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BOUQUETS OF MATROIDS, d-INJECTION GEOmeTRIES AND DIAGRAMS 

Michel DEZA and Monique LAURENT 

F-squashed geometries, one of the many recent generalizations of matroids, 
include a wide range of combinatorial structures but still admit a direct 
extension of many matroidal axiomatizations and also provide a good frame- 
work for studying the performance of the greedy algorithm in any independence 
system. Here, after giving all necessary preliminaries in section ], we 
consider in section 2 F-squashed geometries which are exactlYLthe s~adow 

L structures coming from the Buekenhout diagram : o a...o [qjT-----Oaj o , 
i.e. bouquets of matroids. We introduce d-injective planes : o 
(generalizing the case of dual net for d = I) which provide a diagram repre- 
sentation for high rank d-injective geometries. In section 3, after a brief 
survey of known constructions for d-injective geometries, we give two new 
constructions using pointwise and setwise action of a class of mappings. The 
first one, using some features of permutation geometries (i.e. 2-injection 
geometries), produces bouquets of pairwise isomorphic matroids. The last 
section 4 presents briefly some related problems for squashed geometries. 

1. PRELIMINARIES FOR SQUASHED GEOMETRIES AND DIAGRAMS 

A) Preliminaries for squashed geometries. 

DEFINITION 1.1. Let X be a finite set, F be a clutter of subsets of X and 

U = U 2 F = {U : NFc F, U~F}, called universe. Let g0,gl,..',gs be 
FcF 

some pairwise disjoint families of subsets of X and g = g0UgiU...Ug s. 

g is called a F-squashed geometry of rank s on X if : 

(FO) gcU 

(F]) g is a meet semi-lattice, i.e. Gf~G'e g for all G, G'c g 

(F2) if Gc gi' G'~ gj and G ~ G', then i < j 

(F3) if G~ gi (i ~< s-l), x cX-G and GUxc U, then there exists G'c gi+! 

such that G' ~ GUx. 

It is evident that : 

(I) in (F3), we have the unicity of G' and, moreover, H_~G' for every 
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He g such that H ~GUx 

(2) Igol = 1. 
(3) from (F2), (F3), g i s  c losed under a r b i t r a r y  meets 

Notice that most of the results of this paper can be extended to the case 

when X is infinite but the universe U is finite. Also , without loss of 

generality, we can suppose that go = {r and a F-squashed geometry of rank 0 

is just g = {@}. A F-squashed geometry of rank I is g = {~} U g] where gl 

is exactly a partition of X. Examples of those geometries are : l-designs 

S(I,k,v) with k[v, Latin squares (X = X 1 • X 2 and gl consists of IXI] disjoint 

permutations of XI) , t-spread (X = PG(n,q) and gl is a partition of X into 

t-dimensional subspaces of X). 

A trivial example of F-squashed geometry is the family of flats of a matroid 

(for basic references on matroids see [W]); moreover, a F-squashed geometry 

is a matroid if and only if F = {X}, i.e. u = 2 X. Hence the word "squashed" 

refers to the idea that we deal only with elements of the universe. 

Let us introduce three other classes of F-squashed geometries that we will 

study in detail in section 2, each of them being specified by the choice of 

its universe. Let XI,...,X d be d finite sets and X = XlX...xX d. Let ~c [l,d]. 

A subset A of X is called injective by X~ if, for all distinct elements 

a = (al,...,ad), b = (b I .... bd) of A, a s # b~ holds. 

DEFINITION 1.2. (i) Let X = X I • X 2. A subset A of X is called l-injective 

or transversal if A is injective by X I. 

(ii) Let X = X I x X 2 x..• X d with d ~ 2. A subset A of X is called d-inject- 

ive if A is injective by every X~ for ~ c [l,d]. 

REMARK ].3. We use the terminology : transversal subset for l-injective 

subsets since every l-injective subset of X = X l • X 2 can be viewed as a 
x 

partial transversal of U X x where the X 2 are disjoint copies of X 2. 

xcX 1 2 
DEFINITION 1.4. A F-squashed geometry on X is called a d-injection seometry 

if F is the set of all maximal d-injective subsets of X where X = X l x X2 

when d = I and X = XIX...• d when d ~ 2. 

REMARK 1.5. A 1-injection geometry is also called a transversal geometry. 

For results on transversal geometries, see [D], [CDF]. A 2-injection 

geometry is also called a bijection geometry. Permutation geometries, 

introduced in [CD], are special cases of bijection geometries when ]XII = 
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IX21 = v and all maximal flats have size v. For results on permutation 

geometries, see [CD], [CDF]. In particular, permutation geometries whose set 

of maximal flats is a 2-transitive group are known (cf. theorem 5-8 [CD] 

which is a reformulation of atheorem of Kantor). A d-injection geometry 

(d ~ 3) is simply called an injection geometry. For results on injection 

geometries, see [DFI], [DF2]. F-squashed geometries were also independently 

introduced in [CV]. 

Let g be a F-squashed geometry. Elements of g (resp. gi ) are called flats 

or closed sets (resp. flats of rank i or i-flats). The maximal flats of g 

are called roofs and the set R of all roofs clearly contains gs" When R = gs, 

then g is called well-cut, g is called simple when all 1-flats have size i. 

When all i-flats have the same size ~i for i r [0,s], then g is called a 

F-squashed desisn with parameters (s .... ,s ). It is proved in [DF2] that 
s-1 n~i 

I gs[ ~ ~ where n = Max{l ~ ]=s i=0 s163 r GCF_ IF F-G[: G ~U, IG]=r} 

for any integer r. When equality holds in the above inequality, then g is 

called a perfect F-squashed design. It is easy to see that every d-injection 

design is indeed perfect (see [DF]}). g is called stiff when every (s-])- 

flat is contained in at least two distinct roofs, or equivalently, if every 

(s-1)-flat is the intersection of two roofs. If, moreover, every flat of g 

is the intersection of two roofs, then g is called short. When every subset 

of a roof is flat of g, then g is called free. An isomorphism between two 

squashed geometries g, g' is a bijection from g onto g' that preserves rank 

and incidence. 

Every interval g N[GI,G2] , where GI, G 2 are two flats of g such that GICG2~ 

is a matroid on G 2. In particular, if RI,...,R m denote the distinct roofs 

of g, then every M i = g~[r R i] is the set of flats of a matroid on R i. This 

observation yields the following definition. 

DEFINITION 1.6. Let g be a F-squashed geometry and M be the set of flats of 

a matroid, g is called M-unisupported if, for every roof R of g, the matroid 

gR = g N [~,R] is isomorphic to M. 

