Delta-based strategies as
an inverse Laplace transform, so that one can directly compute the Laplace
transform of the hedging error and, from it, its expected value and variance.
In Section 3 we show how to exploit the integral representation of a dynamic
strategy and the nice features of affine processes to compute such values. We
conclude in Section 4 with two examples, the first is related to the hedging of
an option on a bond, the second is an application to the stochastic volatility
model by Heston (1993).
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2 The general framework

We consider a general framework for market models with a risky asset S
and a short term interest rate r that may be stochastic, depending on the
specification of the model in the framework. The dynamics of the market
are driven by a multi-dimensional affine process X, whose components may
include y = ln(S) and/or r whenever it is stochastic as well as stochastic
volatility, dividend yields, etc. For instance, in short rate models, like Cox,
Ingersoll and Ross (1985) or Vasicek (1977), Xt is a one-dimensional process
representing the short-term interest rate. In this case, if the risky asset is
a zero coupon bond, y is an affine function of r. Another relevant case is
the model proposed by Heston (1993), where Xt is a two-dimensional process
of the logarithm of the asset price and its instantaneous volatility. We will
examine these two cases in Section 4. Pan (2002) studied a four dimensional
affine model combining stochastic volatility, interest rates and dividend yield.
A very general study of affine processes in a financial setting is contained in
Duffie, Pan and Singleton (2000). Another important area of application
is to model the intensity of defaults in evaluating the credit risk (Duffie
and Singleton (2003)). Duffie, Filipovic and Schachermayer (2003) provide a
characterization of affine processes.

As the theory of affine processes is well established, we only recall those
concepts that are necessary for our purpose, referring to Duffie, Filipovic and
Schachermayer (2003) for a more complete exposition and technical details.

Let (Ω,F , (Ft)0≤t≤∞, P ) be a filtered probability space satisfying the
usual technical conditions. We interpret P as the physical or objective
probability measure. We consider a strong Markov process X defined in
a state space D ⊂ IRd and the moment generating function of XT defined in
Cd ×D × IR+ × IR+

φ(u,Xt, t, T ) = Et

[
eu·XT

]
, (2.1)

where Et is the expected value conditional on Ft and · is the scalar product.
When X is affine the moment generating function is

φ(u,Xt, t, T ) = eα(u,t,T )+β(u,t,T )·Xt , (2.2)

where α(u, t, T ) and β(u, t, T ) are functions from Cd× IR+× IR+ to C and to
Cd respectively, satisfying a system of Riccati equations that depend on the
process X with boundary conditions β(u, T, T ) = u and α(u, T, T ) = 0. Such
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equations have an explicit solution in some particular cases, otherwise can
be numerically integrated. For example, in the Black-Scholes model, where
X is a one-dimensional Brownian motion with coefficients µ and σ

αbs(u, t, T ) =

(
µ− uσ2

2
+

u2σ2

2

)
(T − t), (2.3)

βbs(u, t, T ) = u. (2.4)

The functions α(u, t, T ) and β(u, t, T ) can be computed in closed form in
other important cases, like in the models by Cox, Ingersoll and Ross (1985),
by Vasicek (1977) and by Heston (1993).

For our application it is necessary to compute the joint moment gen-
erating function of X at times t1, . . . , tν conditional on the information in
t,

φν(u1, . . . , uν , Xt, t, t1, . . . , tν) = Et

[
e

∑ν
j=1 uj ·Xtj

]
. (2.5)

For an affine process we have

φν(u1, . . . , uν , Xt, t, t1, . . . , tν) = eαν(u1,...,uν ,t,t1,...,tν)+βν(u1,...,uν ,t,t1,...,tν)·Xt , (2.6)

where the functions αν(·) and βν(·) are equal to α(·) and β(·) for ν = 1 and
can be computed recursively if ν > 1. In fact,

φ(u1, . . . , uν , Xt, t, t1, . . . , tν) = Et

[
eu1·Xt1Et1

[
e

∑ν
j=2 uj ·Xtj

]]

= Et

[
eu1·Xt1φ(u2, . . . , uν , Xt1 , t1, t2, . . . , tν)

]
.

Therefore,

αν(u1, . . . , uν , t, t1, . . . , tν) = αν−1(u2, . . . , uν , t1, t2, . . . , tν)

+ α(u1 + βν−1(u2, . . . , uν , t1, t2, . . . , tν), t, t1)

βν(u1, . . . , uν , t, t1, . . . , tν) = β(u1 + βν−1(u2, . . . , uν , t1, t2, . . . , tν), t, t1).

