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Summary 
We study learning and influence in a setting where agents communicate according to an 
arbitrary social network and naïvely update their beliefs by repeatedly taking weighted 
averages of their neighbors’ opinions. A focus is on conditions under which beliefs of 
all agents in large societies converge to the truth, despite their naïve updating. We show 
that this happens if and only if the influence of the most influential agent in the society 
is vanishing as the society grows. Using simple examples, we identify two main 
obstructions which can prevent this. By ruling out these obstructions, we provide 
general structural conditions on the social network that are sufficient for convergence to 
truth. In addition, we show how social influence changes when some agents redistribute 
their trust, and we provide a complete characterization of the social networks for which 
there is a convergence of beliefs. Finally, we survey some recent structural results on 
the speed of convergence and relate these to issues of segregation, polarization and 
propaganda. 
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1 Introduction

Social networks are primary conduits of information, opinions, and behaviors. They carry

news about products, jobs, and various social programs; influence decisions to become ed-

ucated, to smoke, and to commit crimes; and drive political opinions and attitudes toward

other groups, just to mention a few of their effects. In view of this, it is important to under-

stand how beliefs and behaviors evolve over time, how this depends on the network structure,

and whether or not the resulting outcomes are fully efficient.

Given the complex forms that social networks often take, it can be difficult for the

agents involved, or for a modeler, to update beliefs properly based on communication in a

network. For example, Choi, Gale and Kariv (2007; 2005) find that although subjects in

simple three-person networks update fairly well in some circumstances, they do not do so

well in evaluating repeated observations and judging indirect information whose origin is

uncertain. Given that our social networks involve repeated transfers of information among

large numbers of individuals, fully rational learning becomes infeasible at best. Nonetheless,

it can still be that fairly simple updating rules can lead to eventual outcomes like those

achieved through fully rational learning. In this paper we examine these questions with

respect to a variation of a model of network influence that has its roots in measures of

centrality and prestige developed by Katz (1953) and Bonacich (1987), and which is also

also related to models of social influence and persuasion by French (1956), Harary (1959),

and Friedkin and Johnsen (1997). More recently, a variation on this model has been analyzed

as a model of information transmission and opinion formation by DeMarzo, Vayanos and

Zwiebel (2003).

In the variation of the model that we analyze, agents update their beliefs or attitudes in

each period simply by taking weighted averages of their neighbors’ opinions from the previous

period, possibly placing some weight on their own previous beliefs. While the agents in this

scenario are boundedly rational, failing to adjust correctly for repetitions and dependencies

in information that they hear multiple times,1 we show that this process can still lead them

to fully accurate beliefs in the limit as society grows large. Moreover, the limiting properties

of this process are not only useful as a model of belief evolution, but also as a basis for

analyzing the influence or power of the different individuals comprising a network.2

Our contributions are outlined as follows, in the order in which they appear in the paper.

1See Friedkin and Johnsen (1997) and DeMarzo, Vayanos and Zwiebel (2003) for more background dis-
cussion on this type of bounded rationality.

2For instance, it can also be viewed as a myopic best-response dynamic for a game where agents care
about matching the behavior of those in their social network (possibly placing some weight on themselves).
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First, much of the previous literature has worked under an assumption that at least

some agents always place some weight on their own opinions when updating. This is often

for convenience, as that assumption guarantees convergence of beliefs by appealing to some

standard results on Markov chains. While we might expect this to be true for some agents in

some situations, there are clearly many applications where agents start without information

or believe that others may be better informed and thus defer to the opinions of others.

This turns out to be important in determining whether or not beliefs converge. Our first

contribution is to provide a complete characterization of convergence. That is, we identify

the conditions that are necessary and sufficient for convergence of an iteration of an arbitrary

stochastic matrix. This characterization applies not only to the belief-updating application

of this paper, but also to the stability of other measures of centrality and other Markov chain

applications. While the basic idea of the condition is known in the Markov chain literature,

we have not seen it stated in the form we give, which is particularly relevant in the social

network context. When beliefs do converge, they converge to a certain weighted average of

agents’ initial beliefs, and the weights correspond naturally to a measure of social influence

or importance.

In the second section, which contains the main novel theoretical results of the paper, we

study when a large society of näıve updaters will actually converge so that all individuals

learn the true state of nature, assuming they all start with different noisy signals about

this state. There is a difference between having all agents converge to the same belief

and having all agents converge to the correct belief. If the limiting belief tends to the

correct belief as a society grows large, we call the society wise. The section contains a

complete characterization of wisdom in terms of influence weights: a society is wise if and

only if the influence of the most influential agent is vanishing as the society grows. Building

on this characterization, we then focus on the relationship between social structure and

wisdom. Using simple examples, we identify two main obstructions that can prevent a

society from being wise. One of them is the existence of extreme imbalances in trust, with

some groups getting a very disproportionate share of attention. The other main obstruction

is a lack of dispersion: when small groups do not pay sufficient attention to the rest of

the world. Examples illustrate that either problem, even in the absence of the other, can

prevent wisdom. With this in mind, we can formulate general structural conditions which

rule out these obstructions. The first type of condition requires a minimal amount of balance,

and the second type of condition requires a minimal degree of dispersion. Assuming that

precise versions of these conditions hold, we prove that as a society grows, its limiting beliefs

become arbitrarily accurate. That is, they correctly aggregate the information that might
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initially be dispersed throughout the network. These results are in contrast with Theorem

2 of DeMarzo, Vayanos and Zwiebel (2003), which says that consensus beliefs (for a fixed

population of n agents) are correct only if a knife-edge restriction on the weights holds. More

generally, our conclusions differ from a long line of previous work which suggests that the

sufficient conditions for näıve learning to happen are very strong.3 We show that beliefs can

be correct in the large-society limit for a fairly broad collection of networks.

Third, we apply the model to study the effects of changes in the weights agents give

to their neighbors’ beliefs. We give a simple matrix calculation which can always be used

to determine how social influence changes when some agents redistribute their trust. We

obtain two interpretable corollaries by considering specific perturbations, showing that an

agent’s social influence weakly increases when some agents listen to him more at the expense

of others. Moreover, we show quite generally that the impact of a redistribution of trust

on others’ social influences is directly proportional to the influence of the agent doing the

redistributing. In the process, we derive some simple and implementable summation formulas

for computing perturbations of the limiting distribution of strongly connected Markov chains,

and find the signs of these perturbations. To our knowledge, these mathematical results have

not appeared elsewhere and extend the theory of Markov processes.

Finally, we survey several recent and useful results on the dynamics of the updating pro-

cess studied here. In particular, for situations where there is convergence, we give explicit

upper and lower bounds on the rate of convergence using standard results related to the

second largest eigenvalue of the matrix of network interactions. We then describe how a

theorem on Markov chains by Hartfiel and Meyer (1998) can be used to relate second eigen-

values to the structure of society. Building on this, we can deduce that convergence is “slow”

if society is divided into several mutually distrustful factions. We also study some results on

fast convergence, and finally discuss how these conclusions provide a quantitative explana-

tion for some forms of polarization and propaganda. Most of the material in this section is

drawn from recent mathematical results throughout the Markov chain and computer science

literatures. As these have not previously been collected and discussed in relation to models

of information transmission or social centrality, our contribution in this part is primarily

expository.

Our work relates to several lines of research other than the ones already discussed. There

is a large theoretical literature on social learning, both fully and boundedly rational, and

a number of studies investigating learning in the context of social networks. Similarly to

Ellison and Fudenberg (1993; 1995), we examine updating that is somewhat myopic. This

3See Sobel (2000) for a comprehensive survey.
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is also in the spirit of Bala and Goyal (1998; 2001) in allowing arbitrarily complex network

structures.

In many of these and other social learning models (e.g., Banerjee (1992), Gale and Kariv

(2003), Celen and Kariv (2004), and Banerjee and Fudenberg (2004)), agents converge to

holding the same belief or at least the same judgment as to an optimal action. These

conclusions often rely on observational learning, so that agents are observing choices or

payoffs over time and updating accordingly.4 Our results are quite different from these. In

contrast to the observational learning models, convergence and the efficiency of learning in

our model depend critically on the details of the network architecture and on the influence

of various agents.

In addition to the study by DeMarzo, Vayanos and Zwiebel (2003) that we have already

discussed, there is work by Collignon and Al-Sadoon (2006) the examines a similar model.

They concentrate on when it is that each individual exerts some influence in a society, so their

focus differs from ours. The closest point of overlap is that they present some simulations

related to rates of convergence, an issue which we discuss from a theoretical perspective in

Section 6.

In sociology, since the work of Katz (1953), French (1956), and Bonacich (1987), eigenvector-

like notions of centrality and prestige have been analyzed.5 As some such models are based

on convergence of iterated influence relationships, our results provide foundations for under-

standing when convergence is obtained.

Finally, there is an enormous empirical literature about the influence of social acquain-

tances on behavior and outcomes that we will not attempt to survey here, but simply point

out that our model provides testable predictions about the relationships between social

structure and social learning.

2 The Model

2.1 Agents and Interaction

A finite set A = {1, 2, . . . , n} of agents interact according to a social network. The agents

are the nodes of a directed graph. The interaction patterns are captured through an n× n

nonnegative matrix T. The matrix T may be directed so that Tij > 0 while Tji = 0. We

refer to T as the interaction matrix.

