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ABSTRACT 

We consider the partial real symmetric matrices X whose diagonal entries are 
equal to 1 and whose off-diagonal entries are specified only on a subset of the 
positions. The question is to determine whether X can be completed to a positive 
semidefinite matrix. Extending a result of Barrett et al. [3], we give a set of necessary 
conditions for X to be completable and show that these conditions are also sufficient 
if and only if the graph corresponding to the positions of the specified entries is 
series-parallel (i.e., has no K,-minor). 0 Elsevier Science Inc., 1997 

1. INTRODUCTION 

A positive semidefinite matrix whose diagonal entries are all equal to 1 is 
called a correlation matrix. Let Znx n denote the set of n X n correlation 
matrices, i.e., 

%x.:=( X = ( > xij symmetric n X nl X k= 0, xii = 1 for all i = 1,. . . , n). 
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The notation X + 0 means that X is positive semidefinite, i.e., that x%x > 0 
for all x E R”. Let G = (V, E) he a graph, where V = {l, . . . , n). (All the 
graphs considered here are simple, i.e., have no loops or parallel edges.) 
Then the set 2?(G) is defined as the projection of ZY,,,,~ on the subspace [WE 
indexed by the edge set of G, i.e., 

8(G) := (x E R")3A = (qi) E 8,;lx,, such that aij = xij for all 9 E E). 

In particular, Z( K,,) consists of the projections of the correlation matrices on 
their upper triangular part. The convex set Z,:, x ,1 and its projection Z(G) are 
called elliptopes. The object of this paper is the description of the elliptope 
Z?‘(G) for some classes of graphs. 

The problem of characterizing the members of the elliptope Z’(G) is also 
known in the literature as the positive semidefinite completion problem, 
which is defined as follows. Consider a partial real symmetric matrix X 
whose entries are specified on the diagonal and on a certain subset E of the 
off-diagonal positions, while the remaining entries of X are free. The 
question is to determine whether the free entries can be chosen so as to make 
X positive semidefinite. If this is the case, we say that X is completable. 

An easy observation is that it suffices to consider the positive semidefinite 
completion problem for matrices whose diagonal entries are all equal to 1. 
(Indeed, if X is completable, then its diagonal entries are nonnegative. 
Moreover, we can suppose that all diagonal entries are positive, as otherwise 
the problem reduces to considering the submatrix of X with positive diagonal 
entries. Finally, if D denotes the diagonal matrix whose ith diagonal entry is 
1/ 6, then the matrix X’ := DXD has diagonal entries 1 and is com- 
pletable if and only if X is completable.) 

Suppose X has diagonal entries 1, and let x := (xij>ijE E E [WE denote 
the vector whose components are the specified entries of X. Moreover, let G 
denote the graph with edge set E. Then, by definition of the elliptope 8(G), 
the following equivalence holds: 

XE~T(G) CJ X is completable. 

A first obvious necessary condition for X to be completable is that every 
principal minor of X composed of specified entries is nonnegative. In other 
words, if x E B(G), then x satisfies the following clique condition: 

For every clique K in G, the projection xK of x on the 
edge set of K belongs to 23 K >. (1.1) 
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Another necessary condition can be formulated in the following way. As every 
vector x E 8(G) has all its entries in the interval [ - 1, 11, we can parametrize 
it as 

xt? = cos ra, 

where a, E [0, l] for every e E E. Then a necessary condition for x E 8(G) 
is that the vector a := (a,), E E satisfies the following cycle condition: 

Ca,- C a,,<lFI-1 for C a cycle in G, F c C with (F( odd; 
e‘=F E?EC\F 

(1.2) 

see Section 4 for details. 
Hence, a natural question is the characterization of the graphs G for 

which the clique condition (1.1) and the cycle condition (1.2), taken sepa- 
rately or together, suffice for describing the elliptope 8(G). The graphs for 
which the clique condition is sufficient have been characterized in [I4]; they 
are the chordal graphs-see Theorem 3.1. The graphs for which the clique 
condition and the cycle condition taken together suffice for describing the 
elliptope 8(G) h ave been characterized in 14, 171; their result is presented in 
Theorem 3.2. 

The main result of this paper is the characterization of the graphs G for 
which 8(G) is completely described by the cycle condition (1.2); we show 
that they are the series-parallel graphs-see Theorem 4.7. 

