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SUMMARY

We construct models which enable a decision maker to analyse the implications of typical time series
patterns of daily exchange rates for currency risk management. Our approach is Bayesian where extensive
use is made of Markov chain Monte Carlo methods. The e�ects of several model characteristics (unit roots,
GARCH, stochastic volatility, heavy-tailed disturbance densities) are investigated in relation to the hedging
strategies. Consequently, we can make a distinction between statistical relevance of model speci®cations
and the economic consequences from a risk management point of view. We compute payo�s and utilities
from several alternative hedge strategies. The results indicate that modelling time-varying features of
exchange rate returns may lead to improved hedge behaviour within currency overlay management.
Copyright # 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

When investing abroad, international ®rms naturally face the decision whether or not to hedge
the risk of a depreciation of the foreign currency compared to the home currency. For example,
when a corporation sells its goods abroad it incurs foreign exchange rate exposure at the time it
wants to repatriate the proceeds of the sales. Another large group of companies with foreign
currency exposure are internationally operating investors, like banks, pension funds, and
insurance companies. The currency exposures arise from the investment strategies that these
institutions follow. For example, when a US dollar-based investor decides to diversify into
Japanese stocks he runs the risk of the Japanese yen to depreciate. Although the portfolio
allocation decision could also depend on the risk and return characteristics of foreign currencies,
in practice these two decisions are often separated. The approach where currency hedging
decisions are made independently from underlying investment decisions, is called `currency
overlay management' in the ®nance industry. Note that this approach may lead to suboptimal
decisions from a fund's perspective as a currency overlay strategy ignores the diversifying
characteristics that currencies may have. Continuing the example, when the investor perceives
the risk of the Japanese yen depreciating too large, he may decrease his holdings of Japanese
stocks. However, by applying currency overlay management the investor tries to manage his
Japanese yen currency exposure irrespective of the amount of wealth invested in Japanese
stocks. A major reason for investors to separate the currency and portfolio decisions is to obtain
increased transparency of the investment strategy.
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When considering currency overlay management, relevant economic variables are the
exchange rates and the values of the instruments used for hedging the exposures. A common
instrument to hedge foreign currency exposure is the forward exchange rate, which gives the
investor the right (and the obligation) to convert the foreign currency exposure from one
currency to another for a ®xed rate somewhere in the future. From covered interest rate parity
we know that the forward exchange rate can be calculated from the current spot exchange rate
and the di�erence between the short-term interest rates in the home and foreign country,
respectively. Other instruments may be considered as well, notably foreign currency options. In
this paper we focus on hedging with forward contracts only.

To illustrate the practical importance of currency overlay management one may distinguish
two special cases. First, the decision maker does not hedge at all. The return on the currency
overlay strategy is then equal to the return on the exchange rate. Second, the decision maker
hedges the currency risk completely. Now, the return is equal to the di�erence between the
interest rates of the home country and that of the foreign country. A practical example is the
case of a German ®rm with US investments. In the period 1998±1999, the cumulative return on
the Dmark/US dollar (DEM/USD) exchange rate was more than 8%, while the cumulative
di�erence between the two interest rates was less than minus 3%. Thus, the decision to hedge or
not to hedge relates to a di�erence in cumulative return in two years of approximately 11%.
Since multinational corporations and large institutional investors deal with substantial foreign
currency exposures that may involve hundreds of millions of dollars, the speci®cation of an
e�ective strategy for foreign exchange rate management is an important topic.

In this paper we analyse the risk and return properties of currency overlay strategies using
time series models that describe prominent features of daily exchange rate data. Our
contribution focuses on three issues. First, we introduce a class of models which describes
some major features of the data: local trends in the level or varying means in the return, time-
varying volatility in the second moment of the return, and leptokurtosis of the returns. We
integrate models for the analysis of varying means, varying variances, and heavy-tailed
distributions. Then we obtain a ¯exible general framework which enables us to study the e�ects
and relevance of di�erent model speci®cations for hedging decisions. The topics that we
investigate in this respect are unit roots versus persistent but stationary behaviour in expected
returns, heavy-tailed distributions, and di�erent ways to model conditional volatility. Second,
for inference and decision analysis we make extensive use of Bayesian methods based on
Markov chain Monte Carlo (MCMC) simulation. Third, in the decision analysis we investigate
the payo� and utility from an optimal strategy using alternative models and corresponding
results from alternative strategies for some selected models.

The outline of the paper is as follows. In Section 2 we introduce our procedure for executing
the currency overlay strategy. In Section 3 we present some time series models for describing
daily exchange rate returns. We introduce a state space model for the time-varying mean which
is augmented with a Generalized Autoregressive Conditional Heteroskedastic (GARCH) or a
Stochastic Volatility (SV) model for a time-varying variance and further augmented with a
Student-t model for the disturbances for extreme observations. State space (or structural time
series) models are nowadays widely used for describing time varying structures, see e.g. Harvey
(1989) or West, Harrison and Migon (1985). In Section 4 we discuss our Bayesian methods, see
e.g. Smith and Roberts (1993) and Chib and Greenberg (1995). In the recent literature these
methods have been successfully applied for studying separately the pattern of varying means (see
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Carter and Kohn, 1994; Koop and van Dijk, 2000) and the pattern of varying volatilities (see
Kim, Shephard and Chib, 1998). Results are presented in Section 5 using the DEM/USD daily
exchange rate series for the period January 1982 until December 1999. Some concluding
remarks are given in Section 6. Conditional densities used in MCMC sampling from the
posterior are summarized in the Appendix.

2. CURRENCY HEDGING

As noted in the introduction, we concentrate on e�ective strategies for exchange rate
management. The setting that we investigate in this paper can be described as follows. Let st � 1

be the exchange rate return over the time interval [t,t� 1], de®ned as st � 1� ln(St � 1/St), with St

the exchange rate itself. Let Ft,� be the current value of a forward contract with maturity date � .
By covered interest rate parity it is equal to

Ft;� � St exp rht;� ÿ r f
t;�

� �
with rht,� and rft,� the home and foreign risk-free interest rates with maturity � , respectively.1 With
respect to the speci®c value of � we note that in our empirical analyses we use interest rates with
a 30-day maturity, implying that we have 30-day forward rates. The hedge ratio can change on a
daily basis, however. In practice the position in the forward contract, that may have a remaining
lifetime of less than 30 days, can be neutralized by taking an opposite forward position. As a
consequence, a synthetic one-day forward contract is created. This approach is common in
actual applications of currency hedging.

