Gap Inequalities for the Cut Polytope

Monioue Laurent and Svatopluk Poluak \dagger

Abstract

We introduce a new class of inequalities valid for the cut polytope, which we call gap inequalities. Each gap inequality is given by a finite sequence of integers, the 'gap' being defined as the smallest discrepancy arising when decomposing the sequence into two parts that are as equal as possible. Gap inequalities include hypermetric inequalities and negative type inequalities, which have been extensively studied in the literature. They are also related to a positive semidefinite relaxation of the max-cut problem. A natural question is to decide for which integer sequences the corresponding gap inequalities define facets of the cut polytope. For this property, we present a set of necessary and sufficient conditions in terms of the root patterns and of the rank of an associated matrix. We also prove that there is no facet defining inequality with gap greater than one and which is induced by a sequence of integers using only two distinct values.

© 1996 Academic Press Limited

1. Introduction

Set $V:=\{1, \ldots, n\}$. Let $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{Z}^{n}$ be a sequence of n integers. We define the $g a p \gamma(b)$ of b by

$$
\begin{equation*}
\gamma(b):=\min _{S}|b(S)-b(V \backslash S)|, \tag{1.1}
\end{equation*}
$$

where $b(S):=\sum_{i \in S} b_{i}$ for any subset S of V. Equivalently,

$$
\gamma(b)=\min _{x \in\{ \pm 1\}^{n}}\left|x^{\mathrm{T}} b\right| .
$$

This notion of gap for a sequence $b \in \mathbb{Z}^{n}$ coincides with the notion of discrepancy considered in [10] for arbitrary matrices; we specialize here the notion to the case of matrices having only one row.

Computing the gap of an integer sequence is a hard problem. For instance, it is an NP-complete problem to decide if the gap is equal to zero. Indeed, the sequence b has gap zero iff it can be partitioned into two parts of equal weights. This is the partition problem, which is NP-complete; see [6].

Given a sequence $b \in \mathbb{Z}^{n}$, we consider the following inequality in the $\binom{n}{2}$ variables $x_{i j}$ $(1 \leqslant i<j \leqslant n)$:

$$
\begin{equation*}
\sum_{1 \leqslant i<j \leqslant n} b_{i} b_{j} x_{i j} \leqslant \frac{\sigma(b)^{2}-\gamma(b)^{2}}{4} \tag{1.2}
\end{equation*}
$$

where $\sigma(b):=\sum_{1 \leqslant i \leqslant n} b_{i}$. The inequality (1.2) is called a gap inequality.
Our main motivation for introducing the inequalities (1.2) lies in their connection with the cut polytope CUT_{n}; indeed, they define valid inequalities for CUT_{n}. The following classes of gap inequalities have been extensively studied in the literature.

[^0](i) the inequalities (1.2) with $\sigma(b)=0$ (which implies that $\gamma(b)=0$), known as the negative type inequalities;
(ii) the inequalities (1.2) with $\sigma(b)=1$ (which implies that $\gamma(b)=1$), known as the hypermetric inequalities.
Negative type inequalities were used by Schoenberg [11, 12] for the characterization of the distance spaces that are isometrically l_{2}-embeddable. Hypermetric inequalities were introduced by Deza [2] and later, independently, by Kelly [9] in connection with the study of l_{1}-embeddable distance spaces. Among the hypermetric inequalities, large subclasses are known that define facets of the cut polytope; see, e.g., [4, 5]. On the other hand, for the case $\sigma=0$ of the negative type inequalities, the following is known.

Proposition 1.3 [3]. Every inequality (1.2) with $\sigma(b)=0$ is implied by the inequalities (1.2) with $\sigma(b)=1$.

In fact, using symmetries, this yields that every gap inequality with gap $\gamma=0$ is implied by the gap inequalities with gap $\gamma=1$. Therefore, no gap inequality with gap 0 defines a facet of the cut polytope.

Hence the question naturally arises of deciding what happens in the case $\gamma \geqslant 2$. So far, we have not been able to find any example of a gap inequality with $\gamma \geqslant 2$ and that defines a facet of CUT_{n}. This leads us to conjecture that none exists.

Conjecture 1.4. For any integer sequence $b \in \mathbb{Z}^{n}$, if the inequality (1.2) defines a facet of the cut polytope CUT_{n}, then $\gamma(b)=1$.

In view of the above remarks, in order to prove Conjecture 1.4 it suffices to show that every gap inequality that defines a facet of CUT_{n} has gap $\gamma \in\{0,1\}$. In this paper, we give several results in connection with this conjecture.

The paper is organized as follows. In Section 2 we present some preliminary results. In particular, we explain how the gap inequalities (1.2) arise in connection with the cut polytope CUT_{n} and how they relate with the inequalities defining a positive semidefinite relaxation of CUT_{n}. We group in Section 3 several results on the gap. We present in Section 4 a characterization of the gap inequalities that define facets of the cut polytope, which is in terms of conditions on the possible root patterns (i.e. in the n-space rather than in the $\binom{n}{2}$-space, where the inequalities live). We show in Section 5 that our conjecture on gap facets holds for all the sequences that take two distinct values (in absolute value).

2. Preliminaries

The cut polytope. Set $V:=\{1, \ldots, n\}$. Let $\binom{n}{2}$ denote the set of unordered pairs $i j$ with $1 \leqslant i<j \leqslant n$ (i.e. $i j$ and $j i$ are considered identical). Given a subset $S \subseteq V$, the set

$$
\delta(S):=\left\{i j \in\binom{n}{2}:|S \cap\{i, j\}|=1\right\}
$$

is called the cut determined by S. Then, the polytope

$$
\mathrm{CUT}_{n}:=\operatorname{Conv}\left\{\chi^{\delta(S)} \mid S \subseteq V\right\},
$$

which is defined as the convex hull of the incidence vectors of all cuts, is called the cut polytope. (For a set $A \subseteq\binom{n}{2}, \chi^{A} \in\{0,1\}^{\binom{n}{2}}$ denotes its incidence vector, defined by $\chi_{i j}^{A}=1$ if $i j \in A$ and by $\chi_{i j}^{A}=0$ if $i j \in\binom{n}{2} \backslash A$.) Given $v_{0} \in \mathbb{R}$ and $v \in \mathbb{R}^{\binom{n}{2}}$, the inequality $v^{\mathrm{T}} x \leqslant v_{0}$ is said to be valid for CUT_{n} if it is satisfied by all $x \in \mathrm{CUT}_{n}$ or, equivalently, by the incidence vectors of all cuts. A cut $\delta(S)$ for which equality $v^{T} \chi^{\delta(S)}=v_{0}$ holds is
called a root of the inequality $v^{\mathrm{T}} x \leqslant v_{0}$; we may also say that the set S itself defines a root of $v^{\mathrm{T}} x \leqslant v_{0}$. The inequality $v^{\mathrm{T}} x \leqslant v_{0}$ defines a facet of CUT_{n} if there exist $\binom{n}{2}$ roots the incidence vectors of which are affinely independent.

Lemma 2.1. The inequality (1.2) is valid for the cut polytope CUT_{n}. A cut $\delta(S)$ is a root of (1.2) iff $b(S)=(\sigma-\gamma) / 2$ or $b(S)=(\sigma+\gamma) / 2$.

Proof. For $S \subseteq V$, we have: $\sum_{i j \in \delta(S)} b_{i} b_{j}=b(S)(\sigma(b)-b(S))$, which is less than or equal to $\left[\sigma(b)^{2}-\gamma(b)^{2}\right] / 4$ by definition of the gap $\gamma(b)$.

Given a weight function $w \in \mathbb{R}^{\left({ }_{2}^{2}\right)}$, the max-cut problem is the problem of finding a cut $\delta(S)$ the weight $\sum_{i j \in \delta(S)} w_{i j}$ of which is maximum; it can be formulated as

$$
\begin{equation*}
\max \left(w^{\mathrm{T}} x \mid x \in \mathrm{CUT}_{n}\right) \tag{2.2}
\end{equation*}
$$

The max-cut problem is NP-hard [6]. In fact, computing the gap of a sequence $b \in \mathbb{Z}^{n}$ can be formulated as an instance of the max-cut problem. Namely, set $w_{i j}:=b_{i} b_{j}$ for all $i j \in\binom{n}{2}$. Then,

$$
\gamma(b) \leqslant \gamma \Leftrightarrow \max \left(w^{\mathrm{T}} x \mid x \in \mathrm{CUT}_{n}\right) \geqslant \frac{\sigma(b)^{2}-\gamma^{2}}{4}
$$

(This is actually the original method used by Karp for deriving the NP-hardness of the max-cut problem from the NP-completeness of the partition problem, using $\gamma=0$ in the above argument.)

Root patterns. Let $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{Z}^{n}$. We let $\sigma(b)$ denote the sum $\sum_{1 \leqslant i \leqslant n} b_{i}$ and $\gamma(b)$ denote the gap of b, defined by (1.1). We also denote $\sigma(b)$ and $\gamma(b)$ by σ and γ, respectively, if there is no ambiguity.

Let $Q_{n}(b)$ denote the vector of $\mathbb{R}^{\left(\frac{n}{2}\right)}$ indexed by the pairs $i j(1 \leqslant i<j \leqslant n)$ and defined by

$$
Q_{n}(b)_{i j}:=b_{i} b_{j} \quad \text { for } 1 \leqslant i<j \leqslant n .
$$

Hence, the inequality (1.2) reads:

$$
Q_{n}(b)^{\mathrm{T}} x \leqslant \frac{\sigma(b)^{2}-\gamma(b)^{2}}{4} .
$$

It is convenient to look at the different values that are taken by the integers b_{1}, \ldots, b_{n}. Let k denote the number of distinct coefficients that enter in the sequence b and let a_{1}, \ldots, a_{k} denote the distinct values taken by the entries of b. Then, the set V is partitioned into $V=V_{1} \cup \cdots \cup V_{k}$, where $b_{j}=a_{h}$ for all $j \in V_{h}, h=1, \ldots, k$. Let $m_{h}:=\left|V_{h}\right|$ denote the multiplicity of entry a_{h}. Then, $n=m_{1}+\cdots+m_{k}$ and $\sigma(b)=$ $m_{1} a_{1}+\cdots+m_{k} a_{k}$. In other words, b is the sequence

$$
\begin{equation*}
b=(\underbrace{a_{1}, \ldots, a_{1}}_{m_{1}}, \ldots, \underbrace{a_{h}, \ldots, a_{h}}_{m_{h}}, \ldots, \underbrace{a_{k}, \ldots, a_{k}}_{m_{k}}) . \tag{2.3}
\end{equation*}
$$

Given a subset $S \subseteq V$ and $r:=\left(r_{1}, \ldots, r_{k}\right) \in \mathbb{N}_{+}^{k}$, we say that S has pattern $r=$ $\left(r_{1}, \ldots, r_{k}\right)$ if $\left|S \cap V_{h}\right|=r_{h}$ for $h=1, \ldots, k$. Set

$$
K^{*}:=\left\{h \in\{1, \ldots, k\} \mid m_{h} \geqslant 2\right\} .
$$

Then, the inequality (1.2) can be rewritten as

$$
\begin{equation*}
\sum_{h \in K^{*}}\left(a_{h}\right)^{2}\left(\sum_{i<j, i, j \in V_{h}} x_{i j}\right)+\sum_{1 \leqslant h<h^{\prime} \leqslant k} a_{h} a_{h^{\prime}}\left(\sum_{i \in V_{h}, j \in V_{h^{\prime}}} x_{i j}\right) \leqslant \frac{\sigma^{2}-\gamma^{2}}{4} . \tag{2.4}
\end{equation*}
$$

We can clearly suppose that the integers a_{1}, \ldots, a_{k} are relatively prime, i.e. that $a_{1} \wedge \cdots \wedge a_{k}=1$. (For two integers $a, b \geqslant 1, a \wedge b$ denotes their g.c.d.) Due to switching, as will be explained below, we can also assume without loss of generality that $a_{1}, \ldots, a_{k} \geqslant 1$.

