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Abstract 

This paper brings together several topics arising in distinct areas: polyhedral combinatorics, in 
particular, cut and metric polyhedra; matrix theory and semidefinite programming, in particular, 
completion problems for positive semidefinite matrices and Euclidean distance matrices; distance 
geometry and structural topology, in particular, graph realization and rigidity problems. 

Cuts and metrics provide the unifying theme. Indeed, cuts can be encoded as positive semidef- 
inite matrices (this fact underlies the approximative algorithm for max-cut of Goemans and 
Williamson) and both positive semidefinite and Euclidean distance matrices yield points of the 
cut polytope or cone, after applying the functions l/Tr arccos(.) or , / .  When fixing the dimension 
in the Euclidean distance matrix completion problem, we find the graph realization problem and 
the related question of unicity of realization, which leads to the question of graph rigidity, 

Our main objective here is to present in a unified setting a number of results and questions 
concerning matrix completion, graph realization and rigidity problems. These problems contain 
indeed very interesting questions relevant to mathematical programming and we believe that 
research in this area could yield to cross-fertilization between the various fields involved. @ 1997 
The Mathematical Programming Society, Inc. Published by Elsevier Science B.V. 
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1. I n t r o d u c t i o n  

Cuts in graphs m'e very elementary objects in graph theory and combinatorics. Yet 

they yield a number of  interesting and difficult combinatorial optimization problems. 

For instance, the max-cut problem belongs to the most basic combinatorial problems, 

whose NP-hardness was already recognized in the fundamental paper of  Karp [30] .  This 

optimization problem has received a lot of  attention throughout the years. It has been 
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attacked from various angles ranging from enumeration methods, integer linear program- 
ming, and, more recently, continuous optimization and more specifically semidefinite 
programming. The latter approach is based essentially on the observation that every cut 
can be represented by a matrix which is positive semidefinite with an all ones diagonal. 
By this, the max-cut problem can he naturally relaxed by optimizing over the set of 
positive semidefinite matrices with an all-ones diagonal. A crucial result established by 
Goemans and Williamson [ 18] is that this relaxation yields an efficiently computable 

and very good approximation for the max-cut problem. 
This fact, that cuts can be viewed as matrices with special properties, sets a natural 

bridge with linear algebra and, more specifically, combinatorial matrix theory. A prob- 

lem which has occupied researchers in this m'ea for quite some time is the so-called 
completion problem for vm'ious matrix properties. This problem asks whether the un- 
specified entries of a partially defined matrix can be completed so as to obtain a lully 
defined conventional matrix satisfying a desired property. In our discussion, the matrix 

property in question is positive semidefiniteness. 
Results concerning the positive semidefinite completion problem have been obtained 

in the literature of linear algebra, that involve notions that are well known to researchers 
in the area of mathematical programming; in particular, the notions of cuts and metrics. 
Moreover, finding a positive semidefinite completion for a partial matrix is a typical 

instance of a semidefinite programming problem. 
One of our objectives in tbis paper is to present some of the results about the 

positive semidefinite completion problem that are most relevant to mathematical pro- 
gramming techniques and notions. We believe indeed that this combinatorial matrix 
theory problem contains interesting combinatorial and optimization problems yielding 

to cross-fertilization between the two fields. 
Cuts, metrics and positive semidefinite matrices are also closely related to the so- 

called Euclidean distance matrices; that is, the matrices whose entries can be realized as 
the pairwise squared Euclidean distances among a set of points (in arbitrary dimension). 
Euclidean distance matrices are a central notion in the area of distance geometry; their 
study was initiated by Cayley last century and continued in the 1930s, in particular, by 

Menger and Schoenberg (cf. the classic book by Blumenthal [8], and the monograph 
by Crippen and Havel [ 11 ] treating also applications). We mention here several results 

concerning the completion problem tbr Euclidean distance matrices. 
If one fixes the dimension of the space in which the points realizing the (partial) 

matrix are to be found, one finds the graph realization problem, a well-studied problem in 
distance geometry, having important applications, in particular, to the area of molecular 
chemistry. This is the following problem: Given a graph G = (V,E) with weights d E R~ 
on its edges and a prescribed dimension k >~ 1, is it possible to find points Pi C lI~ k 

(i E V) such that the square of the Euclidean distance between Pi and p) is equal to the 
prescribed weight dij for every edge i j  E E? This problem turns out to be NP-complete 
in any fixed dimension k ~> 1. In contrast, the complexity of the same problem with 
unprescribed dimension is not known! It is not even known if the problem belongs to NR 
Yet, the latter problem becomes polynomial-time solvable if one allows approximations 
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(since it can be formulated as a semidefinite programming problem). Moreover, its 

exact version is polynomial-time solvable for some classes of  graphs, such as chordal 

graphs. 
Beside the problem mentioned above of  the existence of  a realization in the k-space for 

a weighted graph, the problem of  unicity of such a realization arises naturally (unicity 

up to congruence).  This is also an NP-hard problem as shown by Saxe [47].  However, 

if one restrict oneself to searching for generic realizations (i,e., realizations in which 
the coordinates of the points are algebraically independent over the rational field Q),  

then the problem becomes tractable at least in small dimension k ~< 2. In this context 

we tind the problem of characterizing generic rigid graphs, a welLstudied problem in 

the area o f  structural topology. 
The paper is organized as follows. Section 2 contains definitions and preliminaries 

on graphs and matrices and, in Section 3, we recall some basic links between cuts and 

positive semidefinite matrices and Goemans-Williamson's result with some applications. 

We treat in Sections 4 and 5 the completion problem fox" positive semidefinite matrices 

and fox Euclidean distance matrices. These sections are organized as lbllows: in Sec- 

tions 4.1 and 5.1 we expose necessary conditions for the existence of  a completion and 
a characterization of  the graphs for which these conditions are also sufficient, and the 

Sections 4.2 and 5.2 contain complexity results for these completion problems. When 
fixing the dilnension in the Euclidean distance matrix completion problem, one finds the 

graph realization problem and the related question of  unicity of  realization; this leads to 

the question of  characterizing rigid graphs, considered in Section 6. 

2. Preliminaries 

2.1. Graphs 

All graphs are assumed here to be simple (i.e., without loops and parallel edges). 

We set V~, := {I . . . . .  n} and E,, := {ij I 1 <~ i < j <. n}. Hence, K,, = (V,,,En) is the 

complete graph on n nodes. Given a graph G = (V,,, E) ,  where E C E,, its suspension 
graph V G  is defined as the graph with node set V,,+I := V,, U {n + 1 } and with edge set 

E ( V G )  : = E U { ( i , n +  1) l i e  Vr,}. 
Let C be a circuit on n -  1 nodes; then, W,, := V C  denotes the wheel on n nodes, 

obtained by adding a new node (the center of the wheel) adjacent to all nodes on the 
circuit C. (Cf. Fig. l (a)  for a picture of  the wheel WT.) 

Let G = (V,,, E) be a graph. Given a subset U C_ V,,, G[U] denotes the subgraph of 

G induced by U, with node set U and with edge set {uv ¢ E I u, v C U}. One says that 
U is a clique in G when G[U] is a complete graph. For a subset S _C V,, the cut 8(S)  
consists of  the edges of  G having one end node in S and the other one in V,, \ S. 

Let Gj = (VI ,EI )  and G2 = (V2,E2) be two graphs such that the set K := Vl C'/V2 

induces a clique (possibly empty) in both Gl .and G2 and there is no edge between a 

node of  Vi \ K and a node of  V2 \ K. Then, the graph G := ( VI U V;, El U E2) is called 
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(a) (b) (c) 

Fig. 1. (a) The wheel W7. (b) Splitting node u in WT. (c) The graph W4. 

the clique sum of GI and G2. One also says that G is their k-clique sum if k = 1K]. Call 

a graph prime if it cannot be decomposed as a clique sum of two (smaller) graphs. 

Tarjan [501 proposes an algorithm for decomposing a graph into prime pieces by means 

of clique sums, that runs in time O(nm)  for a graph with n nodes and m edges. 

A graph H is said to be a minor of a graph G if H can be obtained from G by 

repeatedly deleting and/or  contracting edges and deleting isolated nodes. Deleting an 

edge e in G simply means discarding it from the edge set of  G. Contracting edge e = uv 

means identifying both end nodes of  e and discarding multiple edges and loops if some 

are created during the identification of u and c,. 

Call splitting the operation converse to that of contracting an edge. Hence, splitting 

a node u (o f  degree ~> 2) in a graph means replacing u by two adjacent nodes u' and 

u" and replacing every edge UL, in an arbitrary manner, either by u%,, or by u ' t ,  (but in 

such a way that each of  u ~ and u" is adjacent to at least one node). Figs. 1 (a) and (b) 

show the wheel on 7 nodes and a splitting of it, while (c) shows lhe graph W4 obtained 

by splitting one node in W4 = K4. 

Subdividing an edge e = uv means inserting a new node w and replacing edge e by 

the two edges uw and wv. Hence, this is a special case of splitting. A graph that can be 

constructed from a given graph G by subdividing its edges is called a homeomopph of 
G. Note that splitting a node of  degree 2 or 3 amounts to subdividing one of  the edges 

incident to that node and, thus, a graph has no K4-minor if and only if it contains no 

homeomorph of / (4  as a subgraph. (Such graph is also called a (simple) series-parallel 
graph.) 