Notice that, if g is M-unisupported, then g is well-cut and moreover, all 

roofs have the same size. A trivial example of unisupported geometry is 

provided by any free squashed geometry whose roofs have the same size n; 

then this geometry is B-unisupported, B being the boolean algebra on [l,n]. 
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Other examples of unisupported squashed geometries are given in section 3. 

For an example of non unisupported squashed geometry, see remark 2.4 example 

I. 

Let g be a F-squashed geometry, then g is obviously a R-squashed geometry, 

R being the set of roofs of g and, in this case, g is simply called a 

squashed geometry or bouquet of matroids. Hence a union of matroids (in the 

set theoretical sense) is a bouquet of matroids if and only if it is a meet 

semi-lattice. Notice that this idea of bouquet is often used; for instance, 

simplicial complexes are bouquets of boolean algebras, buildings are special 

cases of bouquets of Coxeter complexes, polar spaces are special bouquets 

of projective spaces. 

If g is a F-squashed geometry of rank s, an interesting question is that 

of extension of g, i.e. to find gs+I such that g Ugs+ | is a F-squashed 

geometry of rank s+I. Dually, if g = go U.. Ug s is a F-squashed geometry of 

rank s, then the k-truncation g(k) = go U .. Ugk is a F-squashed geometry of 

rank k. 

A combinatorial structure : Ms-designs , very similar to squashed designs was 

introduced in [Ne]. Actually, all examples of M -designs given in [Ne] are 
S 

bouquets of matroids. However, the definition of Ms-designs is slightly more 

general since it allows the intersection of two roofs to be either a flat or 

the union of flats. 

Similarly to the case of matroids, squashed geometries can be defined through 

their rank function, their closure operator, their circuits (stigmes and 

critical subsets) or their i_ndependent subsets. For axiomatizations and equi- 

valence between the distinct axiomatizations, see [Sch],[La2].In the injective 

case, see also [DFI] and for a survey of axiomatizations, see also [CL]. 

For instance, the rank function r and the closure operator a are defined as 

follows : for every subset A of X whiGh is contained in some roof, r(A) = 

Min{i~ [0,s] : ~Gc gi G~A} and o(A) = ~ G; otherwise r(A) = ~ and 
A CG c 

a(A) = X. Moreover, since g is the bouquet--of The matroids ~i = gn[~'Ri] 

on the distinct roofs Ri, r and a coincide with the rank function and the 

closure operator respectively of M. on subsets of R.. Hence this structure 
I I 

of bouquet preserves the compatibility between the different matroids com- 

posing g. The set of independent subsets of g is simply the set of all 

independent subsets of some of the matroids ~i" Conversely, any independence 
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system I, that is IC2 X satisfying JCIr I=> Jr I, can be entitled with a 

structure of squashed geometry; this point of view permitting to obtain sharp 

bounds for the performance of the greedy algorithm in I (see [CL]). 

B) Preliminaries for diagrams. 

For all definitions and terminology for diagrams and geometries, we follow 

[B2] and give them here for the sake of completeness. 

DEFINITION 1.7. Let A be a finite set, A = [O,n-1]. A geometry P over A is 

a triple P = (i,S,t) where S is a set (the elements or varieties of P), I is 

a symmetric and reflexive relation on S (the incidence relation of P) and 

t is a mapping of S onto A (the type function of P) satisfying : (TP) 

(Transversality property) the restriction of t to every maximal set of pair- 

wise incident elements of S is a bijection onto A. 

We shall always assume to deal with finite geometries (that is, S will be 

finite). See for example [BP] for an infinite analogue of theorem I.]5. 

The rank of P is the cardinality of A. Elements of A can be seen as names 

such as points, lines, planes, etc. given to the elements of P with the name 

or type of each variety determined by the mapping t. So, O-varietles are 

called points, 1-varieties are called lines etc. A flag F of P is a set of 

pairwise incident elements of P. The residue of F is the geometry PF = 

(SF,IF,tF) over A-t(F) defined by : S F is the set of all elements of P not 

in F, incident with all elements of F, I F (resp. t F) is the restriction of I 

(resp. t) to S F. An isomorphism of P is a permutation of the elements of P 

leaving incidence invariant as well as types. Most known geometries are 

obtained as sets of points equipped with distinguished subsets, i.e. their 

elements are identified with sets of points. The shadow structure develops 

this point of view for any geometry. For any flag F of P and any i r A, the 

i-shadow or shadow oi(F) of F in Pi = t-l(i) is the set of all elements of 

Pi incident with F. Let Or A, then O-shadows will be simply called shadows 

and oO(V) denoted by o(v) for v6 P. 

The following properties are often required for geometries : 

(F) (Firmness) a geometry P over A is called firm if every non maximal flag 

of P is contained in at least two distinct maximal flags. 

(SC) (Strong connectivity) a geometry P = (S,l,t) over A is called strongly 

connected if, for all distinct i,j r A, t-l(i) U t-](j) is a connected graph 
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for the incidence relation and the same holds in every residue of a flag of 

P. 

(IP) (Intersection property) a geometry P over A is said to have the inter- 

section property if, for each ic A, x~ S and each flag F of P, either 

oi(x) N oi(F) is empty or there exists a flag F' incident with x and F such 

that oi(x) N oi(F) = oi(F') and, moreover, the same property holds in every 

residue of a flag of P. 

An important motivation for introducing diagrams for geometries is the fact 

that a geometry is often determined by all its residues of rank 2. Let us 

first introduce two geometries of rank 2 : generalized digons and partial 

planes (or partial linear spaces). Let P be a geometry of rank 2 over 

A = {0, I}, then P is determined by axioms on its points and lines. 

DEFINITION 1.8. A partial plane is a geometry of rank 2 characterized by the 

following axiom : any two distinct points (resp. lines) are incident with at 

most one line (resp. point). 

DEFINITION 1.9. A generalized digon is a geometry of rank 2 characterized 

by the following axiom : every line is incident with every point. 

DEFINITION I.I0. A geometry P over ~ is called pure if, for any distinct 

i,j cA such that there exists a flag of type A-{i,j} in P whose residue is 

not a generalized digon, then no residue of type {i,j} is a generalized 

digon. 

We now define special diagrams that are a specialization of basic diagrams, 

this notion being sufficient for our treatment. 