4For a general version of the observational learning approach, see Rosenberg, Solan and Vieille (2006).
5See also Wasserman and Faust (1994), Bonacich and Lloyd (2001) and Jackson (2007) for more recent

elaborations.
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In what follows, we examine the case where T is a stochastic matrix, so that it its entries

across each row sum to one – so the assumption amounts to a normalization. As discussed

below, this type of matrix is particularly relevant in a situation where agents are updating

beliefs by taking weighted averages; the entry Tij is the weight or trust that agent i places

on the current belief of agent j in forming his or her belief for the next period.

2.2 Updating Processes

Let us discuss the application of this framework to belief updating. DeMarzo, Vayanos and

Zwiebel (2003) examine a model where the agents in the network are trying to estimate some

unknown parameter µ. The belief held by agent i at time t is pi(t), and the vector of beliefs

at time t is written p(t). The updating rule is:

p(t) =
[
(1− λt)I + λtT̂

]
p(t− 1)

where λt ∈ (0, 1] and T̂ is a stochastic matrix. In the case where λt is constant over time,

this can be written as

p(t) = Tp(t− 1) = Ttp(0), (1)

where T has strictly positive diagonal entries.6 This will be the updating rule studied in this

paper, though in the ensuing analysis, we will drop the assumption on the diagonal entries

of T.

The evolution of beliefs can be motivated by the following Bayesian setup discussed by

DeMarzo, Vayanos and Zwiebel (2003). At the beginning of the evolution, t = 0, each

agent receives a noisy signal pi(0) = µ + ei where ei ∈ R is a noise term with expectation

zero. Agent i hears the opinions of the agents with whom he interacts, and assigns precision

πij to each one of them. These subjective estimates may, but need not, coincide with the

true precisions of their signals. If agent i does not listen to agent j, he gives him precision

πij = 0. In the case where the signals are normal, Bayesian updating from independent

signals at t = 1 entails the rule (1) with Tij = πij/
∑n

k=1 πik.

The key behavioral assumption is that the agents continue using this rule throughout the

evolution. That is, they do not adjust the precision estimates or account for the possible

6DeMarzo, Vayanos and Zwiebel (2003) examine the case in which pi(t) is a vector instead of a scalar, to
permit the analysis of multidimensional opinions. Then each agent has a vector of beliefs, not just a single
estimate. The main conclusion of the study is that all the components of such a belief vector, in the long
run, behave in essentially the same way. As the focus of our analysis is different, it is sufficient to consider
a single dimension and the extension to many dimensions is direct.
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repetition of information and for the “cross-contamination” of their neighbors’ signals. This

bounded rationality arising from persuasion bias is discussed at length by DeMarzo, Vayanos

and Zwiebel (2003), and so we do not reiterate that here.

Friedkin and Johnsen (1997) examine a related model where social attitudes depend on

the attitudes of neighbors and evolve over time. Let p(0) ∈ Rn
+ be a vector indicating

agents’ beliefs or attitudes. Let D be an n× n matrix where entries are only positive along

the diagonal, and Dii ∈ (0, 1) indicates the extent to which agent i pays attention to others’

attitudes. The evolution is described by

p(t) = DTp(t− 1) + (I−D)p(0)

So, agents start with attitudes p(0) and then mix in some of their neighbors’ recent attitudes

with their starting attitudes. We rewrite this as

p(t) = [DT]t p(0) +
t−1∑
i=0

[DT]i (I−D)p(0),

and so the behavior of p(t) depends on the powers of DT. Thus, to understand the behavior

of p(t) over time it is important to understand the properties of (DT)t, which are the object

of study in this paper.

It is important to note that other applications also have the same form as that here. For

instance, Google’s “PageRank” system is analagous to the influence vectors from Theorem

3 below, where the T matrix is the normalized link matrix.7 This corresponds to defining

the influence of node i as the limit of Tt times a unit vector p(0) where the 1 is placed in

the i-th entry and other entries are set to 0. Other citation and influence measures also have

similar such eigenvector bases (e.g., see Palacios-Huerta and Volij (2004)).8

2.3 Walks, Paths and Cycles

The following are standard graph-theoretic definitions applied to the directed graph of con-

nections induced by the interaction matrix T.

A walk in T is a sequence of nodes B = i1, i2, . . . , iK , not necessarily distinct, such that

7So Tij = 1/`i if page i has a link to page j, where `i is the number of links that page i has to other
pages.

8We also see iterative interaction matrices in of recursive utility (e.g., Rogers (2006)) and in strategic
games played by agents on networks where influence measures turn out to be important (e.g., Ballester,
Calvò-Armengol and Zenou (2006)). In such applications understanding the properties of Tt and related
matrices is critical.
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Tikik+1
> 0 for each k ∈ {1, . . . , K − 1}. We write i ∈ B for a node i and walk B if i is a

node in the sequence B, and we say that a walk B = i1, i2, . . . , iK goes from i1 to iK . The

length of the walk is defined to be K − 1.

A path in T is a walk consisting of distinct nodes.

A cycle is a walk i1, i2, . . . , iK such that i1 = iK . The length of the cycle is defined to

be K − 1. A cycle is simple if the only node appearing twice in the sequence is the starting

(ending) node.

The matrix T is strongly connected if there is path relative to T from any node to any

other node. Similarly, we say that A′ ⊂ A is strongly connected if T restricted to A′ is. This

is true if and only if the nodes in A′ all lie on a cycle involves only them.

A group of nodes A′ ⊂ A is closed relative to T if i ∈ A′ and Tij > 0 implies that j ∈ A′.

A closed group of nodes A′ ⊂ A is minimal relative to T if no nonempty strict subset is

closed.

Observe that any minimal closed group is strongly connected.

3 Convergence of Beliefs Under Näıve Updating

3.1 Definitions and Examples

Consider an arbitrary matrix iteration process characterized by an updating rule of the form

p(t) = Tp(t− 1) = Ttp(0),

where T is a row-stochastic matrix. We now provide a full characterization of the interaction

matrices for which there is convergence in the sense that limt→∞Ttp exists for all vectors

p. We will specialize to the language of the belief-updating model discussed in Section 2.2,

but the mathematical result applies equally well in other settings.

Definition. A matrix T is convergent if limt→∞Ttp exists for all vectors p.

A condition ensuring convergence in strongly connected matrices is aperiodicity.

Definition. The matrix T is aperiodic if the greatest common divisor of the lengths of its

simple cycles is 1.

It is well-known that if T is strongly connected (also referred to as being irreducible) and

aperiodic, then it is convergent (e.g., see Meyer (2000)). In fact, studies of social networks
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involving convergence of a matrix generally assume that T is strongly connected and that

Tii > 0 for some or all i, which implies that the matrix is aperiodic.

To see what can go wrong when aperiodicity fails, let us examine a simple example.

Example 1.

T =

(
0 1

1 0

)
.

Clearly,

Tt =

T if t is odd

I if t is even.

In particular, if p1(0) 6= p2(0), then the belief vector never reaches a steady state; the two

agents keep switching beliefs.

However, it is not necessary to have Tii > 0 for even a single i in order to ensure

convergence.

Example 2. Consider

T =

 0 1/2 1/2

1 0 0

0 1 0

 .

Here,

Tt →

 2/5 2/5 1/5

2/5 2/5 1/5

2/5 2/5 1/5

 .

Even though T has cycles and has 0’s in its diagonals, it is aperiodic and converges. If we

change to

T =

 0 1/2 1/2

1 0 0

1 0 0

 ,

then T is periodic as all of its cycles are of even lengths and T is no longer convergent.

3.2 A Characterization of Convergence

As mentioned before, it is well-known that aperiodicity is sufficient for convergence in the

case where where T is strongly connected. The following theorem shows that, in this case,

aperiodicity is also a necessary condition for convergence. We give a simple constructive
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proof that for a given strongly connected matrix which is not aperiodic, there is an unstable

initial vector p. The idea of this result is standard in the Markov chain literature,9 but since

the graph induced by T is a less important object in most Markov chain models than it is

here, we have not seen the fact stated in terms of simple cycles, as it is here. This result is

then quite useful in developing our full characterization of convergence when we also consider

T’s that are not strongly connected.

Theorem 1. If a stochastic matrix T is strongly connected, then it is convergent if and only

if it is aperiodic.

While strongly connected interaction matrices occur in some settings, most social inter-

actions will not involve strong connection. Thus, it is important to have a more general

characterization. We now use the above fact to give a complete characterization of conver-

gence.

Definition. The matrix T is strongly aperiodic if it is aperiodic when restricted to any

closed group of nodes.

Theorem 2. A stochastic matrix T is convergent if and only if it is strongly aperiodic.

Theorem 2 is not a simple extension of Theorem 1. The main issue is the following. We

can think of decomposing a society into minimal closed groups (i.e. maximal groups that

are strongly connected) and then the set of remaining agents. We know from Theorem 1

that convergence holds when we restrict attention to the strongly connected agents under

aperiodicity. The challenge of the proof is to show that this is in fact all that is needed to

imply that the beliefs of all the other agents must also converge. Since all agents are path

connected to some agent in a minimal closed group, the proof boils down to showing that

an agent with some weight on a path that goes to an agent with convergent beliefs must

also have beliefs that converge. This relies on limiting properties of the interaction matrix,

which can be seen by rearranging it into a suitable block form.