Finally, we introduce some classes of graphs that will play an important role in this 

paper. A graph G is said to be chordal if every circuit of G with length >f 4 has a 
chord; a chord of a circuit C is an edge joining two nonconsecutive nodes of  C. We 

also consider the class G~h which consists of  the graphs that do not contain a wheel W,, 
(n ~> 5) or a splitting of  a wheel W,, (n ~> 4) as an induced subgraph. 

Chordal graphs, graphs with no K4-minor, and graphs in the class Gwh have a relatively 
simple structure as they can be decomposed by rneans of  clique sums into "easy" pieces. 

Indeed, a graph is chordal if and only if it can be decomposed by means of  clique sums 

into cliques [13] ;  and a graph G has no K4-minor if and only if G = K3, or G is a 
subgraph of  a clique k-sum (k = 0, 1,2) of  two smaller graphs (i.e., with less nodes than 

G), each having no K4-minor [14].  Johnson and McKee [29] show that ~wh consists 
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precisely of  the graphs that can be obtained by means of clique sums from chordal graphs 

and graphs with no K4-minor; interestingly, they derive this decomposition result from 

a result of  Barrett et al. [5] concerning the PSD completion problem (cf. Theorem 7).  

2.2. Matrices 

An n x n symmetric matrix A is said to be positive semidefinite (then we write A >-_ 0) 

if xTAx  >~ 0 for all x ~_ !R" and positive definite if x r A x  > 0 for all x E R" \ {0}. 

An n x n matrix D = (dij)  is called a Euclidean distance matrix if there exist vectors 

pl . . . . .  p,, E R t (for some k ~> 1) such that dij = [[Pi- Pill2 for all i , j  = 1 . . . . .  n; one 

says then that the vectors Pl . . . . .  p,, form a realization (or  embedding) of D. (Here, 

IIxll := i=l (xi)  2 denotes the Euclidean norm of  x E Rk.) We let PSD,, and EDM,, 

denote, respectively, the sets of  positive semidefinite matrices and Euclidean distance 

matrices of  order n. Moreover, g,, denotes the subset of PSD,, consisting of  the positive 

semidefinite matrices whose diagonal entries are all equal to 1. The set gt~ is called 

an elliptope in [36] (el l iptope standing for ellipsoid and polytope) and matrices in 

g,~ are called correlation matrices (e.g., in [10,39,38] ), a terminology borrowed from 

statistics. In what follows we sometimes abbreviate "positive semidefinite" to PSD and 

"Euclidean distance" to EDM. Finally, for a graph G = ( E , , E ) ,  we let g ( G )  (resp. 

E D M ( G ) )  denote the projection of  g,, (resp. of EDM,,) on the subspace R e indexed 

by the edge set of  G. 

Given vectors vl . . . . .  v~, E !R", their Gram matrix is the n x n matrix with entries 

u~'t,j for i, j = 1 . . . . .  n. Every Gram matrix is obviously positive semidetinite and, as is 

well known, every positive semidefinite matrix can be represented as a Gram matrix. 

3. Cuts and positive semidefinite matrices 

Given a graph G = (V,E) and a weight function w E ]R~_ on its edges, the max- 

cut problem consists of  finding a cut 6(S)  whose weight w ( 6 ( S ) )  := ~,,¢a(s} we is 

maximum. NP-hardness of  this basic combinatorial problem can be derived by a simple 

reduction from the partition problem [30].  The max-cut problem I has been extensively 

studied in the past decade. Much effort has been made, in particular, for developing 

algorithms permitt ing to solve efficiently some special instances of  max-cut and to find 

quickly good approximate solutions for general graphs. These algorithms use essentially 

tools from linear programming and polyhedral comb~natorics and, tot  the most recent 

ones, from spectral theory and semidefinite programming. The polyhedral approach has 

led to the study of  the cul polytope CUTD(G)  (defined as the convex hull of  the 

Detailed infomlation on max-cut can be fot, nd in Ihe survey [431; cf. also the book [121 for a global 
overview on cuts and related topics, and the annotated bibliography [35]. 
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incidence vectors of  the cuts in G) and its linear relaxations, in particular, the metric 

polytope 2 METD(G)  detined by the following inequalities: 

x ( F )  - x ( C  \ F )  ~ < I F [ - 1  for F C C, C cycle in a ,  I F l o d d .  (1)  

The semidefinite progranmaing approach is based on a representation of cuts by 

positive semidefinite matrices as we now see. For a subset S C V,, consider its ± l -  

incidence vector xs  E R" with coordinates x s ( i )  := 1 if  i C S and x s ( i )  := - 1  if  

i E V,, \ S. Then the quantity 

I 
Z w i j ( l - x s ( i ) x s ( j ) )  

I <~i<j~n 

is equal to the weight of  the cut 8 ( S )  (after setting wij := 0 if i j  is not an edge o f  G).  

Hence the max-cut problem can be formulated as 

1 
max ~ w i j ( l -  (2)  ,+={-Lt p, 2 x ,x j ) .  

l<~i<j<.n 

Here a cut is encoded by a matrix x x  T (where x E {+ I }") which is positive semidefinite 

with an all-ones diagonal. Therefore, the set g,, consisting of  the positive semidefinite 

matrices with an all-ones diagonal forms (up to an affine transformation) a relaxation 

of  the cut polytope CUTD(K,,)  of  the complete graph, and hence the program: 

1 
F n a x  ~ ~2i/( I -- Xij ) (3)  

X=(x+j) Eg,, 2 " ' 
I ~i<.i~<n 

yields an upper bound for the value of  the max-cut problem (2) .  

Goemans and Will iamson [18] show that problem (3) yields in fact a very good 

approximation of  max-cut. We recall this fact in some detail as it will form the basis 

of  some results for matrix completion problems exposed later. In what follows mc(w)  

denotes the optimum value of the max-cut problem (2) and sd(w) that of  the relaxed 

problem (3) .  

Theo r em 1 (Goemans and Will iamson [ 18]) .  Given nonnegative edge weights w, we 

have 

mc(w)  2 0 
sd(w)  >~ a.  where c~ := min - -  0~<o~<~ 7r l - cos 0 ; 

the quanti  O, ~ can be estimated as 0.87856 < a < 0.87857. 

The proof  uses the fact that every positive semidefinite matrix can be represented as 

a Gram matrix. Thus the quantity sd(w)  can be reformulated as 

2 [] Barahona and Mahjoub [4] show that CUT (G) C METD(G), with equality if and onl~if G has no 
Ks-minor. Moreover, they show that an inequality (1) defines a facet of MET D (G) (or CUT (G)) if and 
only if C is a chordless circuit in G. In particular, METD(K,) is defined by lhe following inequalities: 
xii -- .ri~ - +rjk <~ 0 and .vii + .x'ik -k xjk ~ 2 for i, j, k E Vn. known as tile triangle inequalities. 
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1 

1 ~<i<.iO! 

s.t. u l , . . . ,  u,, unit vectors in R". 

261 

(4) 

Proof. Let t.h . . . . .  u,, E R" be unit vectors realizing the maximum in (4). The key step 

consists of  constructing a random cut whose weight is close to the value of max-cut. It 
goes as follows: Select a random unit vector r C R" and set S := {i E I4,, ] u/Vr >~ 0}. 

Let Es denote the expected weight of  the cut 6(S) .  Then, 

Es <~ mc(w). (5) 

On the other hand, Es = ~ wijpij where Pi) is the probability that edge ij belongs to 

cut B(S). The quantity Pij is equal to the probability that a random hyperplane separates 

the two vectors ui and uj and thus to r r -I  arccos (t'~t'j). Therefore, 

1 
Es = --  Z wi.iarccos(v]'v./). (6) 

"iT 
1 <~i<.i~n 

Hence, Es >>- o~l~i<j<.<., , wi j ( l  - u l r t ' j ) / 2  by definition of  o~. This implies that Es >~ 
ae • sd(w) which, combined with (5),  gives the result. [] 

Problem (3) is a typical instance of a semidefinite programming problem. It can be 

solved efficiently (with arbitrary precision), e.g., using the ellipsoid method or interior- 

point methods (of., e.g., [1,18]) .  Thus the upper bound sd(w) for max-cut can be 

efficiently computed. Moreover Goemans and Williamson indicate how to "derandomize" 

their procedure in order to obtain a (deterministic) cut whose weight is at least the 

expected weight. 
As an application (of  the proof) of  Theorem 1, we have a "recipe" for constructing 

linear inequalities that are satisfied by the pairwise angles of  a set of  n unit vectors. 

Namely, every linear inequality valid for the cut polytope CUTC:I(K,,) of  the complete 

graph yields such an inequality. 

T h e o r e m  2. Let vl . . . . .  v .  b e n  unit vectors in R m (n ) 3, m ) l ) . L e t w E R  E,, and 

wo c IR such that the inequaliO, wTx <~ Wo is valid for  the cut polytope CUT O (K.) .  