Let $\delta(S)$ be a root of the inequality (2.4). As $\delta(S)$ is defined by any of the two subsets S and $V \backslash S$, we can always assume that we choose S in such a way that $b(S)=(\sigma+\gamma) / 2$. Let $r_{h}:=\left|S \cap V_{h}\right|$ for $h=1, \ldots, k$. Then, $\delta(S)$ is a root of (2.4) iff $b(S)=(\sigma+\gamma) / 2$, i.e. if

$$
\begin{equation*}
\sum_{1 \leqslant i \leqslant k} a_{i} r_{i}=\frac{\sigma+\gamma}{2} \quad \text { or, equivalently, } \quad \gamma=\sum_{1 \leqslant i \leqslant k} a_{i}\left(2 r_{i}-m_{i}\right) . \tag{2.5}
\end{equation*}
$$

Let \mathscr{P} denote the set of possible patterns for the roots of (2.4), i.e. \mathscr{P} consists of the sequences $r \in \mathbb{N}^{k}$ for which (2.5) holds. The members of \mathscr{P} are called the root patterns of the inequality (2.4).

Switching. Given an integer sequence $b \in \mathbb{Z}^{n}$ and $S \subseteq V$, we define another sequence $b^{\prime} \in \mathbb{Z}^{n}$ by setting

$$
b_{i}^{\prime}=-b_{i} \quad \text { if } i \in S, \quad b_{i}^{\prime}=b_{i} \quad \text { if } i \in V \backslash S
$$

We say that b^{\prime} is obtained from b by switching on S. It is easy to check that b and b^{\prime} have the same gap.

Lemma 2.6. Both sequences b and b^{\prime} have the same gap.

In the same way, we say that the inequality

$$
\begin{equation*}
Q_{n}\left(b^{\prime}\right)^{\mathrm{T}} x \leqslant \frac{\sigma\left(b^{\prime}\right)^{2}-\gamma\left(b^{\prime}\right)^{2}}{4} \tag{2.7}
\end{equation*}
$$

is obtained from the inequality

$$
\begin{equation*}
Q_{n}(b)^{\mathrm{T}} x \leqslant \frac{\sigma(b)^{2}-\gamma(b)^{2}}{4} \tag{2.8}
\end{equation*}
$$

by switching on S. Hence, each class of gap inequalities with a given gap γ is closed under switching, i.e. switching of a gap inequality with gap γ is again a gap inequality with the same gap γ. It is not difficult to check that the gap inequalities with gap 0 are precisely the switchings of the negative type inequalities (i.e. the inequalities (1.2) for $\sigma=0$). In the same way, the gap inequalities with gap 1 are all the inequalities that can be obtained from the hypermetric inequalities (i.e. the inequalities (1.2) for $\sigma=1$) by switching. The following results can be found in [4] (see also [5]). They imply that we can suppose, without loss of generality, that we deal with integer positive sequences.

Lemma 2.9. (i) The inequality (2.8) defines a facet of CUT_{n} iff the inequality (2.7) does.
(ii) Let $b \in \mathbb{Z}^{n}$ and $c:=(b, 0) \in \mathbb{Z}^{n+1}$. Then, $\gamma(c)=\gamma(b):=\gamma$ and $\sigma(c)=\sigma(b):=\sigma$. The inequality $Q_{n}(b)^{\mathrm{T}} x \leqslant\left(\sigma^{2}-\gamma^{2}\right) / 4$ defines a facet of CUT_{n} iff the inequality $Q_{n+1}(c)^{\mathrm{T}} x \leqslant$ $\left(\sigma^{2}-\gamma^{2}\right) / 4$ defines a facet of CUT_{n+1}.

A positive semidefinite relaxation for the cut polytope. Our interest in the gap
inequalities is also motivated by the fact that they arise as a strengthening of some positive semidefinite constraints by decreasing their right-hand sides as much as possible. Here we give more details. Consider the set

$$
\mathscr{T}_{n}:=\left\{x \in \mathbb{R}^{(n)} \left\lvert\, Q_{n}(b)^{\mathrm{T}} x \leqslant \frac{\sigma(b)^{2}}{4}\right. \text { for all } b \in \mathbb{Z}^{n}\right\} .
$$

Clearly, \mathscr{T}_{n} is a convex body in $\mathbb{R}_{2}^{(n)}$ that contains the cut polytope CUT $_{n}$. Indeed, the inequalities defining \mathscr{T}_{n} are obtained from the gap inequalities (1.2) by relaxing their right-hand sides from $\left[\sigma(b)^{2}-\gamma(b)^{2}\right] / 4$ to $\sigma(b)^{2} / 4$. In other words, if we let \mathscr{G}_{n} denote the convex body in $\mathbb{R}^{\left(\frac{n}{2}\right)}$ which is defined by the gap inequalities (1.2) for all $b \in \mathbb{Z}^{n}$, then we have the following inclusions:

$$
\mathrm{CUT}_{n} \subseteq \mathscr{G}_{n} \subseteq \mathscr{T}_{n}
$$

Even though \mathscr{T}_{n} is a weaker relaxation of CUT_{n} than \mathscr{C}_{n}, it enjoys some nice properties that \mathscr{G}_{n} does not have. An important property of \mathscr{T}_{n} is that one can optimize over it in polynomial time. Namely, given $w \in \mathbb{R}^{(n)}$, the problem

$$
\begin{array}{ll}
\max & w^{\mathrm{T}} x \tag{2.10}\\
\text { s.t. } & x \in \mathscr{T}_{n}
\end{array}
$$

can be solved (with arbitrary precision) in polynomial time (see, e.g., [8]). To see it, note first that the separation problem for \mathscr{T}_{n}-Given $x \in \mathbb{R}^{\left(\frac{n}{2}\right)}$, decide whether $x \in \mathscr{T}_{n}$ and, if not, find $b \in \mathbb{R}^{n}$ such that $Q_{n}(b)^{\mathrm{T}} x>\sigma(b)^{2} / 4$-can be solved in polynomial time. Indeed, for $x \in \mathbb{R}^{(n)}$, consider the $n \times n$ symmetric matrix X with zero diagonal and with $i j$ th entry $x_{i j}$; then, one can easily check that

$$
x \in \mathscr{T}_{n} \Leftrightarrow \text { the matrix } J-2 X \text { is positive semidefinite, }
$$

where J denotes the all-ones matrix. Now, using the ellipsoid method (see [7]) this implies that the optimization problem (2.10) can be solved in polynomial time.

Goemans and Williamson [8] have shown that \mathscr{T}_{n} provides a good approximation of CUT_{n}. More precisely, they show that

$$
\frac{\max \left(w^{\mathrm{T}} x \mid x \in \mathscr{T}_{n}\right)}{\max \left(w^{\mathrm{T}} x \mid x \in \mathrm{CUT}_{n}\right)} \leqslant 1.131 \quad \text { for all } w \in \mathbb{R}_{+}^{(n)}
$$

In contrast, the optimization problem over the body \mathscr{C}_{n} is probably a hard problem. Indeed, several facts indicate that the separation problem for the gap inequalities is quite likely to be hard. Some results of Avis and Grishukhin [1] show that the separation problem is already hard for the class of hypermetric inequalities. For instance, they show that the following problem is NP-hard: Given $x \in \mathbb{R}^{(n)}$, decide if x satisfies all hypermetric inequalities and, if not, find $b \in \mathbb{Z}^{n}$ with $\sigma(b)=1$ and minimum $\sum_{1 \leqslant i \leqslant n}\left|b_{i}\right|$, such that $Q_{n}(b)^{\mathrm{T}} x>0$.

Note, however, that the separation problem for the negative type inequalities can be solved in polynomial time. Indeed, by the result of Schoenberg [11, 12], x satisfies all the negative type inequalities iff the symmetric $(n-1) \times(n-1)$ matrix $\left(p_{i j}\right)_{1 \leqslant i, j \leqslant n-1}$ is positive semidefinite, where

$$
\begin{array}{ll}
p_{i i}:=x_{i n} & \text { for } i=1, \ldots, n-1, \\
p_{i j}:=\frac{1}{2}\left(x_{i n}+x_{j n}-x_{i j}\right) & \text { for } 1 \leqslant i<j \leqslant n-1 .
\end{array}
$$

3. Gap Conditions

In this section, we present some results on the gap of a sequence $b \in \mathbb{Z}^{n}$. We start with an upper bound on the gap.

Proposition 3.1. Let $b \in \mathbb{Z}^{n}$. Then, $\gamma(b) \leqslant \max _{1 \leqslant i \leqslant n}\left|b_{i}\right|$.

Proof. We can suppose without loss of generality that $1 \leqslant b_{1} \leqslant \cdots \leqslant b_{n}$. Recall that $\gamma(b)=\min \left|x^{\mathrm{T}} b\right|$, where the minimum is taken over all ± 1-vectors x. We indicate a choice of x for which $\left|x^{\mathrm{T}} b\right| \leqslant \max _{i} b_{i}$. For this, set $x_{i}:=(-1)^{i-1}$ for $i=1, \ldots, n$. Let $S_{i}:=\sum_{1 \leqslant j \leqslant i} b_{i} x_{i}$ for $i=1, \ldots, n$. It can be easily checked that

$$
0 \geqslant S_{2 i} \geqslant-b_{2 i} \quad \text { and } \quad 0 \leqslant S_{2 i+1} \leqslant b_{2 i+1}
$$

for all i. This shows the result.

We now suppose that b is the sequence from (2.3), i.e.

$$
b=(\underbrace{a_{1}, \ldots, a_{1}}_{m_{1}}, \ldots, \underbrace{a_{h}, \ldots, a_{h}}_{m_{h}}, \ldots, \underbrace{a_{k}, \ldots, a_{k}}_{m_{k}}),
$$

where a_{1}, \ldots, a_{k} are relatively prime integers. Let γ denote the gap of b and $\sigma:=b_{1}+\cdots+b_{n}$. We recall that \mathscr{P} denotes the set of root patterns, i.e. the set of sequences $r \in \mathbb{N}^{k}$ such that $\sum_{1 \leqslant h \leqslant k} a_{h} r_{h}=(\sigma+\gamma) / 2$. As the integers a_{1}, \ldots, a_{k} are relatively prime, there exist some integers $u_{1}, \ldots, u_{k} \in \mathbb{Z}$ for which the Bezout identity

$$
\begin{equation*}
\sum_{1 \leqslant h \leqslant k} a_{h} u_{h}=1 \tag{3.2}
\end{equation*}
$$

holds. This identity is very useful. In some cases, a suitable choice of the Bezout parameters u_{i} 's permits us to conclude that the gap of b is 0 or 1 . We present such cases below.

Lemma 3.3. Let $u_{1}, \ldots, u_{k} \in \mathbb{Z}$ satisfy the Bezout identity (3.2). Suppose that there is a root pattern $r \in \mathscr{P}$ satisfying

$$
\begin{cases}r_{h} \geqslant u_{h} & \text { if } u_{h}>0, \tag{3.4}\\ m_{h}-r_{h} \geqslant-u_{h} & \text { if } u_{h}<0,\end{cases}
$$

for each $h=1, \ldots, k$. Then, the gap is equal to 0 or 1 .
Proof. Let $S \subseteq V$ realize a root with pattern r. Set $S_{h}:=V_{h} \cap S$ for $h=1, \ldots, k$. Then, $\left|S_{h}\right|=r_{h}$. We define a new set $T \subseteq V$ as follows: $T=T_{1} \cup \cdots \cup T_{k}$, where

$$
\begin{array}{lr}
T_{h}=S_{h} \text { minus a set of } u_{h} \text { points of } S_{h}, \quad \text { if } u_{h}>0, \\
T_{h}=S_{h} \text { plus a set of }\left|u_{h}\right| \text { points of } V_{h} \backslash S_{h}, \quad \text { if } u_{h}<0
\end{array}
$$

and

$$
T_{h}=S_{h}, \quad \text { if } u_{h}=0
$$

Then, $b(T)-b(V \backslash T)=b(S)-b(V \backslash S)-2 \sum_{1 \leqslant h \leqslant k} u_{h} a_{h}=\gamma-2$. This implies that $\gamma \in$ $\{0,1\}$. Otherwise, if $\gamma \geqslant 2$, then we have found a set T with $b(T)-b(V \backslash T)=\gamma-2<$ γ, which contradicts the definition of the gap γ.

In fact, the parameters u_{i} in the Bezout identity can be chosen with arbitrary signs.

