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 Gap Inequalities for the Cut Polytope

 M ONIQUE  L AURENT AND  S VATOPLUK  P OLJAK †

 We introduce a new class of inequalities valid for the cut polytope ,  which we call gap
 inequalities .  Each gap inequality is given by a finite sequence of integers ,  the ‘gap’ being
 defined as the smallest discrepancy arising when decomposing the sequence into two parts that
 are as equal as possible .  Gap inequalities include hypermetric inequalities and negative type
 inequalities ,  which have been extensively studied in the literature .  They are also related to a
 positive semidefinite relaxation of the max-cut problem .

 A natural question is to decide for which integer sequences the corresponding gap
 inequalities define facets of the cut polytope .  For this property ,  we present a set of necessary
 and suf ficient conditions in terms of the root patterns and of the rank of an associated matrix .
 We also prove that there is no facet defining inequality with gap greater than one and which is
 induced by a sequence of integers using only two distinct values .
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 1 .  I NTRODUCTION

 Set  V  : 5  h 1 ,  .  .  .  ,  n j .  Let  b  5  ( b 1  ,  .  .  .  ,  b n )  P  Z n   be a sequence of  n  integers .  We define
 the  gap  g  ( b ) of  b  by

 (1 . 1)  g  ( b )  : 5  min
 S

 u b ( S )  2  b ( V  \  S ) u  ,

 where  b ( S )  : 5 o i P S  b i   for any subset  S  of  V .  Equivalently ,

 g  ( b )  5  min
 x P h Ú 1 j n

 u x  T b u .

 This notion of gap for a sequence  b  P  Z n   coincides with the notion of discrepancy
 considered in [10] for arbitrary matrices ;  we specialize here the notion to the case of
 matrices having only one row .

 Computing the gap of an integer sequence is a hard problem .  For instance ,  it is an
 NP-complete problem to decide if the gap is equal to zero .  Indeed ,  the sequence  b  has
 gap zero if f it can be partitioned into two parts of equal weights .  This is the partition
 problem ,  which is NP-complete ;  see [6] .

 Given a sequence  b  P  Z n ,  we consider the following inequality in the ( n
 2 ) variables  x i j

 (1  <  i  ,  j  <  n ) :

 (1 . 2)  O
 1 < i , j < n

 b i b j x i j  <
 s  ( b ) 2  2  g  ( b ) 2

 4
 ,

 where  s  ( b )  : 5  o 1 < i < n  b i  .  The inequality (1 . 2) is called a  gap inequality .
 Our main motivation for introducing the inequalities (1 . 2) lies in their connection

 with the cut polytope CUT n ;  indeed ,  they define valid inequalities for CUT n .  The
 following classes of gap inequalities have been extensively studied in the literature .
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 (i)  the inequalities (1 . 2) with  s  ( b )  5  0 (which implies that  g  ( b )  5  0) ,  known as the
 negati y  e type inequalities ;
 (ii)  the inequalities (1 . 2) with  s  ( b )  5  1 (which implies that  g  ( b )  5  1) ,  known as the
 hypermetric inequalities .
 Negative type inequalities were used by Schoenberg [11 ,  12] for the characterization of
 the distance spaces that are isometrically  l 2 -embeddable .  Hypermetric inequalities were
 introduced by Deza [2] and later ,  independently ,  by Kelly [9] in connection with the
 study of  l 1 -embeddable distance spaces .  Among the hypermetric inequalities ,  large
 subclasses are known that define facets of the cut polytope ;  see ,  e . g .,  [4 ,  5] .  On the
 other hand ,  for the case  s  5  0 of the negative type inequalities ,  the following is known .

 P ROPOSITION  1 . 3 [3] .  E y  ery inequality  (1 . 2)  with  s  ( b )  5  0  is implied by the
 inequalities  (1 . 2)  with  s  ( b )  5  1 .

 In fact ,  using symmetries ,  this yields that every gap inequality with gap  g  5  0 is
 implied by the gap inequalities with gap  g  5  1 .  Therefore ,  no gap inequality with gap 0
 defines a facet of the cut polytope .

 Hence the question naturally arises of deciding what happens in the case  g  >  2 .  So
 far ,  we have not been able to find any example of a gap inequality with  g  >  2 and that
 defines a facet of CUT n .  This leads us to conjecture that none exists .

 C ONJECTURE  1 . 4 .  For any integer sequence  b  P  Z n ,  if the inequality (1 . 2) defines a
 facet of the cut polytope CUT n  ,  then  g  ( b )  5  1 .

 In view of the above remarks ,  in order to prove Conjecture 1 . 4 it suf fices to show
 that every gap inequality that defines a facet of CUT n   has gap  g  P  h 0 ,  1 j .  In this paper ,
 we give several results in connection with this conjecture .

 The paper is organized as follows .  In Section 2 we present some preliminary results .
 In particular ,  we explain how the gap inequalities (1 . 2) arise in connection with the cut
 polytope CUT n   and how they relate with the inequalities defining a positive
 semidefinite relaxation of CUT n .  We group in Section 3 several results on the gap .  We
 present in Section 4 a characterization of the gap inequalities that define facets of the
 cut polytope ,  which is in terms of conditions on the possible root patterns (i . e .  in the
 n -space rather than in the (  n

 2 )-space ,  where the inequalities live) .  We show in Section 5
 that our conjecture on gap facets holds for all the sequences that take two distinct
 values (in absolute value) .

 2 .  P RELIMINARIES

 The cut polytope .  Set  V  : 5  h 1 ,  .  .  .  ,  n j .  Let ( n
 2 ) denote the set of unordered pairs  ij  with

 1  <  i  ,  j  <  n  (i . e .   ij  and  ji  are considered identical) .  Given a subset  S  ‘  V ,  the set

 d  ( S )  : 5  h ij  P  ( n
 2 ) :  u S  >  h i ,  j j u  5  1 j

 is called the  cut  determined by  S .  Then ,  the polytope

 CUT n  : 5  Conv h χ  d  ( S )  u  S  ‘  V  j ,

 which is defined as the convex hull of the incidence vectors of all cuts ,  is called the  cut
 polytope .  (For a set  A  ‘  ( n

 2 ) ,  χ  A  P  h 0 ,  1 j (  n
 2 )  denotes its incidence vector ,  defined by

 χ  A
 ij  5  1   if  ij  P  A  and by  χ  A

 ij  5  0 if  ij  P  ( n
 2 )  \  A . ) Given  y  0  P  R   and  y  P  R (  n

 2 ) ,  the inequality
 y  T x  <  y  0   is said to be  y  alid  for CUT n   if it is satisfied by all  x  P  CUT n   or ,  equivalently ,
 by the incidence vectors of all cuts .  A cut  d  ( S ) for which equality  y  T χ  d  ( S )  5  y  0  holds is
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 called a  root  of the inequality  y  T x  <  y  0 ;  we may also say that the set  S  itself defines a
 root of  y  T x  <  y  0  .  The inequality  y  T x  <  y  0  defines a  facet  of CUT n   if there exist (  n

 2 ) roots
 the incidence vectors of which are af finely independent .

 L EMMA  2 . 1 .  The inequality  (1 . 2)  is  y  alid for the cut polytope  CUT n  . A cut  d  ( S )  is a
 root of  (1 . 2)  if f b ( S )  5  ( s  2  g  ) / 2  or b ( S )  5  ( s  1  g  ) / 2 .

 P ROOF .  For  S  ‘  V ,  we have :   o ij P d  ( S )  b i b j  5  b ( S )( s  ( b )  2  b ( S )) ,  which is less than or
 equal to [ s  ( b ) 2  2  g  ( b ) 2 ] / 4 by definition of the gap  g  ( b ) .  h

 Given a weight function  w  P  R (  n
 2 ) ,  the  max - cut problem  is the problem of finding a

 cut  d  ( S ) the weight  o ij P d  ( S )  w i j   of which is maximum ;  it can be formulated as

 (2 . 2)  max( w  T x  u  x  P  CUT n ) .

 The max-cut problem is NP-hard [6] .  In fact ,  computing the gap of a sequence  b  P  Z n

 can be formulated as an instance of the max-cut problem .  Namely ,  set  w i j  : 5  b i b j   for all
 ij  P  ( n

 2 ) .  Then ,

 g  ( b )  <  g  ï  max( w  T x  u  x  P  CUT n )  >
 s  ( b ) 2  2  g  2

 4
 .

 (This is actually the original method used by Karp for deriving the NP-hardness of the
 max-cut problem from the NP-completeness of the partition problem ,  using  g  5  0 in
 the above argument . )

 Root patterns .  Let  b  5  ( b 1  ,  .  .  .  ,  b n )  P  Z n .  We let  s  ( b ) denote the sum  o 1 < i < n  b i   and
 g  ( b )   denote the gap of  b ,  defined by (1 . 1) .  We also denote  s  ( b ) and  g  ( b ) by  s   and  g  ,
 respectively ,  if there is no ambiguity .

 Let  Q n ( b ) denote the vector of  R ( n
 2 )  indexed by the pairs  ij  (1  <  i  ,  j  <  n ) and defined

 by
 Q n ( b ) i j  : 5  b i b j  for 1  <  i  ,  j  <  n .

 Hence ,  the inequality (1 . 2) reads :

 Q n ( b ) T x  <
 s  ( b ) 2  2  g  ( b ) 2

 4
 .

 It is convenient to look at the dif ferent values that are taken by the integers
 b 1  ,  .  .  .  ,  b n .  Let  k  denote the number of distinct coef ficients that enter in the sequence  b
 and let  a 1  ,  .  .  .  ,  a k   denote the distinct values taken by the entries of  b .  Then ,  the set  V  is
 partitioned into  V  5  V 1  <  ?  ?  ?  <  V k  ,  where  b j  5  a h   for all  j  P  V h  , h  5  1 ,  .  .  .  ,  k .  Let
 m h  : 5  u V h u   denote the multiplicity of entry  a h .  Then ,   n  5  m 1  1  ?  ?  ?  1  m k   and  s  ( b )  5
 m 1 a 1  1  ?  ?  ?  1  m k a k .  In other words ,   b  is the sequence

 (2 . 3)  b  5  ( a 1  ,  .  .  .  ,  a 1  ,  .  .  .  ,  a h  ,  .  .  .  ,  a h  ,  .  .  .  ,  a k  ,  .  .  .  ,  a k ) .
 C BDB E  C BDB E  C BDB E

 m 1  m h  m k

 Given a subset  S  ‘  V  and  r  : 5  ( r 1  ,  .  .  .  ,  r k )  P  N k
 1 ,  we say that  S  has  pattern r  5

 ( r 1  ,  .  .  .  ,  r k )   if  u S  >  V h u  5  r h   for  h  5  1 ,  .  .  .  ,  k .  Set

 K *  : 5  h h  P  h 1 ,  .  .  .  ,  k j  u  m h  >  2 j .

