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This paper elaborates on the data modeling and data sharing issues that arise when
developing and interconnecting modern software development environments. It primarily-
focuses on the investigation of adjoined object management issues for tool integration,
software development environment extensibility, and interconnectivity.

1. Introduction

Software Engineering Environments (SEEs) aim at providing an integrated and
coherent set of tools for managing the design, construction, testing, use, and
eventual reuse of software, thereby increasing software productivity and product
quality [1, 2]. A key objective of SEEs is to support software projects in the
generation, management and control of the volume of data and associated
information which is generated and utilized during the software development life-
cycle. The term environment is reserved to encompass the entire set of automated
facilities, such as a unique linguistic and operating framework, required to support
all the activities of the software life-cycle and allowing to switch smoothly from one
task to another. Desirable features of such an environment include: ease of tool
integration, reusability of internal compenents, extensibility, support for proto-
typing, and automated support for the various tasks performed during the life-cycle
of multi-user, multi-version software development projects.

The development of such a complex software system involves the management of
a significant volume of diverse kinds of data and associated information (such as
data properties, constraints or relationships to other data) which make up a
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software project. The result of user interaction with an SEE is a number of
identifiable complex data entities, called (software) “objects”,' which carry
information relevant to the software development life-cycle at a suitable level of
abstraction. Typical examples of objects are constructs generated by a project to
support the software under development such as source, object, and executable
code objects as well as requirement, specification, schedule, test plan and test data
objects.

To reduce the efforts spent in maintaining this enormous and highly interrelated
amount of data and at the same time improve the overall productivity for software
development, SEEs provide a special component for storing, managing, and
manipulating the objects. This component, referred to in the literature as the Object
Management System (OMS), can normally range from any ad-hoc and application
specific storage system to modern DBMSs with flexible object-oriented modeling
facilities [3]. The OMS is the core component of an SEE: it is used as the key
platform to achieve tool integration and communication [1] while primarily
contributing to the construction of an integrated CASE environment (4, 5].

This study emphasizes two important goals of modern software development
environments, namely their extensibility and interconnectivity. Extensibility and
interconnectivity are two of the most essential features of modern SEFs. There is
clearly a need for systems to evolve over time: it is expected that new tools will be
gradually added. Moreover, since many (if not most) software projects are
developed on computer networks it is also reasonable to expect that the domain of
the local data will exceed the boundaries of the local OMSs. To cope with this issue
it is required to interconnect the individual SEEs (physically distributed over
different workstations) by providing the operating services of a distributed object
manager capable of handling objects of diverse types.

Extensibility implies the ability of tools to be easily augmented in terms of the
operations performed and the data they operate upon. An SEE is intended to be
extensible in order to support experimental investigation of software process models
and evaluation of novel tools in the context of a complete environment. Extensibility
leads to the notion of system openness where integration of software development
tools is supported in such a way as to facilitate the task of adding new tools to the
environment. Interconnectivity, on the other hand, implies the ability to support the
smooth integration and maintenance of multiple SEEs developed over a network of
computing resources. Interconnectivity leads to the notion tool interoperability where
tools are viewed as interoperable processes.

This paper outlines the technical problems associated with the topics of tool
integration, extensibility and interconnectivity and proposes appropriate solutions.
We start by briefly explaining how tools in an SEE can be integrated and how they

' The term object is used in a generic sense, it bears no direct connotation to the object-oriented
programming style. What constitutes an object is relative: it largely depends on the object management
system used and on how users utilize the typing system of this particular model to define software
objects.
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can communicate via the use of an object management system. We then outline the
various technical problems and conflicts associated with tool integration and
propose solutions in terms of a common set of modeling requirements that should
be offered by future OMSs to guarantee extensibility and interconnectivity. Finally,
we explain how different SEEs can become interoperable and can exchange
information and services under the use of a common integrating platform which
exhibits “intelligent” behavior.

2. The Organizational Impact of Using Multiple Tools

An SEE consists of a set of CASE tools which assist users with the various
software development activities of the software development life-cycle. CASE tools
support all the aspects of system design and construction. Depending on their
functionality CASE tools may be divided into upper and lower CASE tools. Upper
CASE tools include tools that support techniques like structured analysis (6]
conceptual data modeling (e.g., ER-modeling, entity life-cycle history), and
techniques such as pseudo-code specification, action diagrams or minispecs. Lower
CASE tools comprise traditional fourth generation systems (i.e., application
generators with tools for dialogue design, screen painting, automatic generation of
database schemas, code generation, etc.). Both upper and lower CASE tools must
have connections to implementation tools which facilitate code production (e.g.,
program-development tools such as editors and command interpreters) and
manipulation activities (e.g., language-specific tools such as compilers, linkers and
loaders, symbolic debbugers, test tools, etc.). A tool? can be viewed as comprising a
set of functions which accept as operands (and manipulate) the various objects
created by other tools or users [7, 8]. Commands, i.e. invocable tool services, are
essentially interpreted as the application of tools on objects and the production of
new objects as a result of applying tool operators on input objects.

2.1. Types of tool integration

Conventional CASE tools specialize in automating diverse very specific software
tasks offering, thus, only a very limited support for the various phases of the
software development life-cycle. In some cases tools offer a functionality which is
complementary to that of some other existing tools. The objective is to combine, or
integrate, these tools into a coherent, comprehensive, automated software
development environment which supports users in activities related to software
development tasks. In fact, there exists a necessity to integrate upper CASE with
lower CASE tools, and both of these types of tools with implementation tools. Itis
also important that the integration is achieved in such a manner that changes in the
upper and lower CASE tools are automatically reflected in the implementation
level. Tool integration must accomplish the following two interrelated purposes:

2 Henceforth signifying an upper, lower CASE or implementation tool; unles otherwise stated.
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1. Software developers should have at their disposal a uniform working environ-
ment where distinction between different tools is completely transparent.