Lemma 3.5. For each sign pattern $\varepsilon \in\{-1,1\}^{k}$ distinct from $(1, \ldots, 1)$ and from $(-1, \ldots,-1)$, there exists $u^{\varepsilon} \in \mathbb{Z}^{k}$ satisfying

$$
\left\{\begin{array}{l}
u_{i}^{\varepsilon} \varepsilon_{i} \geqslant 0 \quad \text { for all } i=1, \ldots, k, \\
\sum_{1 \leqslant i \leqslant k} u_{i}^{\varepsilon} a_{i}=1
\end{array}\right.
$$

Proof. Let $u \in \mathbb{Z}^{k}$ be a solution for the Bezout identity $\sum_{1 \leqslant i \leqslant k} u_{i} a_{i}=1$. Then, $u+x$ is another solution if $x \in \mathbb{Z}^{k}$ satisfies $\sum_{1 \leqslant i \leqslant k} x_{i} a_{i}=0$. The result now follows by taking for x a suitable combination of the vectors $\left(-a_{i}, 0, \ldots, 0, a_{1}, 0, \ldots, 0\right)$ (where a_{1} stands in the i th position) for $i=2, \ldots, k$.

Corollary 3.6. Let u^{ε} be defined as in Lemma 3.5. Suppose that, for every $i=1, \ldots, k, m_{i} \geqslant 2 \max _{\varepsilon \in\{1,-1\}^{k}, \varepsilon \neq(1, \ldots, 1),(-1, \ldots,-1)}\left|u_{i}^{\varepsilon}\right|$. Then, b has gap $\gamma(b) \leqslant 1$.

Proof. Let $S \subseteq V$ be a root of (1.2) with pattern r, i.e. $\gamma=\sum_{1 \leqslant i \leqslant k}\left(2 r_{i}-m_{i}\right) a_{i}$. Then, $r_{i}>m_{i} / 2$ for some i (else, $2 r_{i}-m_{i} \leqslant 0$ for all i, implying $\gamma \leqslant 0$, a contradiction).

Moreover, $r_{j} \leqslant m_{j} / 2$ for some j. This can be seen as follows. For $i=1, \ldots, k$, set

$$
T_{i}:=S_{1} \cup \cdots \cup S_{i-1} \cup\left(V_{i} \backslash S_{i}\right) \cup S_{i+1} \cup \cdots \cup S_{k}
$$

where $S_{j}=V_{j} \cap S$ for all j. Then, $\sum_{1 \leqslant i \leqslant k} b\left(T_{i}\right)-b\left(V \backslash T_{i}\right)=(k-2) \gamma \geqslant 0$. We can suppose, for instance, that $b\left(T_{1}\right)-b\left(V \backslash T_{1}\right) \geqslant 0$. This implies that $b\left(T_{1}\right)-b\left(V \backslash T_{1}\right) \geqslant \gamma$, i.e. $2 a_{1}\left(2 r_{1}-m_{1}\right) \leqslant 0$, and, thus, $r_{1} \leqslant m_{1} / 2$. Set

$$
I:=\left\{i \in\{1, \ldots, k\} \mid r_{i} \leqslant m_{i} / 2\right\}, \quad J:=\left\{i \in\{1, \ldots, k\} \mid r_{i}>m_{i} / 2\right\} .
$$

So $I, J \neq \varnothing$. Let $\varepsilon \in\{-1,1\}^{k}$ be defined by $\varepsilon_{i}=-1$ if $i \in I$ and $\varepsilon_{i}=1$ if $i \in J$. Let u^{ε} be defined as in Lemma 3.5. Hence, $u_{i}^{\varepsilon} \varepsilon_{i} \geqslant 0$ for all i. We check that the assumptions of Lemma 3.3 hold. Indeed, if $u_{i}^{\varepsilon}>0$ then $r_{i}>m_{i} / 2$ as $i \in J$ and, thus, $r_{i} \geqslant u_{i}^{\varepsilon}$ as $u_{i}^{\varepsilon} \leqslant m_{i} / 2$, by assumption. On the other hand, if $u_{i}^{\varepsilon}<0$ then $r_{i} \leqslant m_{i} / 2$ as $i \in I$; hence,

$$
r_{i}-u_{i}^{\varepsilon} \leqslant \frac{m_{i}}{2}+\frac{m_{i}}{2}=m_{i}
$$

i.e. $m_{i}-r_{i} \geqslant\left|u_{i}^{\varepsilon}\right|$. Therefore, by Lemma 3.3, we can conclude that the gap is 0 or 1 .

4. Facet Conditions

In this section, we study when the gap inequality (2.4) defines a facet of the cut polytope. We give necessary and sufficient conditions for the inequality (2.4) to be facet defining. These conditions are in terms of root patterns; see Theorem 4.4 and Propositions 4.14 and 4.19. Our characterization presents the interesting feature that it is expressed in terms of conditions on the root patterns, which live in the n-space, while the facet property concerns the $\binom{n}{2}$-space.
4.1. Facet characterization. We recall that K^{*} denotes the set of indices $h=1, \ldots, k$ for which $m_{h} \geqslant 2$. Set

$$
J=\left\{h h^{\prime}: 1 \leqslant h<h^{\prime} \leqslant k \text { or } h=h^{\prime} \in K^{*}\right\} .
$$

Hence, $|J|=\binom{k}{2}+\left|K^{*}\right|$. Based on the family \mathscr{P} of root patterns, we introduce a $|\mathscr{P}| \times|J|$ matrix $M_{\mathscr{P}}$. The rows of $M_{\mathscr{P}}$ correspond to the root patterns $r \in \mathscr{P}$, and its columns to
the pairs $h h^{\prime} \in J$. The entry of $M_{\mathscr{P}}=\left(m_{r, h h^{\prime}}\right)$ in the row corresponding to r and in the column $h h^{\prime}$ is given by

$$
m_{r, h h^{\prime}}:= \begin{cases}r_{h}\left(m_{h^{\prime}}-r_{h^{\prime}}\right)+r_{h^{\prime}}\left(m_{h}-r_{h}\right) & \text { if } h \neq h^{\prime}, \\ r_{h}\left(m_{h}-r_{h}\right) & \text { if } h=h^{\prime}\end{cases}
$$

We now formulate some necessary conditions for the inequality (2.4) to be facet defining.

Lemma 4.1. If the inequality (2.4) defines a facet of the cut polytope, then

$$
\operatorname{rank} M_{\mathscr{P}}=\binom{k}{2}+\left|K^{*}\right| .
$$

Proof. Set $\alpha_{h h^{\prime}}:=a_{h} a_{h^{\prime}}$ for all $h h^{\prime} \in J$. Then, by construction of the matrix $M_{\mathscr{P}}$, the vector $y=\alpha$ satisfies the system:

$$
\begin{equation*}
M_{\mathscr{P}} y=\frac{\sigma^{2}-\gamma^{2}}{4} \tag{4.2}
\end{equation*}
$$

Assume that rank $M_{\mathscr{P}}<|J|$. Then (4.2) has another solution, $\beta \neq \alpha$, and the following equality:

$$
\sum_{h h^{\prime} \in J} \beta_{h h^{\prime}}\left(\sum_{i \in V_{h}, j \in V_{h^{\prime}}} x_{i j}\right)=\frac{\sigma^{2}-\gamma^{2}}{4}
$$

is satisfied by all roots of (2.4). This proves that (2.4) is not facet defining.
Let $G=(V, E)$ be a graph and let \mathscr{S} be a collection of subsets of V. Set

$$
\mathscr{F}_{\mathscr{S}}^{G}:=\left\{\chi^{\delta_{G}(S)} \mid S \in \mathscr{S}\right\},
$$

where $\chi^{\delta_{G}(S)}$ is the characteristic vector of the cut determined by the set S in the graph G. We say that $\mathscr{F}_{\mathscr{G}}^{G}$ is full-dimensional if $\mathscr{F}_{\mathscr{G}}^{G}$ spans the whole space \mathbb{R}^{E}. We will consider here the following cases:
(i) For $h \in K^{*}, G$ is the complete graph on V_{h} and $\mathscr{S}=\left\{S \subseteq V_{h}:|S|=r_{h}\right.$ for some $r \in \mathscr{P}\}$; then, $\mathscr{F}_{\mathscr{S}}^{G}$ is denoted as $\mathscr{F}_{h, h}$.
(ii) For $1 \leqslant h<h^{\prime} \leqslant k, G$ is the complete bipartite graph with node bipartition $V_{h} \cup V_{h^{\prime}}$ and $\mathscr{S}=\left\{S \subseteq V_{h} \cup V_{h^{\prime}}:\left|S \cap V_{h}\right|=r_{h}\right.$ and $\left|S \cap V_{h^{\prime}}\right|=r_{h^{\prime}}$ for some $\left.r \in \mathscr{P}\right\}$; then, $\mathscr{F}_{\mathscr{G}}$ 促 denoted as $\mathscr{F}_{h, h^{\prime}}$.

Lemma 4.3. Assume that the inequality (2.4) is facet defining. Then, the set $\mathscr{F}_{h, h^{\prime}}$ is full-dimensional for each $h=h^{\prime} \in K^{*}$ and for each $1 \leqslant h<h^{\prime} \leqslant k$.

Proof. If the inequality (2.4) is facet defining, then its set X of roots has full dimension $\binom{n}{2}$. Therefore, the set $\left\{\left(x_{i j}\right)_{i \in V_{h}, j \in V_{h^{\prime}}} \mid x \in X\right\}$ is a subset of $\mathscr{F}_{h, h^{\prime}}$ of full dimension.

In fact, as the next result shows, the conditions from Lemmas 4.1 and 4.3 are already sufficient for characterizing facets.

Theorem 4.4. The inequality (2.4) defines a facet of the cut polytope iff the following conditions (i) and (ii) hold:
(i) $\operatorname{rank} M_{\mathscr{P}}=\binom{k}{2}+\left|K^{*}\right|$;
(ii) the set $\mathscr{F}_{h, h^{\prime}}$ is full-dimensional for every $h=h^{\prime} \in K^{*}$ and every $1 \leqslant h<h^{\prime} \leqslant k$.

Proof. We suppose that the conditions (i) and (ii) hold. We show that the inequality (2.4) defines a facet of the cut polytope. For this, let $v \in \mathbb{R}^{\left(\frac{1}{2}\right)}$ and $v_{0} \in \mathbb{R}$ such that all roots of (2.4) satisfy the equation:

$$
\begin{equation*}
v^{\mathrm{T}} x=v_{0} \tag{4.5}
\end{equation*}
$$

We show that the equations (4.5) and (2.4) define the same hyperplane.
Set $\beta_{h h^{\prime}}:=\sum_{i \in V_{h} j \in V_{h^{\prime}}} v_{i j}$ for every $h h^{\prime} \in J$, and $\beta=\left(\beta_{h h^{\prime}}\right)$. For each root pattern $r \in \mathscr{P}$, let X_{r} denote the set of roots of (2.4) with pattern r, i.e.

$$
X_{r}=\left\{\chi^{\delta(S)} \mid S \subseteq V \text { with }\left|S \cap V_{h}\right|=r_{h} \text { for } h=1, \ldots, k\right\}
$$

and set

$$
\sigma^{(r)}=\sum_{x \in X_{r}} x
$$

The components of $\sigma^{(r)}$ are given by

$$
\begin{array}{ll}
\sigma_{i j}^{(r)}=\left|X_{r}\right| \frac{2 r_{h}\left(m_{h}-r_{h}\right)}{m_{h}\left(m_{h}-1\right)} & \text { for } i<j, i, j \in V_{h}, \quad h=1, \ldots, k \\
\sigma_{i j}^{(r)}=\left|X_{r}\right| \frac{r_{h}\left(m_{h^{\prime}}-r_{h^{\prime}}\right)+r_{h^{\prime}}\left(m_{h}-r_{h}\right)}{m_{h} m_{h^{\prime}}} & \text { for } i \in V_{h}, j \in V_{h^{\prime}}, \quad 1 \leqslant h<h^{\prime} \leqslant k
\end{array}
$$

where $\left|X_{r}\right|=\prod_{1 \leqslant h \leqslant k}\binom{m_{h}}{r_{h}}$. Summing (4.5) over all roots $x \in X_{r}$, we obtain $\sum_{x \in X_{r}} v^{\mathrm{T}} x=$ $v^{\mathrm{T}} \sigma^{(r)}=\left|X_{r}\right| v_{0}$. Define the vector $\beta^{\prime} \in \mathbb{R}^{J}$ by setting

$$
\begin{aligned}
\beta_{h h}^{\prime}:=\frac{2 \beta_{h h}}{m_{h}\left(m_{h}-1\right)} & \text { for } h \in K^{*} \\
\beta_{h h^{\prime}}^{\prime} & =\frac{\beta_{h h^{\prime}}}{m_{h} m_{h^{\prime}}}
\end{aligned} \quad \text { for } 1 \leqslant h<h^{\prime} \leqslant k . ~ \$
$$