 Then ,  the inequality (1 . 2) can be rewritten as

 (2 . 4)  O
 h P K *

 ( a h ) 2 S  O
 i , j ,i ,j P V h

 x i j D  1  O
 1 < h , h 9 < k

 a h a h 9 S  O
 i P V h ,j P V h 9

 x i j D  <
 s  2  2  g  2

 4
 .
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 We can clearly suppose that the integers  a 1  ,  .  .  .  ,  a k   are relatively prime ,  i . e .  that
 a 1  ∧  ?  ?  ?  ∧  a k  5  1 .  (For two integers  a , b  >  1 , a  ∧  b  denotes their g . c . d . ) Due to switching ,
 as will be explained below ,  we can also assume without loss of generality that
 a 1  ,  .  .  .  ,  a k  >  1 .

 Let  d  ( S ) be a root of the inequality (2 . 4) .  As  d  ( S ) is defined by any of the two
 subsets  S  and  V  \  S ,  we can always assume that we choose  S  in such a way that
 b ( S )  5  ( s  1  g  ) / 2 .  Let  r h  : 5  u S  >  V h u   for  h  5  1 ,  .  .  .  ,  k .  Then ,   d  ( S ) is a root of (2 . 4) if f
 b ( S )  5  ( s  1  g  ) / 2 ,  i . e .  if

 (2 . 5)  O
 1 < i < k

 a i r i  5
 s  1  g

 2
 or ,  equivalently ,  g  5  O

 1 < i < k
 a i (2 r i  2  m i ) .

 Let  3   denote the set of possible patterns for the roots of (2 . 4) ,  i . e .   3   consists of the
 sequences  r  P  N k   for which (2 . 5) holds .  The members of  3   are called the  root patterns
 of the inequality (2 . 4) .

 Switching .  Given an integer sequence  b  P  Z n   and  S  ‘  V ,  we define another sequence
 b 9  P  Z n   by setting

 b 9 i  5  2 b i  if  i  P  S ,  b 9 i  5  b i  if  i  P  V  \  S .

 We say that  b 9  is obtained from  b  by  switching  on  S .  It is easy to check that  b  and  b 9
 have the same gap .

 L EMMA  2 . 6 .  Both sequences b and b 9   ha y  e the same gap .

 In the same way ,  we say that the inequality

 (2 . 7)
 Q n ( b 9 ) T x  <

 s  ( b 9 ) 2  2  g  ( b 9 ) 2

 4

 is obtained from the inequality

 (2 . 8)  Q n ( b ) T x  <
 s  ( b ) 2  2  g  ( b ) 2

 4

 by  switching  on  S .  Hence ,  each class of gap inequalities with a given gap  g   is closed
 under switching ,  i . e .  switching of a gap inequality with gap  g   is again a gap inequality
 with the same gap  g .  It is not dif ficult to check that the gap inequalities with gap 0 are
 precisely the switchings of the negative type inequalities (i . e .  the inequalities (1 . 2) for
 s  5  0) .  In the same way ,  the gap inequalities with gap 1 are all the inequalities that can
 be obtained from the hypermetric inequalities (i . e .  the inequalities (1 . 2) for  s  5  1) by
 switching .  The following results can be found in [4] (see also [5]) .  They imply that we
 can suppose ,  without loss of generality ,  that we deal with integer positive sequences .

 L EMMA  2 . 9 .  (i)  The inequality  (2 . 8)  defines a facet of  CUT n  if f the inequality  (2 . 7)
 does .
 (ii)  Let b  P  Z n  and c  : 5  ( b ,  0)  P  Z n 1 1 . Then ,  g  ( c )  5  g  ( b )  : 5 g   and  s  ( c )  5  s  ( b )  : 5 s . The
 inequality Q n ( b ) T x  <  ( s  2  2  g  2 ) / 4  defines a facet of  CUT n  if f the inequality Q n 1 1 ( c ) T x  <
 ( s  2  2  g  2 ) / 4  defines a facet of  CUT n 1 1  .

 A positi y  e semidefinite relaxation for the cut polytope .  Our interest in the gap
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 inequalities is also motivated by the fact that they arise as a strengthening of some
 positive semidefinite constraints by decreasing their right-hand sides as much as
 possible .  Here we give more details .  Consider the set

 7 n  : 5 H x  P  R (  n
 2 )  u  Q n ( b ) T x  <

 s  ( b ) 2

 4
 for  all  b  P  Z n J .

 Clearly ,   7 n   is a convex body in  R (  n
 2 )  that contains the cut polytope CUT n .  Indeed ,  the

 inequalities defining  7 n   are obtained from the gap inequalities (1 . 2) by relaxing their
 right-hand sides from [ s  ( b ) 2  2  g  ( b ) 2 ] / 4 to  s  ( b ) 2 / 4 .  In other words ,  if we let  & n   denote
 the convex body in  R ( n

 2 )  which is defined by the gap inequalities (1 . 2) for all  b  P  Z n ,
 then we have the following inclusions :

 CUT n  ‘  & n  ‘  7 n .

 Even though  7 n   is a weaker relaxation of CUT n   than  & n  ,  it enjoys some nice properties
 that  & n   does not have .  An important property of  7 n   is that one can optimize over it in
 polynomial time .  Namely ,  given  w  P  R (  n

 2 ) ,  the problem

 (2 . 10)  max
 s . t .

 w T x

 x  P  7 n

 can be solved (with arbitrary precision) in polynomial time (see ,  e . g .,  [8]) .  To see it ,
 note first that the separation problem for  7 n — Gi y  en x  P  R (  n

 2 ) , decide whether x  P  7 n

 and , if not , find b  P  R n  such that Q n ( b ) T x  .  s  ( b ) 2 / 4—can be solved in polynomial time .
 Indeed ,  for  x  P  R (  n

 2 ) ,  consider the  n  3  n  symmetric matrix  X  with zero diagonal and
 with  ij th entry  x i j  ;  then ,  one can easily check that

 x  P  7 n  ï  the matrix  J  2  2 X  is positive semidefinite ,

 where  J  denotes the all-ones matrix .  Now ,  using the ellipsoid method (see [7]) this
 implies that the optimization problem (2 . 10) can be solved in polynomial time .

 Goemans and Williamson [8] have shown that  7 n   provides a good approximation of
 CUT n .  More precisely ,  they show that

 max( w T x  u  x  P  7 n )
 max( w T x  u  x  P  CUT n )

 <  1 . 131  for  all  w  P  R 1
 (  n

 2 )

 In contrast ,  the optimization problem over the body  & n   is probably a hard problem .
 Indeed ,  several facts indicate that the separation problem for the gap inequalities is
 quite likely to be hard .  Some results of Avis and Grishukhin [1] show that the
 separation problem is already hard for the class of hypermetric inequalities .  For
 instance ,  they show that the following problem is NP-hard :   Gi y  en x  P  R (  n

 2 ) , decide if x
 satisfies all hypermetric inequalities and , if not , find b  P  Z n  with  s  ( b )  5  1  and minimum
 o 1 < i < n  u b i u , such that Q n ( b ) T x  .  0 .

 Note ,  however ,  that the separation problem for the negative type inequalities can be
 solved in polynomial time .  Indeed ,  by the result of Schoenberg [11 ,  12] ,   x  satisfies all
 the negative type inequalities if f the symmetric ( n  2  1)  3  ( n  2  1) matrix (  p i j ) 1 < i ,j < n 2 1  is
 positive semidefinite ,  where

 p i i  : 5  x i n

 p i j  : 5  1 – 2 ( x i n  1  x j n  2  x i j )
 for  i  5  1 ,  .  .  .  ,  n  2  1 ,

 for  1  <  i  ,  j  <  n  2  1 .
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 3 .  G AP  C ONDITIONS

 In this section ,  we present some results on the gap of a sequence  b  P  Z n .  We start
 with an upper bound on the gap .

 P ROPOSITION  3 . 1 .  Let b  P  Z n . Then ,  g  ( b )  <  max 1 < i < n  u b i u .

 P ROOF .  We can suppose without loss of generality that 1  <  b 1  <  ?  ?  ?  <  b n .  Recall
 that  g  ( b )  5  min  u x T b u ,  where the minimum is taken over all  Ú 1-vectors  x .  We indicate a
 choice of  x  for which  u x T b u  <  max i  b i  .  For this ,  set  x i  : 5  ( 2 1) i 2 1  for  i  5  1 ,  .  .  .  ,  n .  Let
 S i  : 5  o 1 < j < i  b i x i   for  i  5  1 ,  .  .  .  ,  n .  It can be easily checked that

 0  >  S 2 i  >  2 b 2 i  and  0  <  S 2 i 1 1  <  b 2 i 1 1

 for all  i .  This shows the result .  h

 We now suppose that  b  is the sequence from (2 . 3) ,  i . e .

 b  5  ( a 1  ,  .  .  .  ,  a 1  ,  .  .  .  ,  a h  ,  .  .  .  ,  a h  ,  .  .  .  ,  a k  ,  .  .  ,  a k ) ,
 C BDB E  C BDB E  C BDB E

 m 1  m h  m k

 where  a 1  ,  .  .  .  ,  a k   are relatively prime integers .  Let  g   denote the gap of  b  and
 s  : 5  b 1  1  ?  ?  ?  1  b n .  We recall that  3   denotes the set of root patterns ,  i . e .  the set of
 sequences  r  P  N k   such that  o 1 < h < k  a h r h  5  ( s  1  g  ) / 2 .  As the integers  a 1  ,  .  .  .  ,  a k   are
 relatively prime ,  there exist some integers  u 1  ,  .  .  .  ,  u k  P  Z   for which the  Bezout identity

 (3 . 2)  O
 1 < h < k

 a h u h  5  1

 holds .  This identity is very useful .  In some cases ,  a suitable choice of the Bezout
 parameters  u i ’s permits us to conclude that the gap of  b  is 0 or 1 .  We present such cases
 below .

 L EMMA  3 . 3 .  Let u 1  ,  .  .  .  ,  u k  P  Z   satisfy the Bezout identity  (3 . 2) . Suppose that there is
 a root pattern r  P  3   satisfying

 (3 . 4)  H r h  >  u h

 m h  2  r h  >  2 u h

 if  u h  .  0 ,
 if  u h  ,  0 ,

 for each h  5  1 ,  .  .  .  ,  k . Then , the gap is equal to  0  or  1 .

 P ROOF .  Let  S  ‘  V  realize a root with pattern  r .  Set  S h  : 5  V h  >  S  for  h  5  1 ,  .  .  .  ,  k .
 Then ,   u S h u  5  r h .  We define a new set  T  ‘  V  as follows :   T  5  T 1  <  ?  ?  ?  <  T k  ,  where

 T h  5  S h  minus  a  set  of  u h  points  of  S h  ,  if  u h  .  0 ,

 T h  5  S h  plus  a  set  of  u u h u  points  of  V h  \  S h  ,  if  u h  ,  0
 and

 T h  5  S h  ,  if  u h  5  0 .