2. Tools must support the diverse tasks that a software developer may choose to
perform during the systems development life-cycle.

The foundation that allows integration of tools is the object repository: tool
combination and inter-tool communication is achieved at the data, viz. the OMS,
level. The true value of tool integration may be defined as the ability of tools to
create and manipulate objects (according to agreed-upon definitions from the part
of tools) which are freely shared and have common applicability across all the
integrated tools. As a general rule, all tools must have complete access to the OMS
so that they can define the various types of objects required for their tasks, and
obtain access to the objects produced and shared by other tools participating in the
same or related development activities. The results of operations performed by tools
can be seen by all other tools, which in turn can contribute to that operation. This
form of integration may be described as a tight integration of tools, as they are
required to communicate only via shared access to a common object repository and
object management system.

In tightly integrated tool environments the communication traffic and data
interchange between tools is delegated to the OMS which provides the standard tool
interface through which tools can create, access and modify objects associated with
the software development life-cycle. This shared repository maintains information
about the semantic content of objects in a common semantic dictionary, together
with tool-specific views that specify modes of tool interaction. Typical examples of
this approach include structure editor-based environments [9, 10] and some modern
knowledge aided systems like Marvel [11], and Worlds [12].

The tight form of tool integration offers numerous advantages such as fine-grain
tool cooperation, data sharing at an abstraction level, with a common homogeneous
kernel —viz. the OMS, providing a common interface to all tools and guaranteeing
tool evolution, reusability and extensibility. To achieve tool integration the OMS
must provide upgraded data modeling facilities suited to SEE infrastructure and
should also cater for both data exchange and integration services [13].

2.2, Tool composition and data interchange

Tool integration may be thought of as the complex task of allowing the diverse
tools used in different life-cycle phases to operate together to produce the total
software product [14]. Regardless of whether objects of an SEE are local or
distributed (they span local or remote workstations), several generic mechanisms
must be provided in order for an OMS to be in the position to keep track of
consistent creation, deletion, re-definition and tarnsformation of objects. For
practical purposes we may differentiate between two kinds of activities which
underly the OMS framework: conceptual modeling and object implementation
activities.
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Conceptual modeling activities capitalize on the standard repertoire of modeling
primitives, provided by the OMS, and are used to prescribe the appropriate solution
in the context of the desired application domain. Here, the abstract components,
i.e., tools, making up the system are indentified and their respective data structures,
structural relationships, and the pattern of tool communication are specified. Object
implementation activities, on the other hand, employ those data management
techniques that are required to implement and coordinate the objects that resuit
from conceptual modeling. In the following we will outline these two kinds of
activities and examine the implications they bear on the task of multiple tool
integration.

1. Conceptual modeling activities employ two complementary methodologies to
represent functional tool constituents and specify the type of data exchanged
between tools. We refer to the former methodology as the functional composition of
tools and to the latter as the data interchange methodology. In the following, we will
examine how these two techniques provide the basis for composing tools and
combining multiple tools for constructing integrated toolsets.

« Functional composition of tools: An SEE must be a vehicle for providing
extensive and growing tool capabilities. These capabilities should be furnished
primarily by collections of tool fragments, rather than by a few, large, mono-
lithic tools. Under this perspective, a tool is seen to be composed of a series
of functional fragments each one implementing specific portion of a tool
operation, e.g., a symbolic debugging tool may be defined as an object providing
a collection of methods for displaying the status of a program in execution,
browsing through the call history, inspecting actual values of data structures,
stepping through the program calling sequences, etc. Function composition
aims at mapping identifiable physical fragments of tool functionality into
a set of functions and to synthesize tools from related tool fragments. Tools
should be viewed as aggregates of tool fragments whereby inter-fragment
dependencies are explicitly specified. A further requirement is the ability to
combine existing functions, distributed across multiple tools into a single
functional unit. For example, the task of pretty-printing may be synthesized
from a collection of tool fragments which include a lexical analyzer, a parser
and a formatter. This results in promoting consistency of operations and
avoiding the duplication of implementation efforts.

One of the main advantages of composing larger tools out of smaller
fragments, or tools for that matter, is that if the tool fragments are carefully
chosen they will prove to be usable as components of a variety of larger tools,
thereby enabling the creation of those tools at much reduced costs. It is, thus,
obvious that this methodology serves as basis for extensibility and reusability.
Here, a specific tool fragment may be replaced by another as long as this
replacement produces and draws upon objects of the same type as the other
tool fragments in the tool. This enables not only considerable flexibility by
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replacing tool fragments with equivalent ones, but also facilitates the
integration of new tool fragments.

The value of the functional composition methodology lies in finding
autonomous operational tool fragments. Once these fragments are identified,
one can identify their data interchange needs and satisfy them through the

functionality provided by the OMS.

* Data interchange methodology : Functional behavior can be defined in terms of

input and output objects involved in or produced by tool invocations. The type
of these input and output objects as well as the possible ways of combining
and/or structuring them to satisfy the data requirements of tool fragments is
guided by the data exchange methodology. The tool data exchange
methodology makes sure that tool fragments or individual tools are able to
communicate by either producing compatible objects to be read by other tool
fragments or tools, or by reading objects produced by other tools or tool
fragments. Consider for example a pretty-printing tool which must work in
conjunction with a lexical analyzer and a parser. If the pretty-printer were to
access the output of a proven lexical analyzer and parser and be conceptually
based on such data constructs as lexical tokens, parse trees, and symbol tables,
this tool is likely to be better for its reliance on a robust and proven code than
had it been created from scratch,

The most basic form of data interchange between tools is through a
mutually-agreed-upon format of exchangeable data (objects) defined as the
interface between the tools. Thus, tool fragments access a needed object only
through an accessing primitive designed to accept as parameter the type of
which this particular object is an instance. This enables tool fragments to share
and manipulate objects created by other tool fragments while also incorpora-
ting those primitives that will eventually ensure the integrity and extensibility of
an SEE. This methodology guarantees tool interoperability at the level of data
interchange, viz. at the object-level. For our purposes two or more tools are
interoperable if they are able to communicate or interact to perform software
development tasks jointly or in a cooperative fashion.