We also assume that X is affine under a pricing measure Q. Conditions for
a process to be affine under both measures P and Q are given by Duffie,
Pan and Singleton (2000). Since for pricing purposes it is often necessary to
consider discounting, in this case we state a more general version of (2.2),
that is

ψ(u,Xt, t, T ) = EQ
t

[
exp

(
−

∫ T

t

rsds

)
eu·XT

]

= eᾱ(u,t,T )+β̄(u,t,T )·Xt , (2.7)
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where the functions ᾱ(u, t, T ) and β̄(u, t, T ) solve a system of Riccati equa-
tions depending on the risk-neutral dynamics of X. Setting u = 0 in (2.7)
we get the the discount factor between time t and T

P (t, T ) = EQ
t

[
exp

(
−

∫ T

t

rsds

)]

= eᾱ(0,t,T )+β̄(0,t,T )·Xt .

3 Dynamic hedging strategies

In this section we give the main definitions and properties of dynamic hedg-
ing strategies in our setting and we measure the hedging error of a class of
strategies in terms of expected value and variance. Let us consider a square-
integrable contingent claim written on S with payoff H at time T that can
be expressed as

H =

∫

C
ezyT Π(dz), (3.8)

where C is a contour in the complex plane, Π is a finite complex measure on
C and yT = ln(ST ). In other words, the payoff function is represented as an
inverse Laplace transform. For instance, the payoff of a European call option
with strike price K > 0 may be written as

(ex −K)+ =
1

2πi

∫ R+i∞

R−i∞
ezx K1−z

z(z − 1)
dz,

for an arbitrary R > 1. Other examples are the put, the power call and the
digital option, see Hubalek et al. (2006).

Let us denote by 1y the d-dimensional vector of zeros except for the entry
corresponding to y that is equal to one. From (2.7) and using Fubini, we
get an expression for the value at time t of a European claim with payoff
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expressed as in (3.8)

Ht = EQ
t

[
exp

(
−

∫ T

t

rsds

)
H

]

= EQ
t

[
exp

(
−

∫ T

t

rsds

) ∫

C
ezyT Π(dz)

]

=

∫

C
EQ

t

[
exp

(
−

∫ T

t

rsds

)
ezyT

]
Π(dz)

=

∫

C
EQ

t

[
exp

(
−

∫ T

t

rsds

)
ez1y·XT

]
Π(dz)

=

∫

C
eᾱ(z1y ,t,T )+β̄(z1y,t,T )·XtΠ(dz). (3.9)

Note that Ht depends on all the components of Xt and not only on those
involved in the definition of the payoff and in the discount factor. That is
the value at time t of a claim on ST may also depend on factors, like the
stochastic volatility of S, that do not appear in the payoff function.

By differentiating (3.9), we can compute the sensitivities of the pricing
formula with respect to the factor of the model. In particular, the Delta of
the claim at time t is given by

∆H
t =

∂Ht

∂St

=
1

St

∂Ht

∂yt

= e−yt
∂

∂yt

∫

C
eᾱ(z1y,t,T )+β̄(z1y ,t,T )·XtΠ(dz)

= e−yt

∫

C

∂

∂yt

eᾱ(z1y,t,T )+β̄(z1y ,t,T )·XtΠ(dz)

=

∫

C
β̄(z1y, t, T ) · 1ye

ᾱ(z1y ,t,T )+(β̄(z1y ,t,T )−1y)·XtΠ(dz). (3.10)

We note that the Delta (as well as any other of the so called Greeks) of a
claim with payoff as in (3.8) is an integral of an exponential of an affine
function of X.

We consider now the problem of hedging the contingent claim H when
trading is only allowed at a finite and prefixed set of dates from time 0 until
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maturity T , 0 = t0 < t1 < . . . < tN = T . For simplicity we assume that the
probabilities of jumps of the process X at the trading times are zero.

Let ϑ = (ϑtk), for k = 0, . . . , N − 1, be a stochastic process representing
a trading strategy. The random variable ϑtk is the number of shares of S
held from time tk up to time tk+1. We assume that it depends only on the
information available at time tk, i.e. that it is Ftk-measurable. Let

M(t, T ) = 1/P (t, T ) = e−ᾱ(0,t,T )−β̄(0,t,T )·rt

be the capitalization factor given by investing in the risk-less asset from t to
T and

∆̄Sk = StkM(tk, T )− Stk−1
M(tk−1, T ) (3.11)

the increment in value of the risky asset. We also suppose that the local gain
ϑtk−1

∆̄Sk of the strategy at time tk is square-integrable, for all k = 1, . . . , N .
The final value of strategy ϑ starting from an initial capital c is

GT (ϑ) = cM(0, T ) +
N∑

k=1

ϑtk−1
∆̄Sk (3.12)

and its hedging error is given by

ε(ϑ, c) = H −GT (ϑ). (3.13)

We call a trading strategy ϑ affine if

ϑtk =

∫

C
ea(z,tk)+b(z,tk)·Xtk Π(dz), (3.14)

for all k = 0, . . . , N−1, where a(z, tk) and b(z, tk) are functions from C× IR+

to C and to Cd respectively.
In principle the contour C and the measure Π appearing in the definition

of affine strategies could be different from those related to the claim H in
Formula (3.8). This may be the case when the hedging strategy is performed
by aiming at a different claim, or we may also study trading strategies that
are not intended to hedge any claim. However, to fix ideas, we will consider
only hedging strategies for the claim H.