De®ne Ht as the fraction of the underlying exposure that is hedged with (synthetic, one-day)
forward contracts. We refer to this variable as the hedge ratio. At time t we have an exposure of
St. Note that the forward contract does not provide any cash ¯ows at time t. At time t� 1 we
have a cash ¯ow of (1ÿHt)St � 1�HtFt, dropping the subscript � . The ®rst part is the fraction
of the exposure that we did not hedge, and the second part refers to the payout of the forward
contract at time t� 1. The continuously compounded return2 is given as

rt�1 � ln
�1ÿHt�St�1 �HtFt

St

� �
In our empirical work we make use of the exponent of the continuously compounded return,

exp�rt�1� � �1ÿHt� exp�st�1� �Ht exp rht ÿ r f
t

� �
�1�

It is seen that the exponent of the return is a weighted average of the exponents of the exchange
rate return st � 1 and the di�erence between the home and foreign risk-free interest rates. Note
that when we set the hedge ratio Ht to zero, the return on the currency overlay part is equal to
the return on the exchange rate only. On the other hand, if we set the hedge ratio to one, only

1 See Solnik (2000) for a comprehensive review of covered interest rate parity.
2We have also checked our results with arithmetic returns. The results changed somewhat. We are indebted to a referee
for bringing up this point.
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the interest rate di�erential has an impact, whereas changes in the currency do not a�ect the
return on the currency overlay.3

Given a time series model, to be introduced in the next section, which describes exchange rate
behaviour, and given all data information up to time t, the currency manager wants to
determine the hedge ratio that applies to the next period. In order to perform this task he is
assumed to specify an objective function that captures his risk and return attitudes towards
foreign currencies over some future time horizon. We assume that the investor has a standard
power utility function with constant relative risk aversion

U�Wt� �W


t ÿ 1




 < 1

The parameter 
 describes the level of risk aversion and needs to be speci®ed by the currency
manager. The lower 
, the more risk averse the manager is. In the empirical analysis we present
results for several values of 
. The variable Wt represents the wealth that the investor obtains by
executing the currency overlay strategy. Wealth changes as a result of the hedging strategy only.
The value of next period's wealth is given by Wt � 1�Wt exp(rt � 1). We assume that the
currency manager follows a myopic strategy, i.e. he makes a hedging decision for the next period
only, irrespective of possible states of the world after that period. In that case we can normalize
Wt to one, without loss of generality. The problem that the currency manager needs to solve can
be stated as

max
o�Ht�1

Est�1jtU�Wt�1� � max
0�Ht�1

Est�1jt

exp rt�1�st�1;Ht; r
h
t ; r

f
t �

� �� �

ÿ1




24 35 �2�

with Est � 1 j t a conditional expectations operator, taken with respect to the predictive density of
tomorrow's return st � 1, p(st � 1 j t), given the information available at time t. In the optimization
we have inserted de®nition (1) for the return on the currency strategy.

In the empirical part of this paper we compare the hedging decisions based on optimization of
a power utility function with hedging decisions based on Value-at-Risk (VaR), and decisions
based on the Sharpe ratio. Comparison of optimal decisions with the results obtained from more
pragmatic decision rules may give useful insight into issues like the robustness of the optimal
strategy.

Decision rules based on the VaR concept may be motivated as follows. A currency manager
wants to control the risk of depreciation of foreign currencies. A popular measure for downside
risk, advocated by ®nancial regulatory institutions, is Value-at-Risk. VaR measures the
maximum loss that is expected over a ®xed horizon with a prespeci®ed con®dence probability.
In our case we de®ne the one-period VaR asZ 1

ÿVaR

f �rt�1jt� drt�1 � 1ÿ � �3�

3 The hedge ratio is restricted to lie between 0 and 1. The reason for this is that our prime focus lies on currency overlay
management for investors that have large, relatively static, portfolios of foreign securities. These investors are generally
not interested in taking currency positions that exceed the value of their underlying securities. Indeed, for corporations
that have frequently changing cash ¯ow schemes denoted in foreign currencies, other ranges for hedge ratios might be
appropriate. We leave this as a topic for further research.
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with 1ÿ� the con®dence probability, with � typically ranging from 1% to 10%. The choice of
con®dence level is motivated by the risk attitude of the investor in relation to the horizon over
which the VaR is calculated (see Jorion, 1997). The currency manager decides to hedge his
currency exposure when the estimated VaR falls above a prespeci®ed limit risk he is willing to
take.

Another popular measure for the relation between expected return and risk is the Sharpe
ratio, which compares the expected return with the second moment of the returns. The Sharpe
ratio is given as

Sh � Est�1jt�rt�1���������������������������
Varst�1jt�rt�1�

q �4�

with Varst � 1 j t (rt � 1) the predictive variance of the return rt � 1. As in the case of Value-at-Risk, the
investor makes a decision to hedge by comparing the value of the Sharpe ratio with a certain pre-
speci®ed limit. If the Sharpe ratio is higher than this limit, no hedging is required, and vice versa.

3. TIME SERIES MODELS FOR EXCHANGE RATE RETURNS

Many models have been suggested for describing time series properties of exchange rates (see
e.g. LeBaron, 1999). In this paper we concentrate on models that describe prominent data
features of ¯oating daily exchange rates. First, exchange rates may exhibit local trend behaviour.
For several months for instance, a successive decline or successive appreciation of the exchange
rate may occur. This implies a varying mean behaviour of the exchange rate return st. We model
this by the state space model

st � �t � �t �t � i:i:d:�0; �2�;t� �5�

�t � ��tÿ1 � �t �t � N�0; �2�� t � 1; . . . ;T �6�
The unobserved mean component �t is an autoregressive process with disturbances �t and
autoregressive parameter �. This model, which we label the Generalized Local Level (GLL)
model, is supposed to pick up the periods of rising or falling exchange rate levels.4 The
disturbances �t are assumed to be independently and identically normally distributed with
constant variance �2�. The autoregressive model incorporates as a limiting case the fully
integrated mean return model, when �� 1. This model is known as the Local Level (LL) model
(see Harvey, 1989, p. 45). Given �2�>0, the LL model implies that the logarithm of the exchange
rates follows an I(2) process. We expect that, when estimating this I(2) model on our data, the
variance of �t is small compared to the variance of �t, such that the I(1) behaviour of ln St

overwhelms the I(2) e�ects. One can also take the limit case �2�� 0, �� 1, which is White Noise
(WN) around a ®xed mean �. Though extremely simple, it is a basic model in many ®nancial
market models.5

4 Theoretically the interest rate di�erential should be introduced as the expectation of st, as the uncovered interest rate
parity (UIP) prescribes. However, empirically the UIP does not hold when using high frequency exchange rate data. The
interest rate di�erential will be introduced later in the evaluation of the returns.
5 This white noise model is the only model we consider with non-zero unconditional expectation for st. In Table II,
Section 5.2, on the posterior density of the parameters, it is found that there is no strong evidence for a non-zero mean.
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The second main feature of ®nancial series concerns the variance structure. Several model
speci®cations have been suggested to account for periods of lower and higher variance in the
data. See e.g. Bollerslev (1986), Engle (1982), Engle (1995), Nelson (1990) or Taylor (1994).
Conditioning on the information available at time tÿ1 (indicated by the subscript t jtÿ1), we
write

�tjtÿ1 � N�0; �2�;t� �7�
The simplest model, ignoring the time dependence of volatility, is written as

�2�;t � �2� �8�
in which case a standard state space model results. More ¯exibility is obtained when a GARCH
disturbance process is allowed for. The variance �2�,t of the observation equation (5) varies over
time according to

�2�;t � �2�ht
ht � �htÿ1 � !� ��2tÿ1=�2�
� � 0; � � 0; � � � < 1; ! � 1ÿ � ÿ � �9�

The restrictions on the parameters are su�cient to ensure strict positiveness of �2�,t and the
existence of a ®nite value for the unconditional expectation E(�2�,t)� �2� or equivalently E(ht)� 1
(see Kleibergen and van Dijk, 1993).