In fact, a much stronger set of necessary conditions for membership in 
8(G) (stronger than the cycle condition) is given in Theorem 4.3; it can be 
derived from a result of [12], presented in Theorem 6.1. It turns out, 
however, that these conditions are sufficient only for the class of series-paral- 
lel graphs-see Theorem 4.7. We show, moreover, that the elliptope 8(G) 
coincides with the convex hull of its rank-one matrices if and only if the graph 
G is acyclic-see Theorem 5.1. 

The set 8’” X n of correlation matrices has also been studied in [6, 23, 15, 
221, where the primary consideration is the question of determining the 
possible ranks for extreme elements of ZnX n. The set ZY,,~” has been recently 
reintroduced in [24, 19, 121 as a nonlinear relaxation for a hard combinatorial 
optimization problem, namely, the max-cut problem. Indeed, the rank-one 
matrices of ZnX n, which are of the form aaT for a E { - 1, l}“, play a special 
role in discrete optimization, as they correspond to the cuts of the complete 
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graph; see Section 2 for more details. A result of [12] shows, moreover, that 
by optimizing over the elliptope one obtains a very good approximation for 
the max-cut problem. Several results are given in [lQ, 201 on the faces of 
8 FlXft’ In particular, the vertices of gnxn are described in 1191; they are 
orecisely its rank-one matrices. The possible dimensions for the faces (and 
the polyhedral faces) of gn x n are described in [20]. Moreover, a complete 
description of the faces of the elliptope 844X4 can be found in [20]. Note that, 
by Theorem 4.7, K, is the smallest graph for which the parametric descrip- 
tion provided by the cycle condition (I.21 does not apply. 

The paper is organized as follows. In Section 2, we introduce some 
polytopes, related to the elliptope, that we will need in the sequel, and we 
explain the link with the optimization max-cut problem. In Section 3, we 
recall the known results relative to the cycle and clique conditions. In Section 
4, we present some necessary conditions for membership in the elliptope 
8(G) and show that they are sufficient if and only if the graph G is 
series-parallel. In Section 5, we show that the elliptope 8(G) coincides with 
the cut polytope (in + 1 variables) if and only if the graph G is acyclic. We 
make several additional remarks in Section 6. In particular, we formulate a 
result of [I21 on the inequalities that hold for the pairwise angles between any 
set of unit vectors. 

NOTATION. Let G = (V, E) be a graph. A graph H is said to be a minor 
of G if H can be obtained from G be repeatedly deleting and/or contracting 
edges. Deleting an edge e in G means simply discarding it from the edge set 
of G. Contracting an edge e = uu means identifying both end nodes of e 
and discarding multiple edges if some are created during the identification of 
the nodes u and v. 

Let us call the reverse operation to the contraction operation splitting. 
So, if 2) is a node in G adjacent to u 1, . . . , up ( p 2 2), splitting o means 
replacing v by two nodes v’ and u” in such a way that v’, v” are adjacent and 
v’ is adjacent to a subset of the neighbors of v, say, to ur, . . . , uq (1 < q < p 
- 1) while v” is adjacent to the remaining neighbors, i.e., to uq+ i, . . . , uP. 

Let G, = (Vi, E,) and G, = (V,, E,) be two graphs such that the set 
K := V, n V, induces a clique (possibly empty) in both G, and G, and there 
is no edge between a node of V, \ K and a node of V, \ K. Then the graph 
G := (V, U V,, E, U E,) is called the clique sum of G, and G,. We also say 
that G is their clique k-sum if ]K j = k. 

As is customary in graph theory, we call a graph a cycle if it can be 
decomposed as an edge disjoint union of circuits; a circuit is a graph with 
node set fur,. . . , II,,) (n >, 3) and edge set (vlvZ, v2v3,. . . , v,_ 1o,, olv,). 
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2. RELATED POLYTOPES 

We introduce here several polytopes related to the elliptope 8(G) and to 
the max-cut problem. 

Let G = (V, E) be a graph with node set V := (1,. . . , n}. For a subset 
S c V the cut 6,(S) consists of the edges e E E having one end node in S 
and the other end node in V \ S. Given edge weights w E R E, the mm-cut 
problem is the problem of finding a cut S,(S) whose weight C, E s,(sjwe is 
maximum. This is a hard problem, for which no polynomial algorithm is 
known in general. (More precisely, the max-cut problem is NP-hard; see [ll]. 
For more information on this problem see, e.g., the survey paper [WI.) The 
cut polytupe CUT"(G) is defined as the convex hull of the incidence vectors 
of the cuts in G, i.e., 

cuT”‘( G) := CO~V(~~“(~)~ s _C v) 

(see [2]). Hence, the max-cut problem can be formulated as a linear program- 
ming problem over CUT”‘(G), namely, as 

max(wl‘x( x E CuTol( G)). 