The aim of the preceding methodologies is to facilitate the development of a
versatile environment that supports the activities of software developers by
coordinating their actions and operations. However, to meaningfully compose and
integrate tools it is not only necessary to employ the functional composition and
data interchange techniques but also to resolve all kinds of incompatibilities which
may arise during the tool composition and integration process. In general, the
inherent inability to freely interchange data (objects) across a diversity of tools
stems from at least three forms of incompatibilities which arise as a result of the
attempt to achieve a meaningful integration of multiple tools:

(a) Functional incompatibilities: These are incompatibilities which arise from

the diverse data requirements imposed by the fragmentation of the tool
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functionality and by distributing different tool functions across many tools.
The data requirements of tool fragments which need to be combined into a
single tool and tools which need to communicate may be based on different
data structures and representations. Consequently, in order to integrate
tools one needs to cater for the rectification of structural and semantic
incompatibilities found among the exchangeable forms of data [15, 16].

(b) Methodological incompatibilities : Such types of incompatibilities arise from
the use of differing rmethodologies promoted by different tools. A
methodology may be defined as an ordered collection of methods, like
structured analysis, ER-modeling, and project management methods,
performed by tools in order to develop a software product. A method may
be viewed as the specific approach taken to solve aspects of a software
development related problem. For example, data flow diagrams represent a
method for developing process decomposition during the requirements
phase. As different tools promote different methodologies, any viable tool
combination must resort to consistency checks carried out on different parts
of the specification. If say, two CASE tools are used in conjunction, one
promoting data flow diagrams (DFDs) for functional specification and the
other one ER diagrams for data definitions, then it should be guaranteed
that the data stores on the DFD hierarchy correspond to entities and/or
relationships on the ER diagram and that their respective names match. As
a result we must ensure that correspondences between equivalent structures
of differing degree of granularity and detail are established. As already
stated, it should also be perceivable to develop a certain software product by
following different development strategies, e.g. by using different tools with
overlapping functionality.

(c) Distribution_incompatibilities : The tool data exchange methodology may be
viewed from the perspective of multiple cooperating developers who rely on
communicating toolsets distributed among different workstations with each
workstation possibly relying on its own private object-base for data
management. This specific category of incompatibilities introduces not only
incompatibilities between different OMS data definition costructs but also
incompatibilities which arise from the use heterogeneous machine
configurations, operating systems and so on.

One of the major purposes of the OMS is to resolve these forms of incompa-
tibilities by making sure that the structure of the shared data is made conformant to
all interacting tools in a toolset. The OMS handles the details of tool connectivity,
including representations for data structures, organizing the structure of shared data
and checking consistency between connections. Qur view is that the desirable
conceptual modeling primitives which assist the OMS in their effort to resolve all
forms of incompatibilities can be provided by recent developments in information
systems technology, i.e., object-oriented and knowledge-based data models.
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2. Object implementation activities require a common data repository for
coordinating access to and storage of the objects shared by tools. Thus, the object
implementation activities instrument the conceptual modeling framework. This
repository handles functions which span conventional data management activities
such as storage management, concurrency control and recovery and extends them
by providing persistence for typed objects. Such issues have been extensively
researched and are addressed by the relevant literature [17] and, thus, will not be
examined in this paper.

In the following section we will first elaborate on the desirable OMS modeling
primitives and explain how these primitives can be used for managing the structure
of the data exchanged between the tools, and consequently promote tool
extensibility and interoperability, and then we will explain how these features can be
used to resolve inter-tool conflicts and incompatibilities.

2.3. Desirable OMS modeling primitives

The objects which require management in an SEE range widely in size and
character. Sophisticated object management support is required to faithfully
represent objects of varying granularity such as parse trees, abstract syntax graphs,
symbol tables, source codes, test plans, designs and so on. This suggests that the
SEE’s infrastructure must provide the basic facilities for explicitly modeling the
intricate structure of software objects which represent information both at a coarse
and at a fine grain level. Several systems have been, or are being, developed around
semantic or object-oriented data modeling facilities [11, 2, 18, 8, 3], to provide a rich
repertoire of object management facilities regarding the definition, manipulation
and storage of complex entities which may be used to model software objects.

The use of the OMS as an integration platform unfolds the possibility of building
powerful information retrieval facilities which can collate and present component
information generated at different stages in the software life-cycle. The OMS
employs an object-base schema to publicly define the types of objects that are
handled by tools and specity the data structures communicated among tools. Object
definitions, thus, do not belong to the code of specific tools but are made publicly
available by the OMS.

This section summarizes the most salient conceptual modeling features that
contribute to the overall OMS functionality. The proposed conceptual modeling
features combine object-oriented programming with rule-based modeling. Each
feature is studied from the perspective of OMS extensibility and with a view to
ultimately supporting OMS interoperability. The capabilities sought for each of
these issues and some interesting problems are briefly discussed below.

* Typing facilities: The OMS can manage objects produced by tools used in all
phases of the software development life-cycle. The key factor to the OMS’s
expressiveness is the notion of typed objects. The OMS enforces typing which
includes definition of type properties (e.g., file objects and associated properties
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like the name of a file, content of a file and so on) and behavior (i.e., how an
object acts in terms of its state changes and message passing) as a set of
operations (typed methods) attached to a typed object (e.g., operations on file
objects such as create, open, close, concatenate and so on). In an SEE where all
objects are instances of abstract data types, it is easier to share objects or to
modify their implementations. Thus, the OMS is able to hide the internal
structure and implementation of objects behind well-defined interfaces and can
accordingly control the operations performed on those objects.