DEFINITION 1.11. A special diagram (A,f) on a set fi is a mapping f which 

assigns to every ordered pair of distinct elements (i,j) r A some class 

Aij = f(i,j) of rank 2 geometries over {i,j} such that : 

(i) either all members of 4ij are generalized digons, or all members of 

Aij are partial planes 

= 4?. where 4?. is the dual class of Aij and the dual of a rank 2 (ii) Aij j l  ~j 

geometry P = (S,I,t) over {i,j} is the geometry P* = (S,I,t*) where t* is 

defined by t*(v)=j (resp. i) if t(v)=i (resp. j) for all v~ S. 

(iii) Aij is closed under isomorphisms. 

DEFINITION 1.12. A geometry P over 4 belongs to the diagram (4,f) if, for 

every ordered pair of distinct elements i,j of 4 and every flag F of P of 
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type A-{i,j}, the residue PF is a member of Aij. 

Notice that, if P is a geometry over A belonging to the special diagram 

(A,s then P is indeed pure. 

If (A,f) is a special diagram, a structure of graph is defined with A as set 

of vertices, two distinct elements i,j r A being joined if Aij is not a class 

of generalized digons and, in this case, Aij is the weight of the edge (i,j). 

PROPOSITION Io13 [BI]. If P = (S,l,t) is a geometry belonging to the special 

diagram (A,f), then, for every flag F of P, the residue PF belongs to the 

subdiagram (A-t(F),flA_t(p)). 

THEOREM 1.14 [Bl]. Suppose (A,f) is a special diagram such that the graph 

induced on A is a tree. Let 0 be an endpoint of g. Let P be a geometry over 

A belonging to the diagram (A,f) and satisfying (IP). For all varieties v,w 

of P of respective types, i,j, if o(v) Co(w), then v and w are incident and 

i belongs to the path joining 0 to j in A. 

THEOREM 1.15 [B2]. Let P he a firm, strongly connected geometry over A that 

satisfies the intersection property. Then, for every ic A, any intersection 

of i-shadows of flags of P is an i-shadow of a flag or is empty. 

C) Some basic rank 2 diagrams 

All rank 2 diagrams introduced here, except the diagram o[d] ~o for 

d-transversal planes, are taken from [BI]. We first recall the main rank 2 

diagrams used for the representation of buildings and sporadic groups. 

a) Partial plane : o o 

For axioms, see definition 1.8. 

L 
b) Linear space : o 

This diagram is contained in o - o and characterized by the following 

axiom : any two distinct points are incident with a unique line. 

e) Generalized projective plane : o o 
L L* 

This is the intersection of o o and o o 

AF 
d) Affine plane : o 

This diagram is contained in o L o and characterized by the axiom : if 

is a line and p is a point non incident with ~, then there exists a unique 

line ~' such that p is incident with ~' and ~, ~' have no incident point 

in common. 
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C 
e) Circles : o-------o 

L 
This is contained in o o and characterized by the axiom : every line is 

incident with exactly two points. 

f) Generalized n-gon ( n integer, n ~ 2) : o (n) o 

For n = 2, this is the generalized digon (definition 1.9) with diagram 

o o. For n ~ 3, this is contained in o o and characterized by : 

any two varieties are joined by at least one chain of length ~ ~ n+! and 

at most one chain of length ~ < n+l. 

We now introduce the diagram o [d] o that we will use for the representa- 

tion of d-injection geometries. 

[HI 
g) d-transversal plane (d integer, d ~ I) : o o 

This is contained in o o and characterized by the following property : 

there exists d resolutions of the set P of points, i.e. d partitions of P 

such that (i) every line is incident with exactly one point of each class of 

every partition of P; and satisfying, moreover, (ii) any two points which 

belong to distinct classes in every partition of P are incident with a com~on 

line. The dual diagram is o [d]* o and characterized by d partitions of the 

set L of lines satisfying dually (i) and (ii). 

[I]* N 
REMARK 1.16. The diagram o o coincides with the diagram o o for net 

structures considered in detail in [Spl]. Notice that a rank 2 geometry with 

d parallelisms is a special case of semi-net structures. 

2. DIAGRAM REPRESENTATION FOR SQUASHED GEOMETRIES AND d-INJECTION GEOMETRIES 

A) Diasrams for squashed seometries 

Many interesting examples of diagrams, for instance diagrams for sporadic 

groups and most of the buildings, are linear, that is of type : 

o o ... o--------o o. Hence efforts were made for characterizing geo- 

metries belonging to linear diagrams or to special cases of linear diagrams 

where one or more stroke o o is replaced by a more restricted rank 2 

diagram such as o L AF c o , o O , o o , o - o ~ The following 

theorem is a reformulation of theorem 7 in [B l]. 

THEOREM 2.1. (i) Let P be a firm, strongly connected geometry over A = 

[0,n-1] that satisfies the intersection property and belongs to the diagram 
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L L L 
o o ... o o o . Then the set of all shadows of varieties of P is 
0 1 n - I  
the set of flats of a simple matroid of rank n on P0 whose i-flats are 

exactly the shadows of (i-l)-varieties of P for all i6 [l)n]. 

(ii) Conversely, any simple matroid of rank n belongs to the diagram 
L L L 

O O ... O O O �9 

We now characterize geometries belonging to the Diagram 2.2 : 

L L 
O O ,,, O O O �9 

THEOREM 2.3. (i) Let P be firm, strongly connected geometry over A = [0,n-l] 

that satisfies the intersection property and belongs to the diagram 2.2. Then 

the set of shadows of varieties of P is the set of flats of a simple and 

well-cut squashed geometry of rank n on P0, the i-flats being exactly the 

shadows of (i-l)-varieties of P for all ic [l,n]. 

(ii) Conversely, any simple and well-cut squashed geometry of rank n belongs 

to the diagram 2.2. 

Proof. Let us first prove (i). We define : go = {~}, gi = {o(v) : vc Pi_l } 

for ic [l,n] and g = goU...Ug n. Let us show that g is a squashed geometry on 

P0' i.e. satisfies axioms (F;),(F2),(F3). Notice first that, if v is a 

i-variety, w a j-variety, i < j and vIw, then o(v)Co(w) ; hence, for every 

flag F of P, there exists a variety v of P such that a(F) = o(v). Thus, 

theorem 1.15 implies clearly (Fl). We infer (F2) from theorem 1.14. Let v 

be a i-variety; i ~ n-3, p ~P0 be a point non-incident to v and u be a (n-l)- 

variety such that a(v) U p~o(u). From theorem 1.14, v and u are incident. 

The residue of u is a geometry P containing the varieties v, p and belonging 
L L 

to the diagram o o ... o o. Thus, theorem 2.1 yields the existence 
0 l n-2 

of a (i+l)-variety w such that : o(w)~ o(v) U p which achieves the proof 

of (F3). It is clear that g is simple and well-cut. 