Let MET"'(G) denote the polytope in RE which consists of the vectors 
x E R” satisfying the inequalities 

O<x,<l for e E E, 

x(F) - x(C \ F) =G IFI - 1 for F c C, C acycle of G, JFI odd; 

(2.1) 

MET"'(G) is called the metric polytupe of G (see [HI). Observe that, in the 
system (2.1), it suffices to consider the inequalities for all the circuits C of G 
(instead of the cycles). We have the inclusion 

CUT"(G) C MET"(G) 

[as every cut S,(S) has an even intersection with every cycle C of G]. Hence, 
the metric poly-tope MET"(G) . 
CUT”‘(G). It is shown in [2] that 

1s a linear relaxation of the cut polytope 

cu~‘r(G) = MET"(G) - G has no Ks-minor. (2.2) 
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At this point, let us make two remarks: instead of working with O-l 
variables as above, we may work with f 1 variables; moreover, instead of 
working in the space Iw E indexed by the edge set of G, we may take as 
ambient space the space of symmetric n X n matrices. We give more details, 
as these various formulations will be used in the paper. 

Let f:RE -+ [WE denote the linear mapping defined by f(x) = y, where 

ye = I - 2x, for e EE. 

Hence, f maps (0,l) vectors to (1, - 1) vectors. Set 

CUT*'(G) :=~(cuT”(G)), MET*‘(G) :=~(MET'~(G)). 

These two polyhedra are again called, respectively, the cut polytope and the 
metric polytope of G (in the + 1 variable). Hence, 

with equality if and only if G has no &-minor. Moreover, the metric 
polytope MET * '(G) is defined by the following system of linear inequalities: 

-l<x,<l for e E E, 

x(F) - x(C \ F) > 2 - (Cl for FCC, CacycleofG, (Flodd. 

(2.3) 

We also consider the polytopes: 

CUT,+$" := Conv(xxr\ x E { - 1, I}“), 

MET,&'" := {X E SYM,,."\Xii = 1 for i = l,...,n, 

Xij-Xik-Xjk>/ -lforldi,j,k<n, 

Xij+Xik+Xjk> -lforl<i.,j,k<n), 

which are defined in the space of the symmetric n x n matrices with 
diagonal entries 1; they are called again the cut and metric polytopes. Let rE 
denote the projection from the space SYMnx n of the symmetric n X n 
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matrices to the subspace [w E indexed by the edge set of G. Then 

CUT*'(G) = ?'r,(CUT,+X;), 

and it follows from a result of [l] that 

MET*'(G) = ,,(MET,+Xl"). 

Therefore MET * ‘(G) is the projection of MET * '(K,) on the edge set of G; 
the same holds for the metric polytope in the 0, I-variable. The vertices of the 
cut polytope CUTnfxln are the matrices xxT for x E { - 1,l)“; they are called 
cut matrices, as they indeed encode the cuts of K, (in the + 1 variable). 

Every cut matrix rxT (for x E { + 1)“) obviously belongs to the elliptope 
8 n X ,,. Therefore, 

CUT,,‘,‘,, C gn x ,, > CUT*'(G) c 8(G). 

In other words, the elliptope 8(G) is a (in general, nonpolyhedral) relaxation 
of the cut polytope CUT *l(G). This fact (combined with the additional 
property that one can optimize a linear function over the elliptope in 
polynomial time) was the essential motivation for considering the elliptope in 
the papers [24, 19, 12, 211. We will characterize in Section 5 the graphs G for 
which the equality CUT * l(G) = 8(G) holds. 

3. RELATED RESULTS 

We present here some results from [14], [4], and [17] relative to the clique 
condition (1.1) and the cycle condition (1.2). 

Let G = (V, E) be a graph. Given a circuit C in G, an edge e g C is 
called a chord of C if it joins two nodes of C. Then G is said to be chordal if 
every circuit in G of length > 4 has a chord. 