The type system needs to be flexible and powerful enough to capture
information which relates to tools, processes, and even types themselves and
treat it as objects. This implies that we may have objects which are types of
types or meta-types. Recently, work on type systems, in the context of object-
oriented OMS models, has dealt with these and related problems and has
focussed on forming a compatible set providing the rich typing capabilities
required for SEFs [3, 8,9, 1].

Support for composite and complex objects: For the administration of objects, it
is often desirable to use the notion of object composition as a way to collect
together related objects into a single composite (or complex) object. Compo-
site/complex objects can be treated as a single unit while their component
objects can be treated as separately identifiable and accessible units.

Complex objects possess the ability to establish simple inter-object
references, whereas composite objects exploit this mechanism further by
granting existence dependency properties to inter-object references. Consider
for example the attribute compiles-into that relates a source-code object to its
object code counterpart. If we choose to represent the source-code object as a
composite object, then the compiles-into object becomes an integral “part-of”
the source-code object. If the source-code object is deleted then its compiles-into
counterpart object is also automatically deleted.

Varying object granularity: Most conventional SEEs are able to store large
objects, like programs or documents, as a single unit. However, it is desirable
that such coarse objects are decomposed into smaller components. For
example, it is desirable to store each of a program’s procedures as a separate
object, rather than storing them in a single coarse object, as is the current
practice with file systems.

The granularity of objects in modern SEEs is normally chosen to be in a
fine-grained form so that the administered objects are compatible with the
data structuring mechanisms encountered in high level programming languages.
This choice of granularity at a coarse level poses a real threat: sub-granular
references should be kept to maintain the consistency and validity of informa-
tion. When objects get modified, existing sub-granular references to them may
be invalidated. This is a typical case when dealing with program code modules
(e.g., Ada packages) where we need to support libraries of compilation results.
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The issue of granularity is very much related to that of complex/composite
objects as they are used when dealing with larger software units, such as
program systems, documents or even entire projects whose structure must be
made available system-wide. Such objects cannot be stored in the OMS as a
single unstructured object. They must be modeled as an abstraction of a set of
related simple or complex/composite objects and their interrelationships.
Therefore, it is evident that with the use of complex/composite objects the
problem of sub-granular references to component objects (The integral parts of
the composite object) can be eliminated by appropriately mapping it to that of
representing simple or existence dependent references towards the component
objects.

Inter-type relationships: The ability to capture and maintain relationships
between objects in an SEE is closely related to its ability to define and maintain
typed objects. Through the typing system, relationships between types can be
properly expressed and manipulated. An association between objects may itself
be considered as a typed object and further relationships may be built upon this
relationship type. For example, the fact that a particular object-code module is
related to some source-code module by a relationship compiled-from is an
important property as it indicates that the link operation may only be applied to
instances of that type.

Currently, there exist several tools which reason about or exploit relation-
ships among objects. Typical examples include version control systems and
automated system building tools. As a rule, defining the relationships among
the environment’s tools and information contents, viz. objects, facilitates the
upgrading of the environment since the effect of upgrades (modifications) can
be relatively easily determined by examining the inter-object relationships.

Constraints: Depending on the domain and semantics of object properties, it
may be necessary to constrain object creation in such a way as to ensure that
their attributes assume only permissible values which belong to a specific range
of the value domain. This feature guarantees consistent creation of type
instances as opposed to unconstrained creation which involves the obligation to
verify data consistency a posteriori (and thereby scales down the performance
of the environment considerably). Constraints are incorporated into the type
definitions of objects, a fact that gives the OMS additional versatility and
EXpressive pOwer.

Existing constraint mechanisms can be characterized as value-based and,
thus, do not support constraints that can explicitly specify and delimit permis-
sible operations on objects. However, modern OMSs require action-based
constraints applied on types and their instances. Action-based constraints are
provided by modern OMSs through the trigger concept (similar to exception
handling mechanisms in programming languages, and to demons in Al systems)
[8, 9]. Triggers enable a repair activity to perform certain corrective actions so
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that their associated constraints are always satisfied and object integrity is
preserved. A typical example of the use of triggers is for automating, replanning
and rescheduling tasks when software development activities have to be
redefined and/or re-initiated [9]. For example, a change in a specification
requires the design activity to be reinitiated. Such events are otherwise
manually entered into the OMS which subsequently triggers compensating
activities depending on the specified events.

« Rules: Rules can serve as the main agents which control active participation in
the software development process in terms of activities (e.g., text editing,
compilation or debugging) carried out using tools such as editors, compilers,
debuggers, etc. Rules define the conditions that must be satisfied for a
particular tool to perform an activity which must be carried out on a set of
objects; and also specify the effects of the tool invocation. Rules normally
implement a chaining model to impose their effects and maintain consistency.
In fact, rules are used to implement action-based constraints, just like triggers,
and control corrective actions.

Rules may also be used to automate activity initiation by automatically
performing activities which otherwise would have to be carried out manually.
For example, in response to the completion of implementing a program
module, the rule-system may initiate the testing activity for this particular
module. Another important use of rules is that they may be used to apply a
backward chaining policy, similar to that of Marvel [11], for invoking
mechanisms to rectify attribute mismatches, see Section 2.4. In general, rules
are attached to types as multi-methods [19], which are sent to a collection of
objects of different types, making thus use of inheritance of structure and
operators.

To summarize, we may state that the four basic approaches, based on the above
OMS modeling primitives, which seek to rectify inter-tool conflicts and improve
efficiency via the use of objects are: abstraction and information hiding, functional
decomposition|composition, parameterization and rule-based processing. With the use
of abstraction we produce intermediate abstractions for tools whereby tools pay
no attention as to how their counterparts came into effect; with functional
decomposition/composition we partition the tools into, or synthesize tools from,
disjoint fragments which materialize complementary functionality; with para-
meterization we identify which system parameters affect which tool fragments; and
finally with rule-based processing we guarantee automation, consistency and
integrity of inter-tool invocations.