We now prove (ii). Let g = go U gl U'''Ugn be a simple and well-cut squashed 

geometry. Then P = (g-{~},I,t) is a geometry over A = [O,n-l] where I is the 

inclusion relation and t is the mapping from g-{~} onto A defined by : t(G) = 

i-l for every Gcgi, i c [l,n]. Let F be a flag of P of type A-{i,j} where 

0 ~ i < j ~ n-l. If i+l < j, then the residue PF is clearly a generalized 

digon. Consider now j = i+I. If j ~ n-2, there exists G 1 egi, G2 cgi+3 such 

that PF = {G~g : GICGCG2}. Since gN[~,G 2] is a matroid on G2, it is clear 
L 

that PF is a linear space o o . If j = n-l, there exists G I c gn-2 such 

that PF = {G~g : GICG} and therefore we can only claim that PF is a 
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partial plane. O 

REMARK 2.4. A squashed geometry may not be well-cut, or firm, or pure, or 

strongly connected as shown by the following examples l, 2. 

Example I. Let g be the squashed geometry of rank 3 on {x,y,z,u,t} whose 

flats have the following configuration : 

3-flats 

x y ~ z u t  1-flats 

O-flats 

then g is neither firm, nor pure (Py is not a generalized digon, Px is a 

generalized digon) and g-{x,y,u} is not well-cut. 

Example 2. Let g be the squashed geometry of rank 3 on {x,y,z,u,t} whose 

flats have the following configuration: 

xyz zut 

xy xz yz zu zt ut 

3-flats 

2-flats 

1-flats 

0-flats 

then g is not strongly connected (xyz and zut cannot be connected by any 

chain in g2Ug3). Notice that for any well-cut squashed geometry g, g is 

strongly connected if and only if gn-I Ugn is connected. 

REMARK 2.5. Simple and well-cut squashed geometries of rank 2 are just 
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partial linear spaces. So, examples of such geometries include all rank 2 

diagrams given before except generalized digons. 

Many examples of squashed geometries are provided by known diagrams for 

spherical buildings and sporadic groups : 

(i) Spherical diagrams (see [Ne]). Those diagrams involve only strokes of 

type o (n) o (n ~ 2) and all except F 4 : o o ~ o provide 

examples of squashed geometries. (In fact, for E6, E7, E8 ' they come from 

appropriated subdiagrams). For instance, projective spaces whose diagrams 

are A n : o o ... o o o are examples of matroids; polar spaces 

whose diagrams are C n : o o ... o ~ o are special bouquets of 

projective spaces. 

(ii) Diagrams for sporadic groups (see IT], [RS]). These diagrams involve 
C 

usually strokes of type o (n) o or o o. For instance, the Matthieu 

C C C C 
group MII admits the following diagrams : o o, o o o o, 

C C 
o o o each of them yielding a squashed geometry. Examples of diagrams 

of sporadic groups which do not yield a squashed geometry are 

H e : ~ , Co I : O O" O f3 ~ , Co 2 : O O Y} O, 

BM : o o- o o o . 

We now study diagrams 2.2 in which we specialize the last stroke o 

be o [d] o . 

o to 

B) Diagrams for d-injection geometries 

From theorem 2.3, any d-injection geometry g (see definition 1.4) which is 

simple and well-cut belongs to the diagram 2.2; but, with some more 

assumptions on g, we can precise the last stroke o o. 

THEOREM 2.6. Let g be a simple d-injection geometry (d ~ I) of rank n0 

Suppose that, for all ~ ~[l,d], there exists a matroid M ~ on X such that 

p~ is an isomorphism between f~ and gR = g N[~,R] for every roof R of g. 
e e [d] 

Then g belongs to the diagram : o o o ... o ~ o o . 
0 I n-2 n-1 

Notice that, under the conditions of theorem 2.6, all roofs of g have the 

same size v = IxiIg...=IXdl- 

Proof. We have only to prove that the last stroke is o[d] o . Let 

FOG gn-2" Define : P = {Fr gn-; : F~F 0} and L = {Gc gn : G~F0}" We show 
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that (P,L) belongs to the diagram o --[d] o . We first define d resolutions 

on P as follows : for ~ e[l,d] and Ic/~ such that l~p~(F0) let PI = 
n - I  

{FeP : p~(F) = I}. Then we have clearly d partitions: 

P = U {PI : IcM~-I and IDp~(Fo)} for every ~e[l,d]. 

Let G eL, we prove that for all ~ e[l,d] and I c~_ 1 such that IDp~(F0) , 

such that FCG. Since pe is an isomorphism there exists a unique flat of PI 

between gG and /~, there exists a unique flat F of gG such that p~(F) -- I. 

We have only to verify that F~F O. Choose x6F0, then x = p~(x)e p~(F), 

since x~ p~(Fo) , pe(F0)~l. Hence there exists x'c F such that p~(x') = x~. 

Since F~G, x' e G. Thus x, x' are two elements of G having the same ~th 

coordinate which yields x = x' and therefore x r 

Let F,F'c P such that p~(F) # pe(F') for all ~ e [l,d]. We prove that there 

exists GeL such that F U F'G_G. Since p~(F), p~(F') are distinct (n-l)-flats 

of /~ containing the (n-2)-flat p~(F0) , we have p~(F) n p~(F') = p~(F0). 

Choose an element a I of pl(F') - Pl(Fo), thus a I ~Pl(F). Since alePl(F') 

there exists aeF', a = (al,a2,...,ad) such that Pl(a) = a I. We show that 

a~ p~(F) for every ~c [l,d]. Suppose by contradiction that, for instance, 

a 2 eP2(F), then a 2 c P2(F0). Thus there exists xeF 0 such that P2(X) = a 2. 

Since both elements a, x belong to F' and P2(X) = P2(a), we deduce that x = a 

and therefore Pl(X) = a I e PI(F0) which yields a contradiction. Thus, F U a 

is a d-injective subset and axiom (F3) for squashed geometries yields the 

existence of G eg n such that G DFUa. Since F' is the unique (n-1)-flat 

containing F 0 U a, we have also F'c_G (see remark (I) following definition 

l.l) and therefore FUF'~G.[] 

DEFINITION 2.7. A d-injection geometry g is called concentrated in X for 

some ~ e [l,d] if, for all G,G'c g, there exists G"r g such that 

n ' = ' NG"). p~(G) p~(G ) p~G 

PROPOSITION 2.8. Let g be a well-cut d-injection design with parameters 

(i0,i I ..... Is). Suppose that for some ~ ell,d], I s = IX ] and g is 

concentrated in X . Then, there exists a matroid ~ on X such that p is an 

isomorphism between /~ and gR for every roof R of g. 