We emphasize that Theorem 2 is useful beyond the application to beliefs, but also in

understanding centrality measures and a variety of other Markov chain applications.

3.3 Influence and the Limiting Beliefs

Beyond knowing whether or not beliefs converge, we are also interested in characterizing what

beliefs converge to when they do converge. The following is an easy extension of Theorem 10

9For example, see Kemeny and Snell (1960, p. 6–7 and p. 35–37).
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in DeMarzo, Vayanos and Zwiebel (2003). They consider a case where T has positive entries

on the diagonal, but their proof is easily extended to the case with 0 entries on the diagonal.

We let M be the collection of minimal closed groups, and define M =
⋃

B∈MB. A subscript

B indicates projection (resp. restriction) of vectors (resp. operators) to the subspace of Rn

corresponding to the set of agents in B.

Theorem 3. A stochastic matrix T is convergent if and only if there is a nonnegative row

vector s ∈ Rn, and for each j /∈ M a vector wj ≥ 0 with |M| entries that sum to 1 such that

1.
∑

i∈B si = 1 for any minimal closed group B,

2. si = 0 if i is not in a minimal closed group,

3. sB is the left eigenvector of TB corresponding to the eigenvalue 1,

4. for any vector p and any minimal closed group B, (limt→∞Tt
Bp)B = sBpB,

5. for any j /∈ M , (limt→∞Ttp)j =
∑

B∈Mwj
BsBpB.

This result says that, when beliefs converge, all agents in any closed group will eventually

come arbitrarily close to holding the same belief. This belief will be a weighted average of

the initial beliefs of the agents in that group. The weights are the entries of the vector s,

and the weight of any agent in a closed group is positive. We refer to si the influence weight

or simply the influence of agent i. Agents who are not in M have no influence and their

beliefs converge to weighted sums of the beliefs of the agents whom they observe.

The most important thing to note about the vector s is that sj =
∑

i∈A Tijsi for all j, so

that the influence of an agent is the sum of the influences of those who trust him, weighted

by their trust for him. This is a very natural property for a measure of influence to have:

influential people are those who are trusted by other influential people.

4 The Wisdom of Crowds: Convergence to Accurate

Beliefs in Large Societies

In this section, we examine sequences of convergent matrices (Tn)∞n=1 indexed by n, the num-

ber of agents in each. This may be viewed as a sequence of successive snapshots of a growing

network, as we add one agent at a time; or simply as a standard tool for understanding

what happens in “large” societies. We are interested in the conditions under which agents

communicating through the network converge to hold the “correct” belief.
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Throughout this section, we maintain the assumption that Tn is convergent for each n

without repeating it in every result.

4.1 Information and Examples of Unwise Societies

Suppose that the true state of nature is µ, and let each agent i in network n see a signal

φn
i that is distributed with mean µ, a finite variance of at least σ2 > 0, and support that

is a subset of a compact set [−M, M ]. Suppose that signals are independently (but not

necessarily identically) distributed.

Let sn be the influence vector corresponding to Tn, as defined in Theorem 3. We write

the (i, j) entry of Tn as T n
ij, and the belief of agent i at time t as pn

i (t). In each network,

order the agents so that sn
i ≥ sn

i+1 ≥ 0 for each i and n, where
∑

i s
n
i = 1.

In each network of the sequence, the limiting belief of each agent i in network n approaches

some limit pn
i (∞). We say the sequence of networks is wise when, for each i, this belief

converges in probability to the true state µ as n →∞.

Definition. The sequence (Tn)∞n=1 is wise if

plim
n→∞

pn
i (∞) = 0

for each i.

To get some feeling for which societies are wise, start by supposing, for a moment, that

the communication structure is a strongly complete graph – i.e., every possible link is present

and that all links have equal weight: i.e., T n
ij = 1/n for all i, j ∈ A. In this situation, it is

easy to see that sn
i = 1/n for each i ∈ A. Indeed, after the first period every agent holds

the average belief of the society. By a law of large numbers, as n grows the beliefs become

arbitrarily accurate.

Obviously, this question becomes substantially more complicated when the communica-

tion structure has less symmetry. Different agents can have different influence weights, and

so certain signals will affect the final state more than others. Can the fundamental idea of the

above example can be carried through in more general networks? The answer is sometimes,

but not always, yes.

To get some idea of the challenge faced in discerning when a wise crowds result holds,

let us examine an example.
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Example 3. Consider the following network, defined for arbitrary n. Fix δ, ε ∈ (0, 1) and

define, for each n ≥ 1, an n-by-n interaction matrix

Tn :=


1− δ δ

n−1
δ

n−1
· · · δ

n−1

1− ε ε 0 · · · 0

1− ε 0 ε · · · 0
...

...
...

. . .
...

1− ε 0 0 · · · ε

 .

The network is shown in Figure 1 for n = 6 agents.

δ / (n – 1)

1 – ε

1– δ

ε

Figure 1: The unbalanced star network (shown here for n = 6 agents), which is one example
demonstrating that the limiting belief is not always accurate.

We find that

sn
i =

 1−ε
1−ε+δ

if i = 1

δ
(n−1)(1−ε+δ)

if i > 1.

This network will not always converge to the truth. Observe that at stage n, the limiting

belief is sn
1φ

n
1 plus some other independent random variables that have mean µ. As sn

1 is

bounded away from 0, the variance of of the limiting belief remains bounded away from 0

for all n. So beliefs will not generally converge to truth. The intuition is simply that the

leader’s information – even when it is far from the mean – is weighted heavily enough that

it biases the final belief, and the followers’ signals cannot do much to correct it. Indeed,

Proposition 1 below shows that as long as some agent’s influence is bounded away from 0

for all n, convergence to true beliefs will not generally occur.
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Note that even if we let 1 − ε approach 0 at any rate we like, so that people are not

weighting the center very much, the center has nonvanishing influence as long as δ is of

the same order as 1 − ε. Thus, it is not simply the total weight on a given indivdiual that

matters, but the relative weights that matter.

One thing that goes wrong in this example is that the central agent receives an high

amount of trust relative to the amount given back to others, making him unduly influential.

However, this is not the only obstruction to convergence to true beliefs. There are examples

in which the trust coming into any node is bounded relative to the trust going out, and there

is still an extremely influential agent who can keep society’s beliefs away from the true state.

This shows how indirect weight can matter.

δ

1– δ

δδ

1– δ

δ

1– δ

δ

1– δ

1– δ

. . .

Figure 2: The unbalanced line, which demonstrates that a network may not converge to
truth even if every agent’s incoming trust is bounded. Agents are numbered from left to
right.

Example 4. Fix δ ∈ (0, 1/2) and define, for each n ≥ 1, an n-by-n interaction matrix by

T n
11 = 1− δ

T n
i,i−1 = 1− δ if i ∈ {2, . . . , n}

T n
i,i+1 = δ if i ∈ {1, . . . , n− 1}

T n
nn = δ

T n
ij = 0 otherwise.

The network is shown in Figure 2. It is simple to verify that

sn
i =

(
δ

1− δ

)i−1

·
1−

(
δ

1−δ

)
1−

(
δ

1−δ

)n+1 .

In particular, limn→∞ sn
1 can be made as close to 1 as desired by choosing a small δ. As

in the previous example, it can then be shown that the system will not generally converge

to true beliefs. The reason for the leader’s undue influence here is somewhat more subtle

13



than in Example 3: it is not the trust he directly receives, but indirect trust accruing to him

due to his privileged position in the network. Thus, while he only receives twice as much

direct trust as the typical agent, his influence can exceed the sum of all other influences

by a huge factor for small δ. This shows that it can be extremely misleading to measure

agents’ influence based on direct incoming trust; instead, the entire structure of the network

is relevant.

4.2 Wisdom in Terms of Influence: A Law of Large Numbers

We now seek to investigate the question outlined above more generally. We first develop a

variation on a standard law of large numbers that is helpful in our setting, as we are working

with weighted averages and potentially non-identically distributed random variables. The

following result will be used to completely characterize wisdom in terms of influence weights.

Lemma 1. If (Tn)∞n=1 is a sequence of strongly connected convergent matrices, then

plim
n→∞

∑
i∈An

sn
i φ

n
i = µ

if and only if maxi s
n
i → 0.10

This says that, in a strongly connected society, the limiting belief of all agents, p(∞) =∑
i∈An

sn
i φ

n
i will converge to truth if and only if the most important agent’s influence tends

to 0. With slightly more careful analysis, this lemma implies an important result.

Proposition 1. If (Tn)∞n=1 is an arbitrary sequence of convergent stochastic matrices, then

plim
n→∞

pn
i (∞) = µ

for all i if and only if maxi s
n
i → 0.

Thus, Proposition 1 implies that (Tn)∞n=1 is wise if and only if the influence of the most

important agent in the whole society tends to 0. This result is natural in view of the examples

in Section 4.1, where saw that a society can be led astray if the leader has too much influence.