2.4. Resolution of inter-tool incompatibilities

The focal point of our discussion in this section concentrates on how the OMS
modeling primitives like typing, behavioral modeling, inter-type relationships,
constraints and the rule system can be used for the resolution of functional and
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methodological incompatibilities. Physical distribution incompatibilities are the
subject of the next section which elaborates on the concept of corporate software
development environments.

It is important to point out that tool management capabilities complement object
management capabilities: tools are viewed as functional agents defined and acting
upon objects, where objects are the instances of types tailored in such a way as to
satisfy the data requirements of the functional tool fragments. Object-orientation
provides the natural framework and set of modeling primitives for supporting
effective tool management, resolution of inter-tool conflicts and subsequent tool
integration. The usefulness of the object oriented paradigm as basis for the
resolution of functional and methodological conflicts does not only stem from its
superior expressive power (the object model lends itself to the construction of
software environments that embody the properties of well-structured and complex
systems) but also from the fact that it provides natural support for the data-driven
analysis and top-down decomposition methodologies [16, 20]. In the following we
will examine how the OMS modeling primitives (based on the object-oriented and
knowledge-based paradigms) aid in resolving inter-tool incompatibilities.

The process of resolving functional inter-tool conflicts is a three step activity. First
we assert the existence of the relevant tool fragments involved in a certain
development sequence; then, we evolve their interfaces in terms of conformant data
interchange patterns; and, finally we embed them into a single organizational unit,
the object tool type. A tool fragment architecture is always materialized in terms of
its functional components and the data structures upon which these functional
fragments operate. It is important to point out that the data requirements of the
functional tool fragments are of paramount importance: the functional fragments of
a tool are completely described in terms of the input and output objects that this
specific fragment accepts as parameters or produces as results. Once the data
requirements of the functional fragments have been specified, as a result of
performing some form of data driven analysis, the input and output objects of the
tool fragments that are to be combined are compared to ascertain their
commonalities and degree of compatibility. The objective of this step is: (i) to
guarantee that functional fragments which are placed in the same tool use
compatible data structures (and if not to devise some mapping mechanism); (ii) to
additionally develop uniform interfaces in order to facilitate tool fragment
interaction with their intra- and inter-tool counterparts. The final step in this
process requires that all identified data structures and functional components are
incorporated as structural and behavioral properties in their encompassing object
type which materializes a concise tool in the SEE.

We exemplify the three steps of the resolution of functional incompatibilities by
means of the debugging tool depicted Figs. 1, 2 and 3. This debugging tool is seen to
comprise the three identifiable tool fragments (or methods in the object-oriented
sense): ReadObjectCode, SetUpStructures and Interaction, see Fig. 1. This figure also
depicts the data requirements of those fragments specified in terms of input and
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DEBUGGER — Functional
- ’/ - Tool
1S"‘ng'Ms"(d";‘)f/ ,Fragments
- - ’
ReadObjectCode SetUpStructures Interaction
IN ouT IN ouUT IN ouUT
core hash hash |internal internal|user i/o
table table {tables tables [struct.

IN specification for input objects.
OUT specification for output objects.

Fig. 1. Functional composition of a debugger tool

output (IN, OUT) in object type parameters. These tool fragments represent the
three major functional fragments of a rudimentary debugger and perform quite
independent tasks. The tool fragment referred to as ReadObjectCode accepts a core
file object as input and produces an object of type hash table (of the compiled
program) as output. The fragment SetUpStructures is responsible for setting up the
appropriate structures required for debugging. It accepts as input the hash table
object produced by the previous functional module, and produces a set of internal
table objects. Finally, the fragment Interaction is responsible for providing user
access: it accepts as input the set of internal table objects produced by the previous
fragment and produces 1/0O structures for interaction with users.

The specific approach taken to resolve functional and methodological incom-
patibilities by bestowing an object-oriented flavor on the debugger’s (and for that
matter any other tool’s) functionality is succinctly examined below.

1. The use of composite objects and inheritance to resolve functional
incompatibilities :
When analyzing the functionality of a tool in terms of the behavior of its
particular tool constituents, we obtain several self-contained functional
fragments. These fragments accomplish a narrow and specific portion of the
overall tool functionality. As shown in Fig. 1, these tool fragments may be
represented by the nodes of an is_composed_of, or functional composition
hierarchy, with each leaf node contributing towards a portion of the
functionality of its root node. Nodes signify tool fragments, while the root of
the hierarchy signifies their common defining object type, i.e., the debbuger
in Fig. 1. The tool solution space is seen as being composed of a set of
functional units and the process of tool synthesis defines the overall behavior
of the tool as a concise object which inherits and is fully characterized by the
individual behaviors of diverse tool fragments.
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Fig. 2. The tool object type hierarchy

The resolution of functional incompatibilities is accomplished from the fact
that any defined component objects directly reflect the functionality of the
fragments of a tool, and describe how they are interfaced with the remaining
intra-tool fragments. At the same time the functional fragments define an
outwardly (inter-tool) visible behavior in that they may be potentially
accessible from every other object in the environment. It is worth mentioning,
that other objects in the SEE will be in the position to access functional tool
fragments as long as they “know” how to tailor their message interfaces to the
data structures required to achieve inter-object tool fragment invocations.

This particular methodology employs the concept of composite objects to
provide the means for referential sharing of object types, allowing, thus,
individual tools to be combined (or grouped together) into a higher-level
abstracter tool. A composite object may be profitably viewed as a tree
defining an is_part of hierarchy, represented by the dashed lines in the
figure. The composite object itself is the root of the tree and the objects which
it aggregates are its component objects. Consider for example the case of the
composite tool type called Program_Development_Toolkit and shown in Fig, 2.
This tool type contains the tools Compiler, Linker, Loader and Debugger as its
component object types to produce higher level functionality.
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The functional tool composition and the is_part_of hierarchies can be
easily combined with the schema object type, or is_a, hierarchy, represented by
the solid lines in Fig. 1, through which tools in an SEE are classified. In this
way tools and tool fragments define their attribute domains in terms of object
types organized in the object hierarchy. The organizational criteria for the
formation of the object type hierarchy are not the same as those of the
functional tool composition and is_part_of hierarchies: with these hierarchies
no sub-typing relationships (signifying property inheritance) are possible. One
can only ascertain which functional too] fragments or tools are constituent
parts of other tools, but not whether a functionality or a tool is more generic
than another —which is the criterion for classifying tools.