Proof. Let R be a roof of g. We define t~(R) = {p~(G) : G egR}. We prove 

first that M~(R) is a matroid on X . Since g is concentrated in X , 

MC~(R) is a meet semi-lattice. Take G a i-flat of gR (i < s) and an element 

23 
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x~r X - p~(G). Since p~(R) = X , there exists an element x of R such that 

p~(x) = x .Since GUx~R, GUx is a d-injective subset, thus there exists a 

(i+1)-flat G' of gR such that GUx~G'. Hence p~(G') is a (i+l)-flat of ~(R) 

containing p~(G) Ux which achieves the proof that ~(R) is a matroid on X~. 

We now show that ~(R) = ~(R') for all distinct roofs R, R' of g. Let GCgR 

and G'~R' be the unique subset of R' such that p~(G) = p~(G'). We want to 

prove that in fact G' c gR'' Suppose by contradiction that G is a flat of 

minimal rank r (r > 0) such that G'~ g. Let F be a (r-l)-flat contained in 

G, then the unique subset F' of R' such that p~(F) = p~(F') is indeed a 

(r-l)-flat of gR'" Choose a cG'\ F'. Since F' UaCR', there exists a unique 

~G . is concentrated in X , r-flat G"~gR, such that F' Ua " " Since g 

p~(G) Op~(G") is a flat of MS(R). We have : p~(F) Up~(a)~p~(G) np~(G") 

p~(G), hence p~(G)Np~(G") = pc(G) holds, which yields : p~(G') = p~(G) 

p~(G"). Since p~(G'), p~(G") have the same size %r' equality p~(G') = 

p~(G") holds, from which we deduce : G' = G" contradicting G'~ g.D 

COROLLARY 2.9. Let g be a simple well-cut d-injection design with parameters 

(%0,%1 ..... k s = [Xl] = ... = ]XH]) and that is concentrated in every X for 
e e [d] 

~[l,d]. Then g belongs to the diagram : o o ... o o o. 

Proof. It follows trivially from theorem 2.6 and Proposition 2.8.[] 

REMARK 2.10. The converse of theorem 2.6 is false as shown by the following 

example (introduced as example 4.1 in [Sp 2]). Consider the Fano plane 

having the following configuration : 

t 

We introduce the geometry P of rank 3 whose points are : l, 2, 3, 4, 5, 6, 7; 

whose lines are all pairs of points; whose planes are the complements of the 

lines of Fano plane, i.e. 4567, 2356, 2347, |346, 1357, 1245, 1267 (here, 

for example, 4567 stands for {4,5,6,7} for the sake of shortness). It is 

easy to see that P is not a transversal geometry since the only convenient 

partition of the points in order to have all planes to be transversal subsets 

is the partition of [1,7] by the singletons, see now that 12U3 is trans- 
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versal but not contained in any flat. However, it can be verified that P 
c [13 

belongs to the diagram o o o. For instance, in the residue PI, 

axioms for [I] are satisfied if we choose the following resolution for lines 

of P1 : {12,13} U {14,17} U {15,16}. 

L L [d] 
Let us now see some examples of the diagram : o o ... o o o for 

L 
0 ~ d ~ 2 (By definition : o [0] o is o o). In the following diagrams, 

a weight is sometimes assigned to a node i that represents the size of all 

i-varieties. 

L L 
o 0 . . .  C 

L L L L L 
0 ... 0----------0 ~0 0 0 ... 0 <)  

0 0 ... 0 

i q+l 

AF 
0 ~O . . .  0 

1 q 

0 0 

0 0 

C C . C 
0 ... 0 0 0 

2 t - 1  t 

e c L 
0 0 ... 0 0 0 

i 2 t-i v 

c AF 
0 0 , , - 0  

1 2 

0 0 . . .  0 

1 q+l 

AF [ 1 ]  
0 ~ . . . O  0 

1 q 

[1} 
O O ... O O 

i 2 t-I 

c {I} 
0 0 . . .  0 0 

1 2 t - I  

c { 1 ]  
O ,o o 

1 2 

0 

{1] 
o o 

[ l l  
o o 

1 

o o 

I 

o o 

t 1 

o 0 

v 1 

o 

1 

L L c~[2] 
�9 , .  0 " 0 

0 ... o 

3 

AF 
0 ... 0 

q 

{2] 
o o 

[2] 
o o 

c c [ 2 ]  
�9 . .  0 0 0 

2 t-i t 

c c [2] 
O ... O O O 

2 t-i v 

c [2] 
O o 

2 

We now give examples of geometries belonging to the above diagrams. In the 

first row, we have respectively matroids, transversal geometries, permuta- 

tion geometries (with some additional assumptions, see theorem 2.6). In the 

design case, the matroid is called PMD (for details, see [D2], only 4 types 

of examples are known) and all design cases for d = 2 are classified~hen 

the additionnal condition that all roofs form a group is imposed (see remark 

1.5). For the second row, we have projective spaces, transversal geometries 

from [Spl] and remark after theorem 3.2 in [CDF], permutation geometries 

of theorem 5.8 (i) in [CD] (geometric group GL(r,2)). For the third row, 

we have affine spaces, transversal geometries of theorem 3.2 in [CDF], 
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permutation geometries of theorem 5.8 (ii) in [CD] (geometric group 

AGL(r-I,g)). For the fourth row, we have truncations of boolean algebras, 

full transversal geometries (i.e. set of all transversal mappings, see defi- 

nition 3.5), full permutation geometries (i.e. set of all permutations). For 

the fifth line, we have t-designs, transversal t-designs (sharply t-transitif 

set of transversal mappings, see definition 3.6), sharply t-transitif set of 

permutations. For the sixth row, we have M~bius plane, Laguerre plane, 

Minkowski plane, which are d-transversal geometries (d = 0,I,2). In [DF] 

(example 5.4) there is a d-injective analogue of these planes with diagram 
c [d]  

o o o for any d ~ 2. In [Sp2], examples of geometries having diagram 
e [i] 

o o o are given. Notice that none of them are transversal geometries. 

3. SOME CONSTRUCTIONS OF SQUASHED GEOMETRIES 

Several operations : interval, extension, truncation, defined in section l, 

and also (see [CV]) : restriction, direct sum, already yield new squashed 

geometries from old ones. 

In this section, we give a construction of d-injection geometries by direct 

~roduct and a construction of permutation geometries by blow-up, extending 

slightly the corresponding constructions given in [DF2], [CDF]. Then we 

introduce a construction of M-unisupported squashed geometries by pointwise 

action of a set of mappings on a matroid and a construction of a class of 

squashed designs by setwise action. 