As observed in [14], if G is not chordal, then the clique condition (1.1) 
does not suffice for describing 8(G). Indeed, let C be a circuit of length 
2 4 in G with no chord. Consider the vector x E [WE with value 1 on all 
edges of C except for - 1 on one edge of C, and with value 0 on all 
remaining edges of G. Then x satisfies (1.1) but r @ B(G). The following 
result from [14] shows that the clique condition characterizes B(G) if G is 
chordal; a short proof can be found, e.g., in [16]. 
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THEOREM 3.1 [14]. Let G = (V, E) be a graph. The following assertions 
are equivalent. 

6) G is chordal. 
(ii) 8(G) = (X E iRE ) xK E 8(K) for each clique K of G}. 

Following [4], let us call a graph G cycle completable if the conditions 
(1.1) and (1.2) are sufficient for describing 8(G), i.e., if 

8(G) = 

Examples of cycle completable graphs include chordal graphs and series- 
parallel graphs (this follows from Theorems 3.1 and 4.7) and their clique 
sums. The equivalence (i) ti (v) from Theorem 3.2 below shows that all cycle 
completable graphs arise, in fact, in this way. 

Let W, denote the wheel on k nodes, which is composed of a circuit C 
on k - 1 nodes together with an additional node adjacent to all nodes of C. 
Hence, W, = K,. Note that the wheel W, for k > 5 is not cycle completable. 
(To see it, consider the vector x taking value - i on all edges of W, except 
for 0 on one edge of the circuit C.) Note, moreover, that W, is cycle 
completable, but not its splittings. The equivalence (i) CJ (ii) from Theorem 
3.2 below shows that the wheels W, (k > 5) and their splittings (for k 2 4) 
are, in some sense, the minimal obstructions to cycle completability. 

THEOREM 3.2. Let G be a graph. Consider the following assertions. 

(i) G is cycle completable. 
(ii) No induced subgraph of G is a wheel W, (k >, 5) or a splitting of a 

wheel W, (k 2 4). 
(iii) Every induced subgraph of G that has a &-minor also contains a 

clique of size 4. 
(iv) There exists a chordal graph containing G as a subgraph and 

containing no new clique of size 4. 
(v) G can be obtained by means of clique sums from chordal graphs and 

series parallel graphs. 

Then (i) * (ii) 0 (iii) CJ (iv) [4], and (i) w (v) [17]. ??
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4. THE ELLIPTOPE FOR SERIES-PARALLEL GRAPHS 

In this section we characterize the graphs G for which the cycle condition 
(1.2) suffices for describing the elliptope 8(G). As mentioned in the intro- 
duction, each vector x E 8(G) can be parametrized as 

x, = cos 71a, 

where a, E [0, l] for every e E E. For short, we write 

1 
x = cos rra or, equivalently, a = ; arccos x, 

which means that the relations hold componentwise. This parametrization for 
the members of the elliptope was introduced in 131. 

The elliptope of a circuit has been characterized in [3], using the above 
parametrization. An equivalent result is given in [lo], but the formulation of 
131 turns out to be more convenient for our purpose of finding a generaliza- 
tion to a larger class of graphs. The result of [3] basically says that the 
elliptope of a circuit C is the image of the metric polytope MET'~(C) (scaled 
by the factor 7r> of C under the cosine mapping. 

THEOREM 4.1 [31. Let C = (V, El be a circuit. Then 

8?(C) = {cos ra/a E MET"(c)}. 

An immediate consequence of Theorem 4.1 is: 

PROPOSITION 4.2. Let G be a graph. We have the inclusion 

E(G) 5 {cos ra(a E MET"(G)}. 

In other words, the cycle condition (1.2) is necessary for membership in 
the elliptope 8(G). In fact, the foll owing stronger result can be derived from 
[12]. We give th e proof in Section 6, as it is very simple and beautiful. 

THEOREM 4.3. Let G be a graph. We have the inclusion 

8(G) G {cos ma(a E CUT"(G)}. 
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Therefore, we have the following chain of inclusions: 

CUT”(G) c8(G) c ( cos mzlu E CUT”‘(G)) C {cos mlu E MET”(G)}. 

We shall see in Section 5 that equality holds in the leftmost inclusion for 
acyclic graphs. By (2.2), equality h o Id s in the rightmost inclusion for graphs 
with no &-minor. Let ZY,,,,, denote the class of graphs G for which 

8(G) = {cos ?i+ E MET"(G)}, 

and let .YcUt denote the class of graphs for which 

8(G) = {cos mzlu E cuT”‘(G)). 