Reverting to the debugging example; the specification of input and output
data types used as parameters for the tool fragments of the debugger can be
organized in a generalization hierarchy as shown in Fig. 2. In addition to this
hierarchy, Fig. 2 also shows the individual structural and behavioral
properties of the debugger. For example, The_Core property specifies the
memory map (or core) file object needed for initializing the debugger, while
the rest of the debugger’s structural properties correspond to the input and
output type parameters utilized by its functional fragments like Ser_
UpStructures and Interaction. Notice that all the debugger structural
properties draw their values from the object types defined in the is_a
hierarchy. This principle is also employed in the case of the type Program_
Development_Toolkit depicted in Fig. 2. In the is_a hierarchy object types like
Structure, File and so on define a generic structure and behavior exhibited by
many object types serving as parameters for either tools or tool fragments.

The preceding discussion has illustrated how the problems of tool
composition and construction relates to the general bottom-up strategy of
software development which library-based object-oriented design naturally
implies.

The use of relations and rules to resolve methodological incompatibilities : As
already stated, methodological incompatibilities are inherent to the utilization
of particular tool fragments during the completion of a specific software
related task. To be completed successfully such tasks require a synergy of
different tools and tool fragments.

The main problem in defining a methodology for a software development
related task lies in providing appropriate input and output data structures
that suit the data specifications of the tools or tool fragments used to perform
this task. The key issue here is to be able to transform the output data of tools
to a format which is compatible to the input format of the next tool or tool
fragment in the sequence of the methods required to satisfy a chosen
methodology. During this sequence of events all parameter mismatches must
be rectified.
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Fig. 3. Relationships and rules for methodological conflicts and irregularities

Another important problem in the definition of methodologies is whether a
specific order of tool fragment invocations will lead to an effective completion
of the requested task. Consider for example the methods of the debugger type
in Figs. 1 and 2. Although a separate invocation of any method associated
with a particular tool fragment in the body of the type debugger makes sense,
the invocation sequence ReadObjectCode(core):Interaction(internal) will lead
to inconsistencies. The reason is that these two functional fragments are not
called in the right order: the functional fragment Interaction() expects to
receive as input an object of type internal which is unavailable. This object will
be properly set up after a call to the functional fragment SetUpStructures()
which accepts as parameter an object of type hash (produced by a previous
call to the functional fragment ReadObjectCode()) and returns as result an
object of type internal. In order to prevent this situation from happening, the
OMS should be in a position to detect the “functional” gap and data
inconsistencies resulting from the ill-chosen method invocation sequence and
invoke the appropriate functional tool fragments in the right chronological
order.

Both of the aforementioned problems can be solved by using inter-object
relationships and rules. Relationships help to rectify methodological
incompatibilities and the problem of ill-chosen tool invocations by stating
additional dependencies between object types used either as input or output
tool fragment parameters. Such dependencies are concerned with providing
information regarding the compatibility of input and output functional
fragment type parameters during a sequence of tool fragment invocations.
For example, in Fig. 3 the ternary relationship inter_structure_transformation
(structure_1, method_name, structure_2) provides information about the
equivalence between its input and output tool fragment parameters
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structure_l, and structure_2 by returning the name of the method which allows
to transform the structures of one type into those of the other type. The
figure shows three instances of this relationship with the first instance
signifying the fact the objects of type internal can be transformed into
equivalent objects of type hash if the method int_hash() is invoked.

To utilize this information, one can think of an additional auxiliary tool,
represented as a type called method_check(), whose purpose is to check the
validity of a given methodology and rectify attribute mismatches. This type is
shown in Fig. 3 to implement the functionality of a checker module
responsible for establishing the compatibility between input and output tool
fragment parameters used during a sequence of debugging activities. To
achieve this effect the checker module uses a rule which ascertains and
invokes the method needed to transform an object of one type into its
equivalent counterpart of a different type. Consider the call sequence with
the steps ReadObjectCode(core):interact(internal) again; the checker type is in
the position to find out whether the attribute core conforms to the type
internal and if not to find out which sequence of methods is needed to
establish this equivalence. The method look_up_structure_to_structure_
production(transformed_into, equivalent), called from within the rule where
the formal parameters transformed_into and equivalent correspond to the
actual parameters core and internal, utilizes the the relationship structure_to_
structure_production to find out that the method core_int() will eventually
have to be called. This method is subsequently automatically invoked by the
rule in the checker module, see Fig. 3. It must be pointed out that since the
method look_up_structure_to_structure_production() accepts arguments of
type structure it establishes polymorphic references to objects defined in the
is_a hierarchy.

The use of rules to rectify methodological inconsistencies is in accordance
with the concept of opportunistic processing whereby simple development
activities can be performed automatically by the model so that software
developers need not be bothered with them [11].

3. Toward a Corporate Software Engineering Environment

It is anticipated that large software development projects will gradually evolve
toward a growing set of tools that can be used from a variety of workstations with
each workstation managing its own object-base. In this environment different
members of a development project may invoke the same or different tools to
operate on one or more of the same objects stored either on a local or a remote
data repository. When multiple developers cooperate on a corporate software
development project, they share a single conceptual (virtual) object-base physically
dispersed between multiple client and server processes and workstations with
each workstation possibly supporting its own OMS and object-base. Currently,
interrelated projects have no means to remotely invoke tools or exchange objects
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stored in (heterogeneous) data repositories, However, with true integration of
multiple SEEs this is a very desirable feature: products generated by projects relying
on different types of OMSs can be reused within a common network.