Hence, we have

$$
\begin{equation*}
M_{\mathscr{P}} \beta^{\prime}=v_{0} e, \tag{4.6}
\end{equation*}
$$

where e denotes the all-ones vector.
Consider a pair $h_{0} h_{0}^{\prime} \in J$ and a root \bar{x} of pattern r, i.e. $\bar{x} \in X_{r}$. We show that the quantity:

$$
\sum_{i \in V_{h_{0}} j \in V_{h_{0}^{\prime}}} v_{i j} \bar{x}_{i j}
$$

is a constant depending only on the root pattern r (and not on the choice of $\bar{x} \in X_{r}$). For this, let Y denote the subset of X_{r} defined by $Y:=\left\{x \in X_{r} \mid x_{i j}=\bar{x}_{i j}\right.$ for $i \in V_{h_{0}}$, $\left.j \in V_{h_{0}}\right\}$. Then,

$$
\begin{aligned}
\sum_{x \in Y} v^{\mathrm{T}} x & =\sum_{x \in Y}\left(\sum_{i \in V_{h_{0}} j \in V_{h b}} v_{i j} x_{i j}+\sum_{h h^{\prime} \in J h_{0} h_{0}^{\prime}{ }_{i}} \sum_{V_{h} j \in V_{h^{\prime}}} v_{i j} x_{i j}\right) \\
& =|Y| \sum_{i \in V_{h_{0}} j \in V_{h_{0}}} v_{i j} \bar{x}_{i j}+\sum_{h h^{\prime} \in J V_{0} h_{0}^{\prime} i_{i \in V_{h j} j \in V_{h^{\prime}}} v_{i j}\left(\sum_{x \in Y} x_{i j}\right)} \\
& =|Y| \sum_{i \in V_{h_{0}, j \in V_{h_{0}}}} v_{i j} \bar{x}_{i j}+\sum_{h h^{\prime} \in N h_{0} h_{0}^{\prime}} c_{h h^{\prime}}\left(\sum_{i \in V_{h, j \in V_{h^{\prime}}}} v_{i j}\right) \\
& =|Y| \sum_{i \in V_{h_{0}} j \in V_{h_{0}}} v_{i j} \bar{x}_{i j}+\sum_{h h^{\prime} \in N h_{0} h_{0}^{\prime}} c_{h h^{\prime}} \beta_{h h^{\prime}} .
\end{aligned}
$$

Here we used the fact that $c_{h h^{\prime}}:=\sum_{x \in Y} x_{i j}$ is a constant independent of $i \in V_{h}$ and $j \in V_{h^{\prime}}$, for every fixed pair $h h^{\prime} \in J \backslash h_{0} h_{0}^{\prime}$. On the other hand, $\sum_{x \in Y} v^{\mathrm{T}} x=v_{0}|Y|$, which implies that

$$
\begin{equation*}
v_{0}|Y|=|Y| \sum_{i \in V_{h 0}, j \in V_{h_{0}^{\prime}}} v_{i j} \bar{x}_{i j}+\sum_{h h^{\prime} \in J h_{0} h_{0}^{\prime}} c_{h h^{\prime}} \beta_{h h^{\prime}} \tag{4.7}
\end{equation*}
$$

This shows that the quantity

$$
\begin{equation*}
w_{h_{0} h_{0}^{\prime}}^{(r)}:=\sum_{i \in V_{h_{0}, j \in V_{h_{0}^{\prime}}^{\prime}}} v_{i j} \bar{x}_{i j} \tag{4.8}
\end{equation*}
$$

is a constant depending only on the root pattern r. Summing over $\bar{x} \in X_{r}$, we obtain that

$$
\left.\begin{array}{ll}
w_{h h}^{(r)}=\beta_{h h} \frac{r_{h}\left(m_{h}-r_{h}\right)}{\left(m_{h}\right.} & \text { for } h \in K^{*} \\
2
\end{array}\right) \quad \begin{array}{ll}
w_{h h^{\prime}}^{(r)}=\beta_{h h^{\prime}} \frac{r_{h}\left(m_{h^{\prime}}-r_{h^{\prime}}\right)+r_{h^{\prime}}\left(m_{h}-r_{h}\right)}{m_{h} m_{h^{\prime}}} & \text { for } 1 \leqslant h<h^{\prime} \leqslant k
\end{array}
$$

Suppose first that $v_{0}=0$. Then, we deduce from (4.6) that $\beta^{\prime}=0$, as the matrix $M_{\mathscr{P}}$ has full column rank. Therefore, $\beta=0$. Relation (4.7) implies that

$$
\sum_{i \in V_{h_{0}} j \in V_{h_{0}^{\prime}}^{\prime}} v_{i j} \bar{x}_{i j}=0
$$

for each root \bar{x} and each $h_{0} h_{0}^{\prime} \in J$. As each family $\mathscr{F}_{h_{0}, h_{0}^{\prime}}$, is full-dimensional, this implies that $v=0$, a contradiction.

Therefore, $v_{0} \neq 0$. We can suppose without loss of generality that $v_{0}=\left(\sigma^{2}-\gamma^{2}\right) / 4$. As $M_{\mathscr{P}}$ has full column rank, we deduce from relation (4.6) that

$$
\beta_{h h}^{\prime}=a_{h} a_{h^{\prime}} \quad \text { for all } h h^{\prime} \in J .
$$

From (4.8),

$$
\sum_{i \in V_{h_{0}} j \in V_{h_{0}^{\prime}}} v_{i j} x_{i j}=w_{h_{0} h \hat{0}}^{(r)}
$$

for all roots x with pattern r. Using the above formulas for $w_{h_{0} h_{0}^{\prime}}^{(r)}$ and the fact that each family $\mathscr{F}_{h_{0}, h_{0}^{\prime}}$ is full-dimensional, we deduce that $v_{i j}$ (for $i \in V_{h_{0}}, j \in V_{h_{0}^{\prime}}$) is a constant depending only on h_{0} and h_{0}^{\prime}. This shows that $v_{i j}=a_{h_{0}} a_{h_{0}^{\prime}}$ for all $i \in V_{h_{0}}, j \in V_{h_{0}^{\prime}}$.

We show in the next subsection how the conditions on the full dimensionality of the cut families $\mathscr{F}_{h, h^{\prime}}$ can be reformulated as simple conditions on the set \mathscr{P} of root patterns; see Propositions 4.14 and 4.19.
4.2. Linear dependencies of uniform cuts. Our objective in this section is to give a reformulation of Theorem 4.4 which uses only simple conditions on the root patterns of the inequality (2.4). For this, we need to formulate conditions for the full dimensionality of the cut families $\mathscr{F}_{h, h^{\prime}}$. Such conditions are given in Propositions 4.14 and 4.19.

Given $h \in K^{*}$, we recall that the cut family $\mathscr{F}_{h, h}$ consists of the incidence vectors of the cuts $\delta_{G}(S)$, where G is the complete graph on V_{h} and $S \subseteq V_{h}$ with $|S|=r_{h}$ for some $r \in \mathscr{P}$. Hence, $\mathscr{F}_{h, h}$ is a union of several families of uniform cuts. In fact, as we will see below, the full dimensionality of $\mathscr{F}_{h, h}$ can be checked by using at most two different set sizes for the cuts in $\mathscr{F}_{h, h}$.

We start with the problem of determining when the family of all uniform cuts of a given size is full dimensional.

Let m and r be integers satisfying $m \geqslant 2,1 \leqslant r \leqslant m-1$. Let

$$
\mathscr{C}_{r}:=\left\{\chi^{\delta(S)}|S \subset\{1, \ldots, m\},|S|=r\} \subset \mathbb{R}^{\left(\frac{m}{2}\right)}\right.
$$

be the collection of characteristic vectors of the cuts $\delta(S)$ in K_{m} satisfying $|S|=r$. We are interested in determining when \mathscr{C}_{r} spans the whole space $\mathbb{R}^{\left(\frac{(1)}{2}\right)}$; we call \mathscr{C}_{r} full-dimensional in that case. Clearly, the set \mathscr{C}_{r} is full-dimensional if all unit vectors belong to the span of \mathscr{C}_{r}, i.e. if, for any fixed pair $i_{0}, j_{0} \in V=\{1,2, \ldots, m\}, i_{0} \neq j_{0}$, the vector $e\left(i_{0}, j_{0}\right) \in \mathbb{R}^{\left(m_{2}\right)}$ defined by

$$
e\left(i_{0}, j_{0}\right)_{i j}= \begin{cases}1 & i=i_{0}, j=j_{0} \\ 0 & \text { otherwise }\end{cases}
$$

can be expressed as a linear combination of the form

$$
e\left(i_{0}, j_{0}\right)=\sum_{S \in \mathscr{S}} \alpha_{S} \chi^{\delta(S)}
$$

where $\mathscr{S}=\{S:|S|=r, S \subseteq V\}$. If such a linear combination $\alpha=\left(\alpha_{S}\right)$ exists then, due to the underlying symmetries, α can be assumed to have a particular form. Namely, we can suppose that there are three coefficients β_{0}, β_{1} and β_{2} so that $\alpha_{S}=\beta_{k}$ for all $S \in \mathscr{S}_{k}, k=0,1,2$, where \mathscr{S}_{k} are defined by

$$
\mathscr{S}_{k}:=\left\{S \in S:\left|S \cap\left\{i_{0}, j_{0}\right\}\right|=k\right\}
$$

for $k=0,1,2$. Equivalently, we may ask whether the unit vector $e\left(i_{0}, j_{0}\right)$ can be expressed as a linear combination of the three vectors $\sigma^{k}, k=0,1,2$, given by

$$
\sigma^{k}:=\sum_{S \in \mathscr{S}_{k}} \chi^{\delta(S)}
$$

Therefore, the question as to whether the family \mathscr{C}_{r} is full-dimensional is equivalent to the question as to whether there exists a solution $\beta=\left(\beta_{0}, \beta_{1}, \beta_{2}\right)$ to the linear system:

$$
\begin{equation*}
\beta_{0} \sigma^{0}+\beta_{1} \sigma^{1}+\beta_{2} \sigma^{2}=e\left(i_{0}, j_{0}\right) \tag{4.9}
\end{equation*}
$$

This question is answered by Lemma 4.12. In fact, it can be further reduced in the following way. For this, it is convenient to introduce some auxiliary matrices associated with the cuts of the graph K_{m}.

For every integer $r, 0 \leqslant r \leqslant m$, we introduce a 3×3 matrix $A_{r}=\left(a_{i j}\right), i, j=0,1,2$, as follows. Fix the edge $\bar{e}:=i_{0} j_{0}$ of the complete graph K_{m}, and partition its edge set into three classes E_{0}, E_{1} and E_{2} according to the intersection with \bar{e} :

$$
E_{i}:=\{e:|e \cap \bar{e}|=i\} \quad i=0,1,2 .
$$

(Thus, $E_{2}=\{\bar{e}\}$). Now, we define the entries $a_{i j}$ of the matrix A_{r} by

$$
a_{i j}= \begin{cases}\left|E_{i} \cap \delta(S)\right| & \text { if there is a subset } S \subset\{1, \ldots, n\}, \quad|S|=r, \quad|S \cap \bar{e}|=j \tag{4.10}\\ 0 & \text { if such a set } S \text { does not exist. }\end{cases}
$$

Observe that the value of $a_{i j}$ is independent of a particular choice of a subset S. Clearly, the system (4.9) is solvable iff the system:

$$
A_{r} x=\left(\begin{array}{l}
0 \tag{4.11}\\
0 \\
1
\end{array}\right)
$$

is solvable. In other words, the uniform cut family \mathscr{C}_{r} is full-dimensional iff the system (4.11) is solvable. In the next result, we characterize the values of r for which \mathscr{C}_{r} is full-dimensional. We also give some values of r and r^{\prime} for which the family $\mathscr{C}_{r} \cup \mathscr{C}_{r^{\prime}}$ is full-dimensional.