Clearly, 

We show below that both classes coincide with the class of graphs having no 
K,-minor. 

By Theorem 4.1, we already know that circuits belong to the class 9,,,et; 
hence, K, E g,,,et. Note that K, does not belong to gcUt. For this, consider 
the vector x E R E(K4) defined by x = cos 7~cl = (- i, . . . , - i>, where 
a = <;,.. . , 3). Hence, a E MET"(K,) = CUT"(&). But x does not belong 
to Z’(K,), as the matrix 

'1 -+ -; _$ 

*:= -+ 
1 1 -2 -f 

-1 -+ 1 -1 
2 2 

-+ -+ -f 1 

is not positive semidefinite. [Indeed, Xe = - &, where e = (1, 1, 1, ljT.] 
Before proceeding further with the description of the classes g,,,,t and 

gcUt, we recall the following well-known characterization for graphs with no 
K,-minor (it can be derived from [9]>. A graph G has no &-minor if and only 
if G = K,, or G is a subgraph of a clique k-sum (k = 0, 1,2> of two smaller 
(i.e., with less nodes than G) graphs each having no &-minor. Such graphs 
are also known as the partial 2-trees, or as the (simple) series-purullel graphs. 
(We stress “simple,” as series-parallel graphs are, in general, allowed to have 
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loops or multiple edges. But here we consider only simple graphs.) (A 2-tree 
is any graph which can be constructed, starting from K,, by taking successive 
clique 2-sums with K,. A partial 2-tree is a subgraph of a 2-tree.) 

We show now that the classes P,,,et and Fc?cut are composed precisely of 
the graphs with no &-minor. In view of the above result, the key steps 
consist of showing that 9,,,?, and 9c,,t are closed under taking minors and 
clique sums. 

PHOPOSITION 4.4. Each of the classes gmet and gCUt is cEosed under 
taking minors. 

Proof. Let G = (V, E) be a graph with n = [VI nodes, let e = uv be an 
edge of G, and let G’ denote the graph obtained from G by deleting or 
contracting the edge e. We show that G’ E gnmrt (G’ E 3’c?cnt) whenever 
G E g ,,,, I (G E FC,J. 

Let us first consider the case when G’ = G \ 6. 
We suppose first that G E 9,,,t.t; we show that G’ E g,,,,,. For this, let 

a E METO’( we show that cos ra E 8(G’). Indeed, let b be a vector of 
MET”‘(G) whose projections on the edge set of G’ is a. [Such a vector b 
exists, as the metric polytope of a graph coincides with the projection on its 
edge set of MET”‘(&). I n an elementary way, such b can be explicitly 
constructed by setting b,. := (Y, where (Y satisfies 0 < (Y < 1 and 

a 

a 

where the 
FCC of 

< ,,.I;;;~, [IFI - 1 + 4c \ F) - a(F \ {e)>l 3 

pairs (C, F) consist of a cycle C in G containing e and a subset 
odd cardinality; such an (Y exists by the assumption that a E 

MEI-“‘(G As G E g,:,,,,, we obtain that cos mb E 8(G). Therefore, its 
projection cos ma on the edge set of G’ belongs to 8(G’). 

Suppose now that G E .Ycllt; we show that G’ E Fc,,t. For this, let 
a E cub”‘; we show that cos ra E Z(G’). We can find b E CLJT~~(G) 
whose projection on the edge set of G’ is a (as the cut polytope of a graph is 
the projection on its edge set of the cut pol,ytope of the complete graph). 
Then, cos rrb E Z?‘(G), which implies that cos rra E 8(G’). 

We consider now the case when G’ = G/e. Let u: denote the node of G’ 
obtained by contraction of the edge e = uv. 

We first show that G’ E Z,,,,, whenever G E .9,,,,. For this, let a E 
METO’( We define a vector b on the edge set of G by setting b, := 0, 
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bi, := aito if i is adjacent to u in G, bj, := ai, if i is adjacent to v in G, and 
br := uf for all other edges f of G. Then, b E MET”(G), as it satisfies the 
inequalities (2.1). As G E 3&,,, we obtain that cos 7rb E B(G). Hence, there 
exists a matrix B E gnx n whose projection on the edge set of G is cos mb. 
Let A denote the matrix obtained from B by deleting the row and column 
indexed by u (and renaming v as w). Then, A E: Z(,,_ I)x(n _ l). Moreover, 
the projection of A on the edge set of G’ is cos au, which shows that 
cos rra E 8(G’). 