The inherent inability to access and integrate objects across a variety of SEEs,
henceforth referred to as distributed objects, and tools stems from differences in
structural and semantic content of similar, or almost similar, objects created by
different tools in different OMSs. When integrating multiple SEEs it is reasonable
to expect that models of different kind are used by their associated OMSs to
represent the data relevant to the software development process. Obviously, the
elementary manageable resources in the corporate SEE are the objects produced
and managed by the individual OMSs. For reasons of simplicity we assume here that
the individual OMSs in the corporate SEE support some variant of the object-
oriented data model. In reality some of the OMSs may support filing systems, may
be based on the relational or a navigational data model or variants thereof. The
coexistence of two (or more) heterogeneous data models in an integrated
environment preassumes that these models are in a position to acquire data from
one another and subsequently convert these data to their internal representation
format. This requires the ability to establish a common means of expressing
software development activities within the corporate environment; to keep track of
these activities; and finally, to provide support for distributed object management in
order to allow multiple users and tools to work conveniently on the corporate
object-space. Distributed tool sharing poses the problems of introducing various
layers of distribution incompatibilities such as those hinted at in Section 2.2 and
unfolded in the following:

* Incompatibilities due to the use of heterogeneous data models: differences in
the representation of objects utilized by projects which rely on diverse data
models. To bridge these differences a meta-model, or canonical representation,
which comprises a super-set of the underlying data models, must be utilized.
The purpose of the meta-model is to facilitate inter-OMS conversion: OMSs of
one kind must be in a position to understand the type model of a different kind
of OMS.

* Incompatibilities in object-base schema definitions: an additional problem is the
inter-OMS differences encountered at the object-base schema level. Presenting
the same kind of objects (local or remote) through different perspectives,
requires a mechanism for keeping views and actions upon them consistent with
respect to the base objects from which these views have been derived. This may
be alleviated by adopting corresponding techniques from the database research
field, namely distributed database and view integration methodologies [21, 22].

The problem of distributed object management and the resolution of its
associated conflicts represents an active area of distributed systems [23] and
distributed database systems research literature [24] and poses a series of technical
issues and problems such as dynamic migration of objects, dynamic connections and
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disconnections of workstations, effective communication protocols, concurrency and
distributed transaction management and so on. Although the above issues represent
challenging problems, attention will be focussed on the problems identified so far
which in fact are the immediate derivatives of distributed object sharing in a
corporate SEE. Additional information about the previous problems can be found
in the information systems literature [21, 22, 25].

3.1. Inter-OMS communication

In the corporate SEE environment, tools are considered to be processes
connected to and communicating via a common network. Communication can be
performed by issuing remote procedure calls. For example, this kind of inter-tool
communication can be achieved through a broadcast message server [26] where
communication between tools that reside in remote workstations can be imple-
mented by using TCP/IP-domain sockets.

Remote tools that work together share the behavior and the view of the object-
base schema defined by their respective OMSs. We assume that each tool that can
be remotely called is supplied with a strict interface which specifies the constructs
that the tool imports or exports. Such constructs may include tools, types,
relationships and rules. A tool may have its import ports connected to several export
ports of remote tools and vice-versa. With this scheme name clashes between
imported and local facilities are treated as different views of the same construct.
The general objective here is to establish interconnection between tools and tool
fragments in terms of services required and services rendered.

3.2. Inter-OMS cooperation

Even when inter-OMS communication is existent, it is extremely difficult to
guarantee that meaningful network-wide references can be established from local
tools and users to remote heterogeneous objects and services. Distributed tool
sharing in a corporate SEE concerns itself with the sharing of a set of distributed
objects which draw their data from diverse object-bases— physically situated at
different workstations. To resolve the severe technical problems and diverse forms
of incompatibility exhibited by the OMSs a novel architectural framework must be
introduced. With this architectural framework distributed object management can
be achieved whereby each local OMS will still be in charge of the objects and pre-
existing applications developed on its workstation, and would cooperate with remote
OMSs to achieve sharing of remote tools and objects.

The proposed approach attempts to address these issues by using a blend of
object-oriented and knowledge-based techniques. It entails transforming the rather
“passive” local OMS components into active agents by attaching to them active
front-end extensions which embody sufficient contextual knowledge. Each local
OMS will entail an OMS (logical) integrator and will accordingly be transformed into
an agent which is able to reason about a corporate project domain, perform
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transformations which need to be applied to local OMS components, and automate
many corporate software development activities. These advanced abilities grant the
OMS the attribute of being active.

3.3, Functional view of the corporate environmnet

The functional view of the corporate SEE architecture entails a community of
cooperating agents implementing an additional layer on top of the already existing
local OMSs, i.e., OMS 1 to 3 in Fig. 4. This figure shows how the OMS integrator is
interfaced with its underlying local OMSs. It is assumed that an OMS integrator
(the shaded areas in the figure) will be attached as a front-end extension to each
local OMS in the network and act as a mediator in order to provide information
processing and requests addressing remote applications. Project management and
administration of inter-project objects will not be performed on the premises of a
single centralized OMS in the network. Rather, existing OMSs will cooperate,
through their integrating component, and transparently access distributed heter-
ogeneous objects residing at differently structured OMSs. The logical integrators
are the only means by which local OMSs can communicate. The entire OMS
integrator community may be perceived as forming a distinct mediating layer
interposed between the diverse tools and object-bases, see Fig. 4. The mediating
layer, or platform, makes the software developers’ applications independent of the
local or remote data resources and data management intricacies and is used as a
vehicle for the unification of local and remote data and services.
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Many of the near insurmountable problems which characterize corporate SEE
object management would be solved if the tools in the different workstations were
to share a single object representation employed by each OMS integrator. The idea
of having all remote tools operating on the same data structures is very attractive as
it guarantees full integration: with only a single representation of inter-OMS data,
tools can communicate directly. The integration mechanism on the OMS integrating
component performs several services such as keeping compatibility maps which
describe how operations on data in one workstation OMS translate into equivalent
operations on the same or equivalent data objects originating from remote
workstations, i.e., the translation methods in Fig. 4. Moreover, the logical integrator
uniformizes data, views and services provided by the diverse OMSs and makes them
available to applications and tools operating on network-wide avaliable objects.