Lemma 4.12. Let A_{r} denote the matrix defined by (4.10).
(i) Assume $m \geqslant 4$. Then, the linear system (4.11) is solvable iff $r \neq 0,1, \frac{1}{2} m, m-1, m$.
(ii) Assume $m=2,3$. Then, (4.11) is solvable iff $r=1, m-1$.
(iii) Assume $m \geqslant 2$ and m is even. Then, the linear system

$$
A_{m / 2} x+A_{1} y=\left(\begin{array}{l}
0 \tag{4.13}\\
0 \\
1
\end{array}\right)
$$

is solvable.
Proof. (i) Set $s:=m-r$. For $r \neq 0,1, m-1, m$, the matrix A_{r} reads

$$
A_{r}=\left(\begin{array}{ccc}
r(s-2) & (r-1)(s-1) & (r-2) s \\
2 r & r+s-2 & 2 s \\
0 & 1 & 0
\end{array}\right)
$$

For $r \neq m / 2$, the system (4.11) has the solution:

$$
\begin{aligned}
& x_{0}=\frac{1}{r-s}\left(1-\frac{m}{2}+\frac{1}{r}-s\right), \\
& x_{1}=1 \\
& x_{2}=\frac{1}{s-r}\left(1-\frac{m}{2}+\frac{1}{s}-r\right) .
\end{aligned}
$$

Assume that $r=m / 2$. Hence $s=r=m / 2$. Summing all three equations of (4.11) together, yields

$$
r^{2}\left(x_{0}+x_{1}+x_{2}\right)=1 .
$$

Summing the second equation with a double of the third one yields

$$
r\left(x_{0}+x_{1}+x_{2}\right)=1
$$

Hence (4.11) is not solvable for $r=s=m / 2$ and $m \geqslant 4$.
Let $r=1$. For $m \geqslant 3$ we have:

$$
A_{1}=\left(\begin{array}{ccc}
m-3 & 0 & 0 \\
2 & m-2 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

and, hence, (4.11) is solvable iff $m=3$.
Assume $r=1$ and $m=2$. Then

$$
A_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

and (4.11) is solvable.

The case $r=m-1$ is analogous to $r=1$.
If $r=0$ or $r=m$, then $A_{r}=0$ and, hence, (4.11) is not solvable.
The previous two arguments prove the validity of (ii).
We now check (iii). If $m=2$, the validity of (iii) follows from (ii). Hence, assume that $m \geqslant 4$ and $r=m / 2$. Modify (4.13) as follows. Add the sum of the last two equations to the first equation, and add the multiple two of the third equation to the second one. Thus, (4.13) is equivalent to the system:

$$
\left(\begin{array}{cccccc}
r^{2} & r^{2} & r^{2} & 2 r-1 & 2 r-1 & 0 \\
2 r & 2 r & 2 r & 2 & 2 r & 0 \\
0 & 1 & 0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

Setting $x_{1}=x_{2}=y_{2}=0$, we obtain the linear system

$$
\left(\begin{array}{ccc}
r^{2} & 2 r-1 & 2 r-1 \\
2 r & 2 & 2 r \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
y_{0} \\
y_{1}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

which is solvable, since the determinant of its matrix is $2 r(1-r) \neq 0$, as $r>1$.
We can now characterize when the cut family $\mathscr{F}_{h, h}$ is full-dimensional, in terms of the set \mathscr{P} of root patterns. Let

$$
\mathscr{P}_{h}:=\left\{\rho \mid \exists r \in \mathscr{P} \text { such that } r_{h}=\rho\right\}
$$

denote the projection of \mathscr{P} on the h th co-ordinate.

Proposition 4.14. Let $h \in K^{*}$. If $m_{h}=2,3$, then the family $\mathscr{F}_{h, h}$ is full-dimensional iff there exists a root pattern $r \in \mathscr{P}$ such that $r_{h} \in\left\{1, m_{h}-1\right\}$. If $m_{h} \geqslant 4$, then the family $\mathscr{F}_{h, h}$ is full-dimensional iff one of the following conditions (i) or (ii) holds:
(i) there exists a root pattern $r \in \mathscr{P}$ such that $r_{h} \notin\left\{0,1, m_{h} / 2, m_{h}-1, m_{h}\right\}$;
(ii) $\mathscr{P}_{h} \subseteq\left\{0,1, m_{h} / 2, m_{h}-1, m_{h}\right\} ; m_{h}$ is even; $m_{h} / 2 \in \mathscr{P}_{h}$; at least one of 1 and $m_{h}-1$ belongs to \mathscr{P}_{h}.

Proof. Suppose first that $m_{h}=2$, 3. If $r_{h} \in\left\{0, m_{h}\right\}$ for all $r \in \mathscr{P}$ then $\mathscr{F}_{h, h}$ is reduced to the zero vector. On the other hand, if $r_{h} \in\left\{1, m_{h}-1\right\}$ for some $r \in \mathscr{P}$ then $\mathscr{F}_{h, h}$ is full-dimensional by Lemma 4.12(ii). Suppose now that $m_{h} \geqslant 4$. If $r_{h} \notin\left\{0,1, m_{h} / 2, m_{h}-\right.$ $\left.1, m_{h}\right\}$ for some $r \in \mathscr{P}$, then $\mathscr{F}_{h, h}$ is full-dimensional by Lemma 4.12(i). Otherwise, $\mathscr{P}_{h} \subseteq\left\{0,1, m_{h} / 2, m_{h}-1, m_{h}\right\}$. If $\mathscr{F}_{h, h}$ is full-dimensional then $m_{h} / 2 \in \mathscr{P}_{h}$ and $\mathscr{P}_{h} \cap$ $\left\{1, m_{h}-1\right\} \neq \varnothing$ (by Lemma 4.12(i)); if the latter conditions hold then $\mathscr{F}_{h, h^{\prime}}$ is full-dimensional by Lemma 4.12(iii).

We now turn to the study of the cut families $\mathscr{F}_{h, h^{\prime}}$, where $1 \leqslant h<h^{\prime} \leqslant k$. Note that the family $\mathscr{F}_{h, h^{\prime}}$ is a union of uniform cut families in the complete bipartite graph $G=K_{m_{h}, m_{h^{\prime}}}$ with node bipartition $V_{h} \cup V_{h^{\prime}}$. We will see that the full-dimensionality of $\mathscr{F}_{h, h^{\prime}}$ can be checked by looking at two set sizes at most.

As in the case treated above, we first study the case in which the set of uniform cuts of a given size in a complete bipartite graph is full-dimensional. Again, due to symmetries, this problem can be formulated as follows.

Let $m_{1}, m_{2} \geqslant 1$ be fixed. Consider the complete bipartite graph $K_{m_{1}, m_{2}}$ with vertex
set $V=V_{1} \cup V_{2},\left|V_{i}\right|=m_{i}, i=1,2$, and choose a pair of vertices $i_{0} \in V_{1}$ and $j_{0} \in V_{2}$. Partition the edges of $K_{m_{1}, m_{2}}$ into four sets as follows:

$$
\begin{aligned}
& E_{1}:=\left\{i_{0} j_{0}\right\}, \\
& E_{2}:=\left\{i_{0} j \mid j \in V_{2} \backslash j_{0}\right\}, \\
& E_{3}:=\left\{i j_{0} \mid i \in V_{1} \backslash i_{0}\right\}, \\
& E_{4}:=\left\{i j \mid i \in V_{1} / i_{0}, j \in V_{2} \backslash j_{0}\right\} .
\end{aligned}
$$

For any pair of integers r_{1} and $r_{2}, 0 \leqslant r_{i} \leqslant m_{i}, i=1,2$, let

$$
\mathscr{S}_{r_{1}, r_{2}}:=\left\{S \subseteq V_{1} \cup V_{2}:\left|S \cap V_{i}\right|=r_{i}, i=1,2\right\} .
$$

We partition the set system $\mathscr{S}_{r_{1}, r_{2}}$ into four classes $\mathscr{S}_{i}, i=1,2,3,4$, as follows:

$$
\begin{aligned}
& \mathscr{S}_{1}:=\left\{S \in \mathscr{S}_{r_{1}, r_{2}} \mid i_{0}, j_{0} \in S\right\}, \\
& \mathscr{S}_{2}:=\left\{S \in \mathscr{S}_{r_{1}, r_{2}} \mid i_{0} \in S, j_{0} \notin S\right\}, \\
& \mathscr{S}_{3}:=\left\{S \in \mathscr{S}_{r_{1}, r_{2}} \mid i_{0} \notin S, j_{0} \in S\right\}, \\
& \mathscr{S}_{4}:=\left\{S \in \mathscr{S}_{r_{1}, r_{2}} \mid i_{0}, j_{0} \notin S\right\} .
\end{aligned}
$$

We introduce a matrix $B_{r_{1}, r_{2}}=\left(b_{k, l}\right), k, l=1,2,3,4$, by setting

$$
b_{k, l}:= \begin{cases}\left|E_{k} \cap \delta(S)\right| & \text { for } S \in \mathscr{S}_{l} \\ 0 & \text { if } \mathscr{S}_{l}=\varnothing\end{cases}
$$

Clearly, the value of $b_{k, l}$ is independent of a particular choice of $S \in \mathscr{S}_{l}$ for any $l=1,2,3,4$. We are interested in the solvability of the linear system:

$$
B_{r_{1}, r_{2}} x=\left(\begin{array}{l}
1 \tag{4.15}\\
0 \\
0 \\
0
\end{array}\right)
$$

Clearly, the system (4.15) is solvable iff the family

$$
\mathscr{C}_{r_{1}, r_{2}}:=\left\{\chi^{\delta_{G}(S)} \mid S \in \mathscr{S}_{r_{1}, r_{2}}\right\}
$$

is full-dimensional (where $G=K_{m_{1}, m_{2}}$). We now characterize the values of $\left(r_{1}, r_{2}\right)$ for which the family $\mathscr{C}_{r_{1}, r_{2}}$ is full-dimensional. We also give some values of $\left(r_{1}, r_{2}\right)$ and $\left(r_{1}^{\prime}, r_{2}^{\prime}\right)$ for which the union $\mathscr{C}_{r_{1}, r_{2}} \cup \mathscr{C}_{r_{1}^{\prime}, r_{2}^{\prime}}$ is full-dimensional.

Lemma 4.16. (i) Let $m_{1}=1$ and $m_{2} \geqslant 2$. The system (4.15) is solvable for $r_{1} \in\{0,1\}$ and $r_{2} \neq 0, m_{2}$.
(ii) Let $m_{1}, m_{2} \geqslant 2$. Then, (4.15) is solvable iff $r_{i} \neq 0, \frac{1}{2} m_{i}, m_{i}$ for $i=1,2$.
(iii) Let $m_{1}, m_{2} \geqslant 2$. The system

$$
B_{m_{1}, r_{2}} x+B_{m_{1} / 2, r_{2}^{2}} y=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

is solvable for $r_{2} \neq 0, m_{2}$ and $r_{2}^{\prime} \neq m_{2} / 2$.
(iv) Let $m_{1}, m_{2} \geqslant 2$. The system

$$
B_{m_{1} / 2, r_{2}} x+B_{r_{1}, m_{2} / 2} y=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

is solvable for $r_{i} \neq 0, m_{i} / 2, m_{i}$, for $i=1,2$.
Before giving the proof, we introduce another result that will also be needed. Let H_{0}, H_{1} and H_{2} denote the hyperplanes in \mathbb{R}^{4} that are defined by

$$
\begin{gathered}
H_{0}=\left\{z \in \mathbb{R}^{4} \mid z_{1}+z_{2}+z_{3}+z_{4}=-m_{1} m_{2} z_{1}+m_{1}\left(z_{1}+z_{2}\right)+m_{2}\left(z_{1}+z_{3}\right)\right\}, \\
H_{1}:=\left\{z \in \mathbb{R}^{4} \mid z_{1}+z_{2}+z_{3}+z_{4}=m_{2}\left(z_{1}+z_{3}\right)\right\}, \\
H_{2}:=\left\{z \in \mathbb{R}^{4} \mid z_{1}+z_{2}+z_{3}+z_{4}=m_{1}\left(z_{1}+z_{2}\right)\right\} .
\end{gathered}
$$

Observe that the vector $(1,0,0,0)^{\mathrm{T}}$ does not belong to any of the hyperplanes H_{0}, H_{1} or H_{2}, if $m_{1}, m_{2} \geqslant 2$. For a matrix B, the range of B is the set consisting of the vectors $B x$ for $x \in \mathbb{R}^{4}$ (if B has four columns).