A second family of disturbance processes for �t with time-varying variance follows from the
Stochastic Volatility (SV) process (see Jacquier, Polson and Rossi, 1994). The variance of the
disturbances in the observation equation evolves according to

�2�;t � exp�ht�
ht � �h � ��htÿ1 ÿ �h� � �t 0 � � < 1

�t � N�0; �2�� �10�
A third feature of ®nancial time series is that the histograms of the series exhibit heavier tails

than the normal density, even after correcting for the time-varying volatility. To model this, we
replace equation (7) by

�tjtÿ1 � t 0; �� ÿ 2��2�;t; 1; �
� �

� > 2 �11�

where t indicates the Student-t density, with expectation 0, variance �2�,t and � degrees of
freedom.

Figure 1 summarizes the models that are used in subsequent sections. The basic model is the
White Noise (WN) model, with normally distributed returns. Then there are three directions of
generalization: time dependence of the mean �t, time dependence of the variance �2�,t, or the
shape of the density of the innovations �t. More speci®cally, the third line in the ®gure indicates
the models that we consider. Note that the Local Level (LL) model is a special case of the
Generalized Local Level (GLL) model, with �� 1. The GLL is combined with the three
generalizations (GARCH, SV and Student-t), such that a broad range of competing models is
found. When the GLL model is combined with both the GARCH and the Student-t elements, a
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most general model in the ®fth line results. The models are indicated by the letters A±G in the
®gure and in text and tables in subsequent sections.

4. BAYESIAN INFERENCE AND DECISION ANALYSIS

4.1 Prior Structure

Inference and decision analysis is performed within a Bayesian framework. In Table I we present
the priors on the parameters of the models that are used. We make use of proper priors which
are expected to be weakly informative compared to the information in the likelihood. Given
proper priors, we can compute marginal likelihoods in order to compare alternative models.
Conjugate priors are used for all parameters, except �, � and �. This facilitates the
computations. Hyperparameters are chosen such that relatively weak information is put in
the priors.

The autoregressive parameter � of the unobserved mean process �t is crucial in the analysis. It

Figure 1. Hierarchy of models

Table I. Description of priors used

Parameter Prior Hyper-parameters Used in model

� N (�0, �
2
0) �0� 0, �0� 0.02 A

�2� IG(��, ��) ��� 2.5, ��� 4/3 A, B, C, D, F, G
� N (��, �

2
�) ��� 0.8, ��� 0.2 C, D, E, F, G

�2� IG(��, ��) �� � 2.25, �� � 100 B, C, D, E, F, G
�,� Uniform at stationary region D, G
�h N (��h

, �2�h
) ��h

� ÿ1, ��h
� 1 E

� N (��, �
2
�) ��� 0.5, ��� 0.3 E

�2� IG(��, ��) �� � 2.5, �� � 4/3 E
� Truncated Cauchy, �>2 F, G
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governs the amount of predictability in the series (together with the ratio of the variances in
observation and transition equations (5) and (6)). Given the fact that trends in exchange rates
may last for several months, we deem a large value of � in the unit interval a priori more
plausible than a small value. As an intermediate position between a strongly informative and an
uninformative prior, we choose a normal prior density with mean 0.8 and a rather large
standard deviation of 0.2.6 More information is available on the variance process in series like
the one at hand. Therefore, the choice of prior for the AR parameter � in the SV process is less
in¯uential. Again, a normal prior is used, now with mean 0.5 and standard deviation 0.3.

The priors for the variance parameters are all inverted gamma (see e.g. Poirier, 1995, p. 111)
distributions. The hyperparameters are chosen based on similar series, with expectation of 0.5,
0.008 and 0.5 for �2�, �

2
� and �

2
� respectively. In Bauwens and Lubrano (1998) it is proven how a

prior for the degrees-of-freedom parameter � with too heavy tails can ruin the properness of the
posterior. The truncated Cauchy prior used here ensures that these problems do not occur.

The GARCH parameters � and � are bounded by the stationarity condition to be positive and
smaller than 1 in sum. On the stationarity region, we assume a uniform prior.

4.2 Constructing a Posterior Sample

For models A±D it is possible to write the likelihood function in a convenient prediction-error
form (see Harvey, 1989, p. 104 and further). The posterior density of the parameters, p (� jdata),
is obtained by multiplying the corresponding prior density with the likelihood function. Though
the shape of this posterior might be highly non-normal, a general adaptive independent
Metropolis±Hastings (MH) sampler (see Carter and Kohn, 1996; Chib and Greenberg, 1995;
Koop and van Dijk, 2000) with a normal candidate works well for obtaining a set of simulated
parameter vectors from the target density. An adaptive sampling scheme is used: Several rounds
of the sampler are run, with an update of the estimate of the location and scale of the target
density to be used in the normal candidate density. The sampler is started at the maximum
likelihood estimates of the location and scale.

For models E±G, the GLL-Stochastic Volatility, GLL-Student-t and GLL-GARCH-Student-
t models, we apply a data-augmentation scheme to obtain conditional normality and include the
unobserved variables into the state. We make use of a Gibbs sampling scheme as in Kim et al.
(1998). See the Appendix for further details.

4.3 Evaluating the Marginal Likelihood

In order to judge the ®t of the models to the data, the marginal likelihood of each of the models
may be calculated. The marginal likelihood m for model M is de®ned as

m�M� �
Z

L�data; �;M����jM�d� �12�

and may be computed using Bayes' rule as

6Note that we did not restrict � 2 [0,1]. Other priors, including a uniform prior between 0 and 1, were used. Results were
similar to the results presented here.
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m�M� � L�data; �;M����jM�
p��jdata;M� �13�

In this equation, p (� jdata,M) is the posterior density of model M evaluated at the location
indicated by the vector of parameters �, and L(data; �,M) and �(� jM) are the likelihood and
prior, respectively (see e.g. Gelfand and Smith, 1990).

In the present setting, the normalizing constant of the posterior density is not known in closed
form. Instead, we only have a sample from the posterior available. For the models A±D, the
likelihood can be directly evaluated, and therefore the integrating constant can be found by
evaluating likelihood and prior in e.g. the posterior mean, and dividing it through by a kernel
approximation to the posterior density in the same location (for details see Kass and Raftery,
1995).

For models E±G, the likelihood function is only available as a high-dimensional integral over
unobserved components, which are used in the Gibbs sampling algorithm to obtain tractable
conditional densities (see the Appendix). Chib (1995) describes a procedure to calculate the
marginal likelihood in this case. In Section 5.3 the results for models A±D are calculated using
both methods, to judge the accuracy and comparability of the approximation methods. For
models E±G, only the Gibbs results are reported.

The method of Chib uses the conditional densities as described in the Appendix. In cases
where a Metropolis±Hastings step was applied within a Gibbs chain, numerical integration was
used to evaluate the necessary conditional posterior densities.