We call Delta strategy the hedging strategy that is obtained by setting
ϑtk equal to the Delta of H given in (3.10). It is an important example of an
affine strategy, with

a(z, t) = ln
(
β̄(z1y, t, T ) · 1y

)
+ ᾱ(z1y, t, T )

b(z, t) = β̄(z1y, t, T )− 1y.
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The functions ᾱ(·) and β̄(·) depend on the pricing model. In particular, for
the Black-Scholes model (where 1y = 1) they are given by (2.3) and (2.4),
with µ = r.

A common strategy, often used in practice for hedging with futures con-
tracts, is that obtained by regressing the value of a less liquid security H to a
more liquid instrument S and for this reason is usually called Beta strategy.
More precisely

Btk =
covtk

(
Htk+1

, Stk+1

)

vartk [Stk+1
]

. (3.15)

In our setting this may be computed as

Btk =
Etk

[
Htk+1

Stk+1

]− Etk

[
Htk+1

]
Etk

[
Stk+1

]

Etk

[
S2

tk+1

]− Etk

[
Stk+1

]2

=
1

φ(2 1y, Xtk , tk, tk+1)− φ(1y, Xtk , tk, tk+1)2
×

∫

C

(
Etk

[
eᾱ(z1y ,tk+1,T )+(β̄(z1y ,tk+1,T )+1y)·Xtk+1

]
+

−Etk

[
eᾱ(z1y,tk+1,T )+β̄(z1y,tk+1,T )·Xtk+1

]
Etk

[
e1y ·Xtk+1

])
Π(dz)

=
1

φ(2 1y, Xtk , tk, tk+1)− φ(1y, Xtk , tk, tk+1)2
×

∫

C
eᾱ(z1y,tk+1,T )

(
φ(β̄(z1y, tk+1, T ) + 1y, Xtk , tk, tk+1)+

−φ(β̄(z1y, tk+1, T ), Xtk , tk, tk+1)φ(1y, Xtk , tk, tk+1)
)
Π(dz)

We see that the Beta strategy may still be represented as an integral, but
in general it is not affine. However, it is an affine strategy when X is a Levy
processes (see Theorem 2.1 in Hubalek et al. (2006)).

Notice that the Beta strategy has a similar structure as the local optimal
strategy, that is the strategy minimizing the variance of costs over the next
period, and that is obtained by backward regressions. In the case Q = P ,
the two strategies coincide and are also globally optimal, i.e. they minimize
the variance of the hedging error (3.13) (see Schweizer (1995) for a complete
exposition on variance-optimal hedging in discrete time). When allowing
continuous time portfolio rebalancing, C̆erný and Kallsen (2006) prove that
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the globally optimal strategy in Heston’s model may be written as in (3.14),
hence it is affine.

The hedging error (3.13) of an affine strategy for a contingent claim whose
payoff can be written as (3.8) has the following integral representation

ε(ϑ, c) = −cM(0, T ) + (3.16)

+

∫

C

(
ezyT −

N∑

k=1

ea(z,tk−1)+b(z,tk−1)·Xtk−1 ∆̄Sk

)
Π(dz).

The above representation and the convenient form of the characteristic func-
tion of affine processes can be exploited to compute expected value and the
variance of the hedging error as shown in the following result.

Theorem 3.1 Let H be a contingent claim satisfying condition (3.8), ϑ be
an affine strategy, namely satisfying Condition (3.14), and c be the initial
capital, then

E[ε(ϑ, c)] =

∫

C
e(z)Π(dz)− cM(0, T ), (3.17)

and

E[ε(ϑ, 0)2] =

∫

C

∫

C
(v1(w, z)− v2(w, z)− v3(w, z) + v4(w, z))Π(dw)Π(dz),

(3.18)
where e(z), vj(w, z), j = 1, 2, 3, 4, are sums of exponentially affine functions
that depend on ϑ, on the pricing function ψ(·) (2.7) and on the joint mo-
ment generating function φ(·) (2.6) of X conditional on the information in
0. Their explicit expression can be found in the Appendix. Therefore, the
variance of the hedging error is

var(ε(ϑ, c)) = var(ε(ϑ, 0)) = E[ε(ϑ, 0)2]− E[ε(ϑ, 0)]2.