Lemma 4.17. Let $m_{1}, m_{2} \geqslant 2$. Then:
(i) for every r_{1}, the range of each of the matrices $B_{r_{1}, m_{2}}$ and $B_{r_{1}, 0}$ is contained in both hyperplanes H_{0} and H_{1};
(ii) for every r_{2}, the range of each of the matrices $B_{m_{1}, r_{2}}$ and $B_{0, r_{2}}$ is contained in both hyperplanes H_{0} and H_{2};
(iii) for every r_{1}, the range of the matrix $B_{r_{1}, m_{2} / 2}$ is contained in the hyperplane H_{2};
(iv) for every r_{2}, the range of the matrix $B_{m_{1} / 2, r_{2}}$ is contained in the hyperplane H_{1}.

The following notation will be useful for the proofs of Lemmas 4.16 and 4.17. For a 4×4 matrix B with rows u_{1}, u_{2}, u_{3} and u_{4}, we let B^{\prime} denote the 4×4 matrix the rows of which are the vectors u_{1}, u_{2}, u_{3} and u_{4}, we let B^{\prime} denote the 4×4 matrix the rows of which are the vectors $u_{1}, u_{1}+u_{2}, u_{1}+u_{3}$ and $u_{1}+u_{2}+u_{3}+u_{4}$. So, $B_{r_{1}, r_{2}}^{\prime}$ is the transform of $B_{r_{1}, r_{2}}$ defined in this way. Obviously, the system (4.15) is solvable iff the system

$$
\begin{equation*}
B_{r_{1}, r_{2}}^{\prime} x=e \tag{4.18}
\end{equation*}
$$

is solvable, where $e:=(1,1,1,1)^{\mathrm{T}}$.
We collect below a list of matrices which show all the possible forms for the matrices $B_{r_{1}, r_{2}}^{\prime}$ in the case in which $m_{1}, m_{2} \geqslant 2$:

$$
B_{r_{1}, r_{2}}^{\prime}=\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
s_{2} & s_{2} & r_{2} & r_{2} \\
s_{1} & r_{1} & s_{1} & r_{1} \\
r_{1} s_{2}+s_{1} r_{2} & r_{1} s_{2}+s_{1} r_{2} & r_{1} s_{2}+s_{1} r_{2} & r_{1} s_{2}+s_{1} r_{2}
\end{array}\right)
$$

for $r_{1} \neq 0, m_{1}, r_{2} \neq 0, m_{2}$, and setting $s_{1}:=m_{1}-r_{1}, s_{2}=m_{2}-r_{2}$;

$$
B_{m_{1}, r_{2}}^{\prime}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
s_{2} & s_{2} & 0 & 0 \\
0 & m_{1} & 0 & 0 \\
m_{1} s_{2} & m_{1} s_{2} & 0 & 0
\end{array}\right), \quad B_{r_{1}, m_{2}}^{\prime}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & m_{2} & 0 \\
s_{1} & 0 & s_{1} & 0 \\
s_{1} m_{2} & 0 & s_{1} m_{2} & 0
\end{array}\right),
$$

for $r_{2} \neq 0, m_{2}, s_{2}:=m_{2}-r_{2}$, and $r_{1} \neq 0, m_{1}, s_{1}:=m_{1}-r_{1}$;

$$
B_{0, r_{2}}^{\prime}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & r_{2} & r_{2} \\
0 & 0 & m_{1} & 0 \\
0 & 0 & r_{2} m_{1} & r_{2} m_{1}
\end{array}\right), \quad B_{r_{1}, 0}^{\prime}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & m_{2} & 0 & 0 \\
0 & r_{1} & 0 & r_{1} \\
0 & r_{1} m_{2} & 0 & r_{1} m_{2}
\end{array}\right),
$$

for $r_{2} \neq 0, m_{2}$, and $r_{1} \neq 0, m_{1}$;

$$
B_{0, m_{2}}^{\prime}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & m_{2} & 0 \\
0 & 0 & m_{1} & 0 \\
0 & 0 & m_{1} m_{2} & 0
\end{array}\right), \quad B_{m_{1}, 0}^{\prime}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & m_{2} & 0 & 0 \\
0 & m_{1} & 0 & 0 \\
0 & m_{1} m_{2} & 0 & 0
\end{array}\right)
$$

Proof of Lemma 4.17. By construction of the matrix $B_{r_{1}, r_{2}}^{\prime}$, we have $z=B_{r_{1}, r_{2}} x$ iff $B_{r_{1}, r_{2}}^{\prime} x=z^{\prime}$, where z^{\prime} is the vector $\left(z_{1}, z_{1}+z_{2}, z_{1}+z_{3}, z_{1}+z_{2}+z_{3}+z_{4}\right)^{\mathrm{T}}$. The claims from Lemma 4.17 can be easily verified by inspection of the matrices $B_{r_{1}, r_{2}}^{\prime}$.

Proof of Lemma 4.16. (i) Let $r_{1}=1$ and $r_{2} \neq 0, m_{2}$. Then, the system (4.15) reads

$$
\begin{gathered}
x_{2}=1 \\
\left(m_{2}-r_{2}\right) x_{1}+r_{2} x_{2}=0
\end{gathered}
$$

Hence, it is solvable. The case $r_{1}=0$ is analogous.
(ii) Suppose first that the system (4.15) is solvable. Hence, the vector $(1,0,0,0)^{\mathrm{T}}$ belongs to the range of the matrix $B_{r_{1}, r_{2}}$. Using Lemma 4.17, this implies that $r_{i} \neq 0$, $m_{i} / 2, m_{i}, i=1,2$. Conversely, suppose that $r_{i} \neq 0, m_{i} / 2, m_{i}, i=1,2$. It is then not difficult to check that the system (4.18) is solvable.
(iii) Equivalently, we have to show that the system: $B_{m_{1}, r_{2}}^{\prime} x+B_{m_{1} / 2, r_{2}^{\prime}}^{\prime} y=e$ is solvable under the conditions: $r_{2} \neq 0, m_{2}$ and $r_{2}^{\prime} \neq m_{2} / 2$. Indeed, this system reads

$$
\begin{aligned}
& x_{2}+y_{2}+y_{3}=1, \\
& \left(m_{2}-r_{2}\right)\left(x_{1}+x_{2}\right)+\left(m_{2}-r_{2}^{\prime}\right)\left(y_{1}+y_{2}\right)+r_{2}^{\prime}\left(y_{3}+y_{4}\right)=1, \\
& m_{1} x_{2}+\frac{m_{1}}{2}\left(y_{1}+y_{2}+y_{3}+y_{4}\right)=1 \\
& m_{1}\left(m_{2}-r_{2}\right)\left(x_{1}+x_{2}\right)+\frac{m_{1} m_{2}}{2}\left(y_{1}+y_{2}+y_{3}+y_{4}\right)=1 .
\end{aligned}
$$

One can easily check that it is solvable. (iv) can be checked in the same way.

We can now characterize when the cut family $\mathscr{F}_{h, h^{\prime}}$ is full-dimensional, for $1 \leqslant h<h^{\prime} \leqslant h$. To simplify the notation, we state the result for the indices $h=1, h^{\prime}=2$.

Proposition 4.19. If $m_{1}=m_{2}=1$, then the family $\mathscr{F}_{1,2}$ is full-dimensional iff there exists a root pattern $r \in \mathscr{P}$ such that $\left(r_{1}, r_{2}\right)$ is equal to $(1,0)$ or to $(0,1)$.

If $m_{1}=1$ and $m_{2} \geqslant 2$, then $\mathscr{F}_{1,2}$ is full-dimensional iff there exists a root pattern $r \in \mathscr{P}$ such that $r_{2} \neq 0, m_{2}$.

Now suppose that $m_{1}, m_{2} \geqslant 2$. Then, $\mathscr{F}_{1,2}$ is full-dimensional iff one of the following conditions (i) or (ii) holds:
(i) There exists $r \in \mathscr{P}$ such that $r_{i} \notin\left\{0, m_{i} / 2, m_{i}\right\}$ for $i=1,2$.
(ii) For every $r \in \mathscr{P}, r_{1} \in\left\{0, m_{1} / 2, m_{1}\right\}$ or $r_{2} \in\left\{0, m_{2} / 2, m_{2}\right\}$ and one of the conditions (iia)-(iic) holds:
(iia) $A_{1} \neq \varnothing$ and $B_{1} \neq \varnothing$;
(iib) $A_{2} \neq \varnothing$ and $B_{2} \neq \varnothing$;
(iic) $A_{1}=A_{2}=\varnothing$, there exists $r \in \mathscr{P}$ such that $r_{1}=m_{1} / 2$ and $r_{2} \notin\left\{0, m_{2} / 2, m_{2}\right\}$, and there exists $r^{\prime} \in \mathscr{P}$ such that $r_{1}^{\prime} \notin\left\{0, m_{1} / 2, m_{1}\right\}$ and $r_{2}^{\prime}=m_{2} / 2$.
The sets $A_{i}, B_{i}(i=1,2)$ are defined by

$$
\begin{aligned}
A_{i} & :=\left\{\left(r_{1}, r_{2}\right) \mid r \in \mathscr{P} \text { and } r_{i}=0, m_{i}\right\} \backslash\left\{(0,0),\left(0, m_{2}\right),\left(m_{1}, 0\right),\left(m_{1}, m_{2}\right)\right\}, \\
B_{i} & :=\left\{\left(r_{1}, r_{2}\right) \mid r \in \mathscr{P} \text { and } r_{i}=m_{i} / 2\right\} \backslash\left\{\left(m_{1} / 2, m_{2} / 2\right)\right\} .
\end{aligned}
$$

Proof. If $m_{1}=m_{2}=1$ then $\mathscr{F}_{1,2}$ is full-dimensional iff it contains a non-zero vector, i.e. if there exists $r \in \mathscr{P}$ with $\left(r_{1}, r_{2}\right)=(0,1)$ or $(1,0)$. The case $m_{1}=1, m_{2} \geqslant 2$ follows using Lemma 4.16(i). We now suppose that $m_{1}, m_{2} \geqslant 2$. If there exists $r \in \mathscr{P}$ such that $r_{i} \notin\left\{0, m_{i} / 2, m_{i}\right\}$ for $i=1$, 2, then $\mathscr{F}_{1,2}$ is full-dimensional by Lemma 4.16(ii). So, we now suppose that $r_{1} \in\left\{0, m_{1} / 2, m_{1}\right\}$ or $r_{2} \in\left\{0, m_{2} / 2, m_{2}\right\}$ for every $r \in \mathscr{P}$. Hence, for every $r \in \mathscr{P}$,

$$
\left(r_{1}, r_{2}\right) \in A_{1} \cup A_{2} \cup B_{1} \cup B_{2} \cup\left\{(0,0),\left(0, m_{2}\right),\left(m_{1}, 0\right),\left(m_{1}, m_{2}\right),\left(m_{1} / 2, m_{2} / 2\right)\right\} .
$$

If $A_{1} \neq \varnothing$ and $B_{1} \neq \varnothing$, then $\mathscr{F}_{1,2}$ is full-dimensional by Lemma 4.16(iii). Similarly, $\mathscr{F}_{1,2}$ is full-dimensional if $A_{2} \neq \varnothing$ and $B_{2} \neq \varnothing$. Therefore, we can now suppose that one of A_{i} and B_{i} is empty for $i=1,2$. We claim that

$$
\mathscr{F}_{1,2} \text { is full dimensional } \Leftrightarrow \text { (iic) holds. }
$$

Suppose first that $\mathscr{F}_{1,2}$ is full-dimensional. We show that $A_{1}=A_{2}=\varnothing$. By the above, we know that one of A_{i} or B_{i} is empty for $i=1$, 2. If $A_{1}=B_{2}=\varnothing$ then, using Lemma 4.17, we obtain that the set $\mathscr{F}_{1,2}$ is contained in the hyperplane H_{1}, in contradiction with its full-dimensionality. Similarly, if $A_{2}=B_{1}=\varnothing, \mathscr{F}_{1,2}$ is contained in the hyperplane H_{2}. Finally, if $B_{1}=B_{2}=\varnothing$, then $\mathscr{F}_{1,2}$ is contained in H_{0}. We obtain a contradiction with the full-dimensionality of $\mathscr{F}_{1,2}$. This shows that $A_{1}=A_{2}=\varnothing$. If \mathscr{P} contains no pattern r satisfying $r_{1}=m_{1} / 2$ and $r_{2} \notin\left\{0, m_{2} / 2, m_{2}\right\}$, then one deduces again from Lemma 4.17 that $\mathscr{F}_{1,2}$ is contained in the hyperplane H_{2}, yielding a contradiction. So, we have shown that (iic) holds under the assumption that $\mathscr{F}_{1,2}$ is full-dimensional.