4.4 Predictive Analysis

The decision whether to hedge or not is based on the unconditional predictive density p(st � 1 j t)
of tomorrow's returns on the exchange rate st � 1, given all available information. The
conditional density p(st � 1 j t j�), given the vector of parameters �, is easily derived. The un-
conditional predictive density follows by marginalization with respect to �,

p�st�1jt� �
Z
�2�

p�st�1jtj��p��jst; stÿ1; . . . ; s1�d� �14�

see e.g. Geweke (1989) and Barberis (2000). Marginalization is done with respect to the posterior
density of � jst, st-1, . . . ,s1. On-line modelling and prediction requires that one re-estimates the
posterior of the parameters for every day in the evaluation period. However, for computational
reasons we refrain from doing this and use only N drawings � (1), . . . ,� (N) from the posterior of
� jsT, . . . ,s1, with sT, . . . ,s1 the observations from the estimation sample (T<t). When the
estimation sample is large compared to the evaluation sample, this approximation gives, under
standard regularity conditions, a su�cient level of accuracy. The integral in equation (14) is
approximated using

p�st�1jt� � 1

N

XN
i�1

p�st�1jt; ��i�� �15�

at a ®ne grid of possible values st � 1. The resulting predictive density is used in the next section
for the decision analysis.
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4.5 Decision Analysis

The investor optimizes the expected utility, with respect to the predictive density for the
exchange rate returns. We numerically solve

Ht �
Ht

arg max Est�1jtU�Wt�1�

�
Ht

arg max

Z
st�1

exp rt�1�Ht; st�1; rh; r f �ÿ �
ÿ1



p�st�1jt� dst�1 �16�

(see equation (2)). Optimal hedge ratios are computed using a grid search for every day in the
evaluation period.

In Section 2, two other decision strategies were presented. For the Value-at-Risk (VaR), we
evaluate for each day what the 5% VaR is according to the model at hand. The investor should
decide if the VaR is acceptable for him, or that he deems the risk too high. For reasons of
comparison, we ®x a cut-o� level for the VaR such that the average hedge ratio corresponds to
the average hedge ratio found when fully optimizing the log-utility function, where 
 � 0.

The ®nal strategy was based on the Sharpe ratio, measuring the expected return the investor
could get for one unit extra of variance. If expected return is higher that a cut-o� level, one
chooses not to hedge. In the other case, full hedging is chosen. Again, the cut-o� level is
calibrated to a level leading to comparable hedging results with the case 
 � 0.

5. HEDGING AGAINST DMARK/US DOLLAR CURRENCY RISK

5.1 Stylized Facts

Our data set consists of daily observations on the Dmark/US dollar (DEM/USD) exchange rate
for the period 1 January 1982 until 31 December 1999 which gives a total of 4695 observations.
For this same period we have the 1-month Eurocurrency interest rates for the German Dmark
and the US dollar.7

In the upper panel of Figure 2 the time series are presented in levels (on the left) and in ®rst
di�erences of the logarithms (on the right) for the whole period. In the levels one may observe
the changing trend which implies a changing mean in the exchange rate returns. The
autocorrelation functions of both returns and squared returns (in the lower panels) exhibit
patterns frequently found in high-frequency ®nancial return data. As for the returns, it is seen
that there is no clear serial correlation pattern, corroborating the widely held view that ®nancial
return series are unpredictable. However, the local trends in the levels of the exchange rates may
prove useful for practical currency overlay strategies. The phenomenon of local trends is, at a
longer horizon, similar to the data feature of long swings in the dollar as observed by Engel and
Hamilton (1990). We note that we use a state space model while these authors use a Markov
switching process for describing exchange rate returns over longer periods.

The squared returns show a clear pattern. The slowly decaying autocorrelation has prompted
many researchers to develop models for describing time varying volatilities.

7 Source: DATASTREAM, series DMARKER/USDOLLR, ECWGM1M, ECUSD1M for the daily DEM/USD
exchange rate and German and US 1-month Eurocurrency middle interest rates, respectively.
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Figure 3 shows the time series of both US and German interest rates. The maturity of the
interest rates is 30 days. Compared to the exchange rate, the interest rates are much less volatile.
Additionally, these series and the di�erence between the two (which is used in the hedging
decision) are very persistent. We note that in the hedging decision we transformed the series to
daily interest rates.

5.2 Convergence of MCMC and Posterior Results

For models A±D the Metropolis±Hastings sampling algorithm was used.8 After three initial runs
of the MH sampler (with 500, 2000 and 10,000 drawings each) for improving the location and
scale estimates for the normal candidate density, a ®nal sample was collected. The sampling
continued until a total of 200,000 drawings was accepted. From every 20 drawings, only 1 was
saved, in order to lower correlation in the posterior sample. Acceptance rates were 98%, 93%,
67% and 61%, respectively. This corresponds to ®nal sample sizes of 10,147, 10,682, 14,787 and
16,387.

The models with Student-t disturbances or Stochastic Volatility components did not allow for
direct implementation of the MH sampler. The Gibbs sampler we used was run for a burn-in
period of 50,000 iterations, and continued for another 500,000 iterations for constructing a
sample. As higher correlation is to be expected in a Gibbs chain, we use only one out of every 50
drawings.

The correlation in a Gibbs chain with multiple blocks can be quite high (see Kim et al. 1998).
Figure 4 shows the autocorrelation function of the drawings for the GLL-Stochastic Volatility
model; it is seen that only after about 30 drawings, correlation dies out.9

The correlation in the sample in¯uences the amount of information available in the posterior.
A measure of the e�ective size of the posterior is the relative numerical e�ciency (RNE) see
(Geweke, 1992). We calculated both the direct variance of the posterior, and compared it with a
correlation-consistent estimate of the variance. Using the Newey±West variance estimator
(Newey and West, 1987), adjusting for correlation with lags up to 4% of the size of the sample,
we ®nd values for the RNE of over 40% for the WN, LL and GLL models, of at least 25% for
the GLL-GARCH model, and between 10% and 70% for models E±G where the Gibbs sampler
was used. These numbers imply that in the worst case, for the GLL-GARCH-Student-t model,
the sample from the Markov chain of 10,000 dependent drawings roughly corresponds to a
sample of 1000 independent drawings from the posterior.

The main characteristics of the posteriors are summarized in Tables II and III. For each
model and for each parameter, the mean, standard deviation (in parentheses), mode (on the
second line) and the bounds of the 95% highest posterior density region (between square
brackets) are reported.10

8All results reported in this paper were obtained using programs written by the authors in Ox version 2.20 (see Doornik,
1999). For the ®ltering and smoothing of the state space models, SsfPack version 2.3 (see Koopman, Shephard and
Doornik, 1999) was used extensively.
9 Figure 4, and also Table III and Figure 5, report results for ��, the unconditional standard deviation of the disturbance
process. In the GLL-SV model, this parameter is not used. For comparison, results for �� are constructed from the
sample of �H, � and ��.
10 All 95% HPD regions were continuous.
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Figure 4. Autocorrelation function of draws from the parameters of the GLL-Stochastic Volatility model

Table II. Posterior results

Parameter WN LL GLL

�� 100 ÿ0.40 (0.92)
ÿ0.39 [ÿ2.26,1.35]

� 1 1 0.69 (0.12)
0.75 [0.44,0.90]

�� � 10 0 0.24 (0.02) 0.70 (0.20)
0.23 [0.19,0.28] 0.59 [0.36,1.10]

�� 0.68 (0.01) 0.67 (0.01) 0.67 (0.01)
0.68 [0.66,0.69] 0.67 [0.66,0.69] 0.67 [0.65,0.69]

S/N� 100 0 1 2.36

Table III. Posterior results

GLL-GARCH-
Parameter GLL-GARCH GLL-SV GLL-Student-t Student-t

� 0.76 (0.10) 0.68 (0.14) 0.68 (0.14) 0.79 (0.11)
0.83 [0.56,0.92] 0.77 [0.40,0.91] 0.75 [0.40,0.91] 0.86 [0.56,0.95]