 Then ,   b ( T  )  2  b ( V  \  T  )  5  b ( S )  2  b ( V  \  S )  2  2 o 1 < h < k  u h a h  5  g  2  2 .  This implies that  g  P
 h 0 ,  1 j .  Otherwise ,  if  g  >  2 ,  then we have found a set  T  with  b ( T  )  2  b ( V  \  T  )  5  g  2  2  ,
 g  ,  which contradicts the definition of the gap  g .  h

 In fact ,  the parameters  u i   in the Bezout identity can be chosen with arbitrary signs .
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 L EMMA  3 . 5 .  For each sign pattern  »  P  h 2 1 ,  1 j k  distinct from  (1 ,  .  .  .  ,  1)  and from
 ( 2 1 ,  .  .  .  ,  2 1) , there exists u »  P  Z k  satisfying

 H u »
 i  » i  >  0  for  all  i  5  1 ,  .  .  .  ,  k ,

 o 1 < i < k  u »
 i  a i  5  1 .

 P ROOF .  Let  u  P  Z k   be a solution for the Bezout identity  o 1 < i < k  u i a i  5  1 .  Then ,   u  1  x
 is another solution if  x  P  Z k   satisfies  o 1 < i < k  x i a i  5  0 .  The result now follows by taking
 for  x  a suitable combination of the vectors ( 2 a i  ,  0 ,  .  .  .  ,  0 ,  a 1  ,  0 ,  .  .  .  ,  0) (where  a 1  stands
 in the  i th position) for  i  5  2 ,  .  .  .  ,  k .  h

 C OROLLARY  3 . 6 .  Let u »   be defined as in Lemma  3 . 5 . Suppose that , for e y  ery
 i  5  1 ,  .  .  .  ,  k , m i  >  2  max »  P h 1 , 2 1 j k , »  ? (1 , . . . , 1) , ( 2 1 , . . . , 2 1)  u u »

 i  u . Then , b has gap  g  ( b )  <  1 .

 P ROOF .  Let  S  ‘  V  be a root of (1 . 2) with pattern  r , i .e .  g  5  o 1 < i < k  (2 r i  2  m i ) a i  .
 Then ,   r i  .  m i  / 2 for some  i  (else ,  2 r i  2  m i  <  0 for all  i ,  implying  g  <  0 ,  a contradiction) .

 Moreover ,   r j  <  m j  / 2 for some  j .  This can be seen as follows .  For  i  5  1 ,  .  .  .  ,  k ,  set

 T i  : 5  S 1  <  ?  ?  ?  <  S i 2 1  <  ( V i  \  S i )  <  S i 1 1  <  ?  ?  ?  <  S k  ,

 where  S j  5  V j  >  S  for all  j .  Then ,   o 1 < i < k  b ( T i )  2  b ( V  \  T i )  5  ( k  2  2) g  >  0 .  We can
 suppose ,  for instance ,  that  b ( T 1 )  2  b ( V  \  T 1 )  >  0 .  This implies that  b ( T 1 )  2  b ( V  \  T 1 )  >  g  ,
 i . e .  2 a 1 (2 r 1  2  m 1 )  <  0 ,  and ,  thus ,   r 1  <  m 1 / 2 .  Set

 I  : 5  h i  P  h 1 ,  .  .  .  ,  k j  u  r i  <  m i  / 2 j ,  J  : 5  h i  P  h 1 ,  .  .  .  ,  k j  u  r i  .  m i  / 2 j  .

 So  I ,J  ?  [ .  Let  »  P  h 2 1 ,  1 j k   be defined by  » i  5  2 1 if  i  P  I  and  » i  5  1 if  i  P  J .  Let  u »   be
 defined as in Lemma 3 . 5 .  Hence ,   u »

 i  » i  >  0 for all  i .  We check that the assumptions of
 Lemma 3 . 3 hold .  Indeed ,  if  u »

 i  .  0 then  r i  .  m i  / 2 as  i  P  J  and ,  thus ,   r i  >  u »
 i    as  u »

 i  <  m i  / 2 ,
 by assumption .  On the other hand ,  if  u »

 i  ,  0 then  r i  <  m i  / 2 as  i  P  I ;  hence ,

 r i  2  u »
 i  <

 m i

 2
 1

 m i

 2
 5  m i  ,

 i . e .   m i  2  r i  >  u u »
 i  u .  Therefore ,  by Lemma 3 . 3 ,  we can conclude that the gap is 0 or 1 .

 4 .  F ACET  C ONDITIONS

 In this section ,  we study when the gap inequality (2 . 4) defines a facet of the cut
 polytope .  We give necessary and suf ficient conditions for the inequality (2 . 4) to be facet
 defining .  These conditions are in terms of root patterns ;  see Theorem 4 . 4 and
 Propositions 4 . 14 and 4 . 19 .  Our characterization presents the interesting feature that it
 is expressed in terms of conditions on the root patterns ,  which live in the  n -space ,  while
 the facet property concerns the ( n

 2 )-space .

 4 . 1 .  Facet characterization .  We recall that  K * denotes the set of indices  h  5  1 ,  .  .  .  ,  k
 for which  m h  >  2 .  Set

 J  5  h hh 9 :  1  <  h  ,  h 9  <  k  or  h  5  h 9  P  K * j .

 Hence ,   u J u  5  ( k
 2 )  1  u K * u .  Based on the family  3   of root patterns ,  we introduce a  u 3 u  3  u J u

 matrix  M 3 .  The rows of  M 3   correspond to the root patterns  r  P  3 ,  and its columns to
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 the pairs  hh 9  P  J .  The entry of  M 3  5  ( m r ,hh 9 ) in the row corresponding to  r  and in the
 column  hh 9  is given by

 m r ,hh 9  : 5 H r h ( m h 9  2  r h 9 )  1  r h 9 ( m h  2  r h )
 r h ( m h  2  r h )

 if  h  ?  h 9 ,

 if  h  5  h 9 .

 We now formulate some necessary conditions for the inequality (2 . 4) to be facet
 defining .

 L EMMA  4 . 1 .  If the inequality  (2 . 4)  defines a facet of the cut polytope , then

 rank  M 3  5 S k

 2
 D  1  u K * u .

 P ROOF .  Set  a  hh 9  : 5  a h a h 9  for all  hh 9  P  J .  Then ,  by construction of the matrix  M 3  ,  the
 vector  y  5  a   satisfies the system :

 (4 . 2)  M 3  y  5
 s  2  2  g  2

 4
 .

 Assume that rank  M 3  ,  u J u .  Then (4 . 2) has another solution ,   b  ?  a  ,  and the following
 equality :

 O
 hh 9 P J

 b  hh 9 S  O
 i P V h ,j P V h 9

 x i j D  5
 s  2  2  g  2

 4
 .

 is satisfied by all roots of (2 . 4) .  This proves that (2 . 4) is not facet defining .  h

 Let  G  5  ( V ,  E ) be a graph and let  6   be a collection of subsets of  V .  Set

 ̂  G
 6  : 5  h χ  d G ( S )  u  S  P  6 j ,

 where  χ  d G ( S )  is the characteristic vector of the cut determined by the set  S  in the graph
 G .  We say that  ̂  G

 6   is  full - dimensional  if  ̂  G
 6   spans the whole space  R E .  We will

 consider here the following cases :
 (i)  For  h  P  K * , G  is the complete graph on  V h   and  6  5  h S  ‘  V h :  u S u  5  r h   for some
 r  P  3 j ;   then ,   ̂  G

 6   is denoted as  ̂  h ,h .
 (ii)  For 1  <  h  ,  h 9  <  k , G  is the complete bipartite graph with node bipartition  V h  <  V h 9

 and  6  5  h S  ‘  V h  <  V h 9 :  u S  >  V h u  5  r h   and  u S  >  V h 9 u  5  r h 9  for some  r  P  3 j ;  then ,   ̂  G
 6   is

 denoted as  ̂  h ,h 9 .

 L EMMA  4 . 3 .  Assume that the inequality  (2 . 4)  is facet defining . Then , the set  ̂  h ,h 9   is
 full - dimensional for each h  5  h 9  P  K *  and for each  1  <  h  ,  h 9  <  k .

 P ROOF .  If the inequality (2 . 4) is facet defining ,  then its set  X  of roots has full
 dimension ( n

 2 ) .  Therefore ,  the set  h ( x i j ) i P V h ,j P V h 9
 u  x  P  X  j   is a subset of  ̂  h ,h 9  of full

 dimension .  h

 In fact ,  as the next result shows ,  the conditions from Lemmas 4 . 1 and 4 . 3 are already
 suf ficient for characterizing facets .

 T HEOREM  4 . 4 .  The inequality  (2 . 4)  defines a facet of the cut polytope if f the following
 conditions  ( i )  and  ( ii )  hold :
 (i)  rank M 3  5  ( k

 2 )  1  u K * u ;
 (ii)  the set  ̂  h ,h 9   is full - dimensional for e y  ery h  5  h 9  P  K *  and e y  ery  1  <  h  ,  h 9  <  k .
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 P ROOF .  We suppose that the conditions (i) and (ii) hold .  We show that the
 inequality (2 . 4) defines a facet of the cut polytope .  For this ,  let  y  P  R (  n

 2 )  and  y  0  P  R   such
 that all roots of (2 . 4) satisfy the equation :

 (4 . 5)  y  T x  5  y  0  .

 We show that the equations (4 . 5) and (2 . 4) define the same hyperplane .
 Set  b  hh 9  : 5  o i P V h ,j P V h 9

 y  i j   for every  hh 9  P  J ,  and  b  5  ( b  hh 9 ) .  For each root pattern
 r  P  3 ,  let  X r   denote the set of roots of (2 . 4) with pattern  r ,  i . e .

 X r  5  h χ  d  ( S )  u  S  ‘  V  with  u S  >  V h u  5  r h   for  h  5  1 ,  .  .  .  ,  k j ,
 and set

 s  ( r )  5  O
 x P X r

 x .

 The components of  s  ( r )  are given by

 s  ( r )
 ij  5  u X r u

 2 r h ( m h  2  r h )
 m h ( m h  2  1)

 for  i  ,  j ,  i ,  j  P  V h  ,  h  5  1 ,  .  .  .  ,  k ,

 s  ( r )
 ij  5  u X r u

 r h ( m h 9  2  r h 9 )  1  r h 9 ( m h  2  r h )
 m h m h 9

 for  i  P  V h  ,  j  P  V h 9  ,  1  <  h  ,  h 9  <  k ,

 where  u X r u  5  p 1 < h < k  ( m h
 r h

 ) .  Summing (4 . 5) over all roots  x  P  X r  ,  we obtain  o x P X r
 y  T x  5

 y  T s  ( r )  5  u X r u  y  0  .  Define the vector  b 9  P  R J   by setting

 b 9 hh  : 5
 2 b h h

 m h ( m h  2  1)
 for  h  P  K * ,

 b 9 hh 9  : 5
 b  hh 9

 m h m h 9

 for  1  <  h  ,  h 9  <  k .