10We remark that since
∑

i∈An
sn

i φn
i is bounded, this is equivalent to having

plimn→∞
(
|
∑

i∈An
sn

i φn
i − µ|r

)
= 0 for all r > 0.
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4.3 Wisdom in Terms of Social Structure: Sufficient Conditions

The characterization found above is useful, but still quite abstract. It is interesting to ask

what is required, in more concrete terms, for wisdom. We now provide structural sufficient

conditions for a society to be wise. First, we note that when studying wisdom, we can choose

the most convenient power of the interaction matrices to work with – that is, we can study

direct influences or indirect influences at any level.

Proposition 2. If, for all n there exists kn such that Rn = Tkn
n , then (Tn)∞n=1 is wise if

and only if (Rn)∞n=1 is wise.

To show this, note that limt→∞Tt
n = limt→∞Rt

n, so that for every n, the influence vectors

will be the same for both matrices by an easy application of Theorem 3.

Our first sufficient condition for wisdom is straightforward:

Proposition 3. If (Tn)∞n=1 is a sequence of strongly connected,11 aperiodic, and row-

stochastic matrices such that each column sums to one, then it is wise.12

Proposition 3 follows directly from fact that if T is both row and column stochastic, and

strongly connected, then it has (left and right) unit eigenvectors of s = ( 1
n
, . . . , 1

n
), and so

then the influence of each agent in the society is equal. This makes clear how strong it is

to have each agent receiving the same total weight in such a social network. An obvious

sufficient condition for this is to have the matrix be symmetric, so that pairs of agents have

the same trust for each other.

We now consider other, less restrictive assumptions that generate the same conclusion.

Since wisdom is a notion defined in the large society limit, we are led to consider asymptotic

properties of social groups. In what follows, (Bn)∞n=1 denotes a arbitrary sequence of sets

such that Bn ⊆ An for each n ∈ N. This type of sequence should be viewed as a subset of

society, possibly growing and changing as society grows.

Definition. The sequence (Bn)∞n=1 of sets of nodes is small if limn→∞
|Bn|

n
= 0.

Definition. The sequence (Bn)∞n=1 of sets of nodes is finite if there is a k such that

supn |Bn| ≤ k.

11Instead of strong connectedness, it suffices for it to be possible to partition the agents into strongly
connected subsets that are growing in size plus some subsets that receive no trust from any of the strongly
connected ones.

12We thank Jonathan Weinstein for suggesting this proposition.
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B C

TC,B

TB,C

Figure 3: The large arrows illustrate the concept of the weight of one group on another.

The conditions will be stated in terms of weight that certain groups have for other groups,

so we make the following definition. For any two sets B, C ⊆ A, let

TB,C =
∑
i∈B
j∈C

Tij.

This is the weight of B on C, also called the trust of B for C. The concept is illustrated in

Figure 3.

The first family of sufficient conditions for wise conditions is as follows.

Property 1 (Balance). If |Bn| ≤ n/2

sup
n

T n
An−Bn,Bn

T n
Bn,An−Bn

< ∞.

The balance condition says that any group of agents who involves less than half of the

society cannot be getting infinitely more trust from the remaining agents than they give

to the remaining agents. This rules out situations like Example 3 above. It also excludes

situations in which some group receives a bounded amount of trust but has vanishing trust

for the rest of the world.

Property 2 (Minimal Out-Dispersion). There is a q ∈ N and r > 0 such that if Bn is

finite, |Bn| ≥ q, and |Cn| ≥ n/2, then T n
Bn,Cn

> r for all large enough n.
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The minimal out-dispersion condition requires that any large enough group must give at

least some minimal trust to groups that contain more than half of the agents. This rules out

situations like Example 4 above, in which there are agents that ignore the vast majority of

society.

Having stated these two conditions, we can give the first main result on wise crowds,

which states that the conditions are sufficient for wisdom.

Theorem 4. If (Tn)∞n=1 is a sequence of convergent stochastic matrices satisfying balance

and minimal out-dispersion, then it is wise.

Note, however, that neither condition is sufficient on its own. Example 4 satisfies the

first property but not the second. The square of the matrix in Example 3 satisfies the second

but not the first. In both examples the society fails to be wise. (This relies on an appeal to

Proposition 2 in the latter case.)

Theorem 4 suggests that there are two important ingredients in wisdom: a lack of extreme

imbalances in the trust structure and also a lack of local self-centered groups which pay very

little attention to the outside world. To explore this idea further, we formulate different

conditions in the same spirit which also generate wisdom. The essential difference is that

the notion of dispersion now focuses on links coming into a certain type of group as opposed

to ones going out.

Property 3 (Balance for Small Groups). If (Bn)∞n=1 is small, then

sup
n

T n
An−Bn,Bn

T n
Bn,An−Bn

< ∞.

This property weakens the balance condition to only hold for small groups.

Property 4 (Minimal In-Dispersion). There is a q ∈ N and an r < 1 such that if

|Bn| = q and Cn ⊆ An −Bn is finite then T n
Cn,Bn

≤ rT n
Bn,An−Bn

for all large enough n.

This condition requires that the trust coming into a finite group not be too concentrated.

The finite group Bn cannot have a finite neighborhood which gives Bn as much trust, asymp-

totically, as Bn gives out. This essentially requires influential groups to have a broad base

of support, and rules out situations like Example 4 above. Indeed, along with Property 3, it

is enough to generate wisdom.

Theorem 5. If (Tn)∞n=1 is a sequence of convergent stochastic matrices satisfying balance

for small groups and minimal in-dispersion, then it is wise.
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The proofs of Theorem 4 and 5 are technical, but the intuition behind them is not dif-

ficult. Suppose, by way of contradiction, that the wisdom conclusion does not hold. Then

there must be a group of agents that have positive influence as n →∞, and a remaining un-

influential group. Since the sum of influences must add up to 1, having some very influential

agents requires having a great number of uninfluential agents. In particular, the influential

group must be fairly small. As a result, it can only give out a limited amount of trust, and

thus can only have a similarly limited amount of trust coming in, using one of the balance

conditions. Recall that the influence of an agent is a trust-weighted sum of the influences

of those who trust him. The contradiction comes from the fact that the uninfluential group

does not have enough influence to support the high influence of the influential group, since

it can give this group only a limited amount of trust. But neither can the influential group

get all its support from inside itself, because the minimal out- and in-dispersion conditions

require it to send some of its trust outside, or to get a nontrivial fraction of its support from

outside, respectively.

It turns out that this informal argument is challenging to convert to a formal one, because

the array of influence weights sn
i as n and i range over all possible values has some surprising

and difficult properties. Nevertheless, the basic ideas outlined above can be carried through

successfully.

5 Comparative Statics: Changes in Trust

As we have seen, for a convergent system, the distribution of influence weights is an eigen-

vector of the interaction matrix. While this characterization is very handy mathematically,

it is still somewhat abstract and so we now provide comparative statics which illustrate the

relationship between local trust and global influence more concretely.

There are some very easy conclusions that we can reach based on the fact that sj =∑
i Tijsi. For instance, if agent j gets at least as much trust from each other agent as agent

k does (so that Tij ≥ Tik for all i), then j has at least as much influence as k (so that

sj ≥ sk). Similarly, holding else is equal, it is better to obtain trust from an agent who

has more influence. That is, If Tij = Tik for all i 6= `, m and T`j = Tmk > T`k = Tmj, then

s` > sm implies sj > sk.

To move beyond these observations, we need to derive how s changes as T changes.

For instance, suppose that a particular agent redistributes his or her trust. That is, he or

she trusts one acquaintance more and another acquaintance less – the latter being necessary

because the weights any given agent assigns to his or her contacts must sum to 1. Intuitively,
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one might guess that the influence of the agent to whom more trust has just been allocated

would increase, but this is not entirely obvious, especially as there are many indirect effects.

Nevertheless, a corollary of the main result of this section is that, the intuitive prediction is

correct.

First, we build on a result of Schweitzer (1968) to give two characterizations of how

changes in trust affect influence weights, and then we deduce the proposition claimed above.

We consider general perturbations of the interaction matrix – i.e., changing T to T + δC,

where C is arbitrary subject to the condition that the resulting matrix still be stochastic.

This requires that each row of C sum to 0.

Theorem 6. For any strongly connected, convergent T, suppose that C is a matrix whose

rows each sum to 0. Let

T̃(δ) = T + δC,

and let s̃(δ) be the vector of influence weights corresponding to T̃(δ), supposing that T̃(δ) is

nonnegative for small enough δ. Then

s̃′(0) = sC (I−T + es)−1 ,

and the inverse on the right hand side exists. The derivative can also be written as

s̃′(0) =
∞∑

k=0

sCTk, (2)

and the series converges.

This comparative static is still somewhat abstract, but easy to compute once the pertur-

bation of the interaction matrix is known, especially using the infinite series above, which

we have not seen elsewhere13. We obtain two interpretable corollaries by considering specific

perturbations.

Now we can characterize changes in influence upon perturbation of T using indirect

influences, and explicitly give the signs of certain influence changes. Define the t-step weight

of i on j as the (i, j) entry of Tt, which we write as T
(t)
ij .

Corollary 1. Consider any strongly connected, convergent T. If Cij = 1; Cik = −1; and

13The series expression is particularly attractive because for networks with second eigenvalues that are
not too large, it converges very quickly, so it is only necessary to compute a few terms.
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C has 0 entries elsewhere, then s̃′j(0) ≥ 0 and s̃′k(0) ≤ 0. Moreover,

s̃′j(0) = si

[
1 +

∞∑
t=1

(
T

(t)
jj − T

(t)
kj

)]

and

s̃′k(0) = −si

[
1 +

∞∑
t=1

(
T

(t)
kk − T

(t)
jk

)]
.