Then, 

wij arccos ( .y. . i )   'wo. 
I <~i<.j<~n 

Proof. The result follows from relations (5) and (6) and the fact that mc(w)  ~< w0. [] 

For instance, we find the well-known geometrical fact that the pairwise angles between 
three vectors satisfy the triangle inequalities. Fejes Tdth [ 16] asked more generally what 

is the maximum value for the sum of angles between a set of  n vectors; he conjectured 

that this maximum sum is [n/2] Ln/2Jrr and proved this conjecture for n ~< 6. This 
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conjectured value is indeed correct in view of Theorem 2 since the maximum cardinality 

of  a cut in K,, is fn /2]  ~n/ZJ. In the case of  three vectors the following stronger result 

holds (which can be checked by trigonometric manipulation; cf. [6] ). 

Theorem 3. 
(i) The matr ix  

(, 
A := c o s  o:' 

\ cos/3 

The fo l lowing  assert ions are equivalent  f o r  a,/3, y E [0, rr]. 

cos,~ cos/3"~ 
/ , co ,) 

cos y 

is posi t ive  semidefinite.  

(ii) ce <~ f l  + y ,  /3 <. ce + y ,  y <~ oe + fl  and ce + f l  + y <~ 2rr. 

The next result is a reformt, lation of  Theorems 2 and 3. 

Corollary 4. Let X = ( xij ) be an n x n symmetr ic  matr ix  with an al l-ones d iagonal  

and let x = ( x , j ) l~ i< j~n  denote the vector in IR(~) consist ing o f  the upper  tr iangular  

entries o f  X. Then, 

1 
X E g , ,  (i.e., X'.>-0) ~ - - a r c c o s x E C U T D ( K , , ) .  

rr 

Moreover ,  this implicat ion holds as atz equivalence in the case n = 3. 

To conclude, we have just observed some links between cuts and positive semidefinite 

matrices in the set E,,. On the one hand, each cut (and, thus, each point in the cut 

polytope) can be encoded by a matrix in £',,; on the other hand, the function rr -I  arccos 

applied to the entries of a matrix in E,, yields a point belonging to the cut polytope. In 

the next section we further explore the latter property, in the setting of  the completion 
problem for positive semidefinite matrices, a problem arising in combinatorial matrix 

theory. 

4. The positive semidefmite completion problem 

A part ia l  matr ix  is a matrix X = ( x i j )  whose entries are specified only on a subset 

of  the positions but in such a way that xj; is specified and equal to x 0 whenever xi) is 

specified. We consider here the following problem: 

The PSD completion problem (PSD). Given a partial matrix X, is it possible to 

choose the unspecified entries of  X in such a way that the resulting matrix is positive 

semidelinite? 

We may restrict ourselves to the case when all diagonal entries are specified and (up 
to rescaling) equal to 1. Note that rescaling may introduce square roots, which may 
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cause problems from an algorithmic point of  view. The problem can then be reformulated 

as follows: Given a graph G = (V,,,E) (whose edge set E corresponds to the set o f  

speci[ied entries) and given a vector x E R e, does x belong to the projected elliptope 

£ ( G ) ?  Thus we find the question of  testing membership in the convex body £ ( G ) .  

This problem has received considerable attention in the literature of  linear algebra. 

This is due to its many applications, in particular, to probability, statistics, system 

engineering, geophysics, etc. Rest, Its have been obtained along the following lines: 

finding necessary conditions for membership in £ ( G )  and identifying the graphs lbr 

which these necessary conditions are also sufficient; finding a positive semidefinite 
completion satisfying certain requirement like having maximum determinant; etc. 

Concerning the latter question, the following is proved in [ 19]: Given a partial matrix 

X with specified diagonal entries, if X can be completed to a positive definite matrix, then 

there exists a unique positive definite completion whose determinant is maximal and this 
matrix is characterized by the fact that its inverse has zeros precisely in the positions 

conesponding to unspecified entries in X. Moreover, in the case when the graph of  
specified entries is chordal, tiffs maximum determinant as well as the unspecified entries 

can be expressed explicitly in terms of  the specified entries (see [26] and references 

therein). 
We focus here on the first question concerning finding necessary conditions tbr mem- 

bership in the elliptope £ ( G ) .  Results are summarized in Section 4.1. We then consider 

in Section 4.2 complexity issues for the PSD completion problem. The exact complexity 

of  this problem is not known. However, the problem can be solved in polynomial time 

if one allows an arbitrary small precision. Moreover, for chordal graphs, the problem 

can be solved exactly by a polynomial-time combinatorial algorithm. 

A detailed treatment of the material exposed in this section and the next one con- 

cerning completion problems for PSD and EDM matrices can be found in the survey 

paper [34].  

4.1. Necessary conditions 

Let G = (V,,,E) be a graph and let x E R E be a vector for which we wish to test 

membership in g ( G ) .  For a clique K in G let XK denote the projection of x on the edge 

set of  K. Then, 

(PSDK) xK 6 g ( K )  for each clique K in G 

is a necessary condition for x E g ( G )  (because every principal submatrix of  a positive 
semidefinite matrix is positive semidefinite). Clearly, x E [ - 1 ,  1] e if x E g ( G )  and thus 

we can parametrize x as x = cos(rra)  where a E [0, I f E (that is, a,. := rr -I  arccosxe 

for all e C E).  From Corollary 4 we have that 

(PSDC) a E CUTCZ(G) 
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is also a necessary condition for x C £(G) .  This condition was formulated in [32].  

A weaker condition 3 has been found earlier in [6] involving the linear relaxation of  

CUTC1(G) by the metric polytope MET[] (G) ;  namely, the condition: 

(PSDM) a ~ METD(G) .  

None of  the conditions (PSDK),  (PSDM),  or (PSDC) suffices fbr characterizing 

£(G)  in general. For instance, let G = (V,E) be a nonchordal graph and let C be a 

chordless circuit in G of  length ) 4. Define x C Rt' by setting Xe := 1 for all edges 

e in C except x,, 0 := - 1 for one edge e0 in C, and x~ := 0 for all remaining edges in 
G. Then, as noted in [ 19], x satisfies (PSDK) but x ~ £(G)  (for instance, because 

(PSDM) is violated). As another example, consider the 4 x 4 matrix X with diagonal 

entries 1 and with off-diagonal entries - 1 / 2 .  Then, X is not positive semidefinite; 

hence, the vector x := ( - 1 / 2  . . . . .  - 1 / 2 )  C ~E/x4) does not belong to £(K4),  while 
-rr -1 arccos x = (2 /3  . . . . .  2 /3 )  belongs to METt::I(K4) = CUTE](K4). 

Hence arises the question of characterizing the graphs G Ibr which the conditions 

(PSDK),  (PSDM),  (PSDC) (taken together or separately) suffice for the description 

of  £(G) .  Let 79K (resp. PM, 79c) denote the class of graphs G for which the condition 
(PSDK) (resp. (PSDM),  (PSDC))  is sufficient for the description of  £ ( G ) .  Moreover, 

let 7 9 ~  (resp. 79KC) denote the class of  graphs G for which the two conditions (PSDK) 

and (PSDM) (resp. (PSDK) and (PSDC))  taken together suffice for the description 

of  £(G) .  Obviously, 

"PM C ~O c and 72KM C_ "PKC. 

The classes T'K, 7)M and 7~c are described below. 
As observed above, every graph G C 7)1< must be chordal. Grone et al. [ 19] show that 

"PK consists precisely of  the chordal graphs. One quick way to derive this result is by 

showing that ~K is closed under taking clique sums, since cliques (trivially) belong to 

"]:'K and every chordal graph can be build from cliques by taking clique sums. Another 

proof will be given in Section 4.2. 

Theorem 5 (Grone et al. [ 19]).  For a graph G = (V,E), we have 

£ ( G )  = {x E R E ]XK E £ ( K )  VK clique in G} 

if and only if  G is chordal. 

We turn to the description of the classes "PM and Pc.  By Theorem 3, the graph K3 

belongs to 79M and, as was observed earlier, the graph K4 does not belong to 7:'c. More 

generally, circuits belong to 79M [6].  It is shown in [32] that the classes "RM and P c  

3 Barrett et al. 16] proved necessity of (PSDM) by first showing the result from Theorem 3 about K 3 and 
then deriving the general result by induction on the length of cycle C in ( l ). In other words, they rediscovered 
the fact (proved by Barahona [31 ) that projecting the triangle inequalities on the edge set of a graph G yields 
the inequalities ( 1 ). 
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are identical and consist precisely of the graphs with no K4-minor. The proof is based 

on the decomposition result lot graphs with no K4-minor mentioned in Section 2. It 
consists of  verifying that both classes 79M and Pc  are closed under taking minors and 
that 79M is closed under taking clique sums. 

Theorem 6 (Laurent [32]).  The following assertions are equivalent f o r a  graph G: 

(i) E (G)  = {x = cos(vra) I a 6 METD(G)}.  
(ii) ~¢(G) = {x = cos(Tra) I a E CUTC](G)}. 

(iii) G has no Ka-minor. 