We finally verify that G’ E .!Ycur whenever G E .Ycut. Let a E CUT”‘(G’), 
and let b be the vector defined on the edge set of G in the same way as 
above. Then b E cu-rol(G). [Indeed, as a E cu~‘~(G’), a can be decom- 
posed as a nonnegative linear combination of cuts in G’: 

where A, > 0 and the sets S are subsets of V \ {u, 0). Then 

which shows that b E cu~‘~(G).] Therefore, cos rrb E Z(G), which implies 
as above that cos rra E 8CG’). ??

PROPOSITION 4.5. The class LFmet is closed under taking clique sums. 

Proof. Let G, = (V,, E,), G, = (V,, E2) be two graphs in g,,,et such 
that K := V, n V, induces a clique in both G, and G, and there are no 
edges between a node from V, \ K and a node from V, \ K. Let G = (V 
:= V, U V,, E := E, U E,) denote their clique sum. We show that G E Ymet. 
For this, let a c MET”(G); we show that cos ~a E 8(G). Let a, denote the 
projection of a on Iw Ei for i = 1,2. So a, E MET’~(G,), which implies that 
cos vai E S(Gi). Hence, there exists a matrix Aj E 9n,x,, (n, := IV,l) whose 
entries indexed by the edges e E Ei are precisely cos ~a,. Consider the 
partial n X n(n = (VI) matrix M from Figure 1, where the entries (u, v) for 
u E V, \ K, v E V, \ K remain to be specified. 

Let H denote the graph on V whose edges are all pairs contained either 
in V, or in V,. So the entries of M are determined on all the edges of the 
graph H. As H is a chordal graph, we deduce from Theorem 3.1 that M can 
be completed to a matrix of Z” x “. In other words, values can be found for 
the unspecified entries of M that make M positive semidefinite. This shows 
that cos rra belongs to Z(G). a 
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THEOREM 4.7. Let G be a graph. The following assertions are equiva- 
lent: 

6) G E g,,,et. 
(ii) G E .Fccut. 
(iii) G has no K,-minor. 

Proof. Clearly, (i) * (ii). The implication (ii) * (iii) follows from the 
fact that Fmt is closed under taking minors and that K, E Fc?,,r. We show 
(iii) = (i). Suppose G is a graph with no K,-minor. We show that G E gmet 
by induction on the number of nodes. If G = K,, then G E F,,,,, by 
Theorem 4.1. Otherwise, G can be obtained as a subgraph of a clique sum of 
two smaller graphs G, and G, having no K,-minor. By the induction 
assumption, G, and G, belong to F,,,t. Therefore, G E .Y,,,et by Propositions 
4.4 and 4.5. ??

Note that the implication (iii) * (i) also follows from the implication 
(v) * (i) in Theorem 3.2 [as (1.1) follows then automatically from (1.2) since 
all cliques in G have at most three nodes]; however, our proof is direct and 
much shorter. As an application, we have the following result. 

COROLLARY 4.8. Suppose G = (V, E) has no Z&-minor. Let x E R E 
such that x, = cos IT’Q! for all e E E, for some (Y E [0, 11. 

(i) Zf G is bipartite, then x E 8(G) for all CY E [0, 11. 
(ii) Zf G is not bipartite and if k denotes the smallest length of an odd 

cycle in G, then x E 8(G) if and only if 0 < a Q (k - 1)/k. 
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Proof. By Theorem 4.7, x E 8(G) if and only if ff satisfies (2.1) i.e., if 

ff < min F c C, C a cycle, IF1 odd, 2lFl - ]C( > 9 

The result follows. 

5. THE ELLIPTOPE FOR ACYCLIC GRAPHS 

As mentioned in Section 2, the elliptope 8(G) is a (in general, nonpoly- 
hedral) relaxation of the cut polytope CUT * ‘(G), i.e., 

<:uT”(G) Go. 

This inclusion is strict, for instance, for G = K:,; indeed, the vector x := 
( - i, - i, - i) belongs to 8(K,) but not to CUT ' '(K,). As an illustration, 
compare the polytope CUT + '( K,J (which is a S-dimensional simplex) and the 
elliptope Z?(K,) ( w h ose picture can be found in [19]). We show that equality 
holds in the above inclusion precisely for the acyclic graphs. A graph is 
ncljclic if it contains no cycle, i.e., if it is a forest or, equivalently, if it has no 
K,-minor. 