 Hence ,  we have

 (4 . 6)  M 3 b 9  5  y  0 e ,

 where  e  denotes the all-ones vector .
 Consider a pair  h 0 h 9 0  P  J  and a root  x #    of pattern  r ,  i . e .   x #  P  X r .  We show that the

 quantity :

 O
 i P V h 0 ,j P V h 9 0

 y  i j x #  i j

 is a constant depending only on the root pattern  r  (and not on the choice of  x #  P  X r ) .
 For this ,  let  Y  denote the subset of  X r   defined by  Y  : 5  h x  P  X r  u  x i j  5  x #  i j   for  i  P  V h 0  ,
 j  P  V

 h 9 0
 j .  Then ,

 O
 x P Y

 y  T x  5  O
 x P Y

 S  O
 i P V h 0 ,j P V h 9 0

 y  i j x i j  1  O
 hh 9 P J \ h 0 h 9 0

 O
 i P V h ,j P V h 9

 y  i j x i j D
 5  u Y u  O

 i P V h 0 ,j P V h 9 0

 y  i j x #  i j  1  O
 hh 9 P J \ h 0 h 9 0

 O
 i P V h ,j P V h 9

 y  i j S  O
 x P Y

 x i j D
 5  u Y u  O

 i P V h 0 ,j P V h 9 0

 y  i j x #  i j  1  O
 hh 9 P J \ h 0 h 9 0

 c h h 9 S  O
 i P V h ,j P V h 9

 y  i j D
 5  u Y u  O

 i P V h 0 ,j P V h 9 0

 y  i j x #  i j  1  O
 hh 9 P J \ h 0 h 9 0

 c hh 9 b  hh 9 .
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 Here we used the fact that  c hh 9  : 5  o x P Y  x i j   is a constant independent of  i  P  V h   and
 j  P  V h 9  ,  for every fixed pair  hh 9  P  J  \ h 0 h 9 0 .  On the other hand ,   o x P Y  y  T x  5  y  0  u Y u ,  which
 implies that

 (4 . 7)  y  0  u Y u  5  u Y u  O
 i P V h 0 ,j P V h 9 0

 y  i j x #  i j  1  O
 hh 9 P J \  h 0  h 9 0

 c hh 9 b  hh 9 .

 This shows that the quantity

 (4 . 8)  w ( r )
 h 0  h 9 0  : 5  O

 i P V h 0 ,j P V h 9 0

 y  i j x #  i j

 is a constant depending only on the root pattern  r .  Summing over  x #  P  X r  ,  we obtain
 that

 w ( r )
 hh  5  b h h

 r h ( m h  2  r h )

 ( m h
 2  )

 for  h  P  K * ,

 w ( r )
 hh 9  5  b  hh 9

 r h ( m h 9  2  r h 9 )  1  r h 9 ( m h  2  r h )
 m h m h 9

 for  1  <  h  ,  h 9  <  k .

 Suppose first that  y  0  5  0 .  Then ,  we deduce from (4 . 6) that  b 9  5  0 ,  as the matrix  M 3

 has full column rank .  Therefore ,   b  5  0 .  Relation (4 . 7) implies that

 O
 i P V h 0 ,j P V h 9 0

 y  i j x #  i j  5  0

 for each root  x #    and each  h 0 h 9 0  P  J .  As each family  ̂  h 0 ,h 9 0  ,  is full-dimensional ,  this implies
 that  y  5  0 ,  a contradiction .

 Therefore ,   y  0  ?  0 .  We can suppose without loss of generality that  y  0  5  ( s  2  2  g  2 ) / 4 .
 As  M 3   has full column rank ,  we deduce from relation (4 . 6) that

 b 9 hh  5  a h a h 9  for all  hh 9  P  J .
 From (4 . 8) ,

 O
 i P V h 0 ,j P V h 9 0

 y  i j x i j  5  w  ( r )
 h 0  h 9 0

 for all roots  x  with pattern  r .  Using the above formulas for  w  ( r )
 h 0  h 9 0  and the fact that each

 family  ̂  h 0 ,h 9 0  is full-dimensional ,  we deduce that  y  i j   (for  i  P  V h 0
 , j  P  V h 9 0 ) is a constant

 depending only on  h 0  and  h 9 0 .  This shows that  y  i j  5  a h 0
 a h 9 0  for all  i  P  V h 0

 , j  P  V h 9 0 .  h

 We show in the next subsection how the conditions on the full dimensionality of the
 cut families  ̂  h ,h 9  can be reformulated as simple conditions on the set  3   of root
 patterns ;  see Propositions 4 . 14 and 4 . 19 .

 4 . 2 .  Linear dependencies of uniform cuts .  Our objective in this section is to give a
 reformulation of Theorem 4 . 4 which uses only simple conditions on the root patterns of
 the inequality (2 . 4) .  For this ,  we need to formulate conditions for the full dimen-
 sionality of the cut families  ̂  h ,h 9 .  Such conditions are given in Propositions 4 . 14 and
 4 . 19 .

 Given  h  P  K * ,  we recall that the cut family  ̂  h ,h   consists of the incidence vectors of
 the cuts  d G ( S ) ,  where  G  is the complete graph on  V h   and  S  ‘  V h   with  u S u  5  r h   for some
 r  P  3 .  Hence ,   ̂  h ,h   is a union of several families of uniform cuts .  In fact ,  as we will see
 below ,  the full dimensionality of  ̂  h ,h   can be checked by using at most two dif ferent set
 sizes for the cuts in  ̂  h ,h .
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 We start with the problem of determining when the family of all uniform cuts of a
 given size is full dimensional .

 Let  m  and  r  be integers satisfying  m  >  2 ,  1  <  r  <  m  2  1 .  Let

 # r  : 5  h χ  d  ( S )  u  S  ’  h 1 ,  .  .  .  ,  m j ,  u S u  5  r j  ’  R (  m
 2  )

 be the collection of characteristic vectors of the cuts  d  ( S ) in  K m   satisfying  u S u  5  r .  We
 are interested in determining when  # r   spans the whole space  R ( m

 2  ) ;  we call  # r

 full - dimensional  in that case .  Clearly ,  the set  # r   is full-dimensional if all unit vectors
 belong to the span of  # r  ,  i . e .  if ,  for any fixed pair  i 0  , j 0  P  V  5  h 1 ,  2 ,  .  .  .  ,  m j , i 0  ?  j 0  ,  the
 vector  e ( i 0  ,  j 0 )  P  R (  m

 2  )  defined by

 e ( i 0  ,  j 0 ) i j  5 H 1  i  5  i 0  ,  j  5  j 0  ,
 0  otherwise ,

 can be expressed as a linear combination of the form

 e ( i 0  ,  j 0 )  5  O
 S P 6

 a S χ  d  ( S )

 where  6  5  h S :  u S u  5  r ,  S  ‘  V  j .  If such a linear combination  a  5  ( a S ) exists then ,  due to
 the underlying symmetries ,   a   can be assumed to have a particular form .  Namely ,  we
 can suppose that there are three coef ficients  b  0  ,  b  1  and  b  2  so that  a S  5  b k   for all
 S  P  6 k  , k  5  0 ,  1 ,  2 ,  where  6 k   are defined by

 6 k  : 5  h S  P  S :  u S  >  h i 0  ,  j 0 j u  5  k j

 for  k  5  0 ,  1 ,  2 .  Equivalently ,  we may ask whether the unit vector  e ( i 0  ,  j 0 ) can be
 expressed as a linear combination of the three vectors  s  k , k  5  0 ,  1 ,  2 ,  given by

 s  k  : 5  O
 S P 6 k

 χ  d  ( S ) .

 Therefore ,  the question as to whether the family  # r   is full-dimensional is equivalent to
 the question as to whether there exists a solution  b  5  ( b  0  ,  b  1  ,  b  2 ) to the linear system :

 (4 . 9)  b  0 s  0  1  b  1 s  1  1  b  2 s  2  5  e ( i 0  ,  j 0 ) .

 This question is answered by Lemma 4 . 12 .  In fact ,  it can be further reduced in the
 following way .  For this ,  it is convenient to introduce some auxiliary matrices associated
 with the cuts of the graph  K m .

 For every integer  r ,  0  <  r  <  m ,  we introduce a 3  3  3 matrix  A r  5  ( a i j ) , i , j  5  0 ,  1 ,  2 ,  as
 follows .  Fix the edge  e #  : 5  i 0  j 0  of the complete graph  K m  ,  and partition its edge set into
 three classes  E 0  , E 1  and  E 2  according to the intersection with  e #  :

 E i  : 5  h e :  u e  >  e #  u  5  i j  i  5  0 ,  1 ,  2 .

 (Thus ,   E 2  5  h e #  j ) .  Now ,  we define the entries  a i j   of the matrix  A r   by

 (4 . 10)  a i j  5 H u E i  >  d  ( S ) u
 0

 if  there  is  a  subset  S  ’  h 1 ,  .  .  .  ,  n j ,  u S u  5  r ,  u S  >  e #  u  5  j
 if  such  a  set  S  does  not  exist .

 Observe that the value of  a i j   is independent of a particular choice of a subset  S .  Clearly ,
 the system (4 . 9) is solvable if f the system :

 (4 . 11)  A r x  5 1  0
 0
 1
 2
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 is solvable .  In other words ,  the uniform cut family  # r   is full-dimensional if f the system
 (4 . 11) is solvable .  In the next result ,  we characterize the values of  r  for which  # r   is
 full-dimensional .  We also give some values of  r  and  r 9  for which the family  # r  <  # r 9  is
 full-dimensional .

 L EMMA  4 . 12 .  Let A r  denote the matrix defined by  (4 . 10) .
 (i)  Assume m  >  4 . Then , the linear system  (4 . 11)  is sol y  able if f r  ?  0 ,  1 ,  1 – 2 m , m  2  1 , m .
 (ii)  Assume m  5  2 ,  3 . Then ,  (4 . 11)  is sol y  able if f r  5  1 , m  2  1 .
 (iii)  Assume m  >  2  and m is e y  en . Then , the linear system

 (4 . 13)  A m /2 x  1  A 1  y  5 1  0
 0
 1
 2

 is sol y  able .

 P ROOF .  (i) Set  s  : 5  m  2  r .  For  r  ?  0 ,  1 , m  2  1 , m ,  the matrix  A r   reads

 A r  5 1  r ( s  2  2)
 2 r

 0

 ( r  2  1)( s  2  1)
 r  1  s  2  2

 1

 ( r  2  2) s
 2 s

 0
 2 .