Let us now consider the classes "PKM and PKC. Clearly, it suffices here to assume that 
(PSDK) holds for all cliques of size ~> 4 (as the cliques of size ~< 3 are taken care of 
by (PSDM) or (PSDC)) .  Several equivalent characterizations for the graphs in 79KM 
have been discovered by Barrett et al. [5]; more precisely, they show the equivalence 
of assertions (i), (iii), (iv), (v) in Theorem 7. Building upon their result, Johnson 

and McKee [29] show the equivalence of (i) and (vi); in other words, lhe graphs in 
79KM arise from the graphs in 79K and 79M by taking clique sums. Laurent [33] observes 
moreover the equivalence of (i) and (ii); hence, the two classes 7-gKM and 79KC coincide 
even though the cut condition (PSDC) is stronger than the metric condition (PSDM). 
The survey [34] contains a full proof of Theorem 7 which is at several places simpler 
and shorter than the original one from [5]. 

The results from Theorem 7 are interesting fiom a purely graph theoretical point of 
view; indeed, among other characterizations, they provide a decomposition result for the 
class of graphs Gwh, which is defined by excluded induced configurations. Hence, they 
make the link between interesting graph theoretic properties and matrix properties and, 
therefore, they are a good illustration of a fi-uitful interaction between combinatorial and 
algebraic aspects. 

Theorem 7. The following assertions are equivalent for a graph G: 

(i) G E 79KM, i.e., £ ( G )  consists of the vectors x = cos(Tra) such that a C 

MET[](G) and XK E £ ( K) for ever3, clique K in G. 

(ii) G 6 7"9KC, i.e., £ (G)  consists of the vectot;~ x = cos(vra) such that a C- 

C U T ° ( G )  and XK E C(K).lot" every clique K in G. 

(iii) G E Gwh, i.e., no induced subgraph of G is W,, (n >>, 5) or a .splitting of Wn 

(n /> 4). 
(iv) Evety induced subgraph of G that contains a homeomorph of K4 contains a 

clique of size 4. 
(v) There exists a chordal graph G ~ containing G as a subgraph and having no new 

clique of size 4. 

(vi) G can be obtained by means of clique sums from chordal graphs (or cliques) 

and graphs with no K4-minor, 

Remark that the result from Theorem 5 can be stated for partial matrices with arbitrary 
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diagonal entries. Namely, if X is a partial matrix with specified diagonal entries and 
whose specified off-diagonal entries form a chordal graph and if every fully specified 
principal submatrix of  X is positive semidefinite, then X can be completed to a positive 
semidefinite matrix. This is not the case for Theorems 6 and 7 as the conditions (PSDM) 
and (PSDC) can only be formulated for matrices with an all-ones diagonal. 

4.2. Computing positive semidefinite completions 

We group here several observations concerning the complexity of  problem (PSD),  
the completion problem for positive semidefinite matrices. This problem contains as a 
subproblem the problem of testing membership in the elliptope Co(G) of a graph. 

Although polynomial-t ime solvable for some classes of graphs (e.g., for chordal 
graphs as we see below),  the exact complexity status of  problem (PSD) is not known. 
This problem is in fact a typical instance of the following feasibility problem for semidef- 

inite programming. (For two n x n matrices A and B, one sets (A, B) := ~i',.,=, ai.ibi.j ") 

The semidefinite programming feasibility problem (F). Given rational n × n matrices 
A I . . . . .  A,,, and vectors bl . . . . .  b,,, E Q", decide if there exists a matrix X E PSD,, such 

that (Ai, X) = bi for all i = 1 . . . . .  m. 

It is one of the major open questions in the field of  semidefinite programming to 
determine the complexity status of  problem (F).  It is not known whether (F) is in 
NP. Some complexity results are given by Ramana [44].  In particular, he develops an 
exact duality theory which enables him to show that (F) belongs to NP if and only if 
(F) bekmgs to co-NR Therefore, if NP 4= co-NP then (F) is neither NP-complete nor 

co-NP-complete. 
However the problem becomes easy if one allows approximations; more precisely, the 

weak membership problem can be solved in polynomial time. In the case of the elliptope 

E ( G ) ,  this is the problem: Given x E QE and e > 0, decide whether, (i) x E S ( K , e )  

("x is ahnost in K") ,  or (ii) x ~ S ( K , - e )  ("x is almost in the complement of  K") ,  

where K stands /'or ,5(G). (We remind that S ( K , e )  = {y I 3x E K with IIx - yll < e} 

and S ( K , - e )  = R" \ S(R" \ K,e) . )  
Moreover, the problem of finding a positive semidefinite completion of a partial matrix 

X ( if  one exists) can be answered by solving, tbr instance, the tbllowing semidefinite 

programming problem: 

m a x  

s.t. 

Z .}~.. 
. Id 

i , . j l i j~  E 

Y = (Y i j )  E PSD,, 

Yii = Xii Vi -- 1 . . . . .  n 

Yij - =  Xi,j Vij  E E. 



M. Laurent/Mathematical Programming 79 (1997) 255-283 267 

The weak version 4 of  this optimization problem can be solved in polynomial time. 

This can be done using the ellipsoid method or interior-point algorithms (cf., e.g., 

[22,41,1]) ;  specific algorithms are discussed in [28].  However, such algorithms can 
only give approximate solutions and, thus, are not guaranteed to find exact completions. 

On the other hand, for the class of  chordal graphs, a combinatorial algorithm has been 
found in [ 19] that permits to solve the PSD completion problem in an exact manner and 

in polynomial time. This algorithm exploits the following properties of  chordal graphs. 

Let G = (V,,,E) be a graph. An ordering v~ . . . . .  c,,, of  the nodes of G is called a 

pel fect  elimination ordering if, for every i = 1 . . . . .  n - l, the set of nodes c'j (for j > i) 

that are adjacent to vi induces a clique. It is well known that G is chordal if and only if 

it has a perfect elimination ordering. Moreover, such an ordering can be found, if one 

exists, in time O(n  + m) [46] (n is the number of  nodes and m the number of  edges). 

From this follows that, if G is chordal, then one can construct a sequence of  graphs 

Go := G, GI . . . . .  Gp = K,,, where each Gi iS chordal and Gi+l is obtained fi'om G~ by 
adding one edge. (Indeed, if G is not complete and if vt . . . . .  c',~ is a perfect elimination 

ordering of  its nodes, let i be the largest index in [1 ,n]  for which there exists j > i 

such that t'i and L,j are not adjacent; then, adding edge vicj to G yields a new graph G ~ 

which is again chordal as vt . . . . .  l.,, remains a perfect elimination ordering for G~.) 

As we now see this property permits to show the result from Theorem 5 (namely, that 

chordal graphs belong to the class 79K) and to construct an explicit PSD completion for 

x ~ g ( G )  when G is chordal. We also deal here with positive definite (PD) completions. 

An obvious necessary condition for x E R e to have a PD completion is the following 

restrictive form of  (PSDK):  

(PSDK*) xK E i n t g ( K )  for each clique K in G 

(where, for a set A C_ R m, int A denotes its relative interior). 

Let G be a chordal graph and let Go := G, GI . . . . .  Gp = K,, be a sequence of chordal 

graphs bringing G to the complete graph, adding one edge at a time. The complete graph 
K,, obviously belongs to class 7~K. Hence, the fact that G E 79K will follow by induction 

if we can show the following: Let H be a chordal graph and u, v be two nonadjacent 

nodes in H; then the graph H belongs to 7)K whenever the graph H + uv (obtained 

by adding edge ul~' to H)  belongs to 79K. Observe that, under these assumptions, there 

exists a unique maximal clique K in H + uv containing both nodes u and v. Hence, the 

above statement is an immediate consequence of the result in Lemma 8. This shows, 

therefore, that G C 79K. 
The proof of  Lemma 8 is constructive; it gives an efficient algorithm for computing a 

rational PD or PSD completion (if one exists) for a partial rational matrix with only one 

unspecified entry. Therefore, by the above discussion, we have an inductive procedure 5 

4 The weak vm.'sion of the optimization problem: maxcrx for x ~ K (over a convex set K C IR") can be 
formulated as follows: Given a rational e > O, either ( i )  find a vector y E Q" such that v E S(K,e) and 
cTx <~ cTy + e, or ( i i)  assert that S ( K , - e )  = 13; cf. [22].  

s We expose here the case of partial matrices with an all-ones diagonal, but this procedure applies more 
general ly to partial matrices with arbitrary specified diagonal entries. 
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for constructing a PD (or PSD) completion of a vector x indexed by the edge set of  

a chordal graph G. This procedure can be carried out in polynomial time for rational 

data. 

L e m m a  8. Let H := K,, \ e  be the graph obtained by deleting one edge e in the complete 

graph K,,. Let x be a vector indexed by the edge set o f  H. l f  x satisfies ( P S D K , )  (resp. 

( P S D K ) ) ,  then x C i n t g ( H )  (resp. x E g ( H ) ) .  Moreover, if x is rational valued, 

then we can f ind a rational PD ( resp. PSD ) completion of  x. 