�� � 10 0.69 (0.20) 0.66 (0.21) 0.60 (0.16) 0.54 (0.12)
0.60 [0.36,1.11] 0.54 [0.32,1.05] 0.53 [0.32,0.90] 0.49 [0.33,0.79]

�� 0.66 (0.03) 0.68 (0.02) 0.67 (0.01) 0.78 (0.06)
0.65 [0.61,0.71] 0.67 [0.63,0.72] 0.67 [0.66,0.69] 0.76 [0.67,0.90]

� 0.90 (0.01) 0.92 (0.01)
0.90 [0.88,0.93] 0.92 [0.90,0.93]

�� 10 0.65 (0.08) 0.66 (0.07)
0.65 [0.51,0.80] 0.64 [0.52,0.80]

� 4.54 (0.22) 4.84 (0.31)
4.48 [4.11,4.99] 4.82 [4.24,5.47]

�h ÿ1.06 (0.06)
ÿ1.07 [ÿ1.19,ÿ0.93]

� 0.92 (0.02)
0.93 [0.89,0.95]

�� 0.28 (0.03)
0.28 [0.23,0.34]

S/N� 100 2.92 2.06 1.66 1.46
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The last row of the tables indicates the signal-to-noise ratio (S/N), calculated as the ratio
between the unconditional variance of the signal �t and the noise �t.

11

The posteriors of the two parameters of the White Noise model were very tight, with the mean
and standard deviation centred at the corresponding moments of the dataset. Also the LL
model, which is sparsely parameterized, results in tight posteriors, with a parameter ��
governing the variance of the varying mean process sampled at a value of 0.024. The standard
deviation of the observation disturbance, ��, is rather larger at 0.67. Note that the variance of
the signal �t is 0 for the WN model, and in®nity for the I(1) process in the LL model.

More interesting are the posteriors for the GLL model. The density of the observation
standard deviation hardly changes, but there is more movement in the mean process, indicated
by the larger ��. Both parameters � and �� have a mode not very close to the mean, indicating
skewness of the posterior densities. The signal-to-noise ratio is low at 0.0236. This corresponds
with the ®ndings of very little autocorrelation in the series, as seen from Figure 2.

The skewness of the posterior of � and �� can also be observed for other models. In Figure 5
the marginal posteriors of the parameters of the GLL-Stochastic Volatility model are plotted,
together with the priors and the 95% HPD regions. Apart from the skewness of parameters �
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Figure 5. Prior, posterior and HPD region of the parameters in the GLL-Stochastic Volatility model

11Note that Harvey (1989, p. 68) uses the de®nition of the signal-to-noise ratio q � �2� /�2�. This de®nition is commonly
used with non-stationary models, when the variance of the signal �t is in®nite. For our models, this statistic (times 100)
takes the values 0.00, 0.13, 1.17, 1.22, 1.07, 0.74 and 0.51, respectively.
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and ��, it is seen that the posteriors are somewhat more concentrated than the priors. The HPD
region for the parameter � is wide, especially when one realizes that the dataset comprises almost
4500 datapoints. We note that �� 0 (WN) and �� 1 (LL) are not in the HPD interval, for all
the models where � is not ®xed.

The contrast between the posterior of � and of the GARCH parameters (both in the GLL-
GARCH and the GLL-GARCH-Student-t model) is large. Both � and � are estimated quite
precisely, with tight and almost symmetric posteriors densities. A similar e�ect is found for the
parameters �H, � and �� in the GLL-SV model, which are also empirically well identi®ed.
Including the Student-t disturbances in the GARCH model does not alter the posterior of the
GARCH parameters �, � greatly. Only the standard deviations �� and �� change, as the Student-
t disturbance takes up part of the variance. The resulting change in the S/N ratio is interesting:
Due to the heavy tails of the Student-t density in the GLL-GARCH-Student-t model, the S/N
ratio is only 0.0146, which is small compared to the value of 0.0292 for the GLL-GARCH
model. A similarly small value of the S/N ratio is found for the GLL-Student-t model.

5.3 Marginal Likelihood

The marginal (log)likelihood has been calculated for each of the models (see Table IV). The
kernel method is only used for models A±D; for these models, the loglikelihoods calculated using
the kernel approximation correspond well to the values found using the Gibbs' conditional
densities approach.

The marginal loglikelihoods indicate that the data provide evidence in terms of gain in the
likelihood function when the varying mean component is introduced (compare the results for
the WN and the GLL models). The LL model is inferior to the GLL and the WN model. The
modelling steps on the varying variance structure (allowing for GARCH or SV in the GLL
model) lead to a substantial improvement in the marginal likelihood over the more basic WN or
GLL models. The ®xed variance Student-t and the GARCH extensions result in an
improvement of the loglikelihood score of 144 and 163 points, respectively. Better is the
combination of the two, with both varying variances and heavy-tailed disturbances. The GLL-
SV model, which in ¯exibility is a close competitor to the GLL-GARCH-Student-t model, ®ts
the data best, according to the marginal likelihood.

We summarize the ®ndings of Sections 5.2 and 5.3 as follows:
(1) The parameter � has a 95% HPD interval that ranges from 0.4 until 0.95 over the di�erent

models. The values of �� 0 (White Noise) and �� 1 (LL) are outside the 95%HPD interval.

Table IV. Marginal loglikelihoods

Relative to GLL
Model Kernel Gibbs Kernel Gibbs

WN ÿ4306.9 ÿ4305.9 ÿ1.1 ÿ6.5
LL ÿ4355.5 ÿ4354.0 ÿ49.7 ÿ54.6
GLL ÿ4305.8 ÿ4299.4 0 0
GLL-GARCH ÿ4138.8 ÿ4136.2 167.0 163.2
GLL-SV ÿ4028.5 270.9
GLL-Student-t ÿ4155.6 143.8
GLL-GARCH-Student-t ÿ4043.4 256.0
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(2) The parameters of the time-varying variance for the GARCH and SV models have highly
concentrated posterior densities.

(3) The posterior of the degrees-of-freedom parameter � indicates that the normal model is not
supported by the data.

(4) The GLL-SV model has the highest marginal (log)likelihood. Further, the GLL-SV and the
GLL-GARCH-Student-t models have a much better ®t than the GLL-GARCH and GLL-
Student-t models. These latter two models clearly outperform the GLL model, which in
itself outperforms the LL and WN models. This ranking of models indicates that modelling
time varying mean and variance, and fat tails contributes to a much better within-sample ®t.

5.4 Predictive Density

The predictive density p(st � 1 j t) summarizes all information on which the investor bases the
decision whether to hedge or not. It is instructive to look at the implications of model
assumptions for the possible shape and time variability of this density.

The case of the GLL-SV model entails the most important characteristics of our set of models.
The top-left panel of Figure 6 displays the mean E(st � 1 j t) of the predictive density p(st � 1 j t). In
our models E(st � 1 j t) equals the prediction of the unobserved state �t � 1. On average, the mean
prediction is around zero, but with clear distinctions from period to period. Around September
1998, a continuing decline in the exchange rate is predicted, whereas in most months in 1999
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E(st � 1 j t) is positive. On the axis the changes are indicated as daily percentages; though the
changes from day to day are noticeable, they are of a size of as a maximum 0.04%.