The corporate object space entails virtual objects (depicted as circles in the
mediating platform) which draw their data from either remote or local address
spaces. Such objects are described in the canonical representation scheme used by
the logical integrators which employ a common object type lattice to define the
overall corporate schema, see Fig. 4. Existing OMSs retain their autonomy in that
local OMSs will not be tampered with. However, software developers who require
remote object support will have to utilize the canonical data model to achieve this
purpose. In all other circumstances users can still rely on their original data model
for software development purposes.

As the logical integrator basically provides the same functionality that a
distributed database management system provides in the traditional database world
[21, 27] a detailed description of these and related technical issues is beyond the
scope of this paper. In the following section we will confine ourselves to the issue of
choosing the appropriate modeling capabilities to support inter-OMS integration
and remote tool access and cooperation.

34. The corporate SEE modeling requirements

To choose the most suitable OMS approach for supporting corporate software
development, the OMS conceptual data requirements must be identified first,
exactly as it was done back in Section 2.3. The present section investigates these
issues and then based on the desired capabilities, concludes that an enhanced
object-oriented data model in the form of a tight coupling of data and knowledge
based formalisms, as already implied in Section 2.3, is most appropriate for
supporting corporate SEEs.

The overriding consideration behind the corporate SEE is the provision of a
complete development system for practical complex design environments based on
object-oriented technology. The logical integrator’s extended functionality is driven
by a supply of extensive domain and operational knowledge organized as a form of
tight coupling between the Al-based knowledge oriented mechanisms and conven-
tional database technology [28]. Such advanced capabilities include the advanced
modeling primitives which facilitate the development of well formed interfaces to a
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collection of heterogeneous information sources, and knowledge representation
facilities (mainly through the use of the rule-based system) used to resolve the acute
problem of data incompatibilities in the integrated application environment.

The usefulness of the typing and abstraction mechanisms (described in Section
2.3)are well recognized also for the case of distributed tool invocation and object
management. For example, inter-type relationships offer very attractive features for
OMS integration: capabilities that rely on relationships, such as reference and
derivation [3], will ultimately facilitate inter-OMS integration by allowing users to
interact with the environment at a high level, while leaving the intermediate
mapping steps to be automatically determined. Through the establishment of inter-
object relationships software objects in some space can refer to software objects in
another: two source-code objects representing programs Pl and P2 can have
references to objects in a common subroutine library which is represented by a
separate object space. However, in our view the issues which are of paramount
importance for materializing distributed tool invocation are the use of knowledge
and meta-knowledge for OMS integration purposes.

Knowledge in the canonical model can be represented by means of rules which
are used to represent inter-object dependencies. For example, one rule may state
that a user object at a workstation-A can modify the remote parse tree represented
by a program object at workstation-B. Another rule may state that a precondition
for a user at workstation-A to resume execution of a program at workstation-B is
that no changes have been made to any procedure already on the run-time stack.
Rules will also be used externally and will not be embedded in the general tool
functionality as suggested in [7, 11]. Adding this kind of knowledge to the logical
integrator level would make its functionality relatively intelligent.

The logical integrator is designed not only to store the initial low level
information, i.e. the objects, but also information used to facilitate corporate SEE
tool invocation. This type of knowledge pertains to the structure and functionality of
both local and remote objects and software development activities. The central
repository of the logical integrator is a knowledge-base which contains information
about inter-OMS structural and operational dependencies, application knowledge,
software tool knowledge, and can also be used a vehicle for communication between
the individual OMS components in the corporate environment., Software tool
knowledge is expressed as a form of understanding of how local and remote
software methods and tools tie together and is used as guidance to produce correct
and effective products. In particular knowledge of this type entails information on
how to construct and maintain the corporate object space and how to conduct
controlled automation by forward and backward chaining among the rules defined
by local or remote strategies. We collectively refer to this kind of knowledge, which
for operational purposes needs to be shared by the entire OMS integrator
community, as the meta-knowledge portion of the corporate SEE.

In sum, combining object-oriented data modeling primitives as described in this
section and Section 2.3. provides a firm foundation for addressing the complex
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distribution problems. Both paradigms increase software development productivity
and reduce inter-object integration and maintenance costs. Object-orientation
provides support for data abstraction, knowledge encapsulation, reusability, and
extensibility while rule-based processing provides support for representing expertise
and inferencing,

4, Conclusion

Until very recently software has been developed predominantly on large
centralized computer configurations using a collection of tools bearing little or no
relationship to one another. There has consequently been marginal support given to
the software developers during the software life-cycle. It is against this background
that the concept of SEEs has evolved. An SEE is a development evironment into
which tools supporting all of the various phases of software life-cycle are integrated.

The important issues which we addressed in this paper were tool integration, SEE
extensibility and interoperability. It was explained how the OMS supports internal
tool integration and extensibility by providing advanced modeling primitives and by
managing the properties of objects as part of the product management policies and
the software development process rather than embedding them in the tools
themselves. In this way a given tool may be used in different contexts with different
policies and methods and this will ultimately facilitate software tools to be usable on
a distributed network of SEEs. Given the trends toward greater portability and
distribution, the value of tool integration will be the ability to create and manipulate
objects according to common definitions and have distribution applicability across
all tools no matter if they are local or remotely accessed in the network. Throughout
this paper, we have concentrated on the extensibility and interoperability issues and
identified several problems associated with these issues, raised some important
open questions and suggested some promising research directions and
methodologies.
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