Proof.  Suppose that e is the edge ( 1 , n ) ;  then H has two maximal cliques on K1 := 

{1 . . . . .  n -  1} and Ke := {2 . . . . .  n}. Assume that x satisfies (PSDK).  Then we can 

find vectors u¿ . . . . .  u,, such that xi.j ----  l,t)l'tlj for all i , j  E Kj and all i , j  E K2, which 

shows that x E g ( H ) .  It remains to show that x E i n t g ( H )  if x satisfies (PSDK*)  and 

that x has a rational completion if  x is rational valued. For this, let X denote the partial 

symmetric matrix corresponding to x, of the form 

X =  A b 
b T 1 

and set 

XI := a A ' Xg_:= b T 1 ' 

where A is a symmetric (n - 2) × (n - 2) matrix, a , b  E R ' ' -2 and z E R is the free 

entry to be determined; matrix Xi corresponds to xx, for i = 1,2. Suppose first that x 

satisfies (PSDK*) ,  i.e., that both Xi and X2 are positive definite. In order to show that 

x E i n t g ( H ) ,  it suffices to construct z for which de tX > 0. By assumption, we have that 

de tA > 0, de t (X i )  = (1 - - a T A - l a ) . d e t A  > 0, and det(X2) = ( 1 - b T A - l b ) - d e t A  > 0. 

Moreover, 

det X = d e t  A . det ( ( i  z )  ) 1 - ( a  b ) T A  - ~ ( a  b )  

( ~ - a ' r m - ' a  z - a r Z - ' b ' ~  
= d e t A - d e t  b T A - l a 1 b'r A - ~ b J " 

Hence, de tX  > 0 if we choose z := aTA-~b. Observe moreover that z E Q if x is 

rational valued. 

We now turn to the general case when x satisfies (PSDK)  but not necessarily 

( P S D K . ) .  The only thing which remains to be shown is that, if x is rational val- 

ued then it admits at least one rational valued PSD completion. If the value uTu, , 

happens to be rational, then we are done as the Gram matrix of  u~ . . . . .  u,, is a rational 

PSD complet ion of  x. Observe that u~u,, is indeed rational if uw (or u , )  belongs to 

the linear span of  {u2 . . . . .  u,,-1 } (since then there exists a rational vector 3, such that 

Xia  = 0 and & 4: 0) .  So, we can now assume that neither tfl nor u,, belongs to 
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the linear span of {u2 . . . . .  u, ,-i  }. Say, {u2 . . . . .  u;,} is a maximal linearly independent 

subset of  {u2 . . . . .  u, ,-i  }. By the reasoning above, we can assign a rational value z to 

the (1, n) -ent ry  in the submatrix X '  of X with row/column indices 1,2 . . . . .  p, n which 

makes X; positive definite. We now verify that this value z makes X itself positive 

semidefinite. By construction, we can find vectors wl,  w2 . . . . .  wl,, w,, whose Grain ma- 

trix is X ~. Recall that the Gram matrix of  u2 . . . . .  u,, is X2. Let T be an orthogonal 

transformation mapping wi to ui for i = 2 . . . . .  p, n. Then, X coincides with the Gram 

matrix of  the vectors Twl ,  u2 . . . . .  u,;, since one can easily verify that (Twi )Tu i  = uTui 

f o r i = p +  1 . . . . .  n - -  1. [] 

As we just  saw, the PD and PSD completion problems can be solved efficiently when 

the graph of  specified entries is chordal. What about the case when this graph has no 

K4-minor or, more generally, belongs to the class ~wh? 

A nice feature is that the graphs in {],~h can be recognized efficiently. Indeed, one can 

test if a graph has no K4-minor in time O(n )  [51].  Then, in order to test whether a 

graph G belongs to Gwl, it suffices, in view of Theorem 7, to decompose G by means 

of  clique sums into indecomposable pieces (which can be done in time O ( n m )  using 

the algori thm of  Tarjan [50 ] )  and to check whether all pieces are cliques or without a 

K4-minor. 

For graphs with no K4-minor, the existence of a PSD completion is characterized by 

the metric condit ion (PSDM).  Checking membership in the metric polytope M E T D (G )  

can be done in polynomial  time (for  any graph) [4] .  Yet there is some difficulty in 

checking condition (PSDM) .  Indeed, even if x is rational valued, rr - i  arccos x is quite 

unlikely to remain rational! Thus we can only work with a rational approximation of  

"n "-I arccosx.  This means that we may encounter problems of  numerical stability for 

deciding whether (PSDM)  holds when rr - I  arccosx happens to be very close to the 

boundary of  MET D (G) .  

Yet, assuming that we can compute with infinite precision, we would like to mention a 

combinatorial  method for computing completions in the case of  graphs with no K4-minor 

or, more generally, graphs in Gwh. 

Let G be a graph with no K4-minor and let x be a vector indexed by the edge set 

of  G for which we wish to compute a PSD completion ( i f  one exists).  We use the 

fol lowing property: One can find a set F of  additional edges such that, when adding F 

to G, one obtains a new graph G'  which is chordal and has no K4-minor. Moreover, such 

set F can be found in time O(n)  [51].  We now proceed as follows. Check whether 

a := rr - I  a rccosx  ~ M E T D ( G )  (using, e.g., the algorithm of  [4 ] ) .  If not, then we 

know that x has no PSD completion. Else, compute a vector b ~ METC3(G ' )  whose 

projection on G is the starting vector a. Then, y := cos( r ra )  belongs to £ ( G ' )  (as G'  

has no Ka-minor) .  Now, as G ~ is chordal, we can compute a PSD completion of  y by 

the techniques exposed earlier. Thus, we find in this way a completion of  x. 

Finally, if G is a graph in ~wh, we decompose it using clique sums into cliques and 

pieces with no K4-minor. For each piece H, we can compute a PSD completion YH for 

the projection xH of  x on the edge se! of H ( i f  one exists). Now, we have a partial 
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matrix y whose entries are specified on a clique sum of complete graphs. As this graph 

is chordal, we can compute a PSD completion of  y and, thus, of  x. 

5. The Euclidean distance matrix completion problem 

We now consider the following problem: 

The Euclidean distance matrix completion problem (EDM). Given a graph G = 
(V,,,E) and a vector d C R E, decide if there exist vectors PI . . . . .  p,, ~ IR k (lbr some 

k )  1) such that 

= l{pi - /'{il[ foraH i j  E E. (7) 

In other words, decide if the partial matrix with an all-zeros diagonal and with off- 

diagonal entries d o = dii for i j  E E can be completed to a Euclidean distance matrix; 
that is, if d belongs to the projected cone EDM(G) .  

We remind that p -- (Pl . . . .  ,p,,) E N k" is called a real izat ion of the weighted graph 
(G, d) if (7) holds. Problem (EDM) is therefore the problem of finding a realization of  

a weighted graph in the Euclidean space (of  arbitrary dimension). If such a realization 

exists, then one can be found in the space of  dimension k ~< [( 8x/-8~ + l - I ) /2J ;  this 

bound (better than the trivial value n) was found by Barvinok [7] (cf. Chapter 31 in 

[ 12] for a simple proof).  
One may also consider the following problem of finding a realization of a weighted 

graph in the Euclidean space of a fixed dimension: 

The g raph  realization problem in the Euclidean k-space (EDMk).  Given a graph 
G = (V,E), a vector d ~ QL( and an integer k >~ 1, decide if there exist vectors 

Pl . . . . .  p,, E IRk such that dij = lip, - pill 2 lor i j  ¢ E. 

Euclidean distance matrices are a classic notion in distance geometry, whose study 

has a long history. Interest in them and the associated completion problems (EDM) 
and (EDMk) has been renewed recently in view of  their many applications. They are, 

for instance, central in the theory of multidimensional scaling (cf. the survey [37] )  

and problem (EDMk) in dimension k = 2,3 arises in chemistry for the determination 
of  molecular conformations. Indeed, new techniques from nuclear magnetic resonance 

spectroscopy permit to partially determine interatomic distances in a molecule; the 

question being then to reconstruct the three dimensional shape of  the molecule from 
these partial data (cf. [ l 1,53,23] ). Problem (EDMk) is, in fact, known in the literature 

under several other names; e.g., as the position-location problem in [54],  the molecule 

problem in [25] ,  or the "fundamental problem of distance geometry" in [ 11]. 

We group in Section 5.1 results dealing with the EDM completion problem in arbitrary 

dimension and we consider in Section 5.2 complexity aspects of problems (EDM) 

and (EDMk).  
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5.1. Necessary conditions 
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Research has been done on the EDM completion problem along the same lines as 
tbr the PSD completion problem. In particular, three necessary conditions have been 

found that are analogue to the conditions (PSDK), (PSDM) and (PSDC). Namely, for 
a graph G = (V,,, E) and a vector d E R+ e, each of the three conditions: 

(EDMK) dK E EDM(K) tot" every clique K in G, 

(EDMM) x/d C MET(G) ,  

(EDMC) x/d ~ CUT(G) 

is necessary 6 for d E EDM(G).  Here, MET(G) denotes the metric cone, which is 

defined by the inequalities (1) with zero right hand side (i.e., the inequalities: x,, - 
x ( C  \ {e}) ~< 0 lbr e C C, C cycle in G) and CUT(G) denotes the cut cone of G, 
defined as the conic hull of the incidence vectors of the cuts in G. The classes of graphs 
for which the conditions (EDMK), (EDMM), (EDMC) are sufficient turn out to he the 
same as in the PSD case; compare Theorems 9, 10 and 11 with Theorems 5, 6 and 7. 