 For  r  ?  m  / 2 ,  the system (4 . 11) has the solution :

 x 0  5
 1

 r  2  s
 S 1  2

 m
 2

 1
 1
 r

 2  s D  ,

 x 1  5  1 ,

 x 2  5
 1

 s  2  r
 S 1  2

 m
 2

 1
 1
 s

 2  r D .

 Assume that  r  5  m  / 2 .  Hence  s  5  r  5  m  / 2 .  Summing all three equations of (4 . 11)
 together ,  yields

 r 2 ( x 0  1  x 1  1  x 2 )  5  1 .

 Summing the second equation with a double of the third one yields

 r ( x 0  1  x 1  1  x 2 )  5  1 .

 Hence (4 . 11) is not solvable for  r  5  s  5  m  / 2 and  m  >  4 .
 Let  r  5  1 .  For  m  >  3 we have :

 A 1  5 1  m  2  3
 2
 0

 0
 m  2  2

 1

 0
 0
 0
 2

 and ,  hence ,  (4 . 11) is solvable if f  m  5  3 .
 Assume  r  5  1 and  m  5  2 .  Then

 A 1  5 1  0  0  0
 0  0  0
 0  1  0

 2
 and (4 . 11) is solvable .
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 The case  r  5  m  2  1 is analogous to  r  5  1 .
 If  r  5  0 or  r  5  m ,  then  A r  5  0 and ,  hence ,  (4 . 11) is not solvable .
 The previous two arguments prove the validity of (ii) .
 We now check (iii) .  If  m  5  2 ,  the validity of (iii) follows from (ii) .  Hence ,  assume

 that  m  >  4 and  r  5  m  / 2 .  Modify (4 . 13) as follows .  Add the sum of the last two
 equations to the first equation ,  and add the multiple two of the third equation to the
 second one .  Thus ,  (4 . 13) is equivalent to the system :

 r 2

 2 r
 0

 r 2

 2 r
 1

 r 2

 2 r
 0

 2 r  2  1
 2
 0

 2 r  2  1
 2 r
 1

 0
 0
 0

 x 0
 x 1
 x 2
 y 0
 y 1
 y 2

 5
 1
 2
 1

 .A B A B A B
 Setting  x 1  5  x 2  5  y 2  5  0 ,  we obtain the linear system

 1  r 2

 2 r

 0

 2 r  2  1
 2
 0

 2 r  2  1
 2 r

 1
 2 1  x 0

 y 0

 y 1
 2  5 1  1

 2
 1
 2

 which is solvable ,  since the determinant of its matrix is 2 r (1  2  r )  ?  0 ,  as  r  .  1 .  h

 We can now characterize when the cut family  ̂  h ,h   is full-dimensional ,  in terms of the
 set  3   of root patterns .  Let

 3 h  : 5  h r  u  ' r  P  3   such that  r h  5  r  j

 denote the projection of  3   on the  h th co-ordinate .

 P ROPOSITION  4 . 14 .  Let h  P  K * . If m h  5  2 ,  3 , then the family  ̂  h ,h  is full - dimensional
 if f there exists a root pattern r  P  3   such that r h  P  h 1 ,  m h  2  1 j . If m h  >  4 , then the family
 ̂  h ,h  is full - dimensional if f one of the following conditions  ( i )  or  ( ii )  holds :
 (i)  there exists a root pattern r  P  3   such that r h  ̧  h 0 ,  1 ,  m h  / 2 ,  m h  2  1 ,  m h j ;
 (ii)  3 h  ‘  h 0 ,  1 ,  m h  / 2 ,  m h  2  1 ,  m h j ;   m h  is e y  en  ;   m h  / 2  P  3 h ;   at least one of  1  and m h  2  1
 belongs to  3 h .

 P ROOF .  Suppose first that  m h  5  2 ,  3 .  If  r h  P  h 0 ,  m h j   for all  r  P  3   then  ̂  h ,h   is reduced
 to the zero vector .  On the other hand ,  if  r h  P  h 1 ,  m h  2  1 j   for some  r  P  3   then  ̂  h ,h   is
 full-dimensional by Lemma 4 . 12(ii) .  Suppose now that  m h  >  4 .  If  r h  ̧  h 0 ,  1 ,  m h  / 2 ,  m h  2
 1 ,  m h j   for some  r  P  3 ,  then  ̂  h ,h   is full-dimensional by Lemma 4 . 12(i) .  Otherwise ,
 3 h  ‘  h 0 ,  1 ,  m h  / 2 ,  m h  2  1 ,  m h j .  If  ̂  h ,h   is full-dimensional then  m h  / 2  P  3 h   and  3 h  >
 h 1 ,  m h  2  1 j  ?  [   (by Lemma 4 . 12(i)) ;  if the latter conditions hold then  ̂  h ,h 9  is
 full-dimensional by Lemma 4 . 12(iii) .  h

 We now turn to the study of the cut families  ̂  h ,h 9 ,  where 1  <  h  ,  h 9  <  k .  Note that
 the family  ̂  h ,h 9  is a union of uniform cut families in the complete bipartite graph
 G  5  K m h ,m h 9

   with node bipartition  V h  <  V h 9  .  We will see that the full-dimensionality of
 ̂  h ,h 9   can be checked by looking at two set sizes at most .

 As in the case treated above ,  we first study the case in which the set of uniform cuts
 of a given size in a complete bipartite graph is full-dimensional .  Again ,  due to
 symmetries ,  this problem can be formulated as follows .

 Let  m 1  , m 2  >  1 be fixed .  Consider the complete bipartite graph  K m 1 ,m 2
  with vertex
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 set  V  5  V 1  <  V 2  ,  u V i u  5  m i  , i  5  1 ,  2 ,  and choose a pair of vertices  i 0  P  V 1  and  j 0  P  V 2 .
 Partition the edges of  K m 1 ,m 2

  into four sets as follows :

 E 1  : 5  h i 0  j 0 j ,

 E 2  : 5  h i 0  j  u  j  P  V 2 \ j 0 j ,

 E 3  : 5  h ij 0  u  i  P  V 1 \ i 0 j ,

 E 4  : 5  h ij  u  i  P  V 1 / i 0  ,  j  P  V 2 \ j 0 j .

 For any pair of integers  r 1  and  r 2  ,  0  <  r i  <  m i  , i  5  1 ,  2 ,  let

 6 r 1 ,r 2  : 5  h S  ‘  V 1  <  V 2 :  u S  >  V i u  5  r i  ,  i  5  1 ,  2 j .

 We partition the set system  6 r 1 ,r 2
  into four classes  6 i  , i  5  1 ,  2 ,  3 ,  4 ,  as follows :

 6 1  : 5  h S  P  6 r 1 ,r 2  u  i 0  ,  j 0  P  S j ,

 6 2  : 5  h S  P  6 r 1 ,r 2  u  i 0  P  S ,  j 0  ̧  S j ,

 6 3  : 5  h S  P  6 r 1 ,r 2  u  i 0  ̧  S ,  j 0  P  S j ,

 6 4  : 5  h S  P  6 r 1 ,r 2  u  i 0  ,  j 0  ̧  S j .

 We introduce a matrix  B r 1 ,r 2  5  ( b k , l ) , k ,  l  5  1 ,  2 ,  3 ,  4 ,  by setting

 b k ,l  : 5 H u E k  >  d  ( S ) u
 0

 for  S  P  6 l  ,
 if  6 l  5  [ .

 Clearly ,  the value of  b k ,l   is independent of a particular choice of  S  P  6 l   for any
 l  5  1 ,  2 ,  3 ,  4 .  We are interested in the solvability of the linear system :

 (4 . 15)  B r 1 ,r 2 x  5 1
 1
 0
 0
 0
 2  .

 Clearly ,  the system (4 . 15) is solvable if f the family

 # r 1 ,r 2  : 5  h  χ  d G ( S )  u  S  P  6 r 1 ,r 2 j

 is full-dimensional (where  G  5  K m 1 ,m 2 ) .  We now characterize the values of ( r 1  ,  r 2 ) for
 which the family  # r 1 ,r 2  is full-dimensional .  We also give some values of ( r 1  ,  r 2 ) and
 ( r 9 1 ,  r 9 2 )   for which the union  # r 1 ,r 2  <  # r 9 1 ,r 9 2  is full-dimensional .

 L EMMA  4 . 16 .  (i)  Let m 1  5  1  and m 2  >  2 . The system  (4 . 15)  is sol y  able for r 1  P  h 0 ,  1 j
 and r 2  ?  0 , m 2  .
 (ii)  Let m 1  ,m 2  >  2 . Then ,  (4 . 15)  is sol y  able if f r i  ?  0 ,  1 – 2 m i  , m i  for i  5  1 ,  2 .
 (iii)  Let m 1  , m 2  >  2 . The system

 B m 1 ,r 2 x  1  B m 1 /2 , ,r 9 2  y  5 1
 1
 0
 0
 0
 2

 is sol y  able for r 2  ?  0 , m 2   and r 9 2  ?  m 2 / 2 .
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 (iv)  Let m 1  , m 2  >  2 . The system

 B m 1 /2 ,r 2 x  1  B r 1 ,m 2 /2  y  5 1
 1
 0
 0
 0
 2

 is sol y  able for r i  ?  0 , m i  / 2 , m i  , for i  5  1 ,  2 .

 Before giving the proof ,  we introduce another result that will also be needed .  Let  H 0  ,
 H 1  and  H 2  denote the hyperplanes in  R 4  that are defined by

 H 0  5  h z  P  R 4  u  z 1  1  z 2  1  z 3  1  z 4  5  2 m 1 m 2 z 1  1  m 1 ( z 1  1  z 2 )  1  m 2 ( z 1  1  z 3 ) j ,

 H 1  : 5  h z  P  R 4  u  z 1  1  z 2  1  z 3  1  z 4  5  m 2 ( z 1  1  z 3 ) j ,

 H 2  : 5  h z  P  R 4  u  z 1  1  z 2  1  z 3  1  z 4  5  m 1 ( z 1  1  z 2 ) j .

 Observe that the vector (1 ,  0 ,  0 ,  0) T  does not belong to any of the hyperplanes  H 0  , H 1

 or  H 2  ,  if  m 1  , m 2  >  2 .  For a matrix  B ,  the  range  of  B  is the set consisting of the vectors
 Bx  for  x  P  R 4  (if  B  has four columns) .