Conversely, let us suppose that (iic) holds. Let $r, r^{\prime} \in \mathscr{P}$ as in (iic). We deduce from Lemma 4.16(iv) that $\mathscr{F}_{1,2}$ is full-dimensional.

We conclude with a few remarks. We have seen in Lemma 4.1 that a necessary condition for the inequality (2.4) to be facet defining is that the matrix $M_{\mathscr{P}}$ has full column rank. Another similar necessary condition can be formulated in terms of the incidence matrix $A_{\mathscr{P}}$ of the set \mathscr{P} of root patterns. More precisely, let $A_{\mathscr{P}}$ denote the matrix the rows of which are the root patterns $r \in \mathscr{P}$. Hence, $A_{\mathscr{P}}$ has k columns and $|\mathscr{P}|$ rows.

Proposition 4.20. If the inequality (2.4) defines a facet of the cut polytope, then

$$
\operatorname{rank} A_{\mathscr{P}}=k
$$

Proof. Suppose that rank $A_{\mathscr{P}} \leqslant k-1$. We show that the inequality (2.4) is not facet defining. Consider the system of equations

$$
A_{\mathscr{P}} z=\frac{\sigma+\gamma}{2} e
$$

where e denotes the all-ones vector. This system has at least one solution, namely, the vector $a:=\left(a_{1}, \ldots, a_{k}\right)$ (recall (2.5)). As rank $A_{\mathscr{P}} \leqslant k-1$, we can find another solution $z \neq a$ of the system

$$
A_{\mathscr{P}} z=\frac{\sigma+\gamma}{2} e
$$

Then, every root of (2.4) satisfies the equation

$$
\sum_{h \in K^{*}}\left(z_{h}\right)^{2} \sum_{i<j, i, j \in V_{h}} x_{i j}+\sum_{1 \leqslant h<h^{\prime} \leqslant k} z_{h} z_{h^{\prime}} \sum_{i \in V_{h}, j \in V_{h}^{\prime}} x_{i j}=\frac{\sigma^{2}-\gamma^{2}}{4} .
$$

This shows that (2.4) is not facet defining.

We group below several necessary conditions that can be deduced from our results.

Corollary 4.21. Suppose that the inequality (2.4) is facet defining. Then, the following conditions hold:
(i) $|\mathscr{P}| \geqslant\binom{ k}{2}+\left|K^{*}\right|$.
(ii) Suppose that $m_{h}=1$ for some $h=1, \ldots, k$. Then, there exist two root patterns r and r^{\prime} such that $r_{h}=0$ and $r_{h}^{\prime}=1$.
(iii) Suppose that $m_{h} \geqslant 2$ for some $h=1, \ldots, k$. Then, there exist two root patterns r and r^{\prime} such that $r_{h}^{\prime} \notin\left\{r_{h}, m_{h}-r_{h}\right\}$. Moreover, $m_{h} \geqslant a_{1} \wedge \cdots \wedge a_{h-1} \wedge a_{h+1} \wedge \cdots \wedge a_{k}$.
(iv) Suppose that $m_{h}, m_{h^{\prime}} \geqslant 2$ for some $h \neq h^{\prime} \in\{1, \ldots, k\}$. Then, there exist two root patterns r and r^{\prime} such that $r_{h}^{\prime}-r_{h^{\prime}}^{\prime} \notin\left\{r_{h}-r_{h^{\prime}}, m_{h}-r_{h}-m_{h^{\prime}}+r_{h^{\prime}}\right\}$.

Proof. (i) follows from Lemma 4.1. In what follows, we let e denote the all-ones vector (of appropriate dimension).
(ii) Let $m_{h_{0}}=1$. Suppose that there exists $\rho \in \mathbb{Z}$ such that $r_{h_{0}}=\rho$ for all $r \in \mathscr{P}$. Let $u \in \mathbb{R}^{k}$ be defined by $u_{h_{0}}=1$ and $u_{h}=0$ for $h \in\{1, \ldots, k\} \backslash\left\{h_{0}\right\}$. Then,

$$
A_{\mathscr{P}} u=\rho e .
$$

On the other hand,

$$
A_{\mathscr{P}} a=\frac{\sigma+\gamma}{2} e .
$$

This shows that rank $A_{\mathscr{P}}<k$. Therefore, (2.4) is not facet defining, by Proposition 4.20.
(iii) Suppose that there exist $h_{0} \in K^{*}$ and $\rho \in \mathbb{Z}$ such that $r_{h_{0}} \in\left\{\rho, m_{h_{0}}-\rho\right\}$ for all $r \in \mathscr{P}$. Let $v \in \mathbb{R}^{J}$ be defined by $v_{h_{0} h_{0}}:=1$ and $v_{h h^{\prime}}:=0$ for $h h^{\prime} \in J \backslash\left\{h_{0} h_{0}\right\}$. Then,

$$
M_{\mathscr{P}} v=\rho\left(m_{h_{0}}-\rho\right) e .
$$

On the other hand, defining $\alpha \in \mathbb{R}^{J}$ by setting $\alpha_{h h^{\prime}}:=a_{h} a_{h^{\prime}}$ for $h h^{\prime} \in J$, we have

$$
M_{\mathscr{P}} \alpha=\frac{\sigma^{2}-\gamma^{2}}{4} e .
$$

This shows that $M_{\mathscr{P}}$ does not have full column rank. Therefore, (2.4) is not facet defining, by Lemma 4.1. This shows the first part of (iii). Now suppose, for instance, that $2 \leqslant m_{1}<a_{2} \wedge \cdots \wedge a_{k}$. Let $r \neq r^{\prime} \in \mathscr{P}$. Then, $0=\sum_{1 \leqslant h \leqslant k} a_{h}\left(r_{h}-r_{h}^{\prime}\right)$, which implies that $r_{1}=r_{1}^{\prime}$ as $a_{2} \wedge \cdots \wedge a_{k}$ divides $r_{1}-r_{1}^{\prime}$ and $\left|r_{1}-r_{1}^{\prime}\right| \leqslant m_{1}$. We obtain a contradiction.
(iv) Let $1 \leqslant h_{0}<h_{1} \leqslant k$ such that $m_{h_{0}}, m_{h_{1}} \geqslant 2$. Suppose that there exists $\rho \in \mathbb{Z}$ such
that $r_{h_{1}}-r_{h_{0}} \in\left\{\rho, m_{h_{1}}-m_{h_{0}}-\rho\right\}$ for all $r \in \mathscr{P}$. Let $w \in \mathbb{R}^{J}$ be defined by $w_{h_{0} h_{0}}=w_{h_{1} h_{1}}:=$ $-1, w_{h_{0} h_{1}}:=1$ and $w_{h h^{\prime}}:=0$ otherwise. Then,

$$
M_{\mathscr{P}} W=\rho\left(\rho+m_{h_{0}}-m_{h_{1}}\right) e
$$

As in (iii), this shows that $M_{\mathscr{P}}$ does not have full column rank and, thus, that (2.4) is not facet defining.

Example 4.22. Consider the sequence $b:=(1,1,1,1,1,2,2,4,4)$; its gap is equal to 1. This is the case: $n=9, k=3,\left(a_{1}, a_{2}, a_{3}\right)=(1,2,4)$ and $\left(m_{1}, m_{2}, m_{3}\right)=(5,2,2)$. There are four root patterns: $r=(3,1,1),(1,2,1),(5,0,1)$ and $(1,0,2)$. Hence, rank $A_{\mathscr{P}}=3$. However, the inequality (2.4) is not facet defining in this case as there are too few root patterns. Indeed, one needs at least $\binom{k}{2}+\left|K^{*}\right|=6$ root patterns!

As another example, consider the sequence $b:=(1,1,1,1,2,2)$ with gap 0 . There are only two root patterns: $(4,0)$ and $(2,1)$. Hence (2.4) is not facet defining.

5. Sequences with Two and Three Values

In this section, we show that conjecture 1.4 holds for sequences with two values. We start with a lemma which is a refinement of Lemma 3.5.

Lemma 5.1. Let $a_{1}, a_{2} \geqslant 1$ be relatively prime integers. Then, there exist integers u_{1} and u_{2} satisfying

$$
\left\{\begin{array}{l}
u_{1} a_{1}-u_{2} a_{2}=1, \\
0 \leqslant u_{1} \leqslant a_{2}, 0 \leqslant u_{2} \leqslant a_{1}
\end{array} .\right.
$$

Moreover, if $a_{1}, a_{2} \geqslant 2$, then u_{1} and u_{2} can be chosen to satisfy

$$
1 \leqslant u_{1} \leqslant a_{2}-1, \quad 1 \leqslant u_{2} \leqslant a_{1}-1
$$

Proof. As $a_{1} \wedge a_{2}=1$, we can find integers $u_{1}, u_{2} \geqslant 0$ such that $u_{1} a_{1}-u_{2} a_{2}=1$. Choose such u_{1} and u_{2} in such a way that $\max \left(u_{1}, u_{2}\right)$ is minimum. Then, $u_{1} \leqslant a_{2}$. Indeed, suppose that $u_{1}>a_{2}$. This implies that $u_{2}>a_{1}$. Indeed, $u_{1} a_{1}=1+a_{2} u_{2}>a_{2} a_{1}$, which yields $u_{2} \geqslant a_{1}$. But, then, $u_{1}^{\prime}:=u_{1}-a_{2}$ and $u_{2}^{\prime}:=u_{2}-a_{1}$ are non-negative integers satisfying $u_{1}^{\prime} a_{1}-u_{2}^{\prime} a_{2}=1$, which contradicts the minimality of $\max \left(u_{1}, u_{2}\right)$. Therefore, $u_{1} \leqslant a_{2}$; this implies that $u_{2}<a_{1}$ as $u_{2} a_{2}=u_{1} a_{1}-1<a_{1} a_{2}$. Moreover, $u_{1}=0$, or $u_{1}=a_{2}$ or $u_{2}=0$ can occur only if one of a_{1} or a_{2} is equal to 1 .

Theorem 5.2. Let $a_{1}, a_{2} \geqslant 1$ be relatively prime integers. Let $b \in \mathbb{Z}^{n}$ take the two values a_{1} and a_{2} with respective multiplicities m_{1} and m_{2}. If the inequality (2.4) defines a facet of CUT_{n}, then $\gamma(b)=1$.

Proof. We first rule out the case in which one of m_{1} or m_{2} is equal to 1 . Say, $m_{1}=1$. If (2.4) is facet defining then, by Corollary 4.21, there are at least two root patterns $r=\left(0, r_{2}\right)$ and $r^{\prime}=\left(1, r_{2}^{\prime}\right)$. Hence, $0=a_{1}\left(r_{1}^{\prime}-r_{1}\right)+a_{2}\left(r_{2}^{\prime}-r_{2}\right)$, i.e. $0=a_{1}+$ $a_{2}\left(r_{2}^{\prime}-r_{2}\right)$. This implies that a_{2} divides a_{1}, i.e. that $a_{2}=1$. Then, $r_{2}^{\prime}=r_{2}-a_{1}$, which yields $a_{1} \leqslant m_{2}$. Therefore, the sequence

$$
b=(a_{1}, \underbrace{1, \ldots, 1}_{m_{2}})
$$

has gap $\gamma(b) \leqslant 1$. From now on, we can suppose that $m_{1}, m_{2} \geqslant 2$.