In the top-right panel of the same ®gure, the standard deviation of the prediction is given.
Around September 1998 where the predicted change in exchange rate becomes negative, the
standard deviation jumps up. From that moment onwards the volatility remains high, until
January 1999, where the stochastic volatility component indicates that the variance of the series
diminishes again to the levels of mid-1998. These jumps in the standard deviation only occur in
models D, E and G, which allow for GARCH or Stochastic Volatility. For the other models the
standard deviation is constant.

The bottom-left panel of the ®gure indicates the uncertainty involved in predicting
tomorrow's appreciation or depreciation. In the graph we plotted the mean prediction from
the top-left panel plus and minus one standard deviation, together with the actual exchange rate
returns. From the graph we see that the predictions are very small compared to the actual
returns. The bottom-right panel depicts the shape of the predictive densities p(st � 1 j t) for the
days of the evaluation period. It is seen that the spread of the density changes considerably, the
location hardly moves. For models A±C and F, the corresponding plot shows less variation over
time as the variance is ®xed. In the following we investigate whether the predictive densities
provide information for constructing e�ective currency overlay strategies.

5.5 Benchmark Hedging Strategies

In the next three sections we present results on hedging strategies for currency risk management.
When evaluating our results we focus on a number of criteria. First, we look at the risk and
return characteristics of the di�erent strategies and the di�erent models. Second, we investigate
the impact of the risk aversion parameter 
 in case of hedging strategies based on the power
utility function. Third, we investigate whether modelling is important or whether a naive
benchmark strategy will do, and, when modelling pays o�, which model one should choose.
Fourth, we look into the issue of time variation in the hedge ratios Ht. In practice, a hedge
strategy which has too much variation will not be attractive from a transaction cost perspective.
Also operational risk may be too high for such strategies.

We start with results for three naive hedging strategies, which can be viewed as benchmark
strategies against which we can set the results of the strategies based on time series models. The
®rst strategy is the case for which the currency exposure is hedged at all times, i.e. Ht� 1 for all
days in our evaluation period, 523 days within the period 1 January 1998 to 31 December 1999.
Consequently, exchange rate risk is eliminated completely. The price that the investor pays for
this strategy is the di�erence between home and foreign interest rates. The second strategy is the
no hedge case, i.e. Ht� 0 for all days. The investor accepts all risks (and returns) on the foreign
currency exposure. The third strategy is the random walk strategy, which sets the hedge ratio to
one (zero) if the foreign currency depreciated (appreciated) in the previous period.

In Table V we list some characteristics of these benchmark strategies. The ®rst column
presents the average hedge ratio over the evaluation period. The second and third columns list
the number of times the hedge ratios are either zero or one, respectively. Note that for the
random walk strategy the hedge ratios are almost evenly distributed between H� 0 and H� 1.
The fourth column gives the average absolute changes j�Hj in the hedge ratios for each
strategy, which can be viewed as a measure for the variability of the hedge ratios. The ®fth
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column, labelled
P

rt, presents the cumulative returns12 for each strategy. Over the 1998-1999
period the full hedge strategy would have returned a negative result of ÿ3.20%, whereas the no
hedge strategy would have yielded 8.18% as a result of a US dollar appreciation over this
period. The cumulative return of the random walk strategy (7.56%) is very close to the no hedge
strategy. In order to determine the impact of the riskiness of these strategies we have also
computed the associated utilities for distinct values of the risk aversion parameter 
. These are
presented in the last three columns of the table. For the full hedge strategy the utilities do not
change since this strategy has no exchange rate risk, and the risk in the interest rate di�erential
can be neglected. For 
 � ÿ10, ÿ2 the riskiness of the no hedge strategy is re¯ected in the utility
values. Only for the more risk-tolerant case (
 � 0), the no hedge strategy has a higher utility
than the random walk strategy.13 Concluding we can say that the random walk strategy may be
hard to beat. However, a disadvantage of the random walk strategy is that, due to the variability
of exchange rate returns, the hedge position needs to be changed (too) often from unhedged to
hedged and vice versa. In the next sections we turn our focus on evaluating hedging strategies
based on the time series models that were presented in Section 3.

5.6 Optimal Hedging

In this section we investigate the properties of currency hedge strategies for the di�erent time
series models based on the power utility function. In Table VI we present our results. Each panel
in the table corresponds with a particular value of 
. The ®rst thing to note is the sensitivity of
the results for the choice of 
. Not surprisingly, for each model the average hedge ratio increases
when the risk aversion increases (in the limit, for our case when 
<ÿ50, the investor hedges
fully). Also, the number of times the hedge ratio is equal to zero increases when the investor
becomes less risk averse.14 The variation of the hedge ratio j�Hj is considerably lower than in
the random walk case. When comparing the results in Table VI with the benchmark results from
Section 5.5 we ®nd that for a very risk-averse investor (
 � ÿ10) it holds that all model
strategies have lower returns and utilities than the corresponding results for a random walk
strategy. Note that the GLL-SV model is a close second in utility, even though the return is 3%
lower. Also note that for this investor the model strategies always beat the full hedge benchmark
case. This implies that modelling exchange rate behaviour is worth while for a risk-averse
investor with a full hedge benchmark. For 
 � 0 or 
 � ÿ2 one can beat the random walk

12 The returns in Tables V±VII and in Figure 8 are expressed in percentages. Utilities are multiplied by 100.
13Note that the utility levels for 
 � 0 are equal to the cumulative return.
14 The hedge ratio may take values between zero and one. The table only reports the number of times the hedge ratio is
exactly equal to zero or one.

Table V. Results of deterministic hedging strategies

Cumulative utility
Model �H #(H� 0) #(H� 1) j�Hj P

rt 
 � ÿ10 
 � ÿ2 
 � 0

Full hedging 1.00 0 523 0.000 ÿ3.20 ÿ3.20 ÿ3.20 ÿ3.20
No hedging 0.00 523 0 0.000 8.18 0.24 6.60 8.18
RW hedging 0.46 281 242 0.471 7.56 3.35 6.73 7.56
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strategy in terms of returns and utilities. For 
 � ÿ2 this holds for a small subset, notably the
GLL-SV and GLL-GARCH-Student-t models, whereas for 
 � 0 almost all models based on
the Generalized Local Level speci®cation beat the random walk strategy.

From a currency overlay management perspective modelling exchange rate returns becomes
more important for investors who are less risk averse. Zooming in on the results for 
 � 0 we see
that the GLL-SV model comes out best. Variants of the GLL with GARCH and/or Student-t
turn out second. Note however that the di�erences among models are small, at the end of the
evaluation sample (but also see Section 5.7, where the results of various strategies during the
evaluation sample are compared). Concluding, one may note that modelling time-varying
features of exchange rate series pays o� when the investor's risk appetite is high. The choice
among models that satisfy these criteria is less important.