 L EMMA  4 . 17 .  Let m 1  , m 2  >  2 . Then :
 (i)  for e y  ery r 1  , the range of each of the matrices B r 1 ,m 2

   and B r 1 , 0   is contained in both
 hyperplanes H 0   and H 1 ;
 (ii)  for e y  ery r 2  , the range of each of the matrices B m 1 ,r 2

   and B 0 ,r 2
   is contained in both

 hyperplanes H 0   and H 2 ;
 (iii)  for e y  ery r 1  , the range of the matrix B r 1 ,m 2 /2   is contained in the hyperplane H 2 ;
 (iv)  for e y  ery r 2  , the range of the matrix B m 1 /2 ,r 2

   is contained in the hyperplane H 1 .

 The following notation will be useful for the proofs of Lemmas 4 . 16 and 4 . 17 .  For a
 4  3  4 matrix  B  with rows  u 1  , u 2  , u 3  and  u 4  ,  we let  B 9  denote the 4  3  4 matrix the rows
 of which are the vectors  u 1  , u 2  , u 3  and  u 4  ,  we let  B 9  denote the 4  3  4 matrix the rows of
 which are the vectors  u 1  , u 1  1  u 2  , u 1  1  u 3  and  u 1  1  u 2  1  u 3  1  u 4  .  So ,   B 9 r 1 ,r 2

  is the
 transform of  B r 1 ,r 2

  defined in this way .  Obviously ,  the system (4 . 15) is solvable if f the
 system

 (4 . 18)  B 9 r 1 ,r 2
 x  5  e

 is solvable ,  where  e  : 5  (1 ,  1 ,  1 ,  1) T .
 We collect below a list of matrices which show all the possible forms for the matrices

 B 9 r 1 ,r 2
   in the case in which  m 1  ,  m 2  >  2 :

 B 9 r 1 ,r 2  5 1
 0
 s 2

 s 1

 r 1 s 2  1  s 1 r 2

 1
 s 2

 r 1

 r 1 s 2  1  s 1 r 2

 1
 r 2

 s 1

 r 1 s 2  1  s 1 r 2

 0
 r 2

 r 1

 r 1 s 2  1  s 1 r 2

 2  ,

 for  r 1  ?  0 , m 1  , r 2  ?  0 , m 2  ,  and setting  s 1  : 5  m 1  2  r 1  , s 2  5  m 2  2  r 2 ;

 B 9 m 1 ,r 2  5 1
 0
 s 2

 0
 m 1 s 2

 1
 s 2

 m 1

 m 1 s 2

 0  0
 0  0
 0  0
 0  0

 2 ,  B 9 r 1 ,m 2  5 1
 0
 0
 s 1

 s 1 m 2

 0
 0
 0
 0

 1
 m 2

 s 1

 s 1 m 2

 0
 0
 0
 0
 2  ,
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 for  r 2  ?  0 , m 2  , s 2  : 5  m 2  2  r 2  ,  and  r 1  ?  0 , m 1  , s 1  : 5  m 1  2  r 1 ;

 B 9 0 ,r 2  5 1
 0  0
 0  0
 0  0
 0  0

 1
 r 2

 m 1

 r 2 m 1

 0
 r 2

 0
 r 2 m 1

 2 ,  B 9 r 1 , 0  5 1
 0
 0
 0
 0

 1
 m 2

 r 1

 r 1 m 2

 0
 0
 0
 0

 0
 0
 r 1

 r 1 m 2

 2  ,

 for  r 2  ?  0 , m 2  ,  and  r 1  ?  0 , m 1 ;

 B 9 0 ,m 2  5 1
 0  0
 0  0
 0  0
 0  0

 1
 m 2

 m 1

 m 1 m 2

 0
 0
 0
 0
 2 ,  B 9 m 1 , 0  5 1

 0
 0
 0
 0

 1
 m 2

 m 1

 m 1 m 2

 0  0
 0  0
 0  0
 0  0

 2  .

 P ROOF OF  L EMMA  4 . 17 .  By construction of the matrix  B 9 r 1 ,r 2
 ,  we have  z  5  B r 1 ,r 2

 x  if f
 B 9 r 1 ,r 2

 x  5  z 9 ,  where  z 9  is the vector ( z 1  ,  z 1  1  z 2  ,  z 1  1  z 3  ,  z 1  1  z 2  1  z 3  1  z 4 )
 T .  The claims

 from Lemma 4 . 17 can be easily verified by inspection of the matrices  B 9 r 1 ,r 2
 .  h

 P ROOF OF  L EMMA  4 . 16 .  (i) Let  r 1  5  1 and  r 2  ?  0 ,  m 2  .  Then ,  the system (4 . 15) reads

 x 2  5  1 ,

 ( m 2  2  r 2 ) x 1  1  r 2 x 2  5  0 .

 Hence ,  it is solvable .  The case  r 1  5  0 is analogous .
 (ii)  Suppose first that the system (4 . 15) is solvable .  Hence ,  the vector (1 ,  0 ,  0 ,  0) T

 belongs to the range of the matrix  B r 1 ,r 2
 .  Using Lemma 4 . 17 ,  this implies that  r i  ?  0 ,

 m i  / 2 , m i  , i  5  1 ,  2 .  Conversely ,  suppose that  r i  ?  0 , m i  / 2 , m i  , i  5  1 ,  2 .  It is then not
 dif ficult to check that the system (4 . 18) is solvable .

 (iii)  Equivalently ,  we have to show that the system :   B 9 m 1 ,r 2
 x  1  B 9 m 1 /2 ,r 9 2  y  5  e  is solvable

 under the conditions :   r 2  ?  0 , m 2  and  r 9 2  ?  m 2 / 2 .  Indeed ,  this system reads

 x 2  1  y 2  1  y 3  5  1 ,

 ( m 2  2  r 2 )( x 1  1  x 2 )  1  ( m 2  2  r 9 2 )(  y 1  1  y 2 )  1  r 9 2 (  y 3  1  y 4 )  5  1 ,

 m 1 x 2  1
 m 1

 2
 (  y 1  1  y 2  1  y 3  1  y 4 )  5  1 ,

 m 1 ( m 2  2  r 2 )( x 1  1  x 2 )  1
 m 1 m 2

 2
 (  y 1  1  y 2  1  y 3  1  y 4 )  5  1 .

 One can easily check that it is solvable .  (iv) can be checked in the same way .  h

 We can now characterize when the cut family  ̂  h ,h 9  is full-dimensional ,  for
 1  <  h  ,  h 9  <  h .  To simplify the notation ,  we state the result for the indices  h  5  1 , h 9  5  2 .

 P ROPOSITION  4 . 19 .  If m 1  5  m 2  5  1 , then the family  ̂  1 , 2   is full - dimensional if f there
 exists a root pattern r  P  3   such that  ( r 1  ,  r 2 )  is equal to  (1 ,  0)  or to  (0 ,  1) .

 If m 1  5  1  and m 2  >  2 , then  ̂  1 , 2   is full - dimensional if f there exists a root pattern r  P  3
 such that r 2  ?  0 , m 2  .

 Now suppose that m 1  ,m 2  >  2 . Then ,  ̂  1 , 2   is full - dimensional if f one of the following
 conditions  (i)  or  (ii)  holds :
 (i)  There exists r  P  3   such that r i  ̧  h 0 ,  m i  / 2 ,  m i j   for i  5  1 ,  2 .
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 (ii)  For e y  ery r  P  3 , r 1  P  h 0 ,  m 1 / 2 ,  m 1 j   or r 2  P  h 0 ,  m 2 / 2 ,  m 2 j   and one of the conditions
 (iia) – (iic)  holds :

 (iia)  A 1  ?  [   and B 1  ?  [ ;
 (iib)  A 2  ?  [   and B 2  ?  [ ;
 (iic)  A 1  5  A 2  5  [ , there exists r  P  3   such that r 1  5  m 1 / 2  and r 2  ̧  h 0 ,  m 2 / 2 ,  m 2 j , and

 there exists r 9  P  3   such that r 9 1  ̧  h 0 ,  m 1 / 2 ,  m 1 j   and r 9 2  5  m 2 / 2 .
 The sets A i  , B i   ( i  5  1 ,  2)  are defined by

 A i  : 5  h ( r 1  ,  r 2 )  u  r  P  3  and  r i  5  0 ,  m i j \ h (0 ,  0) ,  (0 ,  m 2 ) ,  ( m 1  ,  0) ,  ( m 1  ,  m 2 ) j ,

 B i  : 5  h ( r 1  ,  r 2 )  u  r  P  3  and  r i  5  m i  / 2 j \ h ( m 1 / 2 ,  m 2 / 2) j .

 P ROOF .  If  m 1  5  m 2  5  1 then  ̂  1 , 2  is full-dimensional if f it contains a non-zero vector ,
 i . e .  if there exists  r  P  3   with ( r 1  ,  r 2 )  5  (0 ,  1) or (1 ,  0) .  The case  m 1  5  1 ,m 2  >  2 follows
 using Lemma 4 . 16(i) .  We now suppose that  m 1  ,m 2  >  2 .  If there exists  r  P  3   such that
 r i  ̧  h 0 ,  m i  / 2 ,  m i j   for  i  5  1 ,  2 ,  then  ̂  1 , 2  is full-dimensional by Lemma 4 . 16(ii) .  So ,  we
 now suppose that  r 1  P  h 0 ,  m 1 / 2 ,  m 1 j   or  r 2  P  h 0 , m 2 / 2 , m 2 j   for every  r  P  3 .  Hence ,  for
 every  r  P  3 ,

 ( r 1  ,  r 2 )  P  A 1  <  A 2  <  B 1  <  B 2  <  h (0 ,  0) ,  (0 ,  m 2 ) ,  ( m 1  ,  0) ,  ( m 1  ,  m 2 ) ,  ( m 1 / 2 ,  m 2 / 2) j .

 If  A 1  ?  [   and  B 1  ?  [ ,  then  ̂  1 , 2  is full-dimensional by Lemma 4 . 16(iii) .  Similarly ,   ̂  1 , 2
 is full-dimensional if  A 2  ?  [   and  B 2  ?  [ .  Therefore ,  we can now suppose that one of  A i

 and  B i   is empty for  i  5  1 ,  2 .  We claim that

 ̂  1 , 2  is full dimensional  ï  (iic) holds .

 Suppose first that  ̂  1 , 2  is full-dimensional .  We show that  A 1  5  A 2  5  [ .  By the above ,  we
 know that one of  A i   or  B i   is empty for  i  5  1 ,  2 .  If  A 1  5  B 2  5  [   then ,  using Lemma 4 . 17 ,
 we obtain that the set  ̂  1 , 2  is contained in the hyperplane  H 1  ,  in contradiction with its
 full-dimensionality .  Similarly ,  if  A 2  5  B 1  5  [ ,  ̂  1 , 2  is contained in the hyperplane  H 2 .
 Finally ,  if  B 1  5  B 2  5  [ ,  then  ̂  1 , 2  is contained in  H 0 .  We obtain a contradiction with the
 full-dimensionality of  ̂  1 , 2 .  This shows that  A 1  5  A 2  5  [ .  If  3   contains no pattern  r
 satisfying  r 1  5  m 1 / 2 and  r 2  ̧  h 0 ,  m 2 / 2 ,  m 2 j ,  then one deduces again from Lemma 4 . 17
 that  ̂  1 , 2  is contained in the hyperplane  H 2  ,  yielding a contradiction .  So ,  we have shown
 that (iic) holds under the assumption that  ̂  1 , 2  is full-dimensional .