Theorem 9 (Bakonyi and Johnson [2]) .  For a graph G = ( V , E ) ,  we have 

EDM(G)  = {d C- ]R t; I dK E EDM(K) VK clique in G} 

if and only if  G is chordal. 

Theorem 10 (Laurent [33]) .  The following assertions are equivalent for a graph G: 

(i) EDM(G)  = {d C R E p v 'd  c CUT(G)}.  
(it) EDM(G)  = { d C R  E1 v ~ E M E T ( G ) } -  

(iii) G has no K4-minor. 

Theorem 11 (Johnson et al. [27] and Laurent [33]).  The following assertions are 

equivalent.for a graph G: 
(i) EDM(G)  = {d C / ~  ] v/d ~_ MET(G) and dK E EDM(K) VK clique in G}. 

(ii) EDM(G) = {d C ]R~ ] v/d ~_ CUT(G) and dK C EDM(K) VK clique in G}. 

(iii) No induced subgraph of  G is a wheel W,, (n >~ 5) or a splitting of a wheel Wn 
(17 ~> 4).  

In fact, these results can be derived from the corresponding results for the PSD 
completion problem, since positive semidefinite and Euclidean distance matrices are very 
closely related notions. We recall below two well-known operations, due to Schoenberg 

[48,49], that permit to link PSD and EDM matrices. Based on these operations, it is 
observed in [33] how the results from Theorems 9, 10, I 1 can be derived, respectively, 
fl;om those fiom Theorems 5, 6, 7 (one of the tools is Lemma 14). 

6 Necessity of (EDMK) and (EDMM) is obvious; necessity of (EDMC) follows from the fact that every 
['z-embeddable metlic is gr-embeddable (cf. 1331 ). 
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Given a graph G = (V,,,E) and its suspension graph VG, let d E R F~(vc') and let 

x ~ R V''ue be defined by 

I 
..rii:=di,,~+l for i E V,. x i j : = . 5 ( d i m + l + d / . , , + l - d ~ j )  f o r i j E E .  ( 8 )  

Then, it can be easily verified that 

d E E D M ( V G )  ¢==~ x can be completed to a PSD matrix. (9) 

(Indeed, a PSD completion of  x can be represented as the Gram matrix of  some vectors 

Pl . . . . .  p,,; then vectors pl . . . . .  p,,,p,~+l := 0 satisfy relation (7) and thus provide an 

EDM completion of  d.) This relation permits, in particular, to establish a one-to-one 

linear correspondence between the cone E D M ( V G )  and the elliptope g ( G ) .  The next 

result was proved by Schoenberg [49] in the case of the complete graph and extended 
to arbitrary grapbs in [33].  

Proposi t ion 12. Let G = (V, ,E)  be a graph and let d E R E Then, d E EDM(G)  if 

and only if e x p ( - h d )  := ( e x p ( -A d , , )  )~Ee E g ( G )  for  all a > 0, 

As examples o f  applications, we show below that the condition (EDMM) suffices for 

the description of EDM(K3) and we link the two conditions (PSDM) and ( E D M M )  

L e m m a  13. EDM(K3) = { d C N ~ I  v@C MET(K3)}.  

Proof. Consider the matrices 

D := a 0 and X := ~,~,_. c 
b c 2 

defined from D by (8).  By relation (9), D E EDM(K3) if and only if X is positive 
semidefinite. Now, the latter holds if and only if detX ) 0, i.e., i f 4 b c -  ( b + c - a )  2 >~ O. 

The latter condition can be rewritten as: a 2 2 a ( b + c ) + ( b - c )  2 <<. O, which is equivalent 

to b + c -  2 - v / ~ =  (.v/b - v/~) 2 ~< a ~< b + c + 2 v ' ~ =  ( . , / b +  v/~) 2. Hence, we find 

the condition that v/-d C MET(K3).  [] 

L e m m a  14. Let G = ( V,,, E) be a graph and d C- Re+. Then, 

1 
• v / d E M E T ( G )  ~ - - a rccos (e  -ad) • M E T S ( G )  f o r a l l A > O .  

"77" 

Proof. Note that it suffices to show the result in the case when G = K,, (as the 

general result will then follow by taking projections) and l'or n = 3 (as MET(K,,) 

and METD(K,,) are defined by inequalities that involve only three points). Now, we 

have: v/d C- MET(K?)  .4==> d E EDM(K3) (by Lemma 13); d C EDM(K3) + - ~  

e x p ( - A d )  C- g(K3)  for all A > 0 (by Proposition 12); finally, e x p ( - h d )  E g(K3)  -'. '., 

¢r -z arccos(e -a ' t )  E METCZ(K3) (by Theorem 3). [] 
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5.2. The graph realization problem 
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We group here several observations concerning the complexity of  the completion 

problems (EDM) and (EDMk).  
A first observation is that the EDM completion problem contains the PSD completion 

problem as a special instance. Indeed, in view of  relation (9), the PSD completion 

problem for graph G is equivalent to the EDM completion problem for the suspension 

graph VG. In particular, problem (EDM) can also be fornmlated as a semidefinite 
programming problem and, thus, solved in polynomial time with an arbitrary precision, 

while its exact complexity is not known. 

On the other hand, problem (EDMk) has been shown to be NP-complete for every 

integer k ~> 1 by Saxe [47].  Moreover, (EDMk) remains NP-complete if the data d are 

assumed to take their values in the set {1,2}. 
In dimension k = l, the proof is particularly simple and consists of  reducing problem 

(EDM1) from the partition problem, which is well known to be NP-complete. For 

this, let al . . . . .  a,, be positive integers (to be partitioned) and consider the circuit 

C = (1 . . . . .  n) with cdge weights d i . iF l  := ( a i )  2 for i = 1 . . . . .  n (setting n + 1 = 1). 

Then there exist scalars p ~ , . . . ,  p,, E IR such that [Pi~ l - -  Pi{ = ai for all i = I . . . . .  n if 

and only if the sequence al . . . . .  a,, can be partitioned (namely, ~ i e s  eli = E i E [  l , n l \ S  a i '  

where S := {i l  ai =Pi+l - P i l l .  
However, both problems can be solved in polynomial time for chordal graphs. In the 

case of  the complete graph, they can be answered by checking positive semidefiniteness 

and computing the rank of  an associated matrix. Namely, if D is a symmetric matrix 

of  order n + 1 with zero diagonal and if X denotes the symmetric matrix of  order n 

whose entries are delined by relation (8),  then D can be realized by vectors in the 
k-dimensional space if and only if X is positive semidefinite and has rank less than 

or equal to k. More generally, Bakonyi and Johnson [2] show that when the entries 
are specified on a chordal graph, the same step-by-step technique as the one exposed 

in Section 4.2 in the PSD case also applies for constructing EDM completions. They 

prove that if D is a partial matrix with zero diagonal whose specified entries form a 

chordal graph and such that every fully specilied principal submatrix can be realized in 
the /:-space, then D can be completed to an EDM matrix having a realization in the 

k-space. 
Several algorithms have been proposed in the literature lbr the solution of  the graph 

realization problem (EDMk),  in particular in dimension k ~< 3, which is the case 
most relevant to practical applications. The problem can be naturally formulated as a 

nonlinear global optimization problem: min f ( p )  s.t. p = (pt . . . . .  p,,) E R k', where the 

-p i l l - -d~J)  2. So cost function f ( . )  can, for instance, be chosen as: . f (p)  = ~ i j E E (  lip* ~ 

f ( . )  is nonnegative and zero if and only if p provides a realization of the weighted graph 

(G, d).  This optimization problem is hard to solve (the function f ( . )  may have many 

local minimizers). Hendrickson [2511 describes an approach for solving this problem 

based on a divide-and-conquer strategy; the basic steps consist of  finding subgraphs 
having a unique realization, treating each of them separately (after possibly breaking 
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Fig. 2. Four fi'ameworks in the plane. 

them into smaller pieces) and trying to combine the solutions. Pardalos and Liu [42] 
propose an approach based on tabu search. Further work has been done, in particular, 

by chemists for the molecular conformation problem; a good overview can be found in 

[11] and [23].  
Another question of  interest which comes up in connection with the graph realiza- 

tion problem is that of  unicity. For instance, as mentioned above, finding subgraphs 

having a unique realization is an important step in Hendrickson's algorithm [25 I. It" 

P = (Pl . . . . .  p,,) E IRk" is a realization of  the weighted graph (G,d) and if T is an 

orthogonal transformation of  R x, then T(pl) . . . . .  T(p,,) is obviously another realization 

of (G, d). Two realizations p and q are said to be congruent if qi = T ( p i )  V i  = 1 . . . . .  n,  

for some orthogonal transformation T. The following additional terminology is com- 

monly used: The pair (G,p) which consists of a graph G and locations of its vertices at 

points p~ . . . . .  p,, C R k, is called afiamework (in the k-space) (edge weights are then 

detined in the obvious way).  