Proof. see the Appendix.
Theorem 3.1 states that the expected value and the variance of the

hedging error may be represented respectively as a one-dimensional and
a two-dimensional inverse Laplace transforms. Formulas (3.17) and (3.18)
can be evaluated through numerical inversion of one-dimensional and two-
dimensional Laplace transforms. For more details on this we refer to Angelini
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and Herzel (2009). Alternatively, numerical integration procedures may be
adopted.

A similar argument can be applied to compute higher order moments
of the hedging errors, that can be useful to get more information on the
probability distribution.

The results may be used to study the effects of model mispecification
or trader personal views, in terms of hedging strategies and parameters, on
the performance of the hedge. This because the claim, the model and the
strategy are completely independent from each other. An interesting example
of how to exploit this flexibility is the case of a given underlying model
generating the data (say Heston’s model with a certain set of parameters)
and a given strategy like the Black-Scholes Delta strategy or the model Delta
strategy implemented using model parameters different from those of the data
generating model.

4 Examples and Numerical illustration

In this section we illustrate two important instances of the general framework
presented in Section 2, the case of an affine short rate model and the case of
Heston’s model. In the latter case, we also give a numerical illustration of
the results in Theorem (3.1).

4.1 Affine Short Rate Models

We now show how to apply Theorem 3.1 to the computation of the Delta
strategy in the case of affine short rate models, in particular we write the
integral representation of a contingent claim written on a zero coupon bond
and the related Delta hedging strategy. In this case the process X is the one-
dimensional process of the short rate, Xt = (rt). The functions α(u, t, T )
and β(u, t, T ) in (2.2) and ᾱ(u, t, T ) and β̄(u, t, T ) in (2.7) may be computed
explicitly in some important cases as the models by Cox, Ingersoll, Ross
(1985) or Vasicek (1977), and we do not report them here. We consider a
European claim H maturing at date T1, written on the zero coupon bond
with maturity T2 > T1. Hence

St = P (t, T2) = eᾱ(0,t,T2)+β̄(0,t,T2)·rt
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and yt = ln(St) = ᾱ(0, t, T2)+ β̄(0, t, T2) · rt is an affine function of Xt = (rt).
Formula (3.8) may be written as

H =

∫

C
ezyT1Π(dz) =

=

∫

C
eᾱ(0,T1,T2)z+β̄(0,T1,T2)z·rT1Π(dz).

Hence, the price of the claim at time t can be computed as

Ht = EQ
t

[
exp

(
−

∫ T1

t

rsds

) ∫

C
ezyT1Π(dz)

]
=

=

∫

C
eᾱ(0,T1,T2)zψ(β̄(0, T1, T2)z, rt, t, T1)Π(dz) =

=

∫

C
eᾱ(0,T1,T2)zeᾱ(β̄(0,T1,T2)z,t,T1)+β̄(β̄(0,T1,T2)z,t,T1)·rtΠ(dz).

Therefore the derivative of Ht with respect to the factor rt is

Dt =
∂Ht

∂rt

=

∫

C

∂

∂rt

eᾱ(0,T1,T2)zeᾱ(β̄(0,T1,T2)z,t,T1)+β̄(β̄(0,T1,T2)z,t,T1)·rtΠ(dz)

=

∫

C
eᾱ(0,T1,T2)zβ̄(β̄(0, T1, T2)z, t, T1)e

ᾱ(β̄(0,T1,T2)z,t,T1)+β̄(β̄(0,T1,T2)z,t,T1)·rtΠ(dz)

=

∫

C
β̄(β̄(0, T1, T2)z, t, T1)e

ᾱ(0,T1,T2)z+ᾱ(β̄(0,T1,T2)z,t,T1)+β̄(β̄(0,T1,T2)z,t,T1)·rtΠ(dz).

and the Delta of the claim is

∆t =
∂Ht

∂St

=
∂Ht

∂rt

∂rt

∂St

= Dt
1

β̄(0, t, T2)St

=

∫

C

β̄(β̄(0, T1, T2)z, t, T1)

β̄(0, t, T2)
×

eᾱ(0,T1,T2)z+ᾱ(β̄(0,T1,T2)z,t,T1)−ᾱ(0,t,T2)+(β̄(β̄(0,T1,T2)z,t,T1)−β̄(0,t,T2))·rtΠ(dz)
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They are both affine strategies, in particular the Delta is affine with

a(z, t) = ln

(
β̄(β̄(0, T1, T2)z, t, T1)

β̄(0, t, T2)

)
+

+ ᾱ(0, T1, T2)z + ᾱ(β̄(0, T1, T2)z, t, T1)− ᾱ(0, t, T2)

b(z, t) = β̄(β̄(0, T1, T2)z, t, T1)− β̄(0, t, T2).