 Conversely ,  let us suppose that (iic) holds .  Let  r , r 9  P  3   as in (iic) .  We deduce from
 Lemma 4 . 16(iv) that  ̂  1 , 2  is full-dimensional .  h

 We conclude with a few remarks .  We have seen in Lemma 4 . 1 that a necessary
 condition for the inequality (2 . 4) to be facet defining is that the matrix  M 3   has full
 column rank .  Another similar necessary condition can be formulated in terms of the
 incidence matrix  A 3   of the set  3   of root patterns .  More precisely ,  let  A 3   denote the
 matrix the rows of which are the root patterns  r  P  3 .  Hence ,   A 3   has  k  columns and  u 3 u
 rows .

 P ROPOSITION  4 . 20 .  If the inequality  (2 . 4)  defines a facet of the cut polytope , then

 rank  A 3  5  k .

 P ROOF .  Suppose that rank  A 3  <  k  2  1 .  We show that the inequality (2 . 4) is not facet
 defining .  Consider the system of equations

 A 3 z  5
 s  1  g

 2
 e ,
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 where  e  denotes the all-ones vector .  This system has at least one solution ,  namely ,  the
 vector  a  : 5  ( a 1  ,  .  .  .  ,  a k ) (recall (2 . 5)) .  As rank  A 3  <  k  2  1 ,  we can find another solution
 z  ?  a  of the system

 A 3  z  5
 s  1  g

 2
 e .

 Then ,  every root of (2 . 4) satisfies the equation

 O
 h P K *

 ( z h ) 2  O
 i , j ,i ,j P V h

 x i j  1  O
 1 < h , h 9 < k

 z h z h 9  O
 i P V h ,j P V  9 h

 x i j  5
 s  2  2  g  2

 4
 .

 This shows that (2 . 4) is not facet defining .  h

 We group below several necessary conditions that can be deduced from our results .

 C OROLLARY  4 . 21 .  Suppose that the inequality  (2 . 4)  is facet defining . Then , the
 following conditions hold :
 (i)  u 3 u  >  ( k

 2 )  1  u K * u .
 (ii)  Suppose that m h  5  1  for some h  5  1 ,  .  .  .  ,  k . Then , there exist two root patterns r
 and r 9   such that r h  5  0  and r 9 h  5  1 .
 (iii)  Suppose that m h  >  2  for some h  5  1 ,  .  .  .  ,  k . Then , there exist two root patterns r
 and r 9   such that r 9 h  ̧  h r h  ,  m h  2  r h j . Moreo y  er , m h  >  a 1  ∧  ?  ?  ?  ∧  a h 2 1  ∧  a h 1 1  ∧  ?  ?  ?  ∧  a k .
 (iv)  Suppose that m h  , m h 9  >  2  for some h  ?  h 9  P  h 1 ,  .  .  .  ,  k j . Then , there exist two root
 patterns r and r 9   such that r 9 h  2  r 9 h 9  ̧  h r h  2  r h 9  ,  m h  2  r h  2  m h 9  1  r h 9 j .

 P ROOF .  (i) follows from Lemma 4 . 1 .  In what follows ,  we let  e  denote the all-ones
 vector (of appropriate dimension) .

 (ii) Let  m h 0
 5  1 .  Suppose that there exists  r  P  Z   such that  r h 0

 5  r   for all  r  P  3 .  Let
 u  P  R k   be defined by  u h 0

 5  1 and  u h  5  0 for  h  P  h 1 ,  .  .  .  ,  k j \ h h 0 j .  Then ,

 A 3 u  5  r e .

 On the other hand ,

 A 3  a  5
 s  1  g

 2
 e .

 This shows that rank  A 3  ,  k .  Therefore ,  (2 . 4) is not facet defining ,  by Proposition 4 . 20 .
 (iii)  Suppose that there exist  h 0  P  K * and  r  P  Z   such that  r h 0

 P  h r  ,  m h 0
 2  r  j   for all

 r  P  3 .  Let  y  P  R J   be defined by  y  h 0 h 0
 : 5  1 and  y  hh 9  : 5  0  for hh 9  P  J  \ h h 0 h 0 j .  Then ,

 M 3 y  5  r  ( m h 0
 2  r  ) e .

 On the other hand ,  defining  a  P  R J   by setting  a  hh 9  : 5  a h a h 9  for  hh 9  P  J ,  we have

 M 3 a  5
 s  2  2  g  2

 4
 e .

 This shows that  M 3   does not have full column rank .  Therefore ,  (2 . 4) is not facet
 defining ,  by Lemma 4 . 1 .  This shows the first part of (iii) .  Now suppose ,  for instance ,
 that 2  <  m 1  ,  a 2  ∧  ?  ?  ?  ∧  a k .  Let  r  ?  r 9  P  3 .  Then ,  0  5  o 1 < h < k  a h ( r h  2  r 9 h ) ,  which implies
 that  r 1  5  r 9 1  as  a 2  ∧  ?  ?  ?  ∧  a k   divides  r 1  2  r 9 1  and  u r 1  2  r 9 1 u  <  m 1  .  We obtain a contradiction .

 (iv)  Let 1  <  h 0  ,  h 1  <  k  such that  m h 0
 , m h 1

 >  2 .  Suppose that there exists  r  P  Z   such
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 that  r h 1
 2  r h 0

 P  h r  ,  m h 1
 2  m h 0

 2  r  j   for all  r  P  3 .  Let  w  P  R J   be defined by  w h 0 h 0
 5  w h 1 h 1

 : 5
 2 1 , w h 0 h 1

 : 5  1 and  w hh 9  : 5  0 otherwise .  Then ,

 M 3 w  5  r  ( r  1  m h 0  2  m h 1 ) e .

 As in (iii) ,  this shows that  M 3   does not have full column rank and ,  thus ,  that (2 . 4) is
 not facet defining .

 E XAMPLE  4 . 22 .  Consider the sequence  b  : 5  (1 ,  1 ,  1 ,  1 ,  1 ,  2 ,  2 ,  4 ,  4) ;  its gap is equal to
 1 .  This is the case :   n  5  9 , k  5  3 ,  ( a 1  ,  a 2  ,  a 3 )  5  (1 ,  2 ,  4) and ( m 1  ,  m 2  ,  m 3 )  5  (5 ,  2 ,  2) .
 There are four root patterns :   r  5  (3 ,  1 ,  1) ,  (1 ,  2 ,  1) ,  (5 ,  0 ,  1) and (1 ,  0 ,  2) .  Hence ,  rank
 A 3  5  3 .  However ,  the inequality (2 . 4) is not facet defining in this case as there are too
 few root patterns .  Indeed ,  one needs at least ( k

 2 )  1  u K * u  5  6 root patterns!
 As another example ,  consider the sequence  b  : 5  (1 ,  1 ,  1 ,  1 ,  2 ,  2) with gap 0 .  There

 are only two root patterns :  (4 ,  0) and (2 ,  1) .  Hence (2 . 4) is not facet defining .

 5 .  S EQUENCES WITH  T WO AND  T HREE  V ALUES

 In this section ,  we show that conjecture 1 . 4 holds for sequences with two values .  We
 start with a lemma which is a refinement of Lemma 3 . 5 .

 L EMMA  5 . 1 .  Let a 1  ,a 2  >  1  be relati y  ely prime integers . Then , there exist integers u 1
 and u 2   satisfying

 H u 1 a 1  2  u 2 a 2  5  1 ,

 0  <  u 1  <  a 2  ,  0  <  u 2  <  a 1
 .

 Moreo y  er , if a 1  ,a 2  >  2 , then u 1   and u 2   can be chosen to satisfy

 1  <  u 1  <  a 2  2  1 ,  1  <  u 2  <  a 1  2  1 .

 P ROOF .  As  a 1  ∧  a 2  5  1 ,  we can find integers  u 1  , u 2  >  0 such that  u 1 a 1  2  u 2 a 2  5  1 .
 Choose such  u 1  and  u 2  in such a way that max( u 1  ,  u 2 ) is minimum .  Then ,   u 1  <  a 2  .
 Indeed ,  suppose that  u 1  .  a 2  .  This implies that  u 2  .  a 1  .  Indeed ,   u 1 a 1  5  1  1  a 2 u 2  .  a 2 a 1  ,
 which yields  u 2  >  a 1  .  But ,  then ,   u 9 1  : 5  u 1  2  a 2  and  u 9 2  : 5  u 2  2  a 1  are non-negative integers
 satisfying  u 9 1 a 1  2  u 9 2 a 2  5  1 ,  which contradicts the minimality of max( u 1  ,  u 2 ) .  Therefore ,
 u 1  <  a 2 ;   this implies that  u 2  ,  a 1  as  u 2 a 2  5  u 1 a 1  2  1  ,  a 1 a 2  .  Moreover ,   u 1  5  0 ,  or  u 1  5  a 2
 or  u 2  5  0 can occur only if one of  a 1  or  a 2  is equal to 1 .  h

 T HEOREM  5 . 2 .  Let a 1  ,a 2  >  1  be relati y  ely prime integers . Let b  P  Z n  take the two
 y  alues a 1   and a 2   with respecti y  e multiplicities m 1   and m 2  . If the inequality  (2 . 4)  defines a
 facet of  CUT n  , then  g  ( b )  5  1 .

 P ROOF .  We first rule out the case in which one of  m 1  or  m 2  is equal to 1 .  Say ,
 m 1  5  1 .  If (2 . 4) is facet defining then ,  by Corollary 4 . 21 ,  there are at least two root
 patterns  r  5  (0 ,  r 2 ) and  r 9  5  (1 ,  r 9 2 ) .  Hence ,  0  5  a 1 ( r 9 1  2  r 1 )  1  a 2 ( r 9 2  2  r 2 ) ,  i . e .  0  5  a 1  1
 a 2 ( r 9 2  2  r 2 ) .  This implies that  a 2  divides  a 1  ,  i . e .  that  a 2  5  1 .  Then ,   r 9 2  5  r 2  2  a 1  ,  which
 yields  a 1  <  m 2  .  Therefore ,  the sequence

 b  5  ( a 1  ,  1 ,  .  .  .  ,  1)
 CDE

 m 2

 has gap  g  ( b )  <  1 .  From now on ,  we can suppose that  m 1  , m 2  >  2 .
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 Let  y  1  and  y  2  be integers satisfying  y  1 a 1  2  y  2 a 2  5  1 and 0  <  y  1  <  a 2  ,  0  <  y  2  <  a 1  .  Set
 w 1  : 5  a 2  2  y  1   and  w 2  : 5  a 1  2  y  2  .  Then ,   2 a 1 w 1  1  a 2 w 2  5  1 .  Suppose that  b  has gap  g  >  2 .
 Then ,  applying Lemma 3 . 3 ,  we obtain :
 (a)  r 1  ,  y  1  or  m 2  2  r 2  ,  y  2  ,  and
 (b)  m 1  2  r 1  ,  w 1  or  r 2  ,  w 2 .
 There are four cases to be considered .