The graph realization problem - Unicity (Uk). Given a graph G = (V,, E) with edge 

weights d E Qe, an integer k ~> l and a realization p C- R k'' of  ( G , d ) ,  does there exist 

another realization of  (G, d)  which is not congruent to p?  

Saxe [47] shows that problem (Uk) is NP-complete even if the edge weights d are 

supposed to be {l,  2}-valued. 
Let us note at this point that non-unicity may occur in various ways. Consider lk~r 

instance the four graphs from Fig. 2 viewed as frameworks in the plane R 2. 

When searching for another (noncongruent) realization of the framework ( G i ,  p) we 
may assume that pj and P2 are fixed (in order to avoid translations and rotations) and 

moreover, in Ihe case of  G2 and G3, that P3 Is fixed (in order to avoid reflections). 
Then one can easily see that Gl has no other realization in R2; G2 has exactly one 

other realization; while G3 and G4 have an intinity of other realizations (cf. Fig. 3). 
In the case of  G4 there is a continuous deformation bringing p to q. This is not true 

tbr G3 as one cannot move continuously from p to q while preserving edge lengths. 

Hence nonunicity has a "discrete" nature in the case of frameworks Gi for i = 1,2, 3. 

The notion of  rigidity, which will be discussed in the next section, permits to capture 
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q5 

(G 3 , q) 

Fig. 3. Other realizations for G2 and G3. 

these different behaviours. In fact, the frameworks ( G i , p )  (i = 1,2, 3) are rigid while 

(G4, p)  is flexible. Precise definitions for rigidity and flexibility are given in Section 6; 
briefly said, these notions depend only on properties of  the graph itself not on the choice 

of  a specific generic realization (i.e., whose coordinates are algebraically independent 

over the rationals). Rigidity turns out to be a somewhat simpler notion than that of  
unicity of  realization, at least in dimension k ~ 2 where it can be fully characterized. 

6. Rigidity of graphs 

Suppose we have a graph G whose vertices are positioned at points in the plane 
R 2. Its edges m'e viewed as rigid rods that can rotate freely at their end nodes but are 

incompressible and inextendible. For instance, a triangle is a rigid structure since the 

three rods determine the positions of  the vertices (up to a Euclidean motion). On the 

other hand, the square is flexible since it can be deformed continuously while preserving 

edge lengths; but adding one edge to the square makes it rigid (cf. Fig. 2). Determining 
whether a given framework is rigid or ttexible is a central question in structural topology, 

with obvious applications to engineering. It can be asked in any dimension k; however, 

a complete answer is known only in dimension k ~< 2. After giving precise definitions 

for rigidity and flexibility, we recall here some of  the main known results about rigid 

graphs. 

6.1. Rig id  and.f lexible f r a n w w o r k s  

We define here the notions of  rigidity and flexibility for graphs; a detailed treatment 

can be lound, e.g., in [45] and [52].  Let ( G , p )  be a framework in R k consisting of  a 

graph G = (V,,,, E) and a vector p = (Pl . . . . .  p,,) ¢ ]R k~'. A natural question which was 

already posed in Section 5.2 is whether there exists another realization of  the framework 
( G , p ) ;  in other words, whether there exists q E R ~" not congruent to p and satisfying 

the edge conditions: 

Hqi - qjH = ]]Pi - PjH for every edge i j  E E. (10) 
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The mapping f : R k" ---~ R"  defined by f ( p )  := ( . . . .  IlPi _pill2 . . . .  )~jEE is called the 
edge function of  G. Thus we are interested in the set f - ~ ( f ( p ) )  (which is a smooth 

manifold). The set Mp which consists of the realizations q c R k'' that are congruent to 

p, is a smooth submanitbld of  f - ~ ( f ( p ) )  whose dimension is equal to k + (~) _ ~(k-~')2 J 
if pl . . . . .  p,, span an affine subspace of  dimension k r (as such a subspace admits k 

translations and if2) - (k-2k') distinct orthogonal transformations). Hence, (G, p) has a 

unique realization (up to congruence) if M s = . f - i ( f ( p ) ) .  
The framework ( G , p )  is said to be flexible if there exists a differentiable function 

x : [0 ,1 ]  - - ,  R k'' such that ( i ) x ( 0 ) = p ;  ( i i ) ] ] x i ( t ) - x j ( t ) ] ]  = Ilp~-p;]] for aH 
edges ij E E; and (iii) x(t) is not congruent to p for 0 < t ~< 1. Such a path x is 

called aflexing of  (G,p) and ( G , p )  is said to be rigid if it is not flexible. 

A desirable feature of  a rigid fiamework ( G , p )  would be that every realization 

q C f - i ( . f ( p ) )  sufficiently close to p is, in fact, congruent to p. For instance, the 

rigid framework G2 fl'om Fig. 2 presents this feature. This property is not clear from 
the definition of rigidity given here. However, it follows from results in algebraic ge- 

ometry that this property does hold. Hence, it is indeed the case that a framework 

(G,p) is rigid in R k if and only if the two manifolds Mp and f - i ( f ( p ) )  co- 

incide near p. Hence, the rigidity or flexibility of  ( G , p )  is governed by the two 

manifolds Mr, and f - i ( f ( p ) )  (near p) and can be determined by comparing their 

dimensions. 
It turns out that one can compute the dimension of the manifold f - i  ( f ( p ) )  near p 

when p is generic or, more generally, regular for the edge function f ( . ) .  We now define 

the notions of  generic and regular points. Let R(G, p) denote the matrix of order m x kn 

whose rows are indexed by the edges of  G and having a group of  k colwnns for each 

node of  G, the i j i b  row has entry Pi - Pj at node i, entry pj ])i at node .j and entry 0 
elsewhere; R(G,p) is called the rigidi O' matrix of  (G,p). Note that R(G,p) coincides 

(up to a factor 2) with the matrix df(p) of partial derivatives of  the edge function f at 

p. Let r denote the maximum rank of the rigidity matrix R(G,p) for p E Rk"; points 
p where this maximum rank is attained are said to be regular [or the edge function f .  

Then, the implicit function theorem implies that, for any regular point p, f - i  ( f ( p ) )  is 

a (kn - r)-dimensional manifold nero- p. 
Call p E R k'' generic if the coordinates of Pl . . . . .  p,, are algebraically independent 

over the field Q of  rationals. Every generic p E iR a.'' is obviously regular for the edge 

function f .  Moreover, if p E R k'' is generic, then the subspace of irk spanned affinely 

by Pl . . . . .  p,, has dimension k' := min(k ,n  - 1). Since (G,p) is rigid if and only if 

both manifolds M I, and f - i  ( f ( p ) )  have the same dimension near p, we obtain that, 

for p generic, (G,p) is rigid if rankR(G,p) = k n -  (k+,) + (~2k') and flexible if 

rank R(G,p) < k , , -  if+t) + (k2k'). Therefore, the generic realizations of a given graph 

G in tR k are, either all rigid, or all flexible. Note that generic points form a dense subset 
of  1R k'. Hence every graph G has a typical (or generic) behaviour; one says that G is 

rigid in R k if (G,p) is rigid for any generic p E IRk'' and flexible otherwise. This gives 

the following result. 
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Propos i t ion  15. A graph G with n nodes is rigid in ~ if and only if the generic rank of 
the rigidi~ matrix R( G,p)  is equal to the quantity S(n, k), where S(pt, k) := k n -  (k~J) 

if n >~ k attd S (n ,k )  := (~) if n < k. 

Theretbre, there is an efficient randomized algorithm for deciding rigidity of  a graph 

G: pick randomly p in R ~', then with probability one tbe value of  the rank of R(G,p)  
permits to decide correctly about the rigidity of  G. It is however interesting to char- 

acterize rigidity by some purely graph theoretical properties. So thr a combinatorial 

characterization of  rigid graphs is known only in dinaension k ~< 2, where it uses graph 

connectivity and matroidal features. In dimension k >/- 3, only partial results are known. 
We review below some of  the main known results. 

6.2. Rigidity in the plane 

Let us begin with the easy task of  characterizing rigidity in the I-dimensional space IE. 

Obviously, any framework (G,p)  in li~ where G is not connected is not rigid, since each 

connected component can be moved separately. Moreover, the rigidity matrix R(G,p)  
has rank ~< n - 1, with equality if and only if G is connected (note that R(G,p)  
coincides up to rescaling with the node-edge incidence matrix of an orientation of  G). 

Therefore, 

Proposi t ion 16. A graph is rigid in the line R if and only if it is connected. 

We now consider rigidity in the plane R2; it has been characterized by Laman [31],  

whose results were later extended by Lovzisz and Yemini [40],  For a graph G with n 

nodes, the quantity 

q ( G )  := 2n - 3 - rank R(G,p ) ,  

where p E R 2" is any generic realization in R e, is called the degree of freedom of G. 

Thus, G is rigid when q~(G) = 0. For a subset Y G E of edges, Vy denotes the set of  

nodes that are incident to some edge in Y. The tbllowing result is shown in [40].  

Theorem 17. 7]ze degree of fmedom of a graph G = ( V,, E) with n >~ 2 nodes is given 
by 

k 

~ ( G )  = 2n - 3 - rain ~~(2[VE~I - 3), 
i=1 

where the milzimutn is taken over all partitions ( El . . . . .  Ek ) o r e  into nonempty subsets. 