A) Construction of d-injective designs by direct product. 

THEOREM 3.1. Suppose g' (resp. g") is a d'-injection design (resp. d"-injec- 

tion design) with parameters (~0,~l, . . . . .  ks) on X' = XI• • (resp. X" = 
v X~'• and suppose also that g' (resp. g") is concentrated in X I (resp. 

v! I I! 11 
Xl). Suppose further that X l = X l and that pl(g ') = pl(g ). Then there 

exists a (d' + d" - 1)-injection design g with parameters (~0,~l,...,~s) on 

X = X I' x X'2 x...x X~, x X"2 •215 X"d.. 

Proof. In [DF2], a proof is given in injective case (i.e. d ~ 2) which 

extends easily to the case of 1-injection designs. 

Let us just recall the idea of construction by direct product. With 

a = (a|,..~ad,) ~X' and b = (bi,...,bd,,) ~ X" such that a I = bl, we associate 
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the element ab = (a! .... ,ad, , b2, .... bd,,) of X. Similarly, if As g', Bcg" 

and P1(A) = Pl(B), we can define AB = {ab : a ~A, bcB and pl(a) = P1(b)}. 

This leads to the definition of g = g'g" = {AB : Acg', Bcg" and Pl(A) = 

Pl(B)}. The proof consists now to show that g is the desired (d'+d"-l)-injec- 

tion design.�9 

B) Construction of permutation geometries by blow-up (inflation) 

THEOREM 3.2. Let X I = [l,n] and X 2 = [l,m]. Let f~ be a matroid on X I. Let 

be a transversal geometry on X I • X 2 such that Pl is an isomorphism between 

M and ~R for every roof R of ~. Let P be a permutation geometry on X 1 x X! 

such that Pl is an isomorphism between M and @R for every roof R of @. Hence 

and P have the same rank s. Then there exists a permutation geometry g of 

rank s on [l,nm] 2. Moreover g is M-unisupported, i.e. M and gR are isomorphic 

matroids for every roof R of g. 

Proof. This theorem is proved in [CDF] (theorem 3.1) when we assume that 

and P are squashed designs having the same parameters. For the proof in 

general case, see [La2]. 

Let us just give the idea of the construction by blow-up. Consider the 

square [l,n] 2. Replace each of its points (a,b) by a m • m square K(a,b). So, 

we obtain a nm • nm square divided into n 2 small squares. Suppose we have a 

latin square on every K(a,b), i.e., if we denote by G|(a,b),...,Gm(a,b) the 

rows of K(a,b), then {Gl(a,b) ..... Gm(a,b)} is a set of pairwise disjoint 

• C b where R is the set of indexes of 2-injective subsets of size m of R a a 

the rows of K(a,b)and C b is the set of indexes of the columns of K(a,b), 

Ra, C b being subsets of [l,nm]. Let AC~s, A = {(i,a i) : ic [l,n]} and PePs ~ 

P = {(i,Pi) : i ~[l,n]}. We construct the following permutation of [l,nm] 2 : 
n 

G(A,P) = U Ga.(i,Pi). Define g = {G(A,P) : A C@s, PCPs } and g* the meet 
i=I i 

semi-lattice generated by g. Then g* is the desired permutation geometry. [] 

REMARK 3.3. This construction by blow-up can be extended : 

- to the infinite case using an infinite latin square whenever we have an 

infinite analogue of transversal geometry (on X l • X 2 with IX2[ infinite) 

(section 5 [CDF] gives examples of infinite permutation geometries) 

- to the case of d-injection geometries (d i> 2) (see [La2]). 

C) Construction of M-unisupported squashed geometries. 

Any unisupported squashed geometry (cf. definition 1.6) is clearly well-cut. 
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The following classes a), h), c) of E-squashed geometries are unisupported. 

a) d-injection design with parameters (I 0 ..... i s = IxiI) and concentrated in 

X| (see Proposition 2.8), including in particular a)', a)" : 

a)' sharply s-transitive set of d-injective mappings (i i = i for i ~ [0,s-l|) 

(see Proposition 3.8) 

a)" permutation geometries whose set of roofs is a group (Proposition 3.5 in 

[CD]). 

b) strongly connected F-squashed designs with parameters (10,...,Is_l, 

i s = is_ I + I] - i0) (see [La2]) 

e) permutation geometries obtained by blow-up (Theorem 3.2). 

We now introduce a method of construction of unisupported squashed geometries 

by the pointwise action of mappings. Let X], Z be two finite sets. Let M. 
1 

(i~[l,s-l]) be some pairwise disjoint collections of subsets of X l and 

M 0 = {4}, M s = {XI}, M = M OUM| U ... UM s . Let E be a set of mappings from X I 

into Z. For every I6M and fcE, we define the subset of X| x Z : If = 

{(x,f(x)), x 61}. Let us define : gi = {If : I cMi, fc E} for ic [0,s] and 

g = g(M,E) = g0Ug| U ... Ugs. Notice that, for I = XI, If = {(x,f(x)),x eX;} 

is indeed the graph P~ of the mapping f. 

THEOREM 3.4. g(M,E) is a squashed geometry (i.e. bouquet of matroids) if and 

only if the two following conditions are satisfied : 

(i) M is the set of flats of a matroid on X| 

(ii) for all f,h eE, {x cX] : f(x) = h(x)} cM 

Furthermore, if (i), (ii) hold, then g is M-unisupported. 

Proof. Suppose first that (i), (ii) are satisfied. Let us show that (F|), 

(F2), (F3) hold. Let l,JcM and f,hcE. Then If ~Jh = (I nJ QK)f, K = 

= {x 6X] : f(x) = h(x)}, thus IfN Jh ~ g" Suppose If r gi' Jh 6gj and IfCJh, 

then IcJ and therefore i < j. Take now IcM i (i ~ s-|), f 6E and (x0,z0) e 

X; x Z such that (x0,z0) ~ If and IfU (x0,Zo) is contained in Jh for some 

JcM and h eE. Thus IUx0~J and hli = fli , h(x0) = z 0. Let K be the unique 

i+|-flat of M containing IUx 0, then K h is a flat of gi+] containing 

If U (x0,z0) which achieves the proof of (F3). 

Conversely, suppose g is a squashed geometry. Since g is a meet semi-lattice, 

for all f,h ~E, P FNPh is a flat of g which implies clearly (ii). (i) is 

trivially satisfied. 