Corollary 2. Retain the assumptions of the previous corollary. If Cij > 0; Cik ≤ 0 for all

all k 6= j; and 0 elsewhere, then s̃′j(0) ≥ 0.

The first corollary says that if agent i redistributes his or her trust, placing more weight

on the opinion of agent j and correspondingly less on that of agent k, then agent j becomes

weakly more influential and agent k becomes weakly less influential in the network. The

second corollary says that agent j becomes more influential even if the new weight he or she

receives is taken from several agents, not just one.

Moreover, Corollary 1 shows that, quite generally, it is better to be trusted more by a

more influential agent. That is, the improvement in one’s influence arising from a favorable

redistribution of trust by some agent is directly proportional to the influence of the agent

redistributing it. This holds regardless of the structure of T, and generalizes our observation

at the start of this section.

6 Dynamics: How Long Does Disagreement Last?

While Theorem 3 pins down the limiting behavior of beliefs, it does not illuminate the

question of how long convergence takes or how this depends on the specifics of the belief

matrix. Since disagreement is often observed in practice, there may be networks in which

convergence takes a a very long time.

As in DeMarzo, Vayanos and Zwiebel (2003), in this section, we develop variations on re-

sults from spectral theory that relate rates of convergence to the size of eigenvalues. Beyond

that, we then relate the bounds on convergence rates to the structure of the interaction. Ap-

plying a theorem on second eigenvalues, we can conclude that slow convergence corresponds

to the case where society is factious – divided into several mutually distrustful components.

There is also a useful sufficient condition for agreement to happen quickly.

The contribution in this section is not to present new mathematical results, as the results

here easily follow from existing results from various literatures; but rather to collect and
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adapt the results to the current setting.

The first proposition, which is a standard Markov chain convergence result, gives an

upper bound on the difference between the current belief vector and the limiting one, thus

describing a condition under which convergence is fast. A proof can be found in Seneta

(1973, p. 7).

Proposition 4. Fix any norm ‖ · ‖ on Rn. Let T be strongly connected and aperiodic, and

let λ(T) be the second-largest eigenvalue, in magnitude, of T. Then |λ2(T)| < 1 and there

exist positive real constants C and K (which depend only on the matrix T) such that for

each i ∈ A:

|pi(∞)− pi(t)| ≤ CtK |λ2(T)|t · ‖p(0)‖ . (3)

Note that the exponential decay of |λ2(T)|t overpowers the polynomial growth of tK , so

the system converges, as we already know. This proposition says that when |λ2(T)| is small,

the system is guaranteed to converge quickly to its steady state.

Reversing the inequality is not possible in general. However, a companion proposition,

whose proof can be found in Karlin and Taylor (1975, p. 542–551), gives a partial converse.

Proposition 5. Retain the assumptions of Proposition 4. There exists an initial vector

p(0) ∈ Rn, a positive real constant C, and an agent i ∈ A, such that

|pi(∞)− pi(t)| ≥ C |λ2(T)|t . (4)

This proposition says that if |λ2(T)| is large – i.e., close to 1 – then for some initial

belief vectors, the system will converge to its steady state quite slowly. It is clear that this

statement can only hold for some initial belief vectors, as one can always start agents out

with identical beliefs in which case convergence is instantaneous.

The two propositions taken together allow us to use |λ2(T)| as a proxy for the system’s

tendency to equilibrate. If |λ2(T)| is small, then all the agents quickly reach agreement. If

|λ2(T)| is large, then convergence can take a long time. Note that if some agents are to one

side of the limiting belief, then some others must clearly be on the other side – otherwise,

a process of averaging could never arrive at the limiting belief. Thus, while the eventual

beliefs will always coincide, this might take happen slowly enough that diversity of opinion

is observed for a long time, even in strongly connected networks.

While useful, these results leave something to be desired. In particular, the second largest

eigenvalue of the interaction matrix is a rather abstract invariant of the system. What does

it mean, in more concrete terms, for the interaction matrix to have a small or large second

eigenvalue?
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In fact, we can give an explicit necessary and sufficient condition for convergence to take

a long time. To this end, we provide a few definitions.

Define the cohesion14 of T, following Hartfiel and Meyer (1998), as

σ(T) = min
∅6=B,C(A
B∩C=∅

(TB,A−B + TC,A−C) . (5)

The minimum is taken over all pairs of disjoint subsets of agents such that neither subset

is empty. Let T be rearranged (by permuting the labeling of the agents) so that the above

minimum is achieved at B′ = {1, . . . , k1} and C ′ = {k1 + 1, . . . , k2}. Then we can partition

T as

T =

 T11 T12 T13

T21 T22 T23

T31 T32 T33

 , (6)

where T11 is a k1-by-k1 matrix and T22 is has dimensions (k2 − k1)-by-(k2 − k1). We can

think of σ(T) as the sum of the entries in T12,T13,T21, and T23. The cohesion σ(T) being

small corresponds to each agent in B′ and C ′ having very little weight on those outside his

or her group.

The cohesion measure of a stochastic matrix is closely related to the second largest

eigenvalue, which is a result due to Hartfiel and Meyer (1998). A slight variation of their

result is the following theorem which leads to implications for speed of convergence from our

perspective.

Theorem 7. [Hartfiel and Meyer (1998)] Consider a stochastic, strongly connected matrix

T. Having a low cohesion implies having a large second eigenvalue in the sense that for any

ε > 0, there exists a δ > 0 so that σ(T) < δ implies |λ2(T) − 1| < ε. Conversely, having a

large second eigenvalue implies a low cohesion in the following sense: for any ε > 0, there

exists a δ > 0 such that |λ2(T)− 1| < δ implies σ(T) < ε.

As claimed earlier, Theorem 7, together with Propositions 4 and 5, imply that conver-

gence of beliefs is slow if there are at least two distrustful factions – groups who have little

trust for those outside them, and in particular for each other. Conversely, if convergence is

sufficiently slow, then it must be possible to partition society in this way.

14Hartfiel and Meyer (1998) call this quantity the uncoupling measure. In this terminology, systems with
low uncoupling measures are very uncoupled. We have chosen the alternative term cohesion as it seems more
descriptive.
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Corollary 3. For any ε > 0, there exists a δ > 0 such that such that if T is strongly

connected and aperiodic with cohesion less than δ then we can find a an initial vector p(0) ∈
Rn, an agent i ∈ A, and a C ∈ R such that

|pi(∞)− pi(t)| ≥ C(1− ε)t. (7)

While Corollary 3 provides conditions for convergence to be slow, we might also be

interested in sufficient conditions for fast convergence. Here, general conditions seem to be

harder to find, especially since fast convergence is required for all initial beliefs. Nevertheless,

there are some situations where we can deduce conditions that ensure fast convergence.

The following proposition builds on results about expander graphs (e.g., see Hoory, Linial,

and Wigderson (2006)). Consider a T which is d-regular and symmetric: that is, such that

there exists d ≥ 1 such that each i has Tij = 1
d

for d agents j 6= i, and where Tij = Tji. The

expansion ratio of a symmeric and K-regular T is defined by

h(T) = min
B:|B|≤n/2

TB,BC

|B|
(8)

This keeps track of how many agents outside of B are trusted by the agents inside of B

relative to B’s size, and then finds the smallest ratio of this rate of “expansion”. It is

clear that h lies between 0 and 1. Theorems on expander graphs relate this ratio to second

eigenvalues. Building from that theory, we can prove the following:

Proposition 6. If T is strongly connected, d-regular, and symmetric, then there exist pos-

itive real constants C and K (which depend only on the matrix T) such that for each i ∈ A:

|pi(∞)− pi(t)| ≤ CtK

(
1− (h(T))2

2

)t

· ‖p(0)‖ . (9)

This is derived directly from Proposition 4 and the fact that λ2(T) ≤ 1 − (h(T))2

2
(see

Theorem 2.4 in Hoory, Linial, and Wigderson (2006)).15 The proposition implies that if

groups of agents are looking sufficiently outwards to sets of other agents, then convergence

of beliefs is fast. For instance, if each set of agents B placed high enough weight on BC so

that h(T) is at least 1− ε, then |pi(∞)− pi(t)| ≤ CtK
(

1+ε
2

)t · ‖p(0)‖.
We also mention a convenient sufficient condition for convergence to be fast, which is due

15The definition of h is adjusted here for the stochastic nature of the matrix, and the bound on the
eigenvalue is adjusted accordingly.
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to Haveliwala and Kavmar (2006).

Consider a case where T can be decomposed as follows:

T = uU + (1− u)H, (10)

where u ∈ [0, 1]; U is a stochastic matrix such that all the entries in any given column are

equal; and H is any stochastic matrix. The matrix U is the uniform component of T and the

matrix H the heterogeneous component of T. Define the uniformity of T as the largest u such

that the decomposition in (10) is possible.16 We say that U is uniform because, for each j, all

entries in column j of U are equal, say to U∗j. This corresponds to all agents trusting agent

j at least uU∗j. Since U is stochastic, it follows that everyone shares a baseline distribution

of trust across some agents; the uniform component of each agent’s trust distribution adds

up to u.