4.2 Heston’s Model

In this section we apply Theorem 3.1 to compare the errors produced by
different strategies to hedge a European call option in the stochastic volatility
model by Heston (1993). For a simpler exposition, we assume that the pricing
measure and the objective measure are equal and that the risk-free rate is
zero. In this case the dynamics of the process Xt = (yt, vt) is

dyt = (µ− 1

2
vt)dt +

√
vtdW 1

t

dvt = κ(θ − vt)dt + σ
√

vtdW 2
t , (4.19)

where W 1 and W 2 are correlated Brownian motion, d < W 1
t ,W 2

t >= ρdt,
and µ = r = 0. The expressions of α(·) and β(·) can be found in Elices
(2007). We report them for convenience of the reader

α(u, t, T ) = µτu · 1y +

+
κθ

σ2

(
(κ− ρσu · 1y − d)τ − 2 ln

(
1− g̃e−dτ

1− g̃

))
(4.20)

β(u, t, T ) =

(
u · 1y,

κ− ρσu · 1y + d

σ2

(
g − g̃e−dτ

1− g̃e−dτ

))
, (4.21)

where τ = T − t,

g =
κ− ρσu · 1y − d

κ− ρσu · 1y + d
,

g̃ =
κ− ρσu · 1y − d− σ2σu · 1v

κ− ρσu · 1y + d− σ2σu · 1v

,

d =
√

(κ− ρσu · 1y)2 + σ2(u · 1y − (u · 1y)2),

where 1v is the analogous of 1y.
We consider the hedging errors of the following strategies:
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1. Heston Delta. It is the correct Delta strategy for the model, given by
(3.10) and (4.20) and (4.21).

2. Black-Scholes Delta. This is the case of a trader who wishes to adopt
the standard Black-Scholes strategy, neglecting some elements of the
true dynamics of the underlying. The only parameter the trader has to
choose is the volatility parameter σbs

t at time t. If σbs
t does not depend

on yt, the strategy is given by (3.10)

∆bs
tk

=

∫

C
eln(z)+ᾱbs(z,t,T )+(z−1)ytk Π(dz), (4.22)

with the function ᾱbs(·) of the Black-Scholes model as in (2.3), where µ
is set to zero and σ = σbs

t . For some choices of σbs
t the strategy is affine.

The strategy is obviously affine when σbs
t is deterministic, with

a(z, t) = ln (z) + ᾱbs(z, t, T )

b(z, t) = (z − 1)1y.

Otherwise it has to be checked case by case. We consider three choices
for the volatility parameter σbs

t , the first two are deterministic, the last
one stochastic:

(a) The implied volatility of the option at time 0.

(b) The optimal hedging volatility, that is the volatility parameter that
minimizes the variance of the error produced by the Black-Scholes
Delta hedging strategy, i.e. the solution to the problem

minσ∈IR var

(
H −

N∑

k=1

∆bs
tk−1

(σ)∆̄Sk

)
,

where ∆bs
tk−1

(σ) is the Black-Scholes Delta at time tk−1 as a function
of the volatility parameter σ. The optimal value can be determined
numerically from Theorem 3.1.

(c) The expected volatility over the life to maturity of the option. That
is we consider a dynamic σt that is computed as

σ2
tk

=
1

T − tk
Etk

[∫ T

tk

vudu

]
.

13



In Heston model we have

σ2
tk

= α0(tk, T ) + α1(tk, T )vtk ,

where

α0(tk, T ) = θ

(
1− 1− e−κ(T−tk)

κ(T − tk)

)
,

α1(tk, T ) =
1− e−κ(T−tk)

κ(T − tk)
.

Then, plugging into (4.22), we get

a(z, tk) = ln(z) +

(
−1

2
z +

1

2
z2

)
(T − tk)α0(tk, T );

b(z, tk) =

(
−1

2
z +

1

2
z2

)
(T − tk)α1(tk, T )1v + (z − 1)1y.

3. Variance-optimal strategy in case trading may be done in continuous
time. This is computed in C̆erný and Kallsen (2006) and, in the present
case, with P = Q, is

ξt =

∫

C
(z + ρσβ(z1y, t, T ) · 1v)e

α(z1y ,t,T )+(β(z1y ,t,T )−1y)·XtΠ(dz).