When (i), (ii) hold, for every feE, the mapping that associates whith every 
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flat I c M the flat If G g provides clearly an isomorphism between M and 

g ~[~,Pf]. [] 

In order to get by this process E-squashed geometries, we need some addi- 

tionnal information on the set of mappings E. More exactly, in the case of 

d-injective mappings, theorem 3.4 provides a constructive method for d-injec- 

tion geometries. 

DEFINITION 3.5. Let X],...,Xd, Z be finite sets and f be a mapping from X] 

into Z. 

(i) when Z = X2, f is called a l-in~ective mapping or transversal mapping 

(or application) 

(ii) when Z = X 2 x ... XXd (d ~ 2) and Pf = {(x,f(x)), x cX]} is a d-injec- 

tive subset of X| x...x Xd ' then f is called a d-injective mapping. 

From now on, in this section, we keep the notation of definition 3.5 for 

XI,...,Xd, Z. 

DEFINITION 3.6. Let E be a set of d-injective mappings from X| into Z. E is 

called t-transitive (resp. sharply t-transitive) if, for all distinct 

(xi,z i) r XI x Z, i~ [l,t], if {(xi,zi) : ig [l,t]} is a d-injective subset 

of X| x Z, then there exists fee (resp. a unique feE) such that f(xi) = z i 

for all i e [l,t]. 

Notice that this definition generalizes the notion of t-transitive and 

sharply t-transitive set of permutations (for case d = 2). 

THEOREM 3.7. Let M be a matroid on X! and t = Max(II I : IcM - {XI} ). Let E 

be a set of d-injective mappings from X| into Z that is (t+])-transitive 

and satisfies : (ii) for all f,hc E, {xcXi, f(x) = h(x)}c M. Then g(M,E) 

is a d-injection geometry. 

Proof. Theorem 3.4 already yields that g(M,E) is a bouquet of matroids. All 

flats of g(M,E) are trivially d-injective subsets of X| • Z. Let feE, 

l~M.l (i ~ S-I) and (x0,z0)~ X| • Z - If such that IfU (x0,z0) is a d-injec- 

tire subset of X; x Z. Since IIUx01 ~ t+l and E is (t+1)-transitive, there 

exists he E such that h(x) = f(x) for all x r and h(x0) = z 0. Let now J be 

the unique (i+1)-flat of M containing IUx 0. Therefore, Jh is a (i+])-flat 

of M containing If U (x0,Zo) which achieves the proof that g is a d-injection 

geometry. [] 

PROPOSITION 3.8. Let E be a set of d-injective mappings from X| into Z which 
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is sharply (t+l)-transitive and B t denote the t-truncation of the boolean 

algebra on X I. Then the meet semi-lattice generated by {Pf, fr E} is a Bt-uni- 

supported d-injection geometry of rank t+l, 

Proof. The proof is straightforward.[] 

A natural question arises : among given examples of unisupported squashed 

geometries, which ones do come as results of a construction g(M,E) by point- 

wise action of mappings as described in theorem 3.4. The following theorem 

gives a partial answer. 

THEOREM 3.9. Let g be a d-injection geometry on X = X I x Z. Suppose there 

exists a matroid M on X I such that Pl is an isomorphism between gR and M 

for every roof R of g. Then there exists a set E of d-injective mappings 

from X I into Z such that g and g(M,E) are isomorphic. 

Proof. Let R = {RI,...,R m} be the set of roofs of g. By assumption, Pl(Ri) = 

= X I for all i r If,m] Thus there exists d-injective mappings : fl .... f 
�9 ' m 

from X I into Z such that R i = {(x,f i (x)) : X6Xl}. We define a mapping 

from g into g(M,E) as follows : if G is a flat of gRi, then ~(G) = (Pl(G))fi. 

It is easy to see that ~ is an isomorphism between the squashed geometries 

g, g(M,E). [] 

REMARK 3.10. Example a) satisfies theorem 3.9. 

D) Construction of squashed designs by setwise action 

Let P = (S,l,t) be a geometry over the set A = [0,n-l]. Let E be a set of 

isomorphisms of P. For every f ~ E and every maximal flag F of P, we define 

the following subset of S x S : R(F,f) = {(v,f(v)), v~ F} and R = {R(F,f) : 

f6 E and F is a maximal flag of P}. Let g = g(P,E) be the meet semi-lattice 

generated by R and gi = {G 6g : IGI = i} for i c [0,n], hence gn = R. 

THEOREM 3.11. If P is a firm geometry, then g(P,E) is a short squashed design 

with parameters (0,1,...,n) on S • S. 

Proof. We only have to prove that g(P,E) satisfies axiom (F3). Let G~gi 

(i ~ n-l) and (v0,w0) ~ S • S - G such that GU (v0,w 0) is contained in R(F,f) 

for some f c E and some maximal flag F. Thus G = {(Vp,f(Vp)) : p 6 [l,i]}, 

(v0,wo) = (Vi+l,f(vi+l)) with {v I ..... Vi+l} ~F. Since P is firm, it is easy 

to see that every non maximal flag of P is the intersection of two maximal 

flags of P. Hence, let F' be a maximal flag such that {Vl,...,vi+ I} = F OF', 
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then GU (v0,w0) = R(F,f) f]R(F',f) and therefore GU (Vo,Wo) c gi+l" By the 

same argument, we obtain that g is short. [] 
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4. SOME REMARKS AND RELATED PROBLEMS 

A) Links with greedoids, supermatroids, independence systems 

Looking at the structure of their collections of independent subsets enables 

us to compare squashed geometries with the above combinatorial structures. 

For any collection 7 of subsets of X, we consider the following three 

properties : 

(el) ~Gz 

(P2) VJ r if l~J, then I ~I 

(P3) VI,JcI, if ]J] > ]I I, then there exists xr J-I such that IUx~/. 

Recall that I is an independence system if I satisfies (PI), (P2); that I 

is the collection of independent subsets of a greedoid (reap. matroid) 

if I satisfies (PI), (P3) (reap. (PI), (P2), (P3)). Hence the class of 

matroids is exactly the intersection of the classes of greedoids and inde- 

pendence systems and more exactly the intersection of the classes of greed- 

oids and squashed geometries. 

Greedoids (introduced in [KL]) are exchange languages; this concept of 

language provides a common framework for two apparently unrelated structures 

but both defined by exchange properties : matroids and Coxeter groups (see 

[Bj]). 

Squashed geometries are also a particular case of supermatroids, a concept 

introduced in [DIW] that generalizes both matroids and polymatroids (see 

[W]). More precisely, if (P,() is a poset, a supermatroid on P in a subset 

Q of P satisfying : 

(i) 0 e Q 

(ii) vxcQ, if y ( x, then ycQ 

(iii) Va ~P, all maximal elements of {x c Q : x ( a} have the same height in 

P denoted by p(a). 