In practice model choice may be in¯uenced by the number of forward transactions that have
to be done in order to implement a hedging strategy. When the hedge position needs to be
adjusted frequently, more transaction costs may have to be paid to the counterparty.
Furthermore, management of the exposures is more vulnerable to operational risk. In Figure 7
we have plotted the hedge ratios over our 523-day evaluation period. The upper panel shows the
hedge ratios from the Random Walk strategy. They are quite erratic as a result of the exchange
rate variability. Not surprisingly, the White Noise hedge ratios (second panel) are quite stable.
The hedge ratios of the models based on time varying means are strikingly similar. This partly

Table VI. Results for optimal hedging strategies

Model �H #(H� 0) #(H� 1) j�Hj P
rt

P
Ut


 � ÿ10
WN 0.91 0 0 0.004 ÿ2.18 ÿ2.24
LL 0.47 206 191 0.074 3.51 ÿ0.16
GLL 0.78 0 119 0.105 ÿ1.05 ÿ1.59
GLL-GARCH 0.61 65 162 0.179 ÿ0.56 ÿ2.62
GLL-SV 0.62 46 135 0.187 4.29 3.10
GLL-Student-t 0.75 0 99 0.122 ÿ0.50 ÿ1.17
GLL-GARCH-Student-t 0.58 66 135 0.176 2.31 ÿ0.01


 � ÿ2
WN 0.68 0 0 0.012 0.40 0.23
LL 0.39 309 191 0.066 4.75 3.83
GLL 0.38 205 118 0.210 6.42 5.61
GLL-GARCH 0.38 281 161 0.185 7.23 6.37
GLL-SV 0.35 293 134 0.209 8.54 7.69
GLL-Student-t 0.35 240 99 0.230 5.66 4.80
GLL-GARCH-Student-t 0.34 301 134 0.177 8.35 7.42


 � 0
WN 0.11 195 0 0.023 5.66 5.66
LL 0.37 325 191 0.064 6.70 6.70
GLL 0.27 360 117 0.175 8.95 8.95
GLL-GARCH 0.34 337 161 0.173 9.01 9.01
GLL-SV 0.29 353 133 0.188 9.60 9.60
GLL-Student-t 0.23 374 99 0.196 7.72 7.72
GLL-GARCH-Student-t 0.28 366 134 0.170 7.40 7.40

DAILY HEDGING OF CURRENCY RISK 689

Copyright # 2000 John Wiley & Sons, Ltd. J. Appl. Econ. 15: 671±696 (2000)



explains why the performances of these models are sometimes close to each other. This
observation corroborates the statement that the precise functional form of the model is less
important within the class of Generalized Local Level models.

5.7 Alternative Hedging Strategies

In Table VII we have listed some results for alternative hedging strategies, notably the Value-at-
Risk and Sharpe ratio strategies. For ease of comparison the table replicates the results from
Table VI for the case 
 � 0. The limiting levels of the acceptable VaR and Sharpe values
(reported in columns 4 and 6) have been chosen such that, ex post, the average hedge ratio
corresponds to the value found for the strategy optimizing the utility. The returns (which equal
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Figure 7. Hedging decisions through time, for 
 � 0

Table VII. Results for alternative hedging strategies, 
 � 0

Optimal VaR Sharpe
Model H

P
rt

P
rt Limit

P
rt Limit

WN 0.11 5.66 ÿ1.74 ÿ1.10 ÿ1.74 ÿ1.32
LL 0.37 6.70 2.00 ÿ1.06 2.13 5.88
GLL 0.27 8.95 12.81 ÿ1.09 12.81 0.39
GLL-GARCH 0.34 9.01 6.74 ÿ0.87 10.32 1.07
GLL-SV 0.29 9.60 1.17 ÿ0.81 6.23 1.13
GLL-Student-t 0.23 7.72 10.02 ÿ1.01 10.66 0.78
GLL-GARCH-Student-t 0.28 7.40 7.95 ÿ0.82 8.35 2.12
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the utilities, as 
 � 0) are high for models that have a GLL component. Apparently, both criteria
favour a strong signal of the time-varying mean. The VaR and Sharpe ratio objective functions
focus, however, on particular aspects of the distribution of exchange rate returns. VaR
concentrates on the left tail of the distribution and Sharpe focuses exclusively on mean and
volatility. From our results we may conclude that this property can lead to performance losses,
measured in risk-adjusted returns, on currency overlay strategies.

In Plate 1 the evolution of the cumulative utilities for di�erent strategies for the GLL-SV
model are plotted. In the plot, all utilities have been calculated using a risk tolerance of 
 � 0,
the case where (cumulative) utility equals the (cumulative) return. The straight black line is the
base case where all risk is hedged, the green line ending at 8.2% is the evolution of the exchange
rate itself, obtained when no hedging is applied. The red line represents the case where optimal
hedging (given 
 � 0) is used. In the ®rst nine months, the model is rather careful, and the return
stays close to the fully hedged return. This is also the case during the months September and
October 1998, where no huge losses are incurred. Other strategies, especially the zero hedge case,
the Sharpe (purple) and the VaR (light blue) strategy run into a loss of around 12% over those
months. The RW (dark blue) limits the drop to around 8%. The loss for the `optimal' strategy is
contained within 3.5%. In periods of appreciation of the exchange rate, the di�erent strategies
have similar returns, as little hedging takes place (see also Figure 7).

At the end of the sample, the cumulative utilities of the di�erent strategies are similar. From
the results in Tables V and VI we found that from a risk and return perspective the GLL-SV
model does slightly better than the benchmark strategies, also for other values of 
.

In Table VIII we present the fraction of realized returns not exceeding the Value-at-Risk
returns, together with the test on the unconditional coverage probability as in Christo�ersen
(1998) (p-values, between parentheses). All models pass the test for these con®dence levels.

6. CONCLUSIONS

During the past twenty years many models have been developed for the description of ®nancial
time series. Time-varying variances are one of the most outstanding features of ®nancial time
series, and, as a consequence, much attention has been put on modelling the variance of these
series. However, many decision problems in ®nance depend on the full probability density of
®nancial returns. In this paper we focused on currency overlay strategies for hedging foreign
exchange rate exposure for an international investor. We investigated a wide range of competing
models that describe the most prominent features of the DEM/USD exchange rate.

Table VIII. Coverage probabilities of VaR

Model �� 0.05 �� 0.025 �� 0.01

WN 0.036 (0.13) 0.023 (0.76) 0.013 (0.46)
LL 0.040 (0.29) 0.025 (0.98) 0.011 (0.74)
GLL 0.036 (0.13) 0.023 (0.76) 0.013 (0.46)
GLL-GARCH 0.061 (0.26) 0.034 (0.19) 0.019 (0.06)
GLL-SV 0.050 (0.98) 0.023 (0.76) 0.008 (0.57)
GLL-Student-t 0.048 (0.82) 0.023 (0.76) 0.011 (0.74)
GLL-GARCH-Student-t 0.065 (0.13) 0.031 (0.43) 0.013 (0.46)
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Special attention has been given to describe the mean of exchange rate returns. The
motivation for investigating models that integrate time-varying means and variances springs
from observing exchange rate time series. Besides the feature of time-varying variances, there is
some evidence that these series exhibit local trend behaviour, i.e. prolonged periods of exchange
rate appreciation or depreciation. Capturing this feature may lead to better risk and return
characteristics of hedging strategies. When estimating our models we use Bayesian estimation
methods.