THEOREM 5.1. Lk G = (V, E) he n graph. Then 8(G) = CUT * ‘(G) if 
and only if G is acyclic, i.e., if G is a forest. 

Proof. Suppose that G is acyclic. Then G has no &-minor and thus, by 
Theorem 4.7, B(G) = {cos ~TU 1 n E MET"'(G)}. On the other hand, 
MET"'(G) = [O, 11” [by the definition of MET"(G) in (2.1) and because G has 
no cycle] and CUT * i(G) = MET i i(G) = [ - 1, 11s [using (2.2)]. Therefore, 

8(G) = (cos~a(a E [o,l]“) = [-l,l] = CUT+-l(G). 

Conversely, suppose that Z(G) = CUT * ‘(G). We show that G is acyclic. 
For this, it suffices to show that the property 8(G) = CUT * i(G) is closed 
under taking minors, as this will indeed imply that G has no Ks-minor. So let 
G be a graph such that 8(G) = CUT ‘l(G), and let e be an edge of G. Let 
us first consider the graph G’ obtained from G by deleting the edge e; we 
show that B(G’) E CUT * ‘(G’). F or x E 8(G’) there exists a matrix A E 
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8 nXn (n = /VI) whose ijth entries are rij for ij E E \ {e). Let y E [WE 
whose 9th coordinate is aij for ij E E. Hence, y E 8(G) = CUT ' i(G). This 
implies that its projection x on 58 E ‘te) belongs to CUT * ‘(G’). Let now G’ 
denote the graph obtained from G by contracting the edge e; we again show 
that 8(G’) _C CUT * ‘(G’). Say the end nodes of e are o,_ 1 and u, and the 
node set of G’ is V \ {u,}. For x E 8(G’) there exists a matrix A E 
qn- l)X(n-I) whose Yth entries are rij for y E E(G’). Let B denote the 
n x n matrix obtained from A by duplicating its last column and its last row 
and setting the (n, n - l>, and (n, n> entries equal to 1. Clearly, B E gnnx,,. 
Let y E Iw E whose ijth coordinate is bij for ij E E. Then y E 8(G) = 
CUT * r(G). This implies easily that x E CUT ' ‘(G’). ??

6. A GEOMETRICAL RESULT 

Let G be a graph. By Theorem 4.3, we know that 

{i arccos *jr E a(G)) 5 CUT”(G). 

Therefore, 

Conv( { d arccos r/x E k?(G)]) c CUTol(G). 

(Here, “Conv” denotes the operation of taking the convex hull.) In fact, 
equality holds, as every vertex of CUT”(G) belongs to the convex set on the 
left-hand side of the above relation. [Indeed, for every cut 6,(S) of G, the 
vector cos TX ‘c(‘) belongs to 8(G).] In other words, 

cu~'l(G) = Conv ({karccosri* 

i.e., the polytope cu~‘l(G) is the smallest convex set containing the set 

i arccos 8(G) := {barccosxi* to(G)). 

In particular, by Theorem 4.7, the set (l/rr)arccos 8(G) is convex if and 
only if the graph G has no K,-minor. 
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For any graph G, we have the following situation: The elliptope 8(G) 
contains the cut polytope CUT * ‘(G) (in the * 1 variable) and is contained in 
the image of the cut polytope CUT”‘(G) (in the 0,l variable)-scaled by the 
factor 7r--under the cosine mapping. Recall that CUT”(G) is the image of 
CUT * ‘(G) under the mapping x - (1 - x)/2. This permits us to conclude 
that 

{OS TTT~(~Z E CUT”(G)} = 

Therefore, we have the inclusions 

CUT*‘(G) 28(G) 2 ;k~ b E CUT*‘(G) )I 
with equality in the rightmost inclusion if and only if G has no &-minor. 

We now state a result of geometrical flavor, which shows how to derive 
valid relations for the pairwise angles between any set of unit vectors. 