Hence a matroid on X is a supermatroid on P = 2 X, a squashed geometry with 
m 

roofs RI,...,R m is a super~natroid on P = U 2 Ri. Notice that a squashed 
i=l 

geometry is indeed a strong supermatroid, i.e. satisfies the following two 

properties : 
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(iv) Va,bcP, if b covers a, then p(a) ~ p(b) < p(a)+l 

(v) Va,b,b',c ~P, if b,b' cover a and e covers b,b', then p(a) = p(b) = 

= p(b') implies p(a) = p(c). 

However, nice properties for supermatroids hold when P is a lattice. Notice 

that P is never a lattice in case of squashed geometries. 

B) Duality 

A natural way for defining a dual structure to a squashed geometry g would be 

to consider the union of the duals of the matroids composing g. If it is a 

meet semi-lattice, then it can be seen as a dual of g, but in general it is 

not the case. Example of such structure is the bouquet of self dual matroids, 

giving a self dual squashed geometry. 

C) The Dilworth truncation 

In a similar way as for matroids (see [Ma]), a Dilworth-truncation gD can be 

defined for every squashed geometry g. More precisely, if g is a squashed 

geometry on X, then gD is a squashed geometry on X, set of all flats of g 

with non-zero rank. In a similar way, the k th Dilworth truncation g(k) of g 

is a squashed geometry on the set X k of all k-flats of g. For details, see 

[Sch]. 

L L o [d] o D) Other squashed geometries with diagram o o ... o 

Let X be a finite set. Consider d distinct partitions of X with classes : 
~ X~ n~ 

X}'X2 ..... n~ for ~ ~ [l,d]; so X = i~ I X i for all ~ ~ [1,d]. A subset T of X 

is called partial transversal if ITnX~I ~ I for all i g [l,n~] and all 

c[l,d]. Let F be the set of all maximal partial transversals. Then a 

F-squashed geometry is called a d-transversal geometry. Notice that, for 

d = I, a 1-transversal geometry is exactly a transversal geometry as consider- 

ed in definition 1.4. 

Suppose moreover that IX~NX~N ... NX~ I ~ I for all (il,i 2 ..... id) r [l,n|] • 
11 12 d 

• [l,n2] x ... x [l,nd] . Then every point x cX can be represented by the 

d-uple (i I ..... i d) e [l,n I] • ... x [l,nd] such that xc X? for each e c[l,d]; 

each partial transversal is indeed a d-injective subset of [l,n I] • 

and each element X~ of each partition is projective, that is, all its ele- 
i 

ments have the same value i as eth-coordinate. If we suppose furthermore 

that IX~IN NX~ ... id I = I for all (i I ..... id ) ~ [l,nl] x...• [l,nd] , then a 
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d-transversal geometry is exactly a d-injection geometry as given in defini- 

tion 1.4. (Actually the more general case IX~ n ... nx~ I ~ 1 corresponds to 
11 d 

the larger concept of injection geometries as introduced in [DFI]. See also 

in [DI] some examples of such structures of rank 2 with any IX?NX~I ~ i, 
i j 

one of them corresponding to complete sets of pairwise orthogonal Latin 

rectangles). 

Theorem 2.6 can be generalized as follows : instead of the projection p~, 

consider the mapping qa that associates with every point x ~X the index 

i6 [l,n~] such that x~X~. Suppose that g is a d-transversal geometry such 
i 

that there exists a matroid ~ on q~(X) such that q~ is an isomorphism 

between M s and gR for every roof R of g. Then g belongs to the diagram 
L e [d] 

o o ... o o o. It would be interesting to find other (if any) 

squashed geometries having the same diagram o L L [d~ 0 . . . 0 0 ~ also 
c [d] 

at least to classify all geometries with diagram o o o (this classi- 

fication for d = 1 follows from [Sp2]). 

E) Embedding and representability 

It would be interesting to study embedding (i.e. mapping into - preserving 

flats, rank, incidence) of squashed geometries into matroids and, in parti- 

cular, into projective spaces PG(n,q). This problem of embedding in PG(n,q) 

was already considered for example for matroids (Kantor, Percsy), semi 

modular lattices of rank greater or equal than 5 (Percsy), polar spaces 

(Lefevre - Percsy). The relevant problem of representability of F-squashed 

geometries over vector spaces can be handled as follows (cf. [DF]]) : Let V 

be a M-dimensional vector space over a commutative field K and W be a 

squashed geometry in the family of all subspaces of V. A F-squashed geometry 

on X is called W-representable if there exists a function from X onto V 

preserving the rank. 

F) Homotopy problems 

Recall that a topological space can be attached to any poset by means of the 

simplicial complex of finite chains (see for example [BjW]). It would be 

interesting to study the homotopy groups for bouquets of matroids using a 

discrete analogue of Van Kampen's theorem for bouquets of pointed topological 

spaces. The Mobius function and characteristic polynomials for bouquets 

can be easily calculated. 
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G) Extremal problems and association schemes 

The following problems were studied for F-squashed designs : extremal inter- 

section properties of roofs system (cf. [DFI], [DF2]), the case when F 

carries an association scheme (cf. [Ne]). 

H) d-injection geometries - groups (d ~ 2) 

An interesting particular case of 2-injection geometries, as mentionned in 

remark I-5, is the case of permutation geometries on [l,n] 2 whose set of 

roofs is a subgroup of S n. More generally, any d-injective subset of [l,n] d 

n can be seen as an element of (s)d-l; therefore, one can ask about of size 

the existence of d-injection geometries whose set of roofs is a subgroup of 

(Sn)d-I ; such a group will be called a d-geometric group. Results for 2- 

geometric groups are given in [CD], [CDF]; some of them can be easily 

extended to the general case d > 2; for instance, any d-injection geometry 

set of roofs is a group is unisupported. A subgroup G of (Sn)d-I is whose 

said to be of type (L,n) if e = {O(a) : a ~G,a#l} where O(a) = l{ic [l,n] : 

a(i) = i} I for all a c (Sn)d-l. Cameron ([Ca]) proved that there is equi- 

valence between the following assertions (i), (ii) : 

(i) the existence of a d-geometric group for some d ~ 2 

(ii) the existence of a d-geometric group for all d ~ 2 

It is not true in general that a d-geometric group is the direct product 

of 2-geometric groups ; however, Cameron made the following conjecture : 

For large values of d, any d-geometric group is the direct product of a 

e-geometric group and of a (d-e+l)-geometric group for some integer e. 
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