It is then affine. Observe that, when ρ = 0, this is equal to the Heston
Delta.

Notice that the common practice of employing the implied volatility as
σbs

t , re-computed at each trading date, does not fall in the picture above,
because the implied volatility is a function of y. Hence such a strategy is not
representable as in (4.22). It would still have an integral representation, but
in general not with an exponentially affine integrand, so it is not affine as
defined in (3.14).

Since we supposed that P = Q, the Beta strategy defined in (3.15) is
also the globally optimal hedging strategy for the discrete time case. We can
compute it at each trading date tk, but, since it is not affine, we cannot use
Theorem 3.1 to compute the expected value and the variance of the related
hedging error. As far as we know, there is no result in literature that allows
to make such a computation.
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For our illustration, we consider European call options with maturity
T = 0.5 years and we suppose that the initial price of the underlying asset is
S0 = 100. We assume that the underlying follows a process given in (4.19)
with parameters v0 = 0.05, θ = 0.05, κ = 3, σ = 0.5. We analyze five different
determination of the correlation coefficient ρ = (−0.9,−0.5, 0, 0.5, 0.9). We
fix the number of trading dates to be N = 6 and tk − tk−1 = T

N
for all

k = 1, . . . , N , namely the position is adjusted once a month. We also consider
various strike prices from 80 to 120.

Since S is a martingale, in all cases the expected value of the hedging
error does not depend on the strategy adopted, but only on the difference
between the price H0 of the option at time 0 and the initial capital c (given
also that the risk-free rate is 0). For instance, if H is a liability, the expected
final gain would be the extra money c − H0 invested in the strategy. To
evaluate the performance of the various strategies in this case, we look at the
variance of the related hedging errors. In the general case, when S is not a
martingale, one may look at performance indices like the Sharpe ratio.

The best performance in all cases is obtained by the variance-optimal
strategy for continuous time trading. To get an idea on how this is related
to the variance-optimal in our discrete time setting, we computed them at
time 0, for all the strike considered. We see that the two are close, for
all ρ, and we gather that the variances of their hedging error must not be
far. We show their values at time 0 in Figure 1 for ρ = (−0.9, 0, 0.5) (for
opposite values of ρ the pictures are analogous), together with the Heston
Delta and the Black-Scholes Delta with expected volatility. As noticed above,
for ρ = 0 the Heston Delta and the continuous time variance-optimal strategy
coincide. The performances of the different strategies are all quite similar in
case ρ = 0, with slightly better results obtained with the variance-optimal
in continuous time (and Heston Delta) and the Black-Scholes Delta with
expected volatility, as shown in Figure 2, middle panel. The differences get
more evident the higher the absolute value of the correlation, either positive
or negative. When ρ is not zero, it is interesting to see that all the Black-
Scholes Deltas perform better than the model Delta (except for very far out-
of-the-money options where the Black-Scholes Delta with expected volatility
has higher variance than the model Delta). We choose the case ρ = −0.9 and
ρ = 0.5, respectively in the top and lower panels of Figure 2, to represent
these results. We see that, in terms of comparative performances of the
different strategies, we have analogous situations for positive and negative
correlation coefficients. The difference between positive and negative ρ is

15



in the general shape of the variance as a function of the strike: while for
negative ρ all strategies tend to have a decreasing variance in the out-of-the-
money part, for positive ρ this is not the case. This is due to the positively
proportional relation in the model between the correlation coefficient and the
skewness of the return, showing the impact of the latter on the variance of
the hedging error.

5 Conclusions

We found semi-explicit formulas for the expected value and the variance of the
hedging error of a dynamic strategy when trading is possible only at a discrete
set of dates. The results are valid for the general class of affine processes and
can then be applied to different financial markets like fixed-income, equities
and credit products. The method is based on the representation of the target
payoff as an inverse Laplace transform and applies to a class of strategies
having an analogous representation which include important strategies like
Delta hedging.

We gave a numerical illustration of our results to compare the perfor-
mances of various hedging strategies for European call options in Heston’s
stochastic volatility model. We showed how, in this case, the best perfor-
mance is obtained by adopting the strategy that minimizes the variance of
the hedging error when allowing continuous time trading. Our methodology
does not however allow to compute the variance-optimal variance in our dis-
crete time setting and this is a topic of future research. We also found that,
when the correlation between spot return and its variance is not negligible,
Black-Scholes Delta type strategies perform better than model Delta.