THEOREM 6.1[12]. Let vl, . . . , 0, be unit vectors in R”. Let a E R E(Kn), 
a, E Iw such that the inequality a*x 6 a,, is valid for the cut polytope 
CUT"(&,) (i.e., a*x < a, hoZ&fir all x E CUTol(K,)). Then 

C 'ij 

arccos vTvj 
6 a,. 

lhi<j<n 
7T 

Proof. The proof is based on the following randomized procedure, 
described in [ 121: 

1. Select a random unit vector r E R”. 
2. Set S, := {l, . . . , n}jvrr > 0). 

We consider the cut 6,$S,) in the complete graph K,, which is constructed 
by this random procedure. Then, the probability that an edge e := ij of K, 
belongs to the cut 6, (S,) is equal to the probability that v,Tr >/ 0 and 
v,Tr < 0 or vice versa. fn other words, it is equal to the probability that the 
random hyperplane with normal r separates the vectors vi and vj, which in 
turn is equal to (arccos v’uj)/rr. Therefore, the expected weight (with 
respect to the weights aij) of the random cut S,dS,> is equal to 

arccos uTvj 
C aij ~ . 

l<i<j<n 
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But, this expected weight is less than or equal to the maximum weight of a 
cut, which is less than or equal to a,, by assumption. This shows that 

c 
arccos v?v. 

‘rj ’ ’ <a,. 
1 <i i.j< N 5-r 

??

Theorem 4.3 can now be derived in the following way. Let x E Z(G). We 
show that (l/rr)arccos x E (:u~“‘(Gl. Let X E 8,,Xr, whose projection on 
[WE is x. As X & 0 with diagonal entries 1, it is the Gram matrix of a set of 
unit vectors v, , . . . , u,, E R”, i.e., Xii = ti,rvj for all i, j = 1, . . . , n. By 
Theorem 6.1, the vector ((l/rr>arccos v,“v,), ~ i< jg ,, belongs to the cut 
polytope CLJTO’(Kn), as it satisfies all the inequalities that are valid for the 
polytope (:UT”‘( K,,).’ Therefore, its projection ((l/r) arccos oDITvjlij t E(G) on 
the edge set of G belongs to the polytope CUT”‘(G). This shows that 
(I/rr)arccos x E UJT”‘(G). 

Theorem 6.1 contains as a special case the well-known relations 

c arccos Verdi < 27r, 
I < i <,I $3 

arccos urn, < arccos IJ:V,, + arccos vx‘v3. 

which hold for any three unit vectors 1;, , c2, ug in 3-dimensional space (see 
[5, Corollary 18.6.101). They f o 11 ow from the valid inequalities 

for the polytope CUT”‘(&). But Theorem 6.1 gives a whole wealth of other 
inequalities. Indeed, every valid inequality for the cut polytope CUT”‘(&) 

yields some inequality for the pairwise angles among any set of n vectors in 
IR “. 

’ We USA here the well-known geometrical fact that every polytope which is given as the 
CO~WX hull of a finite set of vectors can be alternatively described as the solution set of a system 
of linear inequalitifx. 
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For instance, the inequality 

c Xij =G k(k + 1) 
l<i<jszk+l 

is valid for CUTol(Kzk + ,) (k > 1). This implies that 

c arccos u,rvj < k( k + 
lGi<jc2k+l 

MONIQUE LAURENT 

l)r 

holds for any 2k + 1 unit vectors vi,. . . , vZk+l E R 2k+1. Similarly, the 
inequality 

c arccos v,Tuj < k2rr 
l<i<j<Zk 

holds for any 2k unit vectors in R2k. As another example, let b,, . . . , b, be 
integers whose sum u := C, ~ i ~ ,, hi is odd. Then the inequality 

is valid for CUT”( &,). [Indeed, for every cut S,,$S> of K,, 

c bibj= ( cbi)( cb,) = cbi(a- cbi) < q, 
ijE S,“W iES iES iES iES 

as C , E s bi is an integer.] Therefore, 

C 'ibj 

u2- 1 
arccos v,Tvi < rr----- 

lci<j<n 
4 

holds for any n unit vectors in R”. 
Many other inequalities valid for the cut polytope are known; see, e.g., [7, 

81. Most of them have, in fact, a quite complicated form. As a last example, 
let us mention the following relation (which follows from a valid inequality 
given in [IS]), which h 0 Id f s or any seven unit vectors vi,. . . , or in II%‘: 

c arccos vLrvj - 2 C arccos v,TGi 
l<i<jC4 iGi44 

7 - arccos 0, oA T - arccos va v6 T 1 - arccos v, v7 - arccos vq v7 

+ arccos VIVA + arccos vzv7 - arccos vivi f 0. 
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I thank W. Barrett for bringing to my attention the paper [3/, which was 
the starting point of this research. I also thank him and a referee for their 
careful reading of the paper. 
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