Let v_{1} and v_{2} be integers satisfying $v_{1} a_{1}-v_{2} a_{2}=1$ and $0 \leqslant v_{1} \leqslant a_{2}, 0 \leqslant v_{2} \leqslant a_{1}$. Set $w_{1}:=a_{2}-v_{1}$ and $w_{2}:=a_{1}-v_{2}$. Then, $-a_{1} w_{1}+a_{2} w_{2}=1$. Suppose that b has gap $\gamma \geqslant 2$. Then, applying Lemma 3.3, we obtain:
(a) $r_{1}<v_{1}$ or $m_{2}-r_{2}<v_{2}$, and
(b) $m_{1}-r_{1}<w_{1}$ or $r_{2}<w_{2}$.

There are four cases to be considered.
Case 1: $r_{1}<v_{1}$ and $m_{1}-r_{1}<w_{1}$. Then, $m_{1}<v_{1}+w_{1}=a_{2}$. By Corollary 4.21, we deduce that (2.4) is not facet inducing.

Case 2: $m_{2}-r_{2}<v_{2}$ and $r_{2}<w_{2}$. Then, $m_{2}<a_{1}$, which implies as before that (2.4) is not facet defining.

Case 3: $r_{1}<v_{1}$ and $r_{2}<w_{2}$. Suppose that there is another pattern $r^{\prime}=\left(r_{1}^{\prime}, r_{2}^{\prime}\right)$ for the roots. Then, from $a_{1}\left(r_{1}-r_{1}^{\prime}\right)+a_{2}\left(r_{2}-r_{2}^{\prime}\right)=0$, we obtain

$$
r_{1}^{\prime}=r_{1}+p a_{2}, \quad r_{2}^{\prime}=r_{2}-p a_{1}
$$

for some $p \in \mathbb{Z}$. Hence, $p=\left(r_{1}^{\prime}-r_{1}\right) / a_{2} \geqslant-r_{1} / a_{2}>-v_{1} / a_{2} \geqslant-1$ and $p=\left(r_{2}-r_{2}^{\prime}\right) / a_{1} \leqslant$ $r_{2} / a_{1}<w_{2} / a_{1} \leqslant 1$. Therefore, $p=0$. This shows that $r^{\prime}=r$, i.e. there is a unique pattern for the roots of (2.4). Therefore, (2.4) is not facet inducing.

Case 4: $m_{2}-r_{2}<v_{2}$ and $m_{1}-r_{1}<w_{1}$. This case is similar to Case 3.
We can also show that Conjecture 1.4 holds for some sequences with three values. We state a preliminary result.

LEMMA 5.3. Suppose that a_{1}, a_{2} and a_{3} are pairwise relatively prime. If the gap satisfies $\gamma \geqslant 2$, then $r_{i} \neq r_{i}^{\prime}$ for $i=1,2,3$, for any two distinct root patterns r and r^{\prime}.

Proof. Let r and r^{\prime} be two distinct root patterns such that $r_{3}=r_{3}^{\prime}$. From the relation $\sum_{1 \leqslant i \leqslant 3} a_{i}\left(r_{i}-r_{i}^{\prime}\right)=0$ it follows that $a_{1}\left(r_{1}-r_{1}^{\prime}\right)+a_{2}\left(r_{2}-r_{2}^{\prime}\right)=0$. As $a_{1} \wedge a_{2}=1$, we deduce that

$$
r_{1}=r_{1}^{\prime}+z a_{2}, \quad r_{2}=r_{2}^{\prime}-z a_{1}
$$

for some integer z. We can suppose, for instance, that $z \geqslant 1$. Then, $1 \leqslant z=\left(r_{1}-\right.$ $\left.r_{1}^{\prime}\right) / a_{2} \leqslant r_{1} / a_{2}$ and $1 \leqslant z=\left(r_{2}^{\prime}-r_{2}\right) / a_{1} \leqslant\left(m_{2}-r_{2}\right) / a_{1}$, i.e. $r_{1} \geqslant a_{2}$ and $m_{2}-r_{2} \geqslant a_{1}$. Let u_{1} and u_{2} be integers such that $u_{1} a_{1}-u_{2} a_{2}=1,0 \leqslant u_{1} \leqslant a_{2}$ and $0 \leqslant u_{2} \leqslant a_{1}$. Then, the assumption of Lemma 3.3 holds as $r_{1} \geqslant a_{2} \geqslant u_{1}$ and $m_{2}-r_{2} \geqslant a_{1} \geqslant u_{2}$. Therefore, the gap is 0 or 1 by Lemma 3.3.

Proposition 5.4. Conjecture 1.4 holds for any sequence taking the values a_{1}, a_{2} and $a_{3}:=a_{1}+1$, where $a_{1}, a_{2} \geqslant 1$ are integers such that $a_{1} \wedge a_{2}=\left(a_{1}+1\right) \wedge a_{2}=1$.

Proof. Suppose that the gap satisfies $\gamma \geqslant 2$. Note that $u a_{1}+v\left(a_{1}+1\right)=1$ holds for $(u, v)=(-1,1)$. Applying Lemma 3.3, we obtain that every root pattern r satisfies $m_{1}-r_{1}<1$ or $r_{3}<1$, i.e. $r_{1}=m_{1}$ or $r_{3}=0$. Using Lemma 5.3, this implies that there are at most two distinct root patterns. Therefore, the inequaltiy (1.2) is not facet defining, by Corollary 4.21 .

We conclude with some examples.
Example 5.5. Let $a_{1}:=2, a_{2}:=3$ and $a_{3}:=7$. Conjecture 1.4 holds for this sequence, i.e. the gap is 0 or 1 , or the inequality (2.4) does not define a facet of the cut polytope.

We distinguish 7 cases, according to the respective parities of m_{1}, m_{2} and m_{3}. (We indicate in each case what is the suitable partition realizing the minimum gap.)
(a) m_{1}, m_{2} even, m_{3} odd; then $\gamma=1$, as the sequence $(2,2,3,3,7)$ has gap 1 (with partition: 27 ; by this we mean the partition with 2,7 on one side and $2,3,3$ on the other side).
(b) m_{1}, m_{3} even, m_{3} odd; then $\gamma=1$ as the sequence $(2,2,3,7,7)$ has gap 1 (with partition: 227).
(c) The sequence $(2,3,3,7,7)$ has gap 2 , but does not define a facet of CUT_{5}. This is the smallest case of m_{1} odd, m_{2}, m_{3} even. The next cases to consider are:
(i) $m_{1}=3$ and $m_{2}=m_{3}=2$; then the sequence $(2,2,2,3,3,7,7)$ has gap 0 (with partition: 2227).
(ii) $m_{1}=1, m_{2}=4$ and $m_{3}=2$; then the sequence $(2,3,3,3,3,7,7)$ has gap 0 (with partition: 77).
(iii) $m_{1}=1, m_{2}=2$ and $m_{3}=4$; then the sequence $(2,3,3,7,7,7,7)$ has gap 2 . In fact, the sequence

$$
(2,3,3, \underbrace{7, \ldots, 7}_{2 m})
$$

has gap 2. The roots are the subsets S satisfying $b(S)=(\sigma+2) / 2=5+7 m$. Hence, there is only one root pattern; namely, $r=(1,1, m)$. Therefore, the corresponding inequality (2.4) does not define a facet of the cut polytope.
(d) m_{1} even, m_{2}, m_{3} odd; then $\gamma=0$ as the sequence $(2,2,3,7)$ has gap 0 (with partition: 7).
(e) m_{2} even, m_{1}, m_{3} odd; then $\gamma=1$ as the sequence $(2,3,3,7)$ has gap 1 (with partition: 233).
(f) m_{3} even, m_{1}, m_{2} odd; then $\gamma=1$ as the sequence $(2,3,7,7)$ has gap 1 (with partition: 37).
(g) In the case m_{1}, m_{2}, m_{3} odd, the gap is $\gamma=0$, except $\gamma=2$ for the sequences

$$
(2,3, \underbrace{7, \ldots, 7}_{2 m+1})
$$

(then, $(0,0, m+1)$ is the only root pattern) and

$$
(2,2,2,3, \underbrace{7, \ldots, 7}_{2 m+1})
$$

(then, $(3,1, m)$ and $(1,0, m+1)$ are the only root patterns).
Example 5.6. Let $a_{1}:=2, a_{2}:=3$ and $a_{3}:=5$. Conjecture 1.4 holds for this sequence, i.e. the gap is 0 or 1 , or the inequality (2.4) does not define a facet of the cut polytope. We proceed as in Example 5.5.
(a) The sequence $(2,2,3,3,5)$ has gap 1 (with partition: 35).
(b) The sequence $(2,2,3,5,5)$ has gap 1 (with partition: 225).
(c) The sequence $(2,2,2,3,3,5,5)$ has gap 0 (with partition: 335) as well as the sequence $(2,3,3,3,3,5,5)$ (with partition: 3333). On the other hand, the sequence

$$
(2,3,3, \underbrace{5, \ldots, 5}_{2 m})
$$

has gap 2. The roots are the sets S satisfying $b(S)=(\sigma+2) / 2=5(m+1)$. Hence, there are two possible root patterns; namely, $r=(0,0, m+1)$ and $(1,1, m)$. Hence, we are in the non-facet case, by Corollary 4.21.
(d) The sequence $(2,3,3,5)$ has gap 1 (with partition: 25).
(e) The sequence $(2,3,5,5)$ has gap 1 (with partition: 35).
(f) The sequence $(2,2,2,2,3,5)$ has gap 0 (with partition: 2222) as well as the sequence $(2,2,3,3,3,5)$ (with partition: 333). On the other hand, the sequence

$$
(2,2,3,5, \ldots, 5)
$$

$2 m+1$
has gap 2 . The roots should satisfy $b(S)=7+5 m$; hence, the possible root patterns are $r=(1,0, m+1)$ and $(2,1, m)$. Hence, the inequality (2.4) is not facet defining in this case.
(g) The sequence $(2,3,5)$ has gap 0 (with partition: 23).

References

1. D. Avis and V. P. Grishukhin, A bound on the k-gonality of the hypermetric cone and related complexity problems, Comput. Geom.: Theory Applics, 2 (1993), 241-254.
2. M. Deza, On the Hamming geometry of unitary cubes, Sov. Phys. Dokl., 5 (1961) 940-943 (translated from Dokl. Akad. Nauk SSR 134 (1960), 1037-1040).
3. M. Deza, Realizability of distance matrices in unit cubes (in Russian), Prob. Kibernitiki, 7 (1962) 31-42.
4. M. Deza, Matrices de formes quadratiques non négatives pour des arguments binaires, C. R. Acad. Sci. Paris, 277(A) (1973), 873-875.
5. M. Deza and M. Laurent, Facets for the cut cone I, Math. Programm., 56(2) (1992), 121-160.
6. M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide to the Theory of NPCompleteness, W. H. Freeman, San Francisco, 1979.
7. M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, Berlin, 1988.
8. M. X. Goemans and D. P. Williamson, $0 \cdot 787$-approximation algorithms for MAX CUT and MAX 2SAT, in: Proceedings of the 26th Annual Symposium on Theory of Computing, Montréal, 1994, pp. 422-431.
9. J. B. Kelly, Hypermetric spaces, Lecture Notes in Mathematics, vol. 490, Springer-Verlag, Berlin, 1975, pp. 17-31.
10. L. Lovász, J. Spencer and K. Vesztergombi, Discrepancy of set-systems and matrices, Europ. J. Combin., 7 (1986) 151-160.
11. I. J. Schoenberg, Remarks to M. Fréchet's article 'Sur la définition axiomatique d'une classe d'espaces vectoriels distanciés applicables vectoriellement sur l'espace de Hilbert', Ann. Math., 36 (1935), 724-732.
12. I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Am. Math. Soc., 44 (1938), 522-536.

Received 27 February 1995 and accepted in revised form 2 May 1995
Monique Laurent \dagger
LIENS, Ecole Normale Supérieure, 45 rue d'Ulm, 75230 Paris cedex 05, France

Svatopluk Poljak
Fakultät für Mathematik und Informatik, Universität Passau,
Innstrasse 33, 94030 Passau, Germany
\dagger This work was done while the author visited CWI, Amsterdam.

[^0]: \dagger Svatopluk Poljak died on 2 April 1995.