Haveliwala and Kavmar (2006) show that if T is a stochastic matrix that is decomposed as

in (10), Then |λ2(T)| ≤ 1−u. Thus, if the uniformity of T is high enough, then convergence is

guaranteed to be fast. Intuitively, uniformity is high when a significant portion of everyone’s

information comes from a common set of agents. For example, it is high if everyone has a

significant degree of trust for some set of media organizations. In terms of cohesion, we can

see that having uniformity above some level then leads to a cohesion above some level. So

intuitively, one expects faster convergence. However, the results on cohesion only hold as

cohesion approaches 0, and so the uniformity results of Haveliwala and Kavmar (2006) show

that, at least in some special cases, the results extend beyond the limiting extremes.

7 Conclusion

There are several testable empirical implications to be drawn from the results presented here.

First, the results on necessary and sufficient conditions for convergence to common beliefs

suggest that the topological details of network structure can have a large qualitative impact:

they determine whether the agents ever come to agree. In particular, if the network is regular

in the sense of all cycle lengths having a common factor, then beliefs may cycle indefinitely.

This is in contrast with previous results on learning in networks, in which the precise small-

scale topological structure of the network does not typically play such a key role. On the

other hand, the result is generally an optimistic one for long-term convergence: networks

for which convergence fails are quite special, and many networks arising from stochastic

16The fact that the set of possible values of u is compact proves that this maximum exists.

24



processes would satisfy the sufficient conditions for convergence.

The main topic of this paper, explored in Section 4, concerns whether large societies

whose agents get noisy estimates of the truth converge to true beliefs. We show that they

do under certain assumptions about social structure. The flavor of the main condition is

that no group of agents (unless it is large) should get very much more trust than it gives

back. As long as this holds, and one of several additional conditions regarding dispersion is

satisfied, it follows that sufficiently large societies will come arbitrarily close to the truth.

These results suggest two insights. First, excessive attention to small groups of pundits or

opinion-makers who are not reciprocally attentive to group opinion is bad for convergence

to truth. On the other hand, social cohesion – in the sense of not having segments of society

that essentially ignore each other’s views – is good.

In our context, these conclusions provide an answer to a broad question asked by Joel

Sobel (2000): can large societies whose agents are fairly näıve individually be smart in the

aggregate? In this model, they can, if there is enough dispersion in who they listen to, and if

they avoid concentrating too much on any small group of agents.17 This conclusion contrasts

with the very special conditions required for näıve learning presented by DeMarzo, Vayanos

and Zwiebel (2003). In this sense, there seems to be more hope for boundedly rational social

learning than has previously been believed. On the other hand, our sufficient conditions are

fairly strong in the sense that they can fail if there is just one group which receives too much

trust or is too insular. This raises a natural question: which processes of network formation

satisfy the sufficient conditions we have set forth? How must agents dynamically allocate

trust to ensure that no group obtains an excessive share of influence in the long run? These

are potential directions for future work.

Our results on comparative statics show that when agents redistribute their trust, per-

turbations in the global social influences can readily be computed if we understand agents’

indirect weights on each other’s opinions. Importantly, sometimes only a few levels of indi-

rect weights are required to get a very good approximation to the true perturbation. Thus,

these results provide a means of testing the theory with only local information about details

of the network structure.

The results that we surveyed regarding convergence rates provide some insight into po-

larization and propaganda. We should expect long-term polarization on an issue when the

social structure describing how people discuss that issue splits into several mutually dis-

trustful groups. This would mean that an agent’s discussion partners are mostly restricted

17This is similar to the discussion in Bala and Goyal (1998) of what can go wrong when there is a commonly
observed “royal family” under a different model of observational learning.
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to the group in which he or she is located, and that there is little trust across party lines.

Such properties have been studied in the political science literature: see, e.g., Huckfeldt and

Sprague (1987). In contrast to the slow convergence of an incohesive society, elimination

by authoritarian regimes of all but a few official media outlets leads to greater cohesion.

Consider Pravda in the former Soviet Union, or the blocking of many foreign news sources

in China, etc. One obvious reason for this behavior is to control access to information. This

also increases the influence of those news sources, as well as helping in terms of a rate of

convergence.

To finish, we mention some obvious extensions of the project. First, the theory can be

applied to a variety of strategic situations in which social networks play a role. For instance,

consider an election in which two political candidates are trying to convince voters. While

the voters remain nonstrategic about their communications, the politicians (who may be

viewed as being outside the network) can be quite strategic about how they attempt to

shape beliefs. A salient question is whom the candidates would choose to target. The social

network would clearly be an important ingredient. A related application would consider

firms competitively selling similar products (such as Coke and Pepsi).18 Here, there would

be some benefits to one firm of the other firms’ advertising. These complementarities, along

with the complexity added by the social network, would make for an interesting study of

marketing. Second, it would be interesting to involve heterogeneous agents in the network.

In this paper, we have focused on nonstrategic agents who are all boundedly rational in

essentially the same way. We might consider how the theory changes if there are some fully

rational agents in the network. Can a small mixture of different agents significantly change

the group’s behavior? Such extensions would be a step toward connecting fully rational and

boundedly rational models, and would open the door to a more robust understanding of

social learning.

Appendix: Proofs

Proof of Theorem 1:

Lemma 2. If T is strongly connected and aperiodic, then it is primitive (i.e., Tk > 0 for

some finite k).

Lemma 2 is a standard corollary to the Perron-Frobenius Theorem (see, e.g., Horn and

Johnson (1985, Theorem 8.5.3)).

18See Galeotti and Goyal (2007) for a one-firm model of optimal advertising on a network.
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Lemma 3. [The Stochastic Matrix Theorem] If T is stochastic and primitive, then it con-

verges.

A proof can be found in Meyer (2000, Section 8.3).

Lemma 4. If T is strongly connected, stochastic and not aperiodic, then it does not converge.

Proof of Lemma 4: First we introduce some notation. Denote the length of a walk or

cycle B by |B|. Suppose B = i1, i2, . . . , ib and C = j1, j2, . . . , jc are walks such that ib = j1.

Then define B + C, called the concatenation of B and C, as i1, i2 . . . , ib, j2, . . . , jc. It is easy

to check that when two walks are concatenated, the length of the resulting walk is the sum

of the lengths of its constituents. That is, |B + C| = |B|+ |C|, and the same is also true for

cycles.

Choose any node i. As T is strongly connected, i is on at least one cycle. Since T is not

aperiodic, there is an integer d > 1 such that any cycle D containing i has length divisible

by d.

Let Y be the set of all nodes j such that some path from i to j has length divisible by d.

Claim: If j ∈ Y then all walks from i to j have length divisible by d.

Proof of Claim: Suppose j ∈ Y . Let B be a walk from i to j whose length is divisible by

d. Let B′ be another walk from i to j. We will show that the length of B′ is divisible by d.

By strong connectedness, there is a walk E from j to i. Since B + E is a cycle through i, it

follows that d divides |B + E| = |B|+ |E|. The fact that d divides |B| implies that d divides

|E|. But B′ + E is another cycle through i, so d divides |B′ + E| = |B′|+ |E|. Since we saw

d divides the second summand and the left hand side, it must divide |B′|, as desired. This

shows the claim.

To prove the lemma, define p(0) by

pj(0) =

0 if j ∈ Y

1 if j /∈ Y
.

Write

p(t) = Ttp(0).

We claim pi(t) = 0 whenever d | t and pi(t) = 1 whenever d - t.

For the first part, suppose d | t and let R = Tt. Then

p(t) = Rp(0)
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and so

pi(t) =
n∑

j=1

Rijpj(0).

Using a fact from Meyer (2000, p. 672) we can rewrite this as

pi(t) =
N∑

j=1

pj(0)
∑

i2,...,it

Tii2Ti2i3 · · ·Titj.

The coefficient of pj(0) is nonzero if and only if there is a walk from i to j of length t. This

happens if and only if j ∈ Y , by definition of Y . But pj(0) = 0 whenever j ∈ Y . This shows

pi(t) = 0.

To show pi(t) = 1 whenever d - t, let R = Tt again and, as before write

pi(t) =
n∑

j=1

pj(0)
∑

i2,...,it

Tii2Ti2i3 · · ·Titj.

The coefficient of pj(0) is nonzero if and only if there is a walk from i to j of length t. By

Claim 1, this happens only if j /∈ Y . For all such j, we have pj(0) = 1. Therefore

pi(t) = 1
n∑

j=1

∑
i2,...,it

Tii2Ti2i3 · · ·Titj.

This is the sum of the ith row of R = Tt, and this matrix is still stochastic, so pi(t) = 1.

The theorem follows directly from these lemmas.

Proof of Theorem 2 and 3:

The backward implication of Theorem 2 follows from Lemma 4 after observing that if T

is not strongly aperiodic, then some minimal closed group of T must fail to be aperiodic.

The backward implication of Theorem 3 is immediate.

We will prove the forward implication of Theorem 2 and also Theorem 3 at the same

time, via the following standard lemma.

Lemma 5. If T is strongly connected and aperiodic, then there is a row vector s > 0 such

that for any p,

lim
t→∞

Ttp = sp.