6 Appendix

We provide the explicit expression for the integrands involved in the state-
ment of Theorem (3.1).

e(z) = φ(z1y, X0, 0, T )−
N∑

k=1

ea(z,tk−1) ×
(
e−ᾱ(0,tk,T )φ(b(z, tk−1),−β̄(0, tk, T )1r + 1y, X0, 0, tk−1, tk)−

e−ᾱ(0,tk−1,T )φ(b(z, tk−1)− β̄(0, tk−1, T )1r + 1y, X0, 0, tk−1)
)
,
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Figure 1 Hedging ratios at time 0 for European call options with maturity
T = 0.5 as a function of the strike price. The current value of the underlying
is 100. Hedging ratio: model Delta (delta), Black-Scholes Delta with expected
volatility (deltabsev), variance-optimal in continuous time (loct) and beta or
variance-optimal (beta). Heston model with parameters v0 = 0.05, µ = 0,
θ = 0.05, κ = 3, σ = 0.5. The correlation coefficient is -0.9 (top panel), 0
(middle panel), 0.5 (lower panel).
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Figure 2 Variances of hedging strategies for European call options with ma-
turity T = 0.5 as a function of the strike price. The current value of the
underlying is 100. Hedging ratio: model Delta (delta), Black-Scholes Delta
with expected volatility (deltabsev), implied volatility (deltabsiv) and optimal
volatility (deltabsov) and variance-optimal in continuous time (loct). Hes-
ton model with parameters v0 = 0.05, µ = 0, θ = 0.05, κ = 3, σ = 0.5.
The correlation coefficient are -0.9 (top panel), 0 (middle panel), 0.5 (lower
panel).
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where 1r has the analogous meaning of 1y.

v1(w, z) = φ((w + z)1y, X0, 0, T ),

v2(w, z) =
N∑

k=1

ea(w,tk−1) ×
(
e−ᾱ(0,tk,T )φ(b(w, tk−1),−β̄(0, tk, T )1r + 1y, z1y, X0, 0, tk−1, tk, T )−

e−ᾱ(0,tk−1,T )φ(b(w, tk−1)− β̄(0, tk−1, T )1r + 1y, z1y, X0, 0, tk−1, T )
)
,

v3(w, z) = v2(z, w).

To write v4(w, z), we define

m̄(j1, j2, k1, k2) =



φ(b(w, tj1),−β̄(0, tj2 , T )1r + 1y, b(z, tk1),−β̄(0, tk2 , T )1r + 1y, X0, 0, tj1 , tj2 , tk1 , tk2)
for j1 ≤ j2 ≤ k1 ≤ k2;
φ((b(z, tk1),−β̄(0, tk2 , T )1r + 1y, b(w, tj1),−β̄(0, tj2 , T )1r + 1y, X0, 0, tk1 , tk2 , tj1 , tj2)
for k1 ≤ k2 ≤ j1 ≤ j2.

Then we have

v4(w, z) =
N∑

j=1

N∑

k=1

ea(w,tj−1)ea(z,tk−1) ×

(m̄(j − 1, j, k − 1, k)− m̄(j − 1, j, k − 1, k − 1)−
m̄(j − 1, j − 1, k − 1, k) + m̄(j − 1, j − 1, k − 1, k − 1)) .
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Proof of Theorem 3.1. Given (3.17), we have, by Fubini’s Theorem,

E

[
H −

N∑

k=1

ϑtk−1

(
StkM(tk, T )− Stk−1

M(tk−1, T )
)
]

=

=

∫

C

{
E [ezyT ]−

N∑

k=1

E
[
ea(z,tk−1)+b(z,tk−1)·Xtk−1×

(
StkM(tk, T )− Stk−1

M(tk−1, T )
)]}

Π(dz) =

=

∫

C

{
E [ezyT ]−

N∑

k=1

ea(z,tk−1)×

E
[
eb(z,tk−1)·Xtk−1

(
eytk

−ᾱ(0,tk,T )−β̄(0,tk,T )rtk − eytk−1
−ᾱ(0,tk−1,T )−β̄(0,tk−1,T )rtk−1

)]}
Π(dz) =

=

∫

C

{
E [ezyT ]−

N∑

k=1

ea(z,tk−1) ×
(
e−ᾱ(0,tk,T )E

[
eb(tk−1,z)·Xtk−1

+(−β̄(0,tk,T )1r+1y)·Xtk

]

− e−ᾱ(0,tk−1,T )E
[
e(b(z,tk−1)−β̄(0,tk−1,T )1r+1y)·Xtk−1

])}
Π(dz) =

=

∫

C

{
φ(z1y, X0, 0, T )−

N∑

k=1

ea(z,tk−1)×
(
e−ᾱ(0,tk,T )φ(b(z, tk−1),−β̄(0, tk, T )1r + 1y, X0, 0, tk−1, tk) −

e−ᾱ(0,tk−1,T )φ(b(z, tk−1)− β̄(0, tk−1, T )1r + 1y, X0, 0, tk−1)
)}

Π(dz)
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which is (3.17). To prove (3.18) we need to compute