Corol la ry  18. A graph G = ( V~,. E) on n >~ 2 nodes is rigid if and only (f 

k 

2,t- 3 ~< ~--~(21vE, I - 3) 
i= I 

for every partition of E into nonempO' subsets El . . . . .  Ek. 
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Therefore, one can compute the degree of freedom of a graph (and thus decide 

rigidity) in polynomial time. Indeed, the function: g(Y) := 21V~,]- 3 (Y C E) is 

submodular and nonnegative on nonempty sets. Hence, 

k 

min(~-~,g(Ei) El . . . . .  E~ is a partition of  E into nonempty subsets) 
i=l 

can be computed using the ellipsoid method, as mentioned in [21].  Gabow and West- 

ermann [17] propose a simpler combinatorial algorithm for computing the degree of  
freedom of a graph on n nodes in time O(n2).  

We now mention further combinatorial features of  rigid graphs and, in pmticu- 

lar, Laman's characterization for minimally rigid graphs. Consider the rigidily matrix 

R(G,p )  where p C /~2,, is generic. For a subset Y _C E, one says that Y is generic 
independent if the corresponding set of rows of R(G,p)  is linearly independent (this 

definition makes sense as it does not depend on the specific choice of  p generic). By 

definition, 

~p(G) = 2n - 3 - m a x (  IYI] Y C_ E is generic independent). 

The next result can be derived from Theorem 17 but it can also be checked directly. 

Proposi t ion 19. The followilzg assertions are equivalent for a graph G = (V,E) with 
cat least two nodes. 

(i) The set E is generic independent. 
(ii) IY] ~< 2IV), I - 3 for  every nonempt 3, subset Y C E. 

(iii) Doubling an arbitra O, edge in G results in a graph that can be decomposed as 
the union of two forests. 

Proof. The implication (i) ~ (ii) follows from the definitions. 

(ii) ==~ (iii) Given an edge e C E, let G ~ denote the graph obtained from G by 

adding e I in parallel with e. One checks easily that IZI ~< 21Vz [ - 2 for every subset 
Z of edges of  G'. Hence, the set E U {d} is independent in the matroid defined as the 

union of  two copies of the graphic matroid of  G'; that is, E U {e'} is union of  two 

forests. 
(iii) ~ (i) It suffices to show the existence of p E R 2' for which the rigidity matrix 

R(G, p) has rank [E I. We start with a preliminary result. Given a graph H = (V,E) and 

vectors de E I~ 2 (e E E),  let S(H,d)  denote the ]E[ x 2IV ] matrix whose entries in 

the row indexed by edge e = ij are dr at column i, -d, ,  at colunm j and 0 elsewhere. 

Then, one can check that S(H, d) has full rank IEI if H is the union of  two forests 

and d is generic. Let d E ]~21EI be generic. By applying the above fact to the graph 

H obtained from G by adding an edge in parallel with an edge e of  G, we obtain that 

there exist vectors u~" . . . . .  u~i C R 2 such that t (  4: u~ and d~(u~, - u ~ )  = 0 for all 

edges f - -  hk E E. By taking a suitable linear combination of the vectors u ~ (e E E),  
we can find u = (ui . . . . .  u,,) C /~2,, such that ui 4~ uj and deT(ui -- uj) = 0 for 
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every edge e = ij E E. If  ui = (x i ,y i ) ,  set Pi : =  (--Yi,Xi) for i = 1 . . . . .  n. Then, 
(Pi - P j )T(u i  -- tg) = 0 and dT(ui -- uj) = 0 for every edge e = ij E E. Hence, Pi - -  P.j 

and d e a r e  both orthogonaI to the nonzero vector u~ - u.i. Therefore, Pi - -  P )  = fl~d,, for 
some scalar fl,, 4= O. Since the matrix S ( G , d )  has rank ]El, we deduce that the matrix 
R ( G , p )  too has rank ]El, which shows that the set E is generic independent. [] 

One can check in polynomial time whether a graph is union of  two forests, using the 

matroid partition algorithm of Edmonds [15] (or the faster algorithm by Gabow and 

Westermann [ 17]);  thus one can test generic independence of  E by running IE I times 

this algorithm. The next result follows as an immediate consequence of Proposition 19; 

it was first obtained by Laman [31].  

Proposi t ion 20. The following assertions are equivalent for  a graph G = (V,E) with 

at least two nodes'. 

(i) G is minimally rigid (that is, G is rigid and G \ e is not rigid for  eve O, edge e 

o f  G).  
(ii) G is rigid and E is generic independent. 

(ii) }E I = 2IV } - 3 and IY[ ~ 21VyI - 3 ./'or every nonempO, subset g c_ E. 

Even though rigidity in the plane can be characterized by some purely graph theoret- 

ical properties, it is yet of  interest to try to relate i1 to some other graph features such 

as connectivity. Clearly, every rigid graph in R e must be 2-connected. Indeed, if G has 

a cut node, then one can continuously deform the graph by rotating around this node 

while preserving edge lengths, i.e., one can find a ttexing. On the other hand, the graph 
G2 = K4 \ e from Fig. 2 is minimally rigid while not 3-connected. Lovfisz and Yemini 

[40] show that 6-connectivity suffices, in fact, for ensuring rigidity. 

Theorem 21. Every 6-connected graph is rigid in the plane. 

They also give an example of  a 5-connected graph which is not rigid; cf. Fig. 4. 

(Nonrigidity can be demonstrated with the help of Corollary 18, taking as classes of  

the partition the eight complete graphs K5 and the remaining 20 edges.) 

6.3. Rigidi O, in. the space 

In contrast with the case of  the plane, no characterization is known for rigid graphs 

in the space R k for k /.> 3. Soine necessary conditions can be easily derived from the 

treatment above. First, k-connectivity is an obvious necessary condition for rigidity in 
IRk. By the definitions, a graph G = (V,,, E) is rigid in IR k if and only if there exists a 

subset F C_ E such that F is generic independent with IFI = S(n, k). (S(n,  k) is defined 

in Proposition 15.) Therefore, if G is rigid in R k, then there exists F C_ E such that 

IF[ = S(n,  k) and IYI ~< S(IVv ], k) for all (0 4= Y C F. As we saw above, this condition 
is sufficient for ensuring rigidity in the case k = 1 (then it is equivalent to G being 
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Fig. 4. A 5-connected graph nonrigid in R 2. 

Fig. 5. A nonrigid graph in IR 3. 

connected) and k = 2 (by Laman's result). However, sufficiency is lost if k ~> 3. For 
instance, the graph from Fig. 5 satisfies the necessary condition for k = 3 but is not 

rigid in R 3 (as it has a node cutset of  size 2). 

Characterizing rigidity in R 3 seems a hard problem. However some results are known 

for some classes of  graphs. For instance, Roth [45] could characterize the planar graphs 
that are rigid in IR 3. Such graphs are necessarily 3-connected and, thus, arise from 

3-dimensional polytopes. 

Theorem 22. Let P be a convex polytope in ~3 and let ( G , p )  be the associated 

framework, where G is the l-skeleton graph of  P and p consists of  the vertices qf  P. 

Then, rankR(G,p )  = m, the number of  edges of  P bz particular, (G ,p)  is J4gid if  and 

only if ever3' face of P is a triangle. 

Corol lary  23. A planar graph is rigid in R 3 iff it is 3-connected and triangulated. 

Bolker and Roth [9] have investigated the class of  complete bipartite graphs K,,,,,~ 
(1 ~< m ~ n). Clearly, if mn < (m + n ) k -  (~-;I), then K, ..... is llexible in R k (since 
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rank R ( G , p )  <~ ran).  For k = 3, this yields that Km,, is flexible in IR 3 except i f m  = n = I, 

or m = 4 and n ~> 6, or  m , n  7> 5 in which cases K,,,., can be shown to be rigid in 

R 3 [91. 

To conclude,  let us briefly go back to the quest ion of  unici ty  of  graph realizations 

considered in Section 5.2. Rigidi ty  and (k  + l ) -connec t iv i ty  of  the under ly ing  graph 

are obv ious  necessary condi t ions  for a framework ( G , p )  to have a unique  realization. 

Hendr ickson  [24]  shows that a s tronger necessary condi t ion is that G must  be redun- 

d a n t l y  r igid,  which means  that G remains  rigid after deletion of any single edge. He 

shows, moreover,  that redundant  r igidity is a generic property. More precisely, if G is 

not  redundant ly  rigid with at least k + 1 vertices then, for every generic p E R k',  the 

f ramework ( G , p )  has another  realization in R ~ not congruent  to p. 

Hence,  there are many  open quest ions concerning rigid graphs. An important  open 

problem is the characterization of  the rigid graphs in the space IR 3 (more  generally, R k, 

k ~> 3) and de te rmin ing  the complexi ty  status of this problem. Another  open quest ion is 

to characterize the frameworks for which Hendr ickson ' s  condi t ions  ( ( k  + l ) - connec t iv i ty  

and redundant  r igidi ty)  suffice for ensur ing the unici ty of  the realization. 
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