This vector is the left eigenvector of T corresponding to the eigenvalue 1. In particular, all

entries of the limit are the same.
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Proof of Lemma 5: Standard facts about Markov matrices, which can be found in Meyer

(2000, Section 8.3) and Berman and Plemmons (1979, Chapter 2) imply the following facts,

which we collect here for later reference. The spectral radius of the matrix T, denoted ρ(T),

is 1 as T is stochastic. In fact, 1 is the unique eigenvalue of T with magnitude 1, and

all other eigenvalues are strictly smaller in magnitude. By Meyer (2000, Section 8.3), the

following limit expression holds:

lim
t→∞

Tt

ρ(T)
=

es

se
, (11)

where e is the column vector of ones and s is the unique, positive left-hand Perron (row)

eigenvector of T corresponding to eigenvalue 1. We may scale s so that its entries sum to 1.

Since the right side of the above limit equation is e times a 1-by-1 matrix, it follows that

all the entries in the limiting vector are the same, namely sp. This proves all the claims in

the lemma.

This proves the theorem for a strongly connected interaction matrix. Now suppose that

the matrix is not strongly connected, so that some proper subset of agents is not closed.

Then by relabeling agents, it can be transformed into

T =

[
T11 T12

0 T22

]
, (12)

where the bottom right block corresponds to all agents in M , i.e. all agents in any minimal

closed group, and the rows above it correspond to agents who are in no minimal closed group.

We may further decompose

T22 =

 TB1

. . .

TBm

 ,

where each Bk is minimally closed. Each will also be aperiodic, because T is strongly

aperiodic. Lemma 5 shows that for each k,

lim
t→∞

Tt
Bk

pBk
= sBk

pBk
, (13)

where sBk
is the unique left eigenvector of TBk

, scaled so that its entries sum to 1. Define

s = 0⊕ sB1 ⊕ · · · ⊕ sBm , where 0 is a zero row vector such that s ∈ Rn. This shows (1–3) of

Theorem 3.

For the remaining parts of Theorem 3, we note by Meyer (2000, Section 8.4) that the
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decomposition in (12) entails

lim
t→∞

Ttp =

[
0 Z

0 E

]
p, (14)

where

E =

 esB1

. . .

esBm

 .

The block-diagonal form of E, along with (13), immediately implies (4) of Theorem 3.

Since powers of stochastic matrices are stochastic, Z has rows summing to 1. For each

j /∈ M , define wj ∈ R|M| by wj
k =

∑
i∈Bk

Zji. Then
∑m

k=1 wj
k = 1. Note that

lim
t→∞

Ttp = lim
r→∞

Tr
(

lim
t→∞

Ttp
)

,

and so the matrix on the right hand side of (14) is idempotent. Then (14) can be written as

lim
t→∞

Ttp =

[
0 Z

0 E

]
q, (15)

where

q =

[
0 Z

0 E

]
p.

Since EBk
pBk

= sBk
pBk

, it follows that qi = sBk
pBk

if i ∈ Bk. Now, for each j /∈ M , we have

(
lim
t→∞

Ttp
)

j
=
∑
i∈M

Zjiqi =
m∑

k=1

wj
ksBk

pBk

by definition of q and wj. This completes the proof of (5) in Theorem 3. The forward

direction of Theorem 2 follows immediately.

Proof of Lemma 1:

We know that the variance of each φn
i lies between σ2 and σ2 for some σ2.

Let Xn =
∑

i s
n
i φ

n
i . Then Var(Xn) ≤ σ2

∑
i s

2
i .

First, suppose sn
1 → 0. Since si

n ≥ sn
i+1 ≥ 0 for all i and n, it follows that

Var(Xn) ≤ σ2
∑

i

s2
i ≤ σ2sn

1

∑
i

si = σ2sn
1 → 0.
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By Chebychev’s inequality, fixing any ε > 0

P

[∣∣∣∣∣∑
i

sn
i φ

n
i − µ

∣∣∣∣∣ > ε

]
≤ Var(Xn)

ε2
→ 0.

For the converse, suppose (taking a subsequence if neccesary) sn
1 → s > 0. Since each

Xn has support in [−M, M ], a variance bounded below, and mean µ, it then follows that

there exists δ > 0 such that Var(Xn) > δ for all n. But this implies directly that there exists

ε and x > 0 such that, for each n,

P

[∣∣∣∣∣∑
i

sn
i φ

n
i − µ

∣∣∣∣∣ > ε

]
> x.

This completes the proof.

Proof of Proposition 1: First we prove that if the condition sn
1 → 0 holds, then con-

vergence to truth occurs. By Theorem 3, agents with no influence converge to weighted

averages of beliefs of agents with influence, so it suffices to show that if in ∈ An is any

sequence of agents in minimal closed groups, then plimn→∞ pn
in(∞) = µ. Let Bn be the

minimal closed group of in. Without loss of generality, we may replace Tn with induced

interaction matrix on the agents in Bn. Now, by the lemma, all that is required for every

agent in Bn to converge to true beliefs is that |Bn| → ∞ and the most influential agent in Bn

have influence converging to 0. The second fact follows because the most influential agent

in An has influence converging to 0, and a fortiori the same must hold for the leader in Bn.

The first fact follows directly from this, for the influences of agents in Bn now converge to 0

but sum to 1, which is impossible if the number of agents is bounded by a finite number.

Conversely, if the influence of some agent remains bounded above 0, then we may restrict

attention to his closed group and conclude from the argument of the lemma that convergence

to truth is not generally guaranteed.

Proof of Theorem 4:

Recall that we have ordered the agents so that sn
i ≥ sn

i+1 for all i. In the proof of this

theorem and the next, all unadorned limits are taken as n → ∞. Suppose to the contrary

that there is a subsequence where sn
1 → s > 0.

Take the subsequence to be the sequence.

Let kn be a sequence such that lim kns
n
kn
→ 0 and kn ≤ n/2. To see that such a sequence

exists, consider a countable sequence of x → 0. Let us first argue that for each x there is
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at most a finite set of set of n, such that isn
i ≥ x for all i ≤ n/2. Suppose to the contrary

that there exists x > 0 such that for an infinite set of n, isn
i ≥ x for all i ≤ n/2. Thus, for

these n,
∑

i≤n/2 isn
i ≥

∑
i≤n/2

x
i
→ ∞, which is a contradiction. Thus, for each x there is

nx such that for every n > nx, the set Cx,n = {i : isn
i < x} is nonempty. The nx form a

nondecreasing sequence as x → 0. Select the sequence kn by choosing from Cx′,n where x′ is

the largest x such that nx ≤ n.

For each n, let Hn = {1, . . . , kn} and Ln = An−Hn. Observe that since sn is a left hand

eigenvector of Tn, we have∑
j∈Hn

sn
j =

∑
i∈Hn

∑
j∈Hn

T n
ijs

n
i +

∑
i∈Ln

∑
j∈Hn

T n
ijs

n
i

Rewrite this as ∑
i∈Hn

sn
j

(
1−

∑
i∈Hn

T n
ji

)
=
∑
i∈Ln

∑
j∈Hn

T n
ijs

n
i

or ∑
j∈Hn

(∑
i∈Ln

T n
jis

n
j

)
=
∑
i∈Ln

(∑
j∈Hn

T n
ijs

n
i

)
. (16)

Let

sn
H =

∑
j∈Hn

sn
j ·
∑

i∈Ln
T n

ji

T n
Hn,Ln

and

sn
L =

∑
i∈Ln

sn
i ·
∑

j∈Hn
T n

ij

T n
Ln,Hn

.

We rewrite (16) as

sn
HT n

Hn,Ln
= sn

LT n
Ln,Hn

. (17)

Taking Bn = {1, . . . , q} and Cn = An−Bn in the statement of the minimal out-dispersion

property, we have for large enough n,

sn
H ≥

sn
q r

qkn

for a natural number q and a positive real r.

Also, sn
L ≤ sn

kn
. Thus, (17) implies that

rsn
q T

n
Hn,Ln

≤ qsn
kn

knT
n
Ln,Hn

. (18)
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Since T n
Ln,Hn

/T n
Hn,Ln

is bounded (by balance), this implies that limn sn
q = 0.

So, consider a case where lim sn
q = 0. Let k be the largest i such that limn sn

i = 0. Let

Hn = {1, 2, . . . , k}. Then, as above, we have the following facts:∑
i∈Hn

sn
i

∑
j∈Ln

T n
ij =

∑
i∈Ln

∑
j∈Hn

T n
ijs

n
i

sn
k

∑
i∈Hn

∑
j∈Ln

T n
ij ≤ sn

k+1

∑
i∈Ln

∑
j∈Hn

T n
ij by the ordering of the sn

i

sn
k

sn
k+1

≤
T n

An−Hn,Hn

T n
Hn,An−Hn

.

The left side will have supremum ∞ over all n because sn
k+1 → 0 while sn

k has posi-

tive lim sup. The right side, however, is bounded using the balance property. This is a

contradiction, and therefore this case is complete.

Proof of Theorem 5: By Proposition 1 and the ordering we have chosen for sn, it suffices

to show that

lim
n→∞

sn
1 = 0 (19)

Suppose otherwise.

We proceed by cases. First, assume that there are only finitely many i such that

limn→∞ sn
i > 0. Then we can proceed as at the end of the proof of Theorem 4 to reach

a contradiction. Note that only balance for finite groups is needed, which is implied by

balance for small groups.