The empirical results which we ®nd for the DEM/USD exchange rate over the period 1998-
1999 are summarized as follows. First, modelling time-varying features, and using a power
utility objective function, pays o� in terms of risk-adjusted returns for a moderately risk-averse
currency overlay manager. Second, modelling becomes less valuable when risk aversion
increases. Simple random walk strategies outperform our optimal strategies that are based on
time series models. But the time variation of hedge ratios in the random walk strategy may be
prohibitive in actual implementation of strategies. Third, when modelling is worthwhile it
appears that there is not one model that is uniformly superior for all criteria. However the GLL-
SV and the GLL-GARCH-Student-t are close competitors. Fourth, for some time series models
strategies based on VaR and Sharpe objective functions have better results. However, care has
to be taken since these objective functions focus on distinctive parts of the distribution of
exchange rate returns only. From the period September-October 1998 we infer that modelling
exchange rate returns and using utility analysis is especially important in periods of high risk of
depreciation.

Our overall conclusions for practical currency management are:

(1) It is more important to choose the level of risk behaviour and the class of criterion functions
in combination with a speci®c model than to endlessly ®ght on speci®c functional forms of
time series models for exchange rate returns.

(2) Modelling the time-varying mean and variance features of exchange rate returns in an
integrated framework appears worth while, in particular in periods with large decreases in
exchange rates.

The topic of integrating models for risk and return into a framework for ®nancial decision
making can be extended in several ways. First, the AR(1) structure that we applied in this paper
for the unobserved time-varying mean describes the local trend behaviour of the exchange rate
levels, but other models may be investigated. For instance, a ®nite mixture model or the
RiskMetrics model (see JP Morgan, 1997) are obvious candidate models for comparison.

Second, the models could be extended with information from other economic variables.
Within the exchange rate literature much attention has been given to the uncovered interest rate
parity and/or the purchasing power parity as building blocks for predicting exchange rates.
References to this ®eld include Mark (1995), Bansal (1997), Bansal and Dahlquist (2000) and
Evans and Lewis (1995).

Third, the ®nal hedging results depend strongly on a few days with large absolute returns. The
consequences of decision making may be investigated over longer periods, or comparing
subperiods. Results may be contrasted to simulation results, where the data generating process
is known and the e�ect of changing the hedge strategy is more purely observed.

Fourth, one may perform the hedge decision for several currencies simultaneously. An
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obvious advantage of this approach is that hedging costs could become lower due to
diversi®cation. Crucial input for making hedge decisions in this way is the availability of
multivariate time series models for exchange rate returns. Another possibility is to incorporate
the currency hedging decision in portfolio choice models. This approach steps away from the
currency overlay principle that we pursued in this paper, and integrates the hedging decision
into the international allocation problem. Bayesian references on portfolio choice include Jorion
(1985), Jorion (1986), Geweke and Zhou (1996), McCulloch and Rossi (1990), McCulloch and
Rossi (1991), and Kandel, McCulloch and Stambaugh (1995).

Finally, it is of interest to extend the decision framework and allow for options as an
instrument in the decision process. Further, one may allow for the hedging parameter to be
outside the unit interval. Hence, managers may use currencies as an investment in their own
right.

APPENDIX: GIBBS SAMPLING WITH DATA AUGMENTATION

To construct the sample from the posterior density in models E±G, direct application of the
Metropolis±Hastings sampler is not trivial as the likelihood function is only available as a
multivariate integral.

In this appendix, a Gibbs method with data augmentation is described which attains
conditional normality of the state space models. Given the conditional normality, the state space
model can be handled using the standard Kalman ®lter and simulation equations (see Harvey,
1989; de Jong and Shephard, 1995), which simpli®es the analysis.

The full set of equations for model E, the GLL-Stochastic Volatility model, reads

yt � �t � �t
�t � ��tÿ1 � �t

ln �2�;t � ht � �h � ��htÿ1 ÿ �h� � �t

�t � N�0; �2�;t�
�t � N�0; �2��
�t � N�0; �2��

for t� 1, . . . ,T. Conditional on the values of the log-variance process ht, the model is Gaussian.
Following Kim et al (1998), a linear process for the variance can be constructed by writing

y�t � ln�yt ÿ �t�2 � ht � zt zt � ln��2t � �17�
ht � �h � ��htÿ1 ÿ �h� � �t �18�

The non-normal disturbance process zt can be approximated by a mixture of normal densities.
This way, conditional on an index st indicating the element of the mixture, full conditional
normality is regained and the Kalman equations can again be used. A more elaborate exposition
is found in Kim et al. (1998) or Chib, Nardari and Shephard (1998).

For models F and G, the problem lies in the Student-t density. Write the model G, the GLL-
GARCH-Student-t model as

yt � �t � �t �t � t 0;
� ÿ 2

�
ht�

2
� ; 1; �

� �
�t � ��tÿ1 � �t �t � N�0; �2��
ht � �htÿ1 � !� ��2tÿ1=�2� ! � 1ÿ � ÿ �
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for t� 1, . . . ,T. Note that Var(�t)� ht and that the unconditional variance of � is E(ht)� 1.
We obtain the Student-t density for the disturbances �t as the marginal of the normal-inverted

gamma density,

�t; ztj� � N�0; htzt�2� � � IG � � �
2
; � � 2

� ÿ 2

� �
�19�

where the marginalization takes place with respect to the mixing parameter zt. It is straight-
forward to derive that the marginal density p(�t j�)�

R
z p(�t,z j�) dz is indeed the Student-t

density with � degrees of freedom (see e.g. Bauwens, Lubrano and Richard, 1999, theorem A.7).
The full conditional posterior densities which are needed in the Gibbs sampling algorithm are

given without derivation in Table IX. For the GARCH parameters �2�, �, � and for the degrees-
of-freedom parameter � no closed form expression of the conditional density is available.
Therefore, we use in these steps a Metropolis-within-Gibbs sampler (see Koop and van Dijk,
2000; Zeger and Karim, 1991). Note that the priors in Table I in Section 4.1 have been applied.
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Table IX. Conditional posterior densities

Parameter In model Full conditional density

� E, F, G Use the simulation smoother, see de Jong and Shephard (1995)

� E, F, G N �̂�2�����̂2�
�2���̂2�

;
�̂2��

2
�

�2���̂2�

� �
with �̂ and �̂2� the least squares estimate of � with

corresponding variance

�2� E, F, G IG � � T
2 � ��; � � 2=

P��t ÿ ��tÿ1�2 � 2
��

� �� �
�h E N��̂; �̂2�� with �̂ � �̂2� 1ÿ�2

�2
�

h0 � 1ÿ�
�2
�

P�ht ÿ �htÿ1�� �
and �̂2� � �2�= �Tÿ 1��1ÿ ��2 � �1ÿ �2�

� �
� E N �̂�2�����̂2�

�2
�
��̂2�

;
�̂2��

2
�

�2
�
��̂2�

� �
with �̂ and �̂2� the least squares estimate of � with

corresponding variance

�2� E IG � � T
2 � ��; � � 2=

P �ht ÿ �h� ÿ ��htÿ1 ÿ �h�� �2� 2
��

� �� �
st E The indices into the mixtures in the distribution of ln �2t are discretely distributed

�2�,�,� G Use MH sampling. The conditional posterior is proportional to the likelihood
from the Kalman filter equations and the prior

zt F, G IG � � ��1
2 ; � � 2

��ÿ2���ytÿ�t�2=��2� ht�

� �
� F, G The posterior is not of a known form. It is proportional toQ

t IG zt;� � �
2 ; � � 2

�ÿ2
ÿ �� Cauchy ��;� � 0; s � 1�:

Apply a MH step to sample a new value of �
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