E

[
(H −

N∑

k=1

ϑtk

(
StkM(tk, T )− Stk−1

M(tk−1, T )
)
)2

]
=

= E

[∫

C

(
H(z)−

N∑

k=1

ea(z,tk−1)+b(z,tk−1)·Xtk−1

(
StkM(tk, T )− Stk−1

M(tk−1, T )
)
)

Π(dz)

∫

C

(
H(w)−

N∑

k=1

ea(w,tk−1)+b(w,tk−1)·Xtk−1

(
StkM(tk, T )− Stk−1

M(tk−1, T )
)
)

Π(dw)

]
=

= E

[∫

C

∫

C

(
H(z)−

N∑

k=1

ea(z,tk−1)+b(z,tk−1)·Xtk−1

(
StkM(tk, T )− Stk−1

M(tk−1, T )
)
)
×

(
H(w)−

N∑

k=1

ea(w,tk−1)+b(w,tk−1)·Xtk−1

(
StkM(tk, T )− Stk−1

M(tk−1, T )
)
)

Π(dz)Π(dw)

]
=

=

∫

C

∫

C
E

[(
H(z)−

N∑

k=1

ea(z,tk−1)+b(z,tk−1)·Xtk−1

(
StkM(tk, T )− Stk−1

M(tk−1, T )
)
)
×

(
H(w)−

N∑

k=1

ea(w,tk−1)+b(w,tk−1)·Xtk−1

(
StkM(tk, T )− Stk−1

M(tk−1, T )
)
)]

Π(dz)Π(dw).

Let us compute all the expectations needed:

E [H(z)H(w)] = E
[
e(z+w)yT

]
= E

[
e(z+w)1y·XT

]
= φ((z + w)1y, X0, 0, T ).
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E

[
H(z)

N∑

k=1

ea(w,tk−1)+b(w,tk−1)·Xtk−1

(
StkM(tk, T )− Stk−1

M(tk−1, T )
)
]

=

=
N∑

k=1

ea(w,tk−1)E
[
eb(w,tk−1)·Xtk−1ezyT

(
StkM(tk, T )− Stk−1

M(tk−1, T )
)]

=

=
N∑

k=1

ea(w,tk−1) ×
(
e−ᾱ(0,tk,T )E

[
eb(w,tk−1)·Xtk−1

−β̄(0,tk,T )rtk
+ytk

+zyT

]
−

e−ᾱ(0,tk−1,T )E
[
e(b(w,tk−1)+·Xtk−1

−β̄(0,tk−1,T )rtk−1
+ytk−1

+zyT

])
=

=
N∑

k=1

ea(w,tk−1) ×
(
e−ᾱ(0,tk,T )E

[
eb(w,tk−1)·Xtk−1

+(−β̄(0,tk,T )1r+1y)·Xtk
+z1y·XT

]
−

e−ᾱ(0,tk−1,T )E
[
e(b(w,tk−1)−β̄(0,tk−1,T )1r+1y)·Xtk−1

+z1y·XT

])
=

=
N∑

k=1

ea(w,tk−1) ×
(
φ(b(w, tk−1),−β̄(0, tk, T )1r + 1y, z1y, X0, 0, tk−1, tk, T )−

φ(b(w, tk−1)− β̄(0, tk−1, T )1r + 1y, z1y, X0, 0, tk−1, T )
)

=

= v2(w, z).

The expectation

E[H(w)
N∑

k=1

ea(z,tk−1)+b(z,tk−1)·Xtk−1

(
StkM(tk, T )− Stk−1

M(tk−1, T )
)
]

is obtained as above after interchanging w with z.
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The last term is

E

[
N∑

j=1

N∑

k=1

ea(w,tj−1)+b(w,tj−1)·Xtj−1
(
StjM(tj, T )− Stj−1

M(tj−1, T )
)×

ea(z,tk−1)+b(z,tk−1)·Xtk−1

(
StkM(tk, T )− Stk−1

M(tk−1, T )
)]

=
N∑

j=1

N∑

k=1

ea(w,tj−1)ea(z,tk−1) ×

E
[
eb(w,tj−1)·Xtj−1+b(z,tk−1)·Xtk−1×

(
StjM(tj, T )− Stj−1

M(tj−1, T )
) (

StkM(tk, T )− Stk−1
M(tk−1, T )

)]
.

Expanding the products
(
StjM(tj, T )− Stj−1

M(tj−1, T )
) (

StkM(tk, T )− Stk−1
M(tk−1, T )

)

one gets v4(w, z). 2
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