From now on, we may assume that there are infinitely many i such that limn→∞ sn
i > 0.

In particular, if we take the q guaranteed by Property 4 and set Bn = {1, 2, . . . , q}, then

we know that limn→∞ sn
i > 0 for each i ∈ Bn. Now, fix a function g : N → N and define

Cn = {q + 1, . . . , q + g(n)}. Finally, put Dn = {q + g(n) + 1, q + g(n) + 2, . . . , n}.
We claim g can be chosen such that

lim sup
TCn,Bn

TBn,An−Bn

≤ r

and lim g(n) = ∞, i.e. g is a divergent function. Let Ck
n = {q + 1, q + 2, . . . , q + k − 1}. By

Property 4, there exists an n1 such that for all n ≥ n1, we have

TC1
n,Bn

TBn,An−Bn

≤ r.
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Having chosen n1, . . . , nk−1, there exists an nk > nk−1 such that for all n ≥ nk we have

TCk
n,Bn

TBn,An−Bn

≤ r.

Define

g(n) = max{k : nk ≤ n}.

Since n1, n2, . . . is an increasing sequence of integers, the set whose maximum is being taken

is finite. It is also nonempty for n ≥ n1, so g is well defined there. For n < n1, let g(n) = 1.

Next, observe lim g(n) = ∞. For if not, there is some k′ so that nk ≤ nk′ for all k, which is

false since n1, n2, . . . is an increasing sequence of integers. Finally, since Cn defined above is

equal to C
g(n)
n and

T
C

g(n)
n ,Bn

TBn,An−Bn

≤ r

for all n ≥ n1 by construction, it follows that

lim sup
TCn,Bn

TBn,An−Bn

≤ r. (20)

This shows our claim about the choice of g.

Now we have the following string of implications:∑
i∈Bn

sn
i =

∑
i∈Bn

∑
j∈An

T n
jis

n
j∑

i∈Bn

sn
i =

∑
i∈Bn

∑
j∈Bn

T n
jis

n
j +

∑
i∈Bn

∑
j∈Cn

T n
jis

n
j +

∑
i∈Bn

∑
j∈Dn

T n
jis

n
j∑

i∈Bn

sn
i =

∑
i∈Bn

∑
j∈Bn

T n
ijs

n
i +

∑
i∈Cn

∑
j∈Bn

T n
ijs

n
i +

∑
i∈Dn

∑
j∈Bn

T n
ijs

n
i∑

i∈Bn

sn
i

∑
j /∈Bn

T n
ij =

∑
i∈Cn

sn
i

∑
j∈Bn

T n
ij +

∑
i∈Dn

sn
i

∑
j∈Bn

T n
ij.

Rearranging, ∑
i∈Bn

sn
i

∑
j /∈Bn

T n
ij −

∑
i∈Cn

sn
i

∑
j∈Bn

T n
ij =

∑
i∈Dn

sn
i

∑
j∈Bn

T n
ij. (21)

Using the ordering of the sn
i , the first double summation on the left side satisfies∑

i∈Bn

sn
i

∑
j /∈Bn

T n
ij ≥ sn

q

∑
i∈Bn

∑
j /∈Bn

T n
ij = sn

q T
n
Bn,An−Bn

.
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Similarly, the second summation on the left side of (21) satisfies∑
i∈Cn

sn
i

∑
j∈Bn

T n
ij ≤ sn

q+1

∑
i∈Cn

∑
j∈Bn

T n
ij = sn

q+1T
n
Cn,Bn

.

Finally, the summation on the right side of (21) satisfies∑
i∈Dn

sn
i

∑
j∈Bn

T n
ij ≤ sn

q+g(n)+1

∑
i∈Dn

∑
j∈Bn

T n
ij = sn

q+g(n)+1T
n
An−Bn∪Cn,Bn

.

For notational ease, put f(n) = q + g(n) + 1. Combining the above facts with (21), we

find

sn
q T

n
Bn,An−Bn

− sn
q+1T

n
Cn,Bn

≤ sn
f(n)T

n
An−Bn∪Cn,Bn

.

By the ordering of the sn
i , it follows that

sn
q+1T

n
Bn,An−Bn

− sn
q+1T

n
Cn,Bn

≤ sn
f(n)T

n
An−Bn∪Cn,Bn

. (22)

By Property 4, there is a r < 1 so that for all large enough n, we have

T n
Cn,Bn

< rT n
Bn,An−Bn

.

Using this and a trivial bound on the right hand side of (22), we may rewrite (22) as

sn
q+1(1− r)T n

Bn,An−Bn
≤ sn

f(n)T
n
An−Bn,Bn

. (23)

To finish the proof, we need two observations. The first is that sn
f(n) → 0. Suppose not,

so that it exceeds some a > 0 for infinitely many n. Then for all such n, we use the ordering

of the sn
i to find

f(n)∑
i=1

sn
i ≥ af(n),

and this quantity diverges, contradicting the fact that

n∑
i=1

sn
i = 1.

The second observation is that we may, without loss of generality, assume g is a divergent

function satisfying limn→∞
g(n)

n
= 0, so that (Cn)∞n=1 is small. For if we have a g so that this

condition does not hold, it is easy to verify that reducing g to some smaller divergent function
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for which the condition does hold cannot destroy the property in (20).

Now we rewrite (23) as

(1− r)
sn

q+1

sn
f(n)

≤
T n

An−Bn,Bn

T n
Bn,An−Bn

.

By an argument very similar to the previous case, the observations we have just derived

along with Property 3 generate the needed contradiction.

Proof of Theorem 6 The equation

s̃′(0) = sC (I−T + es)−1

is a well-known result of Schweitzer (1968, equation 15). Multiplying both sides of it on the

right by (I−T + es), one obtains

s̃′(0) (I−T + es) = sC.

However, the entries of s̃′(0) sum to zero, while all the rows of es are the same, so the

corresponding product vanishes and

s̃′(0) = s̃′(0)T + sC.

Replacing s̃′(0) on the right hand side with the entire right hand side repeatedly, we find,

for all r ≥ 1

s̃′(0) = s̃′(0)Tr+1 +
r∑

t=0

sCTt.

Taking the limit as r → ∞, the first term on the right vanishes by the argument we just

gave, because Tr+1 → es. The summation on the right converges because the left hand side

is a well-defined vector by the first part of the proof. This establishes (2).

Proof of Corollary 1 The summation formulas follow immediately from (2). To establish

that the signs are as claimed, define, for every δ ∈ (1
2
, 1),

v(δ) =
∞∑

t=0

sC(δT)t. (24)

We will show v
(δ)
j > 0 and v

(δ)
k < 0 for each such δ. Additionally, we will check that we can

interchange the limit as δ → 1 from below with the above summation. Using the summation
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expression for the derivative from (2), this will prove the corollary.

The first claim is that

∞∑
t=0

lim
δ→1−

sC(δT)t = lim
δ→1−

∞∑
t=0

sC(δT)t. (25)

To see (25), we will use the Lebesgue dominated convergence theorem. Observe that∥∥sC(δT)t
∥∥ ≤ ∥∥sCTt

∥∥ .

The terms on the right hand side are those of an absolutely convergent series, as follows. By

Seneta (1973, Theorem 1.2) and the triangle inequality, we have

∞∑
t=0

‖sCTt‖ ≤
∞∑

t=0

‖sCes‖+
∞∑

t=0

αqttK‖sC‖, (26)

where q = |λ2(T)| < 1 and α, K are constants. Now sCes = 0 since all rows of es are equal,

while each row of sC sums to 0. Choose p ∈ (q, 1) and observe

∞∑
t=0

αqttK‖sC‖ ≤ α′ +
∞∑

t=0

αpt‖sC‖,

where α′ is another constant, since eventually pt > tKqt. But the series on the right hand side

is geometric with ratio less than 1, so it converges. Combining these facts, (26) converges as

claimed and (25) is established.

Now, we will show that s̃′j(0) ≥ 0 and s̃′k(0) ≤ 0. By the above claim about interchanging

sums and limits, it suffices to see v
(δ)
j > 0 and v

(δ)
k < 0 for each δ ∈ (1

2
, 1). To this end,

observe that the series defining v(δ) is absolutely convergent, so we may rearrange the order

of summation and write

v(δ) = sC
∞∑

t=0

(δT)t.

Now δT has spectral radius δ < 1, so the Neumann series guarantees

v(δ) = sC (I− δT)−1 . (27)

Write X = I− δT and Y = X−1. It is easy to see that for each i, we have Xii >
∑

j 6=i |Xij|.
Then Fiedler and Pták (1967, Theorem 3.5) guarantees that for each j and for each i 6= j,

|Yjj| > |Yij|. Moreover, by Berman and Plemmons (1979, Lemma 2.1), Y has only positive
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entries, so in fact Yjj > Yij > 0. In (27), note that sC has si in column j, has −si in column

k, and has 0 elsewhere. This combined with the facts about Y now establishes the claim

about the signs of v
(δ)
j and v

(δ)
k , by inspection of (27).

Proof of Corollary 2 The proof proceeds exactly as in the previous corollary, except in

this case, sC has Cijsi in column j while the rest of its columns are nonpositive numbers

summing to −Cijsi. Then once again inspection of (27) along with the facts derived above

about Y complete the proof.
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