 Case  1 :  r 1  ,  y  1   and m 1  2  r 1  ,  w 1 .  Then ,   m 1  ,  y  1  1  w 1  5  a 2  .  By Corollary 4 . 21 ,  we
 deduce that (2 . 4) is not facet inducing .

 Case  2 :  m 2  2  r 2  ,  y  2   and r 2  ,  w 2 .  Then ,   m 2  ,  a 1  ,  which implies as before that (2 . 4) is
 not facet defining .

 Case  3 :  r 1  ,  y  1   and r 2  ,  w 2 .  Suppose that there is another pattern  r 9  5  ( r 9 1 ,  r 9 2 ) for the
 roots .  Then ,  from  a 1 ( r 1  2  r 9 1 )  1  a 2 ( r 2  2  r 9 2 )  5  0 ,  we obtain

 r 9 1  5  r 1  1  pa 2  ,  r 9 2  5  r 2  2  pa 1

 for some  p  P  Z .  Hence ,   p  5  ( r 9 1  2  r 1 ) / a 2  >  2 r 1 / a 2  .  2 y  1 / a 2  >  2 1 and  p  5  ( r 2  2  r 9 2 ) / a 1  <
 r 2 / a 1  ,  w 2 / a 1  <  1 .  Therefore ,   p  5  0 .  This shows that  r 9  5  r ,  i . e .  there is a unique pattern
 for the roots of (2 . 4) .  Therefore ,  (2 . 4) is not facet inducing .

 Case  4 :  m 2  2  r 2  ,  y  2   and m 1  2  r 1  ,  w 1 .  This case is similar to Case 3 .  h

 We can also show that Conjecture 1 . 4 holds for some sequences with three values .
 We state a preliminary result .

 L EMMA  5 . 3 .  Suppose that a 1  , a 2   and a 3   are pairwise relati y  ely prime . If the gap
 satisfies  g  >  2 , then r i  ?  r 9 i   for i  5  1 ,  2 ,  3 , for any two distinct root patterns r and r 9 .

 P ROOF .  Let  r  and  r 9  be two distinct root patterns such that  r 3  5  r 9 3 .  From the relation
 o 1 < i < 3  a i ( r i  2  r 9 i  )  5  0 it follows that  a 1 ( r 1  2  r 9 1 )  1  a 2 ( r 2  2  r 9 2 )  5  0 .  As  a 1  ∧  a 2  5  1 ,  we
 deduce that

 r 1  5  r 9 1  1  za 2  ,  r 2  5  r 9 2  2  za 1

 for some integer  z .  We can suppose ,  for instance ,  that  z  >  1 .  Then ,  1  <  z  5  ( r 1  2
 r 9 1 ) / a 2  <  r 1 / a 2   and 1  <  z  5  ( r 9 2  2  r 2 ) / a 1  <  ( m 2  2  r 2 ) / a 1  ,  i . e .   r 1  >  a 2  and  m 2  2  r 2  >  a 1  .  Let
 u 1   and  u 2  be integers such that  u 1 a 1  2  u 2 a 2  5  1 ,  0  <  u 1  <  a 2  and 0  <  u 2  <  a 1  .  Then ,  the
 assumption of Lemma 3 . 3 holds as  r 1  >  a 2  >  u 1  and  m 2  2  r 2  >  a 1  >  u 2  .  Therefore ,  the
 gap is 0 or 1 by Lemma 3 . 3 .

 P ROPOSITION  5 . 4 .  Conjecture  1 . 4  holds for any sequence taking the  y  alues a 1  , a 2   and
 a 3  : 5  a 1  1  1 , where a 1  , a 2  >  1  are integers such that a 1  ∧  a 2  5  ( a 1  1  1)  ∧  a 2  5  1 .

 P ROOF .  Suppose that the gap satisfies  g  >  2 .  Note that  ua 1  1  y  ( a 1  1  1)  5  1 holds for
 ( u ,  y  )  5  ( 2 1 ,  1) .  Applying Lemma 3 . 3 ,  we obtain that every root pattern  r  satisfies
 m 1  2  r 1  ,  1   or  r 3  ,  1 ,  i . e .   r 1  5  m 1  or  r 3  5  0 .  Using Lemma 5 . 3 ,  this implies that there are
 at most two distinct root patterns .  Therefore ,  the inequaltiy (1 . 2) is not facet defining ,
 by Corollary 4 . 21 .  h

 We conclude with some examples .

 E XAMPLE  5 . 5 .  Let  a 1  : 5  2 , a 2  : 5  3 and  a 3  : 5  7 .  Conjecture 1 . 4 holds for this sequence ,
 i . e .  the gap is 0 or 1 ,  or the inequality (2 . 4) does not define a facet of the cut polytope .
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 We distinguish 7 cases ,  according to the respective parities of  m 1  , m 2  and  m 3  .  (We
 indicate in each case what is the suitable partition realizing the minimum gap . )

 (a)  m 1  , m 2  even ,   m 3  odd ;  then  g  5  1 ,  as the sequence (2 ,  2 ,  3 ,  3 ,  7) has gap 1 (with
 partition :  27 ;  by this we mean the partition with 2 ,  7 on one side and 2 ,  3 ,  3 on the other
 side) .

 (b)  m 1  , m 3  even ,   m 3  odd ;  then  g  5  1 as the sequence (2 ,  2 ,  3 ,  7 ,  7) has gap 1 (with
 partition :  227) .

 (c)  The sequence (2 ,  3 ,  3 ,  7 ,  7) has gap 2 ,  but does not define a facet of CUT 5 .  This is
 the smallest case of  m 1  odd ,   m 2  , m 3  even .  The next cases to consider are :
 (i)  m 1  5  3 and  m 2  5  m 3  5  2 ;  then the sequence (2 ,  2 ,  2 ,  3 ,  3 ,  7 ,  7) has gap 0 (with
 partition :  2227) .
 (ii)  m 1  5  1 , m 2  5  4 and  m 3  5  2 ;  then the sequence (2 ,  3 ,  3 ,  3 ,  3 ,  7 ,  7) has gap 0 (with
 partition :  77) .
 (iii)  m 1  5  1 , m 2  5  2 and  m 3  5  4 ;  then the sequence (2 ,  3 ,  3 ,  7 ,  7 ,  7 ,  7) has gap 2 .  In fact ,
 the sequence

 (2 ,  3 ,  3 ,  7 ,  .  .  .  ,  7)
 CDE

 2 m

 has gap 2 .  The roots are the subsets  S  satisfying  b ( S )  5  ( s  1  2) / 2  5  5  1  7 m .  Hence ,
 there is only one root pattern ;  namely ,   r  5  (1 ,  1 ,  m ) .  Therefore ,  the corresponding
 inequality (2 . 4) does not define a facet of the cut polytope .

 (d)  m 1  even ,   m 2  , m 3  odd ;  then  g  5  0 as the sequence (2 ,  2 ,  3 ,  7) has gap 0 (with
 partition :  7) .

 (e)  m 2  even ,   m 1  , m 3  odd ;  then  g  5  1 as the sequence (2 ,  3 ,  3 ,  7) has gap 1 (with
 partition :  233) .

 (f)  m 3  even ,   m 1  , m 2  odd ;  then  g  5  1 as the sequence (2 ,  3 ,  7 ,  7) has gap 1 (with
 partition :  37) .

 (g)  In the case  m 1  , m 2  , m 3  odd ,  the gap is  g  5  0 ,  except  g  5  2 for the sequences

 (2 ,  3 ,  7 ,  .  .  .  ,  7)
 CDE

 2 m  1  1

 (then ,  (0 ,  0 ,  m  1  1) is the only root pattern) and

 (2 ,  2 ,  2 ,  3 ,  7 ,  .  .  .  ,  7)
 CDE

 2 m  1  1

 (then ,  (3 ,  1 ,  m ) and (1 ,  0 ,  m  1  1) are the only root patterns) .  h

 E XAMPLE  5 . 6 .  Let  a 1  : 5  2 , a 2  : 5  3 and  a 3  : 5  5 .  Conjecture 1 . 4 holds for this sequence ,
 i . e .  the gap is 0 or 1 ,  or the inequality (2 . 4) does not define a facet of the cut polytope .
 We proceed as in Example 5 . 5 .

 (a)  The sequence (2 ,  2 ,  3 ,  3 ,  5) has gap 1 (with partition :  35) .
 (b)  The sequence (2 ,  2 ,  3 ,  5 ,  5) has gap 1 (with partition :  225) .
 (c)  The sequence (2 ,  2 ,  2 ,  3 ,  3 ,  5 ,  5) has gap 0 (with partition :  335) as well as the

 sequence (2 ,  3 ,  3 ,  3 ,  3 ,  5 ,  5) (with partition :  3333) .  On the other hand ,  the sequence

 (2 ,  3 ,  3 ,  5 ,  .  .  .  ,  5)
 CDE

 2 m

 has gap 2 .  The roots are the sets  S  satisfying  b ( S )  5  ( s  1  2) / 2  5  5( m  1  1) .  Hence ,  there
 are two possible root patterns ;  namely ,   r  5  (0 ,  0 ,  m  1  1) and (1 ,  1 ,  m ) .  Hence ,  we are in
 the non-facet case ,  by Corollary 4 . 21 .

 (d)  The sequence (2 ,  3 ,  3 ,  5) has gap 1 (with partition :  25) .
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 (e)  The sequence (2 ,  3 ,  5 ,  5) has gap 1 (with partition :  35) .
 (f)  The sequence (2 ,  2 ,  2 ,  2 ,  3 ,  5) has gap 0 (with partition :  2222) as well as the

 sequence (2 ,  2 ,  3 ,  3 ,  3 ,  5) (with partition :  333) .  On the other hand ,  the sequence

 (2 ,  2 ,  3 ,  5 ,  .  .  .  ,  5)
 CDE

 2 m  1  1

 has gap 2 .  The roots should satisfy  b ( S )  5  7  1  5 m  ;  hence ,  the possible root patterns are
 r  5  (1 ,  0 ,  m  1  1)   and (2 ,  1 ,  m ) .  Hence ,  the inequality (2 . 4) is not facet defining in this
 case .

 (g)  The sequence (2 ,  3 ,  5) has gap 0 (with partition